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Diffusion on a honeycomb lattice: Real-space renormalization-group approach
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A two-dimensional lattice-gas model with honeycomb symmetry is investigated by using the real-space
renormalization group~RSRG! approach with a number of RSRG transformations based on clusters of differ-
ent symmetries and sizes~up to 42 sites!. The accuracy of calculations is found to be a nonmonotonic function
of the size of a cluster, and to depend strongly on its symmetry. The highest obtained accuracy with respect to
the determination of the critical value of the pair interaction parameter is 0.38%. The phase diagram of the
Ising antiferromagnetic spin model and of the corresponding lattice-gas model is constructed with this accu-
racy. The ordered phase in the lattice system is shown to appear in the very narrow density interval, 0.447
,n,0.553. In addition, the coverage dependence of the chemical diffusion coefficient and mean-square
density fluctuations are studied at temperatures below the critical one. Both quantities are demonstrated to
exhibit singularities at the critical coverages. The type of singularities~in particular, the critical slowdown of
diffusion! is in agreement with the predictions of the scaling theory and also with recent results obtained for a
model treating the effect of surface reconstruction on diffusion.@S0163-1829~98!06516-3#
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I. INTRODUCTION

The migration of adsorbates on solid surfaces plays
essential role in many physical and chemical processes
as adsorption, desorption, melting, roughening, crystal
film growth, catalysis, and corrosion. Understanding surf
diffusion is one of the keys to controlling these processe

For a quantitative description of diffusion, two importa
concepts have been developed, each of them with its
‘‘coefficient of diffusion.’’ In the following we will apply
these two concepts, which describe the general diffus
problem in three dimensions, to the specific case of surf
diffusion.

The conceptually most simplest surface diffusion coe
cient is the tracer surface diffusion coefficientDt , which
addresses the random walk of individual tagged particles
a two-dimensional lattice, i.e.,

Dt5 lim
t→`

1

4t
^urW~ t !2rW~0!u2&. ~1!

HererW(t) denotes the total displacement of the tagged ad
ticle as a function of timet. The tracer surface diffusion
coefficient is a single-particle diffusion coefficient. In co
trast, the chemical surface diffusion coefficientDc is a
many-particle diffusion coefficient defined by Fick’s lawJ
52Dc¹n. Dc can be calculated by the well-known Kub
linear-response theory,1 and refers to the total fluxJ of Na
particles:

J5(
i 51

Na

v i . ~2!
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Dc can be expressed in terms of a corresponding correla
function2

Dc5
1

2k^n&2

1

kBTA E
0

`

^J~ t !J~0!&dt, ~3!

wherek is the isothermal compressibility andA is the sur-
face area. It is important to note that the chemical surf
diffusion coefficient is of interest for describing the mas
transfer processes along the surface. Therefore, when we
ploy the term ‘‘diffusion coefficient’’ in the remaining par
of this paper, we have to bear in mind the chemical diffus
coefficient in the first place.

In recent years the effects of lateral interactions on
chemical surface diffusion coefficient of adsorbed partic
have been analyzed in Refs. 3–6. It was found that adpar
interactions can strongly influence surface diffusion, es
cially at low temperatures and in the close vicinity of surfa
phase transitions.7 From simple physical considerations, it
intuitively expected that attractive interactions between
sorbed species inhibit the adparticle migration and thus s
down surface diffusion. In contrast, repulsive interactions
expected to accelerate surface diffusion. Despite their s
plicity, these rules describe the qualitative behavior of s
face diffusion processes for many systems, at least in
limit of high temperatures, quite well.6 However, more so-
phisticated arguments are required for the description of
face diffusion in case of ordering, i.e., if strong lateral inte
actions force the system to order below a critic
temperature. It is well known that phase transitions on tw
dimensional lattices give rise to a logarithmic divergence
the specific heat. In a similar manner, such phase transit
10 166 © 1998 The American Physical Society
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57 10 167DIFFUSION ON A HONEYCOMB LATTICE: REAL- . . .
are expected to affect the chemical surface diffusion coe
cient in the vicinity of such phase transitions. The critic
behavior of the diffusion coefficient has been discussed
the literature~see Ref. 7 and references therein!.

In general, the determination of the chemical surface
fusion coefficient requires the solution of a kinetic equat
for a system of many strongly interacting particles. Howev
if interactions are restricted to affect only the ground st
and not the activated state of the diffusing adparticles,
problem can be reduced to the calculation of purely therm
dynamic quantities.8–12In this case, the problem of determin
ing the adparticle diffusion coefficient reduces to a calcu
tion of the free energy of the system, and the critic
behavior of the diffusion coefficient is fully determined b
the divergence of the mean-square adparticle density fluc
tion. In recent years this problem was attacked using alm
all theoretical methods applicable to critical phenome
mean-field approximation,13 Bethe-Peierls approximation,14

real-space renormalization group,15,16 transfer-matrix tech-
nique, and Monte-Carlo method.7 Scaling arguments give
weak logarithmic critical slowdown of the diffusio
coefficient17

Dc}1/zlnun2ncuz. ~4!

