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Multifractal structure of eigenstates in the Anderson model with long-range off-diagonal disorder
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The spectrum of eigenvalues and the spatial structure of eigenstates for the Anderson model with long-range
off-diagonal disorder \(;; =(i)/|Ri—R]-|d) is investigated numerically whelR, are Poisson-distributed ran-
dom points ind-dimensional space. For this marginal case all states in the system are delocalized. Analyzing
the scaling with system size of the inverse participation numbers for the most extended modes we find that
these states exhibit a self-similar multifractal structure. The generalized dimerBipnand the multifractal
spectrumf(«), are calculated. Fal=3 the information dimensio®,=2.65 and the correlation dimension
D,=2.33 that characterizes the power-law behavior of the averaged two-particle Green function. The temporal
autocorrelation functiof©(t) built from the eigenstates of the most dispersive oscillator exhibits an nondiffu-
sive algebraic decag(t)~t~? with the exponents=D,=D,/d reflecting the generalized multifractal di-
mension of the local density of stat¢§0163-18208)02617-4

Since the first paper of Andersbon quantum localiza- relevant, e.g., for the thermal conduction. The 3D results can
tion of excitations in disordered systems our understandingpe extended to other dimensions 3 replacirig®lsy 1/RY.
of this difficult theoretical problem has progressed enor- A second motivation for this work is the increasing inter-
mously. The disorder-induced localization-delocalizationest in statistical properties of large random matriXés;N.
transition was found to manifest itself by a complex spatiale find drastic differences compared to the Wigner-Dyson
behavior of the wave functions believed to have multifractallandom matrix theory for statistically independent off-
structuréS at the localization thresholdor in finite size diagonal matrix elements. The triangle rule for distances
samples for localization lengths exceeding the sample siz#nPlied in the 1R law introduces specific correlations be-
L). tyveen the off—d!agonal mat_rlx elements causing in _turn mul-

Usually Hamiltonians with short-range, off-diagonal ma- tifractal properties of the eigenstates. The distribution of the

trix elements are investigated. In the often used tight-bindin r:gegvalu_tes 'Sf altS? veryt d|ffer”ent. In t_he Wigner zemmr(;:let
model (also called Anderson model with diagonal disojder xf/\/ﬁnf' y of sta e_f_a sma denerggest IS SIZ.?. ?_pc_atn ent,
the criterion of state localization in three-dimensiof@iD) - Inour case 1L IS size independent, 1.€., LIS Tinite n

systems depends on the ratio between diagonal disorder aﬁ'EF thermodynamic limit. .

. - : : In the present paper we study numerically the spectrum
the off-diagonal transition matrix elements between nelgh-and eigenvector statistics of largex N real symmetric ma-
boring states taken to be constant. In 1D and 2D systems,, g ) , , y.
independent of this ratio, in the thermodynamic limit all t1x€SV with purely off-diagonal disorder. Without loss of
states are localized in this model generality all diagonal matrix elements are set to zero. Off-

) i i is i = _R.|d
From the above it seems interesting to investigate the 093'23(;02?'51258;?;(0?. dilgsrri%%?ecgdraﬁzlé m(io%r)lt/\l,zlrdirig n.-
posite case:long-range off-diagonal disordemwhere for ! P

; . X sional spaced=1,2,3), and the random sigt; 1 provides
some distance dependence of the nondiagonal matrix el%r the average valu@V, )=0 corresponding to the interac-
ments,V(R), all states are delocalized. For the 3D case thi 9 I P 9

Yion of randomly oriented electric or elastic dipoles
. 3 .
Waf prover? foV(R) falling Offf = 1/R® or slowef (slee also " \we placeN random pointss (in the following called
Ref. 7). This dependence of transition matrix elements iSyqijiatorg according to Poisson statistics irdedimensional
characteristic for the dipole interaction between elastic de“cube” of size L=N (100<N=10000) thus keeping the

fects in solids. It was shown recently that such an interactionyyerage concentration of oscillators constant. Diagonalizing
between soft harmonic oscillators leads to the universal Iln;[he matrixV we find a set ofN orthonormal eigenvectors
ear frequency dependence of the density of states above the 9

boson peak in glassést is remarkable that 95% vibrational €s(J) with

states in glasses are usually neither localized nor propagating N N

in the usual plane wave sense. These modes have been S ()= eXj)=1 1)
termed diffuson$. Their spatial structure is still a challenge & s =1 ®

to physicists in this field as well as for tlmearginal case of
the Anderson model in general. A connected important proband corresponding eigenvalues,. This is repeated until the
lem is the diffusion of excitations in this model that in turn is relative variance of the average values, discussed in the fol-
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FIG. 1. Participation numbers versus frequency for a 3D system F|G. 3. Generalized dimensions for the most extended eigen-

of 800 oscillators.

