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Diffusion on a honeycomb lattice: Real-space renormalization-group approach
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A two-dimensional lattice-gas model with honeycomb symmetry is investigated by using the real-space
renormalization grouRSRQG approach with a number of RSRG transformations based on clusters of differ-
ent symmetries and siz€sp to 42 sites The accuracy of calculations is found to be a nonmonotonic function
of the size of a cluster, and to depend strongly on its symmetry. The highest obtained accuracy with respect to
the determination of the critical value of the pair interaction parameter is 0.38%. The phase diagram of the
Ising antiferromagnetic spin model and of the corresponding lattice-gas model is constructed with this accu-
racy. The ordered phase in the lattice system is shown to appear in the very narrow density interval, 0.447
<n<0.553. In addition, the coverage dependence of the chemical diffusion coefficient and mean-square
density fluctuations are studied at temperatures below the critical one. Both quantities are demonstrated to
exhibit singularities at the critical coverages. The type of singularitireparticular, the critical slowdown of
diffusion) is in agreement with the predictions of the scaling theory and also with recent results obtained for a
model treating the effect of surface reconstruction on diffusi®9163-1828)06516-3

. INTRODUCTION D. can be expressed in terms of a corresponding correlation
functior?
The migration of adsorbates on solid surfaces plays an

essential role in many physical and chemical processes such 1 1 o

as adsorption, desorption, melting, roughening, crystal and DCZWKBTA fo (J(1)J(0))dt, (©)]
film growth, catalysis, and corrosion. Understanding surface

diffusion is one of the keys to controlling these processes. where « is the isothermal compressibility aml is the sur-

For a quantitative description of diffusion, two important tace area. It is important to note that the chemical surface
concepts have been developed, each of them with its owgjffusion coefficient is of interest for describing the mass-
“coefficient of diffusion.” In the following we will apply  ransfer processes along the surface. Therefore, when we em-
these two concepts, which describe the general d|ffu5|orb|0y the term “diffusion coefficient” in the remaining part
problem in three dimensions, to the specific case of surfacgt this paper, we have to bear in mind the chemical diffusion
diffusion. _ - _coefficient in the first place.

~ The conceptually most simplest surface diffusion coeffi- |5 recent years the effects of lateral interactions on the
cient is the tracer surface diffusion coefficiet, which  chemical surface diffusion coefficient of adsorbed particles
addresses the random walk of individual tagged particles ORaye been analyzed in Refs. 3—6. It was found that adparticle

a two-dimensional lattice, i.e., interactions can strongly influence surface diffusion, espe-
1 cially at low temperatures and in the close vicinity of surface
D= lim 4—(|F(t)—F(O)|2>. (1 phase transitionsFrom simple physical considerations, it is
t
t

intuitively expected that attractive interactions between ad-
- ) sorbed species inhibit the adparticle migration and thus slow
Herer (t) denotes the total displacement of the tagged adparidown surface diffusion. In contrast, repulsive interactions are
ticle as a function of timet. The tracer surface diffusion expected to accelerate surface diffusion. Despite their sim-
coefficient is a single-particle diffusion coefficient. In con- picity, these rules describe the qualitative behavior of sur-
trast, the chemical surface diffusion coefficieDi is a face diffusion processes for many systems, at least in the
many—particle diffusion coefficient defined by Fick’s lalv limit of h|gh temperatures, quite Wé'HOWGVGI’, more so-
=—D:Vn. D, can be calculated by the well-known Kubo phisticated arguments are required for the description of sur-
linear-response theoryand refers to the total flud of N, face diffusion in case of ordering, i.e., if strong lateral inter-

particles: actions force the system to order below a critical
N, temperature. It is well known that phase transitions on two-
J:E v - ) dmenspnal lattices give rise to a logarithmic dlvergenc.e. of