The same critical slowdown is found in Ref. 18, where
exact expression for the diffusion coefficient on reconstr
tive surfaces was obtained. It is probably interesting to n
that this expression~Eq. 5 of Ref. 18! is the only exact ex-
pression for the critical behavior of the diffusion coefficie
of interacting particles in two dimensions~exact expressions
have been also obtained for one-dimensional Is
chains11,19!. A general expression for the diffusion coeffi
cient was analyzed in Ref. 7 for the hard hexagon mo
yielding a power-law critical slowdown ofD. Classical
mean-field-type approximations predict a stepwise decre
of the diffusion coefficient in the ordered phase~see, for
example, Refs. 13 and 14!, and it is obviously clear tha
mean-field approximations are too crude even for a qua
tive analysis. The real-space renormalization-group~RSRG!
approach, suggested by Niemeyer and van Leeuwen20 and
Nauenberg and Nienhuis,21,22 has been used to investiga
the critical behavior of surface diffusion. The RSRG a
proach yields cusplike minima of the diffusion coefficient
the close vicinity of the critical points,15,16,23which resemble
the corresponding minima on the exact dependencesD(n),
shown in Ref. 18. However, even at the critical coveragen
5nc , i.e., at the minimum of the cusp, the diffusion coef
cient stays finite (DÞ0), which obviously contradicts Eq
~4!. The calculations ofD(n) in Ref. 15 were, however
based on the simplest possible renormalization procedu
with the smallest possible blocks and clusters of lattice si
Therefore, the accuracy of the method was not high.

The behavior of the diffusion coefficient near the critic
points has also been studied by employing the trans
matrix technique.7 The results obtained for a square latti
clearly indicate that the value of the diffusion coefficient
these points becomes lower and lower if the size of the s
used in calculations is increased from 6 up to 16. But
results obtained with these strip sizes were found to be
sufficient for understanding the type of singularities in det
-
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The Monte Carlo~MC! simulation of surface diffusion is
probably the most reliable method which can be used
study adparticle diffusion on different lattices and for vario
sets of interaction parameters. However, the MC metho
very time consuming and requires powerful computers. I
recent work, the MC method was used to study adpart
diffusion on a square lattice, taking pairwise neare
neighbor repulsive interactions into account.7 The lattice size
has been varied from 32332 up to 2563256. The diffusion
coefficient in the critical region has been found to have
distinct minimum, withD(n)Þ0 for n→nc . The accuracy
of the statistics in MC calculations near the critical points
unfortunately not very high even for large lattices~e.g., for
2563256!.

In the present work, we explore phase diagram of
system of adsorbed particles and their diffusion on a hon
comb lattice by the RSRG approach. Using a supermas
parallel computer~Intel Paragon! in conjunction with a fully
parallelized algorithm, we have increased the accuracy of
method substantially~compared to our earlier study15! sim-
ply by increasing the number of sites in the blocks of t
cluster considered. The outline of this paper is as follows:
derivation of the diffusion equation and expression for diff
sion coefficient are described in Sec. II. The RSRG appro
employed is described in Sec. III. The phase diagram
tained for an interacting lattice gas is presented in Sec.
The chemical diffusion coefficient dependences are treate
Sec. V, with special emphasis on the behavior in the vicin
of the critical points.

II. DIFFUSION OF ADPARTICLES ON THE HONEYCOMB
LATTICE

Let us consider some ideal solid surface. The poten
relief minima of the surface form a two-dimensional~2D!
honeycomb lattice with sidea ~as shown in Fig. 1!. Foreign
particles adsorbed on the surface occupy the sites. If
depth of the minima« is much greater than the temperatu
(«@kBT), the adparticles will be in the minima, jumpin
from time to time in the empty neighbor sites. In this case
thermodynamical state of the adparticle system is descr
completely by the set of occupation number of the sites$ni%.
Index i labels sites of the lattice:i 51,2, . . . ,N and

ni5H 1 if the i th site is occupied

0 if the i th is empty.
~5!

