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Simple bias potential for boosting molecular dynamics with the hyperdynamics scheme
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Two modifications of Voter's hyperdynamics scheme offer significant speedup of molecular dynamics
simulations(1) A simple construction of the bias potential—a few tens of lines of code—is validated for three
systems.(2) A local construction of the bias potential permits the use of intuition to further improve the
statistical error. These results suggest widespread applicability and the possibility of overcoming the unfavor-
able exponential scaling of molecular dynamics simulations as the temperature is lowered.
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The simplicity of molecular dynamic@MD) simulations boost factor (efAVe(R)) 2)
has led to their wide usage in chemistry and physics; one v
“simply” integrates the equations of motion governing the where the expectation value is taken over the classical ca-
system forwards, measuring observables at suitable time imonical ensemble for thé* potential. Within the framework
tervals. A central assumption is that the path followed by theof importance sampling a formal arguméman determine
system is in some way “typical,” and that averages over thisthe escape ratk,_, from a well-defined region of configu-
path, or many paths, are truly representative of the systenmation spaceA. In particular the escape rate for the biased
While high-frequency, short-ranged vibrations can typicallypotential surfacé/* is related to the desired escape rate for
be well described by MD, one is often interested in observy by
ing the system through a sequence of infrequent transitions,
such as hopping from one potential energy minimum to an- (JvL| Sa(R)FAVER) |
other or surface diffusion of an adatom. Such simulations ka—=(lv.[0a(R)), = BAVL(R)
often require long run times, and due to the exponential scal- (e >v*
ing with inverse temperature rapidly become prohibitively

expensive. which surface is defined b§,(R). We explicitly indi
. W(R). plicitly indicate on
Voter recently proposed the hyperdynamics schiehe which potential surface the MD averaging is performed.

fpnee?ir:p tt)hzs?/i NrID fsmt:larﬂon%\]/v hos;la (F:]noaIrT:s(jt;i Stut?]y the Central to substantially decreasing the computational time
ton?i_l g re a ?f orsys eiﬁ S'“ )te src de ethOCPeUstime POs the bias potentiah V,(R), which is added ontd to de-
ential energy surtace specitica y) to reduce the ) ' crease the number of time steps spent in oscillatory motion
spent evolving the system when it is trapped in high-

frequency oscillations in potential minima a2 to obtain in potential minima. In Refs. 1 and 2 the bias potential,
anqundis%/orted long-time F2jescri tion of the system’s evqu—WhiCh fills in the minima, was required to go to zero
i _long : Iptior ne systems smoothly near a saddle point so that the evolution of the
tion. The cost is that detailed vibrational information is lost.

To understand qualitatively how a modified potential sur—SyStem through a saddle point region was unaffett@ur

. . . roach ndons this r ring feature t th
face can lead to a boost in the computational speed, conmd%ﬁﬁs?ﬁfcti O?]bgmd\? (SR) s reassuring feature to speed up the
b .

two potential surfaces in multidimensional configuration For our simpler construction, in any region wheréR)

. * - . ,
spaceR_.V(R)$V (R). Thg_averagg time(R) spentaR is falls below a carefully chosen boost enerBy, V(R) is
proport!onal to the probability of being &, which in urn is replaced by the constali. In practice, the transition be-
proportional to the Boltzmann factor. He*nOE(R) and tweenV(R) andEg depends ony=y(R) = V(R) — Eg S0 as
7 (R) are proportional toe”*® and e_ﬁv ®), respec- o the one hand, to produce a smooth crossover and, on the
tively. Defining thebias potential asAV,=V* —V, we have  giher hand, to restrict the range of the smoothing region.

Specifically

)

wherewv, is the velocity perpendicular to the surface Af

7(R) =% (R)ePAVo(R), 1) AVp=f(x)+Eg—V=xg(x)+h(x)+Eg—-V, (4

In an MD simulation orWV* a time intervalAty, spentinthe where g(x)=1/(1+e”*) and h(x)=e~ 7l g, The

neighborhood ofR corresponds to a larger time interval choice ofy=1/3 anda between 10 and 50 achieves the joint