states as function off for one-, two- and three-dimensional sys-
tems.

lowing, has dropped well below the percent level, i.e., for the
smaller systems typically for several hundred configurationst ) of the generalized inverse participation numbers of these

As the usual measure of localization of the statese

maximally extended modgs,

calculate for each realization &f the participation ratio

The producNP;=N;j,
many oscillators participate in the moge(frequencyw;).
Figure 1 shows the participation numbétsversus frequen-

N -1
'\'521 e;‘m) :

N
=<E [ei(jm>]‘*> N~ (0~ 1Pg/d— | ~(a-10q_(3)
s=1

N

2

Here and in the following angular brackets denote averaging

the participation number, shows how over the samples with given numbbsk. If the generalized

dimensionD, depends org one speaks of a multifractal
structure of the eigenstat&sFigure 3 shows the functions

cies w; for a 3D system of 800 oscillators. Striking are the D,/d for d=1,2,3 obtained from our numerical simulation.

strong fluctuations oN; for small w; .
interested in the modg,, (frequencyw,,) with the maximal

Here we are mainly Nonzero values oD, imply delocalization of the most ex-

tended states in the system. A plane-wave-like state would

participation numbefratio) which is the most extended one give a constant valu®,/d=1. In the multifractal analysis
in the system. An example of the spatial structure of theone usually callD, the correlation dimensiotf. We obtain
eigenvector of such a mode in a 1D system of 1000 oscillavalues of 0.62, 1.40, and 2.33 for the 1D, 2D, and 3D cases,

tors is shown in Fig. 2. For a given numhbérof oscillators,
the fluctuations of the maximum participation numbeéy,

respectively. The corresponding values for the information
dimensionD, are 0.74, 1.61 and 2.60. For a disordered elec-

from sample to sample are relatively small. After averagingtron system near the Anderson transitida determines the
it can, therefore, be used as a characteristic quantity of sygxponent in the power law behavior of the averaged two-

tems with givenN.

particle Green functiofi.In our case, using the scale inde-

To study the multifractal properties of the eigenstates wependence of the density of stateee below, we can derive
investigate the scaling witN (or equivalently system size for this function a similar relation valid for the most ex-
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tended states in our system:

r<L. (4)

|G*(r, wm)| 2L~ (L/r)" Pz,
Knowing the functional form ofD, one can calculate the
multifractal spectrum f(«), related by a Legendre
transformatiof? to the exponent in Eq3), 7,=(q—1)Dy,

fla)=a-q—7q 5)
with a=d7,/dq. In the single fractal caseD(;=D = const)

the functionf(a) consists of only one point{,D) in the
(f(a),@) plane. The physical meaning and the significance
of the functionf(a) can be understood from the following
consideration. Let us introduce the distribution function of

FIG. 2. The most extended mode in a one-dimensional systerfhe eigenvector amplitudes for the most extended modes,

of 1000 oscillators.

S(Jm) in the ensemble



10 234 BRIEF REPORTS 57

L
PN<x>=N<SZl 5<x—e§<jm>)> . ®) 0% -

N

The generalized inverse participation numbers can then be
expressed as

Mq=N<xq>=NflPN(x)qux. (7)
0

Changing to a new variable,= —d Inx/In N, and the cor-
responding distribution functior?y(a)da«— Py(Xx)dx, and 1072
settingPy(a) = pn(@)NF(@/471 (Ref. 13 we obtain 10"