In thermodynamic equilibrium, the system is described
the statistical operatorr,

r5Q21 exp b~mNa2Ha!, ~6!

where the number of adparticlesNa and system Hamiltonian
Ha have the following forms:

Ha52«Na1 1
2 (

i j
w i j ninj , and Na5(

i 51

N

ni , ~7!

wherem is the chemical potential,w i j [w(r i2r j ) is the pair
interaction energy of adparticles in thei th and j th sites,b
[1/kBT; Q is the great partition function
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Q5(
$ni %

exp b~mNa2Ha!, ~8!

and summation is carried out over all 2N configurations of
the occupation numbers.

The occupation numbers are changed with time due to
hops of adparticles. The balance equation for any defi
site, say the zeroth in Fig. 1, can be written as

n0~ t1Dt !2n0~ t !5(
i

~Ji02J0i !, ~9!

whereJi j is the number of hops from thei th site to thej th
site during the time intervalDt. For smallDt, one can define
the regular and fluctuating parts of the particle flux as f
lows:

Ji j 5~n i j nihj1dJi j !Dt where hj512nj .

Heren i j is the frequency of hops from thei th site to thej th
site. The multipliernihj ensures that the hop proceeds fro
occupied to empty sites only;dJi j Dt[Ji j 2n i j nihjDt is the
fluctuation of the number of adparticles hops from thei th
site to the j th site during the small time intervalDt. The
balance equation in new notation has the following form:

1

Dt
@n0~ t1Dt !2n0~ t !#5(

i
~n i0nih02n0in0hi !

1(
i

~dJi02dJ0i !. ~10!

The last sum on the right-hand side of Eq.~10! plays the role
of the Langevin source of fluctuationsJ0

L(t). The correlation
function of the source was investigated in Ref. 11.

FIG. 1. Antiferromagnetic ordered phase (n5
1
2) on the honey-

comb lattice with three series of RSRG clusters investigated in
course of the present work~a, b, andc!. Any pair of blocks, having
equal number of sitesL from the a, b, or c sequences, form a
cluster. Arrows show three possible jumps of an adparticle ou
the zeroth site.
e
te

-

The balance equation describes the kinetic stage of
relaxation with a characteristic frequency of adparticle ho
^n i j nihj& ~the angular bracketŝ̄ & denote averaging with
statistical operatorr! and a space scalea. The fluctuations
are large in the general case, and one cannot solve the
linear balance equation or linearize it over small adparti
density fluctuations. For many situations the detailed
scription of the relaxation is unnecessary, because the c
acteristic length of the surface density inhomogeneities
much greater than the lattice sidea, and decaying of the
inhomogeneities proceeds as a result of a great numbe
hops of many adparticles with characteristic frequenc
much less than the mean frequency of adparticle hops.

Let us consider the states of the adparticle system a
aged over large times intervalt. The time intervalt must
satisfy the inequality

^n i j nihj&t@1.

The averaging smoothes out the processes with characte
frequenciesv*t21. We suppose that the averaging ov
time intervalt is equivalent to the averaging with the stati
tical operatorr̃ having the form of the equilibrium operato
r, but the chemical potential of adparticlesm i varies gradu-
ally in space and time. The statistical operatorr̃ is the local-
equilibrium operator of the system. The approximati
works well if the system has two scales of the relaxat
processes. The first scale is determined by establishing
local equilibrium in different parts of the system. The cha
acteristic frequency of the first stage is equal to^n i j nihj&.
During the time^n i j nihj&

21, every site establishes equilib
rium with its neighbors. In the second stage of the relaxati
different parts of the system come into equilibrium with ea
other by diffusion of adparticles. The characteristic spa
scale of the second stagel and characteristic frequenciesv
must satisfy the conditionsl @a andvt!1. During the time
interval t, many adparticles visit any given sitei . The fluc-
tuations of the occupation numbers and other physical qu
tities averaged over timet will be small because of averag
ing over a great number of particles.

One can obtain an explicit form of the local equilibriu
operator by developing the exponent into a series of sm
deviations of the chemical potentialdm i5m i2m
(udm i /mu!1):

r̃ 5Q̃21 expFbS (
i

m ini2HaD G
'r1dr5rF11b(

i
dm i~ni2n!G ; ~11!

heren[^ni& is the mean surface density of adparticles.
The averaging of the balance equation with the loc

equilibrium statistical operator gives the following equati
for evolution of the fluctuation of the zeroth site occupati
number

] tdn0~ t !5(
i

@d~n i0nih0!2d~n0in0hi !#1J0
L~ t !, ~12!

where

e

f
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dn05b(
i

dm i^n0~ni2n!&,

~13!

d~n i0nih0!5b(
j

dm j^n i0nih0~nj2n!&.