Atypexd BAV,(R)] for an MD simulation onv. goals of a restricted, but smooth, crossover. We stress that
This qualitative argument has a more quantitative formthis bias potential is not zero on the surfaceAcdind that the

leading to aboostfactor of the computational time over con- “numerator correction” (NC) in Eq. (3) may need to be
ventional MD simulations: computed for accurate resufts.
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The forces due t&* are directly related by the chain rule

to those forV, and the boost factdrsee Eq.(2)] is easily 10" e—oEF,=02
computed—in fact the total modification to a regular MD o EB :_g'_g
code is a few tens of lines of code. Further, in the “flat” 10° P EZ 07

region forces need not be computed, only the potential en- e—eMD
ergy; typically we find that for up to half of the time steps the 10°
system is in the “flat” region—the force ol’* is less than x§
0.001 that orV. Additionally, physical intuition can be used 107
to concentrate on a particular subcomponent of the potential
energy. At the risk of introducing an unwanted bias, this 10°
improves the statistics and results. Finally, by lowerifg
we can systematically approach the traditional MD result. 10°
Results.Our examples are closely related to the simula-
tions in Ref. 1, the main difference being that we use unbi-
ased MD as the reference point, rather than transition-state
theory. The second-order Langevin-Verlet algorithm of
Allen and Tildesley is used. Our choices dfty, anda are
conservative, and the samples are initially well thermalized.
The first example is a simple two-dimensional potential
energy surface which is periodic in tixedirection:

(@)

— Vu0e=0.6——

V(X,y)=cogX) 1+%y +y2. (5)

Boost Factor
)

With energies at the minimum and saddle point being
—1.41 and 0.59Aty,p=0.1, and the Langevin damping be- 10'
ing 0.4, we determine the hopping rate in tkedirection
(kho :

F,gr a wide temperature range, Figajlcompares the hop- 3 4 5 6 7 8 9 10
ping rates from MD simulations with hyper-MD results for 1/T
different Eg’s. The agreement is well within the statistical
noise. The NC, which arises because of the smoothening(
procedure, is neglected—it is largest f&z=0.2 and T h

FIG. 1. Comparison of the temperature-dependent hopping rate
op Of MD simulations with hyper-MD results for different boost
energiesEg’s. The inset schematically represents both the simple

=0.3, where it is 1.07; otherwise, it is less than 1.02. . ; . o
= b) sh th di b t factor in E two-dimensional potentigB) from the minimum to the saddles and
igure 1b) shows the corresponding boost factor in U the four values oEg. (a) shows good agreement between the rates

2 fqr the hyper-MD simulations. At IOV\_/er temperature ON€+or all values ofEg; we have neglected the NC—see text for de-
obtains very If';lrge boosts, but even with lOW’_ conservativgyg. (b) shows the boost factgsee Eq(2)] which at low tempera-
Eg’s one obtains one to three orders of magnitude. tures can become very large, corresponding to an enormous reduc-
In a related test, we added a 0.1 od8] term toV(X,Y)  tion in CPU time. For each point 1024 samples were taken,
and measured the left- and right-hopping ratiesd)—it is  producing statistical errors less than the size of the symbols.
important that relative biask( /kg) is not introduced. The
difference in the left- and right-barrier heights is 0.2, and so We used two different constructions of the bias potential:
assuming that the entropic prefactors cancel, we expect frorf)) global, which refers to the construction described in Eq.
the Arrhenius equationk, /kg=exp(—0.2/T). Figure 2 (4), and(ii) local, which concentrates on the atom which is
shows how well the temperature dependence ohopping—the event we are interested in. We de¥ipg, as
k. /krexp(0.2T) equals unity: within 3—-10 % statistical the potential energy of the hopping atom, and then to deter-
noise—the slow(left) escape rate dominates the noise. Genmine the bias potential we replaseby V,y, everywhere in
erally we can neglect the NC, but for the very aggressivelyEQ. (4). The determination of the forces is slightly trickier, as
biasedEg=0.2, including the NC yields results in statistical only the forces associated with the hopping atom are scaled.
agreement with the expected result. Figure 3 compares the temperature dependence of the
A final case is the diffusion of a Lennard-Jor(eg) atom  hopping rate of MD simulations with the results from
along a(100 terrace—we use the same configuration as théyper-MD calculations using both the global and local con-
last problem in Ref. 1. We took the strength and the widthstructions. To obtain a substantial boost in the global ap-
parameters in the LJ potential both to be unity, and the lattic@roach one requireEgIOb be above the potential energy of
constant was chosen to be 1.10 to account for thermal expathe lowest saddle point. The estimateE§” is as follows:
sion. The Langevin damping was taken to be 0.4, and thdlost of the potential energy is associated with displacements
time step was usually 0.02, but doubled for the low-in the Npe=3X9—1=26 degrees of freedom that are per-
temperature reference MD simulations. The minimum potenpendicular to the direction of interest. For the temperature
tial energy of the system wag,;,=—15.30 and the lowest range in Fig. 3 we find thaXl;T/2 lies between 0.3 and 0.6.
saddle point was at 14.93. Adding 0.6 to V,,,, gives —14.5. We present results for
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FIG. 3. Effect of global and local constructions of the bias po-
tential on hyper-MD results for the hopping ratie.{). The inset
schematically represents the global or local potential, and shows the
Irelative positions of the global or locdtg's. The unprejudiced
global approach exhibits large statistical and systematic errors,
é@hich can be reduced at the cost of more computer {inee, by
reducingEg®”). (For EZ°"= —14.6 we show only the low tempera-
| ture results for clarity. The local approach shows much smaller
statistical and systematic error, but runs the risk of introducing un-
foreseen biases. We used 1000 samples except far-t@03 ref-
erence MD simulations where 500 samples were used.

