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Multifractal structure of eigenstates in the Anderson model with long-range off-diagonal disorder
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The spectrum of eigenvalues and the spatial structure of eigenstates for the Anderson model with long-range
off-diagonal disorder (Vi j 5(6)/uRi2Rj ud) is investigated numerically whereRi are Poisson-distributed ran-
dom points ind-dimensional space. For this marginal case all states in the system are delocalized. Analyzing
the scaling with system size of the inverse participation numbers for the most extended modes we find that
these states exhibit a self-similar multifractal structure. The generalized dimensions,Dq , and the multifractal
spectrum,f (a), are calculated. Ford53 the information dimensionD152.65 and the correlation dimension
D252.33 that characterizes the power-law behavior of the averaged two-particle Green function. The temporal
autocorrelation functionC(t) built from the eigenstates of the most dispersive oscillator exhibits an nondiffu-

sive algebraic decayC(t);t2d with the exponentd[D̃25D2 /d reflecting the generalized multifractal di-
mension of the local density of states.@S0163-1829~98!02617-4#
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Since the first paper of Anderson1 on quantum localiza-
tion of excitations in disordered systems our understand
of this difficult theoretical problem has progressed en
mously. The disorder-induced localization-delocalizati
transition was found to manifest itself by a complex spa
behavior of the wave functions believed to have multifrac
structure2–5 at the localization threshold~or in finite size
samples for localization lengths exceeding the sample
L).

Usually Hamiltonians with short-range, off-diagonal m
trix elements are investigated. In the often used tight-bind
model ~also called Anderson model with diagonal disord!
the criterion of state localization in three-dimensional~3D!
systems depends on the ratio between diagonal disorder
the off-diagonal transition matrix elements between nei
boring states taken to be constant. In 1D and 2D syste
independent of this ratio, in the thermodynamic limit a
states are localized in this model.6

From the above it seems interesting to investigate the
posite case:long-range off-diagonal disorderwhere for
some distance dependence of the nondiagonal matrix
ments,V(R), all states are delocalized. For the 3D case t
was proven forV(R) falling off }1/R3 or slower1 ~see also
Ref. 7!. This dependence of transition matrix elements
characteristic for the dipole interaction between elastic
fects in solids. It was shown recently that such an interac
between soft harmonic oscillators leads to the universal
ear frequency dependence of the density of states abov
boson peak in glasses.8 It is remarkable that 95% vibrationa
states in glasses are usually neither localized nor propaga
in the usual plane wave sense. These modes have
termed diffusons.9 Their spatial structure is still a challeng
to physicists in this field as well as for themarginal case of
the Anderson model in general. A connected important pr
lem is the diffusion of excitations in this model that in turn
570163-1829/98/57~17!/10232~4!/$15.00
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relevant, e.g., for the thermal conduction. The 3D results
be extended to other dimensions 3 replacing 1/R3 by 1/Rd.

A second motivation for this work is the increasing inte
est in statistical properties of large random matrixes,N3N.
We find drastic differences compared to the Wigner-Dys
random matrix theory for statistically independent o
diagonal matrix elements.10 The triangle rule for distance
implied in the 1/Rd law introduces specific correlations be
tween the off-diagonal matrix elements causing in turn m
tifractal properties of the eigenstates. The distribution of
eigenvalues is also very different. In the Wigner semicir
the density of states at small energies is size depend
}1/AN. In our case it is size independent, i.e., it is finite
the thermodynamic limit.

In the present paper we study numerically the spectr
and eigenvector statistics of largeN3N real symmetric ma-
trixes V̂ with purely off-diagonal disorder. Without loss o
generality all diagonal matrix elements are set to zero. O
diagonal disorder is introduced asVi j 5(61)/uRi2Rj ud.
Here Ri are Poisson-distributed random points ind dimen-
sional space (d51,2,3), and the random sign,61 provides
for the average valuêVi j &50 corresponding to the interac
tion of randomly oriented electric or elastic dipoles.