In order to obtain a closed equation for surface den
fluctuations, one must obtain expressions fordm i and fluc-
tuation of adparticle fluxes as functions ofdnj . For this pur-
pose one must know the mechanism of an adparticle
from one lattice site to another one. Here we restrict con
erations to nearest-neighbor hops only. An adparticle on
zeroth site can jump to one of its nearest-neighbor sites~la-
beled 1, 2, and 3 in Fig. 1! if the destination is empty. The
diffusing adparticle must surmount the potential barrier fro
the initial site to the final site. In case of interacting latti
gases the activation energies of hops are affected by the
ence of adjacent adparticles. If is assumed that the lat
interactions modify the minima of the periodic potential b
not the saddle points, then the hop frequency from the ze
site to the first site is simply given by

n015n exp@bw~n21n3!#. ~14!

Heren is the hop frequency of a single adparticle on a cle
surface. The terms in brackets account for the variation
the potential minimum due to the lateral interaction betwe
the jumping particle~on site 0! and its nearest neighbors o
sites 2 and/or 3~the energy of interaction between the near
neighbors is equal tow!. This simple hop model neglect
interaction of the jumping adparticle at the saddle point
the potential relief with its neighbors. As already mention
this condition permits one to obtain diffusion coefficients
purely thermodynamical calculations. Using the express
for hop frequency@Eq. ~14!#, one arrives at the simple equa
tion

] tdn0~ t !5nb exp~bm!^h0h1&(
i 51

3

~dm i2dm0!1J0
L~ t !

where^h0h1&[^(12n0)(12n1)& is the correlation function
of two holes on the nearest-neighbor sites.

Developing the fluctuations of the chemical potential
series, one can obtain easily the diffusion equation

] tdn~rW,t !5~3a2/4!nb exp~bm!^h0h1&S ]m

]n D¹W 2dn~rW,t !

1JL~rW,t !.

The expression for the diffusion coefficient has the form

D5D0b exp~bm!@122n12^n0n1&#S ]m

]n D , ~15!

whereD053na2/4 is the diffusion coefficient of the nonin
teracting adparticles. If one introduces the free energy of
systemf as

f 5kBTN21 ln Q,

then all quantities in the expression for the diffusion coe
cient can be calculated as follows:
y

p
-
e

es-
ral
t
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n
f

n

t

f
,

n

e
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n5
] f

]m
,

^n0n1&52
2

3

] f

]w
, ~16!

bS ]m

]n D5S kBT
]2f

]m2D 21

[^dnidnj&
21,

where ^dnidnj& is the mean-square adparticle density flu
tuation.

It should be noted that the expression for the diffusi
coefficient is valid in the hydrodynamical limit for adpartic
density inhomogeneities slowly varying in space and ti
and when the adparticle hop frequency is determined by
~14!.

III. HONEYCOMB LATTICE AND REAL-SPACE
RENORMALIZATION GROUP

We obtain an expression for the diffusion coefficientD by
using a very simple model for adparticle hops. All we ne
to calculate the diffusion coefficient is the free energy of t
systemf . Even for a simple model the problem remains t
complex to be solved exactly. The well-known Onsage
solution for a 2D Ising spin model was obtained in ze
magnetic field, which is equivalent to12-ML adparticle den-
sity. In order to obtain the explicit dependences of the dif
sion coefficient on the adparticle densityD(n), the approxi-
mate methods must be used to calculate the free energ
the system. In this section we outline briefly the RSR
method used for this purpose.

We consider the Hamiltonian of the adparticle system~7!,
with account of the nearest-neighbors interaction only:

H52«(
i

N

ni1w(̂
i j &

ninj . ~17!

The summation is performed over all lattice bonds (^ i j &) just
once.

It is well known that the lattice-gas model as describ
above is equivalent to the Ising spin model with an exter
magnetic field. The equivalent reduced Hamiltonian of t
Ising model has the form

2bHI5h(
i

N

si1k(̂
i j &

sisj1Nc, ~18!

where h5b(m1«)/213k, k52bw/4, c5h13k/2, and
si561. Empty sites are equivalent tos521, and full sites
to s51. Strong lateral interactionsk cause ferromagnetic
(k.0) or antiferromagnetic (k,0) phase transitions. The
exact critical value of the interaction parameterk* in the
absence of an external magnetic field is equal to60.5 ln(2
1))'60.658 478.24

Although the lattice-gas model@Eq. ~17!# and Ising spin
model @Eq. ~18!# are fully equivalent, we prefer to use th
spin representation in the following sections because of
symmetry with respect to the magnetic field. However,
will refer to lattice-gas terms where they appear to be nec
sary.
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It the RSRG method of Niemeyer and van Leeuwen20 and
Nauenberg and Nienhuis,21,22the whole lattice is divided into
blocks ofL sites.25 All blocks together must form a honey
comb lattice with the sideALa. In the framework of the
RSRG approach, one usually employs periodic bound
conditions. It is assumed that the whole lattice is given
the periodic continuation of a small cluster of blocks.
block spinSa is assigned to each block.Sa is determined by
the so-called ‘‘majority rule’’

Sa5sgnS (
i 51

L

si D where sgn~x!5 H 11
21

if x.0
if x,0.