FIG. 2. Comparison of the temperature dependence of the ratio
of the left- and right-hopping rate&(/kg) of MD simulations with
hyper-MD results for differenEg’s. The potential in Eq(5) has an
additional 0.1 cos(2) term. The inset schematically represents
both the potential from the minimum to the saddles and the fou
values ofEg. We multiply k, /kg by the inverse of the expected
result to emphasize the errors. We neglect the NC, but for the ca
where it is largestEg=0.2 for which we show the effect of includ-
ing it (see line with staps The 4096 samples lead to a statistical
error at the 3%410%) level at high(low) temperature.

EJ°P= —14.4 and— 14.6. ForEZ°"= — 14.4 the effect of the
NC is substantial, indicating that on the surface defining a

hop there can be a significant boost factor—in contrast t;o, to maintain the noise level at that of tE@"’b: 146

Voter’'s construction of the bias potential. To determine th glob_\; ; _
boost factor the ratio of the “bare” boost factor to the Ncelevel, Eg " Vimin had to be lowered, reducing the boost fac
tor by a factor of 3.

glob_
[see Eq(3)] must be taken. Fdg : 14.4, ‘T"t the ;owest ConclusionsThe hyper-MD scheme proposed by Voter is
temperature the average effective boost isx118'/470 . .
. glob . a powerful approach for reducing the CPU requirements of

=3.6x10%, while for EZ°°=—14.6 we find a lower boost ; . : ,

MD simulations of rare events with a concomitant loss of
10°/7.3=1.4x10% The results for the lower boost energy , N . : ) _

short time vibrational information. Our simple construction

glob_ __ . . . .
Eg 14.6 yield Irk more nearly Imegr in 17, .and with Pf the bias potentialsee Eq.4)] regularly produces boosts
respect to the MD results the systematic error is half that o f th f d f itud ith anifi
the E9%— _ 14.4 results of three to five orders of magnitude, without a significant
B j - . o : loss of accuracy. For simple systems with only a few degrees
The local construction of the bias potential is a Slmpleof freedom the very simplglobal construction is found to
attempt to build some physics into the bias. Of course the y b'g

risk is that other mechanisms will not be boosted and thereWOrk well. For larger systems the slightly more complex

fore suppressed—Tfor example, atom exchange with the SutSgcal construction of the bias potential builds on physical

strate will be suppressed by this construction. As with im-Intuition to reduce the statistical error with respect to the
portance sampling there is significant variance reduction—Simplerglobal construction—however, the risk of suppress-

the statistical errors are much smaller than with the globaid unforeseen mechanisms must be recognized. Addition-
construction. This is related to the fact that the NC is muct@lly, reducing the bias potential systematically improves the
smaller(between 1.2 and 1)2ind much less noisy, which we results.
expect to be the case &s°=—1.00 isbelowthe “local” It is possible to generalize the local scheme to syst@ns
potential energy of the saddle point 0.89). The local re- Where the interesting events involve the motion of more than
sults are also more linear and in good agreement with thene atom ox(b) the local potential is not readily constructed.
reference MD calculations. At high temperature the effectivd=or example, in a tight-binding-scheme MD approach, where
boost factor was 23, while at low temperature it was 1.6a local potential energy is not defined, one can use any rea-
x 10°, sonable approximation to it—importance sampling will take
Runs on double- and quadruple-length terraces furthetare of the rest. Finally, Fig.(ft) suggests that raising the
demonstrate the viability of the local approach; the highbias potential or lowering the temperature can totally over-
boost factors and low noise levels seen in the short terraceome the exponential slowdown of traditional MD
persist. On the other hand, when using the global construsimulations®
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