We placeN random points,s ~in the following called
oscillators! according to Poisson statistics in ad-dimensional
‘‘cube’’ of size L5N1/d (100<N<10000) thus keeping the
average concentration of oscillators constant. Diagonaliz
the matrix V̂ we find a set ofN orthonormal eigenvectors
es( j ) with

(
s51

N

es
2~ j !5(

j 51

N

es
2~ j !51 ~1!

and corresponding eigenvalues,v j . This is repeated until the
relative variance of the average values, discussed in the
10 232 © 1998 The American Physical Society
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lowing, has dropped well below the percent level, i.e., for
smaller systems typically for several hundred configuratio

As the usual measure of localization of the statesj we
calculate for each realization ofV̂ the participation ratio

Pj5S N(
s51

N

es
4~ j !D 21

. ~2!

The productNPj[Nj , the participation number, shows ho
many oscillators participate in the modej ~frequencyv j ).
Figure 1 shows the participation numbersNj versus frequen-
cies v j for a 3D system of 800 oscillators. Striking are th
strong fluctuations ofNj for small v j . Here we are mainly
interested in the modej m ~frequencyvm) with the maximal
participation number~ratio! which is the most extended on
in the system. An example of the spatial structure of
eigenvector of such a mode in a 1D system of 1000 osc
tors is shown in Fig. 2. For a given numberN of oscillators,
the fluctuations of the maximum participation numberNm
from sample to sample are relatively small. After averag
it can, therefore, be used as a characteristic quantity of
tems with givenN.

To study the multifractal properties of the eigenstates
investigate the scaling withN ~or equivalently system size

FIG. 1. Participation numbers versus frequency for a 3D sys
of 800 oscillators.

FIG. 2. The most extended mode in a one-dimensional sys
of 1000 oscillators.
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L) of the generalized inverse participation numbers of th
maximally extended modesj m

Mq5K (
s51

N

@es
2~ j m!#qL

N

}N2~q21!Dq /d5L2~q21!Dq. ~3!

Here and in the following angular brackets denote averag
over the samples with given numberN. If the generalized
dimensionDq depends onq one speaks of a multifracta
structure of the eigenstates.11 Figure 3 shows the function
Dq /d for d51,2,3 obtained from our numerical simulatio
Nonzero values ofD2 imply delocalization of the most ex
tended states in the system. A plane-wave-like state wo
give a constant valueDq /d51. In the multifractal analysis
one usually callsD2 the correlation dimension.12 We obtain
values of 0.62, 1.40, and 2.33 for the 1D, 2D, and 3D cas
respectively. The corresponding values for the informat
dimensionD1 are 0.74, 1.61 and 2.60. For a disordered el
tron system near the Anderson transitionD2 determines the
exponent in the power law behavior of the averaged tw
particle Green function.4 In our case, using the scale inde
pendence of the density of states~see below!, we can derive
for this function a similar relation valid for the most ex
tended states in our system:

uG1~r ,vm!u2}L2d~L/r !d2D2, r !L. ~4!

Knowing the functional form ofDq one can calculate the
multifractal spectrum f (a), related by a Legendre
transformation13 to the exponent in Eq.~3!, tq5(q21)Dq ,

f ~a!5a•q2tq ~5!

with a5dtq /dq. In the single fractal case (Dq5D5const)
the function f (a) consists of only one point (D,D) in the
„f (a),a… plane. The physical meaning and the significan
of the function f (a) can be understood from the followin
consideration. Let us introduce the distribution function
the eigenvector amplitudes for the most extended mod
es

2( j m), in the ensemble

m

m

FIG. 3. Generalized dimensions for the most extended eig
states as function ofq for one-, two- and three-dimensional sy
tems.
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PN~x!5
1

NK (
s51

N

d„x2es
2~ j m!…L

N

. ~6!

The generalized inverse participation numbers can then
expressed as

Mq5N^xq&5NE
0

1

PN~x!xqdx. ~7!

Changing to a new variable,a52d lnx/ln N, and the cor-
responding distribution function,PN(a)da↔PN(x)dx, and
settingPN(a)5rN(a)Nf (a)/d21 ~Ref. 13! we obtain

Mq5E
0

`

da rN~a!N[ f ~a!2qa]/d. ~8!