Mq= f da p(a)NLT (0 ~0e/d, ® 0.04
0

For N—oo the main contribution to the integral in E¢B)

will originate from that valuea where f(a)—qa is ex-

tremal, provided thagby(«) is a smooth function of which _
does not vanish at this particularvalue. The extremeness 7
conditiong="f'(«) is the reverse of the Legendre transfor- ®
mation Eq.(5) whence using §—1)D,=qa(q) - f(a(q))

we regain Eq.(3). Thus, f(a) determines the distribution

function of the squared oscillators amplitudes their ener- | “ H’ lb

gies for the most extended state. In general, as well as in our of i i‘”"“‘“m ]h ot d
casef(a) is a convex function of with a single maximum % 2 2 0 2 4 s
at a5 @nd can be approximated by parabola near this maxi- (b) o,

mum. This implies that the distribution functioBy(x) is
almost log-normal. This fundamental property was first dis- FIG. 4. (a) Temporal autocorrelation function of the most dis-
covered in disordered electron systems for mesoscopic Cofpersive oscillator K ,,= 102) in a 3D system of 1000 oscillatof)

ductance fluctuation¥. Local density of states for this oscillator.
Another interesting quantity analogous to the participation _
number is thelispersion number 6=D,, with D, the correlation dimension of the associated
spectral measure, the local density of statd30S) for os-
N -1 H 15
4 cillator s.
K= ]2::1 ()| - 9 For a two-dimensional disordered electron system in a

strong magnetic field it was found that at the mobility edge

It measures in how many modgsthe oscillator numbes  the generalized dimensior3, and D, characterizing the
effectively participates. Again we are interested in the oscilsecond moments of the spatial and spectral measures, respec-
lator s, with the maximalK, in each sample. Agaifk,, tively, are related to each othdB,=D,/d (with d=2)16
fluctuates only weakly between the samples. Obviously if therecently this result was generalized to 8ystems.” For our
oscillator with maximum dispersion number is excited it will Hamiltonian we find that the same relation is valid in all
lose its energy more rapidly than the others. Therefore, “difthree dimensions. As an example we show in Fig) 4he
fusion” of energy from this oscillator will be fastest in the fynction C(t) for the oscillator with maximal dispersion

system. _ _ number in a 3D system of 1000 oscillators. A least square fit
In case at=0 all amplitudes are zero but for one oscil- gives for the slope,§~0.79, very close to the ratio
lator s, whose complex amplitud&s(t=0)=1 one has D,/3~0.78 found for this dimension. Fig.(d shows the
LDOS for this oscillator exhibiting multifractal properties.
As(t)ZE eg(j)ei“’it. (10) For a 2D system we obtained=0.72. This means that in
i

3D and 2D systems the decay of the autocorrelation function
_ _ o is slower than for conventional diffusion. For 1D systems the
A temporal autocorrelation functioB(t) was defined in Ref.  sjtuation is differentd=0.61, and the decay is faster.

15 by smoothing of the probability to be in the initial state at One of the important characteristics of the energy spec-

timet trum is the density of statg®09) g(w)
1t 1/
Cy(t)= ;Ldt’lAs(t')I2~t‘5. (11 g(w)= 21 So—w))) . (12)
1= N

Conventional diffusive behavior give§=d/2. However, if  Usually this function is non critical and scale independent in
the corresponding spectral measure is multifractal, themhe limit L—co. Figure 5 showsgy(w) for 3D system with
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equalsw at smallw. In our case existence of such a length

0.10¢p o 100 0 °° ] might be a consequence of the invariance under the transfor-
— oggl e W00 9 | mation (,t)— (br,b%) due to V(R)xR™%9.1° Therefore,
B T} « 50000k Smo 1/L‘iocw and g(w)— const forw—0. If this holds, then
'é 0.06 compariﬂg the scaling behaviors ldf, andC(t) leads to the
s relation D,=D,/d observed in our computer experiment.
w~ 0.04 However for more definite conclusion one needs investigate
= the same problem fov(R) <R~ with u#d.

0.02F g To conclude, we investigated numerically the spatial

structure of delocalized states in the marginal case of the
910 =5 0 5 0 Anderson model with long-range off-diagonal disorder cor-
responding to the important dipole interaction. Because of
FREQUENCY . . .
the long-range correlations in the system these delocalized
FIG. 5. Density of states for a 3D system of 100, 1000, andstates have multifractal spatial structure causing anomalous
5000 oscillators. diffusion of excitations in this system.
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