~19!

Each value of the block spinSa561 corresponds to 2L21

site spin configurations. If we carry out the partial summ
tion over all those configurations, which leave block sp
unchanged, we are able to do an exact real-space reno
ization of the original lattice to the lattice composed of t
block spins. The main idea of the RSRG transformation
that the result of the summation would have the same fo
as the original Hamiltonian@Eq. ~18!# plus insignificant
terms, which do not affect the critical behavior of the syste
For the RSRG transformation, one can write

exp@c~$Sa%!#[(
$si %

exp$HI%

5expH h1(
a

N/L

Sa1k1 (
^ab&

SaSb1g~h,k!J .

~20!

Here the summation is carried out over all possible confi
rations$si% for fixed values of the block spins$Sa%. h1 is the
renormalized magnetic field, andk1 is the renormalized in-
teraction energy.g is the ‘‘empty set’’ term which plays an
important role in the method. As was shown by Nauenb
and Nienhuis,21,22 the free energy of the systemf can be
evaluated in the series of sequential RSRG transformat
of the Hamiltonian@Eq. ~18!#

f 5kBT (
m50

`

L2mg~hm ,km!. ~21!

Herehm andkm are the parameters of themth RSRG trans-
formation;h05h; k05k.

In the present work we consider only antiferromagne
interactions between the spins~in lattice-gas terminology
these interactions represent repulsion between adjacen
particles!. In this case the lattice can be subdivided into tw
sublattices with opposite magnetizations and, therefore, t
must be at least two blocks in the cluster. For this choice
system of the renormalization equations has the form

h15~c112c22!/4,

k15~c111c2222c12!/12, ~22!

g5~c111c2212c12!/8L,

with c66[c(S1561,S2561), c125c21 , and
c22(h,k)5c11(2h,k).
ry
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The RSRG transformation functionsc66 depend on the
size and symmetry of the block of sites. The most import
property of any RSRG transformation is the existence
fixed points of the system of the renormalization equatio
where the transformation is analytic. The fixed points a
determined by conditionsh15h and k15k. The nontrivial
~i.e., noth5k50! unstable fixed points of the system@Eq.
~22!# correspond to the critical points of the correspondi
Hamiltonian@Eq. ~18!#. From the symmetry of the first equa
tion of Eq.~22!, it is obvious that all fixed points are locate
on thek axis (hc50). In order to determine the stability o
the fixed point (hc ,kc), one must investigate the propertie
of the transformation at the point. In the vicinity of the fixe
point, we have

h12hc5Thh~h2hc!1Thk~k2kc!,
~23!

k12kc5Tkh~h2hc!1Tkk~k2kc!,

The matrixTab describes the linear response of the ren
malized parameters of the Hamiltonian Eq.~18!, h1 andk1 ,
on variations of the original valuesh andk around the fixed
points. This matrix has two eigenvalues:lh and lk . The
condition for critical behavior is the existence of eigenvalu
lh,k.1 ~unstable fixed points!. The eigenvalues are relate
to the critical indices of the 2D Ising modela and d as
follows:26

a522 ln L/ ln lk , and d5 ln lh /~ ln L2 ln lh!.
~24!

For the 2D Ising spin model, the exact values of these crit
indices are well known:a50 and d515. Therefore, the
exact RSRG transformation should have two nontrivial fix
points (0,6k* ) with lk* 5AL andlh* 5L15/16 ~for the ferro-
magnetic fixed point!. Comparing the computed values o
kc , lh , andlk with the exact ones gives a valuable meas
for the accuracy of the RSRG transformation.

We have investigated 11L32 RSRG transformations
~using the notation of Refs. 27,28! with the clusters shown in
Figs. 1 and 2. The first series of blocks used in the RS
transformations are shown in Fig. 1. It should be noted t
the computing time grows exponentially with the number
spins in the blocks. Using a fully parallelized algorithm for
supermassive parallel computer~Intel Paragon with 136
nodes!, we have been able to handle clusters consisting o
to 42 spins for the honeycomb lattice@as the 2132 cluster,
shown in Fig. 1~a!#.

In the present work we have also investigated an alter
tive method of dividing the lattice into blocks. In this metho
suggested by Schick, Walker, and Wortis,29,30 the lattice is
divided into sublattices. For each sublattice one choosL
sites forming a periodic array. The blocks interpenetrate e
other as is seen in Fig. 2. For the honeycomb lattice sym
try requires the hexagonal form of the blocks. The two sm
est possible hexagons contain seven or 19 sites, and
shown in Fig. 2. The properties of all transformations used
the present work are summarized in Table I.