For N→` the main contribution to the integral in Eq.~8!
will originate from that valuea where f (a)2qa is ex-
tremal, provided thatrN(a) is a smooth function ofa which
does not vanish at this particulara-value. The extremenes
conditionq5 f 8(a) is the reverse of the Legendre transfo
mation Eq.~5! whence using (q21)Dq5qa(q)2 f „a(q)…
we regain Eq.~3!. Thus, f (a) determines the distribution
function of the squared oscillators amplitudes~or their ener-
gies! for the most extended state. In general, as well as in
case,f (a) is a convex function ofa with a single maximum
at amax and can be approximated by parabola near this m
mum. This implies that the distribution functionPN(x) is
almost log-normal. This fundamental property was first d
covered in disordered electron systems for mesoscopic
ductance fluctuations.14

Another interesting quantity analogous to the participat
number is thedispersion number

Ks5S (
j 51

N

es
4~ j !D 21

. ~9!

It measures in how many modesj the oscillator numbers
effectively participates. Again we are interested in the os
lator sm with the maximalKm in each sample. AgainKm
fluctuates only weakly between the samples. Obviously if
oscillator with maximum dispersion number is excited it w
lose its energy more rapidly than the others. Therefore, ‘‘d
fusion’’ of energy from this oscillator will be fastest in th
system.

In case att50 all amplitudes are zero but for one osc
lator s, whose complex amplitudeAs(t50)51 one has

As~ t !5(
j

es
2~ j !eiv j t. ~10!

A temporal autocorrelation functionC(t) was defined in Ref.
15 by smoothing of the probability to be in the initial state
time t

Cs~ t !5
1

t E0

t

dt8uAs~ t8!u2;t2d. ~11!

Conventional diffusive behavior givesd5d/2. However, if
the corresponding spectral measure is multifractal, t
be

ur

i-

-
n-

n

l-

e

-

t

n

d5D̃2, with D̃2 the correlation dimension of the associat
spectral measure, the local density of states~LDOS! for os-
cillator s.15

For a two-dimensional disordered electron system in
strong magnetic field it was found that at the mobility ed
the generalized dimensionsD2 and D̃2 characterizing the
second moments of the spatial and spectral measures, re
tively, are related to each other,D̃25D2 /d ~with d52).16

Recently this result was generalized to 3d systems.17 For our
Hamiltonian we find that the same relation is valid in a
three dimensions. As an example we show in Fig. 4~a! the
function C(t) for the oscillator with maximal dispersion
number in a 3D system of 1000 oscillators. A least square
gives for the slope,d'0.79, very close to the ratio
D2/3'0.78 found for this dimension. Fig. 4~b! shows the
LDOS for this oscillator exhibiting multifractal properties
For a 2D system we obtained,d50.72. This means that in
3D and 2D systems the decay of the autocorrelation func
is slower than for conventional diffusion. For 1D systems t
situation is different,d50.61, and the decay is faster.

One of the important characteristics of the energy sp
trum is the density of states~DOS! g(v)

g~v!5
1

NK (
j 51

N

d~v2v j !L
N

. ~12!

Usually this function is non critical and scale independen
the limit L→`. Figure 5 showsg(v) for 3D system with

FIG. 4. ~a! Temporal autocorrelation function of the most di
persive oscillator (Km5102) in a 3D system of 1000 oscillators.~b!
Local density of states for this oscillator.
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100, 1000, and 5000 oscillators. For largeN the DOS does
no longer depend on the system size. Using this property
can introduce a lengthLv5(g(0)v)21/d ~Ref. 18! that can
be taken as the size of the system whose mean level spa

FIG. 5. Density of states for a 3D system of 100, 1000, a
5000 oscillators.
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equalsv at smallv. In our case existence of such a leng
might be a consequence of the invariance under the trans
mation (r ,t)→(br ,bdt) due to V(R)}R2d.19 Therefore,
1/Lv

d }v and g(v)→ const for v→0. If this holds, then
comparing the scaling behaviors ofMq andC(t) leads to the
relation D̃25D2 /d observed in our computer experimen
However for more definite conclusion one needs investig
the same problem forV(R)}R2m with mÞd.

To conclude, we investigated numerically the spat
structure of delocalized states in the marginal case of
Anderson model with long-range off-diagonal disorder c
responding to the important dipole interaction. Because
the long-range correlations in the system these delocal
states have multifractal spatial structure causing anoma
diffusion of excitations in this system.
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