=1 the specific heat. In a similar manner, such phase transitions
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are expected to affect the chemical surface diffusion coeffi- The Monte CarldMC) simulation of surface diffusion is
cient in the vicinity of such phase transitions. The critical probably the most reliable method which can be used to
behavior of the diffusion coefficient has been discussed irstudy adparticle diffusion on different lattices and for various
the literature(see Ref. 7 and references thejein sets of interaction parameters. However, the MC method is
In general, the determination of the chemical surface difvery time consuming and requires powerful computers. In a
fusion coefficient requires the solution of a kinetic equationrecent work, the MC method was used to study adparticle
for a system of many strongly interacting particles. Howeverdiffusion on a square lattice, taking pairwise nearest-
if interactions are restricted to affect only the ground stateneighbor repulsive interactions into accolfthe lattice size
and not the activated state of the diffusing adparticles, théaas been varied from 3232 up to 256<256. The diffusion
problem can be reduced to the calculation of purely thermoeoefficient in the critical region has been found to have a
dynamic quantitie§~?In this case, the problem of determin- distinct minimum, withD(n)#0 for n—n.. The accuracy
ing the adparticle diffusion coefficient reduces to a calcula-of the statistics in MC calculations near the critical points is
tion of the free energy of the system, and the criticalunfortunately not very high even for large latticesg., for
behavior of the diffusion coefficient is fully determined by 256x 256).
the divergence of the mean-square adparticle density fluctua- In the present work, we explore phase diagram of the
tion. In recent years this problem was attacked using almostystem of adsorbed particles and their diffusion on a honey-
all theoretical methods applicable to critical phenomenacomb lattice by the RSRG approach. Using a supermassive
mean-field approximatioft, Bethe-Peierls approximatidfi, parallel computefintel Paragohin conjunction with a fully
real-space renormalization grotip:® transfer-matrix tech- parallelized algorithm, we have increased the accuracy of the
nique, and Monte-Carlo methddScaling arguments give a method substantialljcompared to our earlier stuthy sim-
weak logarithmic critical slowdown of the diffusion ply by increasing the number of sites in the blocks of the
coefficient’ cluster considered. The outline of this paper is as follows: the
derivation of the diffusion equation and expression for diffu-
D= 1Injn—ng||. (4)  sion coefficient are described in Sec. Il. The RSRG approach
employed is described in Sec. lll. The phase diagram ob-
The same critical slowdown is found in Ref. 18, where antdined for an interacting lattice gas is presented in Sec. IV.
exact expression for the diffusion coefficient on reconstruc:rhe chemical diffusion coefficient dependences are treated in
tive surfaces was obtained. It is probably interesting to note>€C- V, with special emphasis on the behavior in the vicinity
that this expressiofEq. 5 of Ref. 18 is the only exact ex- ©f the critical points.
pression for the critical behavior of the diffusion coefficient
of interacting particles in two dimensiotiexact expressions Il. DIFFUSION OF ADPARTICLES ON THE HONEYCOMB
have been also obtained for one-dimensional Ising LATTICE
chaind®9. A general expression for the diffusion coeffi- _ _ _ ,
cient was analyzed in Ref. 7 for the hard hexagon model, .Let u_s.con5|der some ideal solid surfa_ce. The potential
yielding a power-law critical slowdown oD. Classical relief minima OT the _surface form a tW(_)-dlr_nensmr(ﬁl_D)
mean-field-type approximations predict a stepwise decreaddneycomb lattice with side (as shown in Fig. L Foreign
of the diffusion coefficient in the ordered phatgee, for particles adsor.b(.ad on the surface occupy the sites. If the
example, Refs. 13 and 14and it is obviously clear that 9ePth of the minima is much greater than the temperature
mean-field approximations are too crude even for a qualitalé>KsT), the adparticles will be in the minima, jumping
tive analysis. The real-space renormalization-gré@BRG from time to time in the empty nelghbpr sites. In th|s case _the
approach, suggested by Niemeyer and van Lee thermodynamical state of the ad_pamcle system is described
Nauenberg and Nienhu#22 has been used to investigate COMPletely by the set of occupation number of the sitgs.
the critical behavior of surface diffusion. The RSRG ap-!ndexi labels sites of the latticé=1,2,...N and
proach yields cusplike minima of the diffusion coefficient in ) ) o )
the close vicinity of the critical points;*®#which resemble _ |1 if the ith site is occupied
the corresponding minima on the exact dependeixgy, Ni= 0 if the ith is empty.
shown in Ref. 18. However, even at the critical coverage
=n,, i.e., at the minimum of the cusp, the diffusion coeffi- In thermodynamic equilibrium, the system is described by
cient stays finite D+0), which obviously contradicts Eq. the statistical operatqs,
(4). The calculations oD(n) in Ref. 15 were, however,
based on the simplest possible renormalization procedures, p=Q ' expB(uNa—H,), (6)
with the smallest possible blocks and clusters of lattice sites. . I
Therefore, the accuracy of the method was not high. where the number pf adparticldg, and system Hamiltonian
The behavior of the diffusion coefficient near the critical Ha have the following forms:
points has also been studied by employing the transfer- N
matrix techniqué. The results obtained for a square lattice Ho— —eN.+ 12 d N _Z %
clearly indicate that the value of the diffusion coefficient at a” " flaT 24 @ijhing, an a= & iy
these points becomes lower and lower if the size of the strip
used in calculations is increased from 6 up to 16. But thevhereu is the chemical potentialp;;= ¢ (r;—r;) is the pair
results obtained with these strip sizes were found to be ininteraction energy of adparticles in th#h andjth sites,p
sufficient for understanding the type of singularities in detail.=1/kgT; Q is the great partition function