IV. PHASE DIAGRAM OF THE HONEYCOMB LATTICE

All RSRG transformations have some general propert
As usual, the transformations have two fixed points; one
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the ferromagnetic region (kc.0) and another one in the an
tiferromagnetic domain (kc,0). In general, the critical val-
ues of the interaction parameter approach the exact valu
the number of the spin in the block is increased. Howev
the accuracy of the transformation depends not only on
block sizeL but also on the symmetry of the block and t
relation between the spins from different sublattices~i.e., the
relative numbers of intrablock and interblock spin-spin int
actions!.

The phase diagram of antiferromagnetic spins on the h
eycomb lattice shows two critical lines which divide the a
tiferromagnetic half-plane (h,k,0) into antiferromagneti-
cally ordered and disordered spin phases~Fig. 3!. These
critical lines have asymptotesk56h/3 corresponding to the
exact relation for the zero-temperature critical fielduhcu
5zuku. Herez is the lattice coordination number.

In the present work, the most accurate results are obta
for blocks of thea series~Fig. 1!. The best accuracy fo
determiningkc was not obtained for the largest 2132a clus-

FIG. 2. Sites of the honeycomb lattice grouped into interp
etrating hexagonal blocks:d—L519; e—L57.
if
r,
e

-

n-
-

ed

ter, but for the relatively small 1332a cluster~Table I!. This
striking finding obviously indicates that the error in dete
mining the critical value of the interaction energye does not
follow a simple power law in the present case, although s
a e}L21 dependence was obtained in Ref. 31 for a squ
lattice. The accuracy for the 1332a cluster, e50.38, is
close to the remarkable result of Niemeyer and van Leeuw
e50.18,20 obtained with a cluster of 21 spins for the ferr
magnetic phase transition on the triangular lattice.

Theb- andc-type blocks do not appear to be suitable f
investigations of the antiferromagnetic phase transition
the honeycomb lattice. For theb-type blocks the accuracy o
the RSRG method is not improved upon increasing the bl
size. As a matter of fact, the 432 cluster gives a bette
accuracy than the 1632 one. RSRG transformation with th
b-type blocks yield an unrealistically narrow stability rang
for the antiferromagnetically ordered lattice-gas pha
RSRG transformations with thec-type blocks do not show
fixed points fork,0 at all. The clustersL32c are less sym-
metrical ~blocks have not mirror planes!, as compared with
the clusterL32a. In Table I the critical values are compile
for the different clusters studied in the present work.

In order to calculate the phase diagrams of the antife
magnetic honeycomb lattice gas, we used the best RS
transformations with thea-type blocks ~see Fig. 4!. The
phase boundaries between ordered and disordered lattice

-

FIG. 3. Critical line of the RSRG transformation 1332a.
TABLE I. Critical values of interaction parameter, indices and adparticle density.F stands for ferro- and
AF stands for antiferromagnetic phase transitions.

Cluster kc (F) ukcu ~AF! a b nc(0)

332a 0.516 ~22%! 0.516 ~22%! 21.24 6.75 0.333
732a 0.6835 ~3.8%! 0.6475 ~1.7%! 20.77 20.6 0.433
1332a 0.6826 ~3.7%! 0.6610 ~0.38%! 20.55 20.9 0.443
2132a 0.6768 ~2.8%! 0.6635 ~0.76%! 20.55 20.0 0.447

432b 0.85 ~29%! 0.85 ~29%! 21.61 67.6 0.408
932b 0.725 ~10%! 0.8230 ~25%! 20.63 30.3 0.485
1632b 0.6854 ~4.1%! 0.8853 ~34%! 20.47 21.7 0.493

732c 0.725 ~10%! — 20.70 29.7 —
1932c 0.6847 ~4%! — 20.44 21.9 —

1932d 0.5761 ~13%! 0.5761 ~13%! 21.26 6.22 0.400

732e 0.5694 ~14%! 0.5694 ~14%! 21.23 7.63 0.388
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phases~corresponding to the phase boundaries between
tiferromagnetically ordered and disordered spin phase
magnetic terminology! are symmetric about half-coverag
n5 1

2. For the 2132a transformation the ordered phase
found to exist only in a very narrow region of coverages n
1
2 ML. The width of the region depends on the temperat
monotonically increasing from zero value atT5Tc to
0.447&n&0.553 atT50 ~Fig. 4!. It is interesting to note
that all RSRG transformations exhibit the same asympt
behavior of the critical lines in spin representation, but yie
different zero-temperature critical adparticle densitiesnc(0)
in the lattice-gas representation~see Table I and Fig. 4!.

V. DIFFUSION COEFFICIENT DEPENDENCES

The expression for the diffusion coefficient in spin va
ablesh andk has the form15

D5D0 exp~2h26k!] $122 f h12 f k/3%/ f hh , ~25!

where f h and f k are the first derivatives of the free energ
over magnetic field and interaction parameter, respectiv
and f hh is the second derivative of the free energy over
magnetic field. The derivatives have simple physical me
ings. The first derivative over the magnetic field,f h , gives
the mean magnetization̂si&, and is proportional to the mea
surface density of adparticlesn. The first derivative over the
interaction parameter,f k , is equal to the nearest-neighb
correlation function̂ s0s1&. The second derivative of the fre
energy over magnetic field is proportional to the mea
square density fluctuationsf hh54^dnidnj&. In the vicinity
of the critical points these fluctuations diverge, which resu
in a critical slowdown of the diffusion coefficient.

In the limits of n→0,1, a hopping adparticle has none
two nearest neighbors, respectively. Therefore, the limit
values of the diffusion coefficient are equal to

lim
n→0

D5D0 ,

~26!

lim
n→1

D5D0 exp~2bw!.

We have calculated the required derivatives of the free
ergy using the expression for the free energy@Eq. ~21!#, and

FIG. 4. Phase boundaries for the antiferromagnetic honeyc
lattice gas, calculated with different RSRG transformations.
n-
in

r
e
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g

n-

obtained the dependences of the chemical diffusion coe
cient D and the mean-square density fluctuations vs adp
ticle density for different values of the interaction parame
w. The coverage dependence of the chemical surface d
sion coefficient,D(n), is shown in Figs. 5 and 6. In the
disordered phase the diffusion coefficient grows with the
erage density of adparticlesn, as the mean number of neare
neighbors for any hopping particle is also growing. One c
see qualitatively the same behavior at a coverage regio
nearly a monolayer. The relaxation of the density fluctu
tions proceeds due to diffusion of holes. It should be no
that the diffusion coefficient for holes is equal
D0 exp(2bw) for zero density of holes (h50). Due to the

b
FIG. 5. Coverage dependence of the normalized chemical

face diffusion coefficientD/D0 . The calculations are performed fo
different temperatures as indicated in the figure.

FIG. 6. ~a! and ~b! Singularities of the coverage dependence
D/D0 in the critical regions:~a! nc,

1
2 and~b! nc.

1
2. ~c! Maximum

of the chemical diffusion coefficientD/D0 at half coverage,n5
1
2.
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evident Hamiltonian’s symmetry ‘‘particles↔holes,’’ the
nearest-neighbor interaction parameter for holes is also e
to w. Increasing the density of adparticles or holes increa
the effective hopping frequency of the particles, andD also
increases. When approaching the critical density, the den
fluctuations grow rapidly, and cause a reduction of
chemical diffusion coefficient. The nonanalytical nature
these minima, caused by a phase transition between the
ordered and ordered phase, is clearly seen in Figs. 6~a! ~for
n,0.5! and 6~b! ~for n.0.5!. The shapes of both minim
are similar to the exact logarithmic slowdown of the diff
sion coefficient, obtained in Ref. 18 for a reconstructive s
face. The depth of the minima is determined by the criti
index a. The exact valuea50 yields a logarithmic diver-
gence of the mean-square density fluctuations and a cri
slowdown ofD at n5nc . If 21,a,0, one must expec
cusplike maxima for̂dnidnj& and corresponding minima fo
D(n).17 If a,21, there should be no singularities of th
chemical diffusion coefficient and of the mean-square d
sity fluctuations at all.

The diffusion coefficient grows rapidly at a12-ML density,
and exhibits a sharp maximum at low temperatures. T
physical origin of this maximum is not related to a corr
sponding singularity of the derivatives, and thus cannot
attributed to the disorder-order phase transition atnc @Fig.
6~c! clearly shows that the dependenceD(n) at half-
coverage remains analytical#. The maximum of the chemica
diffusion coefficient can be explained on purely thermod
namic grounds.9,10 At half-coverage the lattice gas is we
ordered, and thus largely incompressible. Density fluct
tions are strongly suppressed due to repulsive interact
between the adparticles: Any density disturbance~i.e., the
inclusion of additional adparticles into the ideally order
lattice-gas phase! substantially increases the configuration
energy and is thermodynamically unfavorable. Therefo
density disturbances result in a high mobility of adparticl
allowing the density disturbances to heal out. As the den
is not equal to1

2 , there are fluctuations of the nonstoichi
metric nature that do not require energy for their existe
~see Fig. 7!. Therefore, the diffusion coefficient decreas
whenn deviates from the1

2-ML coverage.
It should be mentioned that diffusion coefficient grow

rapidly at 1
2-ML coverage, especially at low temperature

FIG. 7. Coverage dependence of the mean-square density
tuations, ^dnidnj&. The calculations are performed for differe
temperatures, as indicated in the figure.
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This growth is due to the fast increase of the mean numbe
the nearest neighbors for hopping adparticles atn5 1

2. For
n, 1

2 the density inhomogeneities may be considered as
letion of adparticles from perfect structure, and forn. 1

2 they
are formed by inserting additional adparticles into the idea
ordered phase. Roughly speaking the system has two va
of the diffusion coefficientD(n, 1

2) and D(n. 1
2); more-

over,D(n. 1
2)@D(n, 1

2). This creates additional difficulties
for experimental investigations of the weak diffusion coef
cient peculiarities, arising due to order-disorder phase tra
tions. It seems that the most suitable method for measu
the diffusion coefficient fine details will be the fluctuatio
method, suggested by Gomer~see, for example, Ref. 5!. The
measurements are carried out at a constant adparticle den
which can be adjusted to any desired value. The meth
using Boltzmann-Matano analysis, give an average o
some density interval values of the diffusion coefficient.

The dependenceŝdnidnj& versus adparticle density ar
shown in Fig. 7. In the absence of lateral interaction betw
the adparticles, the intensity of the fluctuations is prop
tional to n(12n) @curve ~1! is close to this dependence#.
Repulsion inhibits any density disturbances as is clearly s
for curves~2! and ~3! of Fig. 7. The disorder-order phas
transitions cause cusplike peaks at the critical points as
ready mentioned. The minimum atn5 1

2 corresponds to the
maximum on the coverage dependence of the chemical
fusion coefficient. It does not depend on the symmetry of
lattice, and is caused by the strict ordering of adparticles
the sublattices. Qualitatively the same behavior ofD(n) and
^dnidnj& at n5 1

2 was also found using mean-field13 and
Bethe-Peierls approximations.14

It should be noted that the classical Bethe-Peierls appr
mation and RSRG method give similar dependences of
diffusion coefficientD(n,w) in the regions far from critical
points of the system both in disordered and ordered pha
but in the vicinities of the critical points the dependences
quite different. The classical approximations give stepw
changes of the diffusion coefficient at the critical densiti
D(nc20)ÞD(nc10). The RSRG method gives cusplik
minima, which are similar to the exact logarithmic critic
slowdown of the diffusion coefficient obtained in Ref. 18 f
adatom diffusion on a reconstructive surface. The accur
of the RSRG method can be increased significantly by
creasing the size of the block spins and choosing the m
appropriate symmetry of the blocks.

VI. SUMMARY

We have investigated a number of RSRG transformati
on the honeycomb lattice with blocks of different sizes a
symmetries. It has been shown that the accuracy of
method depends strongly not only on the number of site
the block but also on the symmetry of the blocks. The ac
racy of the method increases in a nonmonotonic fashion w
the number of sitesL in the block. The most accurate resul
were obtained for relatively small cluster of 26 sites. Using
fully parallelized algorithm on a supermassive parallel co
puter ~Intel Paragon!, we can handle clusters of up to 4
spins.

In the present work we have studied the phase diagram
the lattice gas with nearest-neighbor repulsive interacti

c-
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10 174 57A. A. TARASENKO, L. JASTRABÍK, AND C. UEBING
and the fully equivalent antiferromagnetic spin model on
honeycomb lattice. It is shown that the ordered phase in
lattice system appears in the very narrow density inter
0.447,n,0.553.

Using the RSRG method, we have investigated the s
face diffusion of adparticles on the honeycomb lattice. T
accuracy of the RSRG transformations was sufficiently hi
and permits us to obtain all peculiarities of the chemi
surface diffusion coefficient. At the order-disorder pha
transitions the chemical diffusion coefficient exhib
nonanalytical minima which are due to the rapid growth
the mean-square density fluctuations. At half-coverage
low temperatures, i.e., deeply within the ordered lattice-
phase, the diffusion coefficient shows a strong maxim
which is attributed to the large incompressibility of the we
ordered lattice-gas phase.
li

h-

a,
a
e
l

r-
e
,
l
e

f
d
s

The RSRG approach used in the present work reprodu
all peculiarities of the chemical diffusion coefficient whic
have been predicted by theoretical considerations. Thus
RSRG approach is a very powerful method for the inve
gation of surface diffusion processes on two-dimensional
tices which, in contrast to the Monte Carlo technique,
quires only moderate computational resources.
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