©)
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The balance equation describes the kinetic stage of the
relaxation with a characteristic frequency of adparticle hops
(wijnih;) (the angular bracket§--) denote averaging with
statistical operatop) and a space scake The fluctuations
are large in the general case, and one cannot solve the non-
linear balance equation or linearize it over small adparticle
density fluctuations. For many situations the detailed de-
scription of the relaxation is unnecessary, because the char-
acteristic length of the surface density inhomogeneities is
much greater than the lattice side and decaying of the
inhomogeneities proceeds as a result of a great nhumber of
hops of many adparticles with characteristic frequencies
much less than the mean frequency of adparticle hops.

Let us consider the states of the adparticle system aver-
aged over large times interval The time intervalr must
satisfy the inequality

<Vijnihj>'7'>l.

The averaging smoothes out the processes with characteristic

comb lattice with three series of RSRG clusters investigated in thérequen0|eSw> 7 . We suppose that the averaging over
course of the present wotk, b, andc). Any pair of blocks, having time intervalris equwalent to the averaging with the statis-

equal number of sitek from thea, b, or ¢ sequences, form a tical operatorp having the form of the equilibrium operator
cluster. Arrows show three possible jumps of an adparticle out op, but the chemical potential of adparticlgs varies gradu-
the zeroth site. ally in space and time. The statistical operaois the local-
equilibrium operator of the system. The approximation
_ works well if the system has two scales of the relaxation
Q=2 expB(uNa—Ha), @  processes. The first scale is determined by establishing the
{ni} L .
local equilibrium in different parts of the system. The char-
and summation is carried out over all' Zonfigurations of acteristic frequency of the first stage is equak(ign;h;).
the occupation numbers. During the tlme<v”n|hj) , every site establishes equmb—
The occupation numbers are changed with time due to thgum with its neighbors. In the second stage of the relaxation,
hops of adparticles. The balance equation for any definiteifferent parts of the system come into equilibrium with each
site, say the zeroth in Fig. 1, can be written as other by diffusion of adparticles. The characteristic space
scale of the second stageand characteristic frequencies
must satisfy the conditioris>a andw7<<1. During the time
No(t+At) - ”O(I):Z (Jio=Joi), ©®  interval 7, many adpatrticles visit any given site The fluc-
tuations of the occupation numbers and other physical quan-
whereJ;; is the number of hops from thigh site to thejth  tities averaged over time will be small because of averag-
site during the time intervalt. For smallAt, one can define ing over a great number of particles.
the regular and fluctuating parts of the particle flux as fol- One can obtain an explicit form of the local equilibrium

FIG. 1. Antiferromagnetic ordered phase= %) on the honey-

lows: operator by developing the exponent into a series of small
deviations of the chemical potentialSu;=pui—pn
\]|J:(Vijnihj+5Jij)At where hj=1—nj. (|5,LL|/,LL|<1)
Here v;; is the frequency of hops from thi¢h site to thejth -
site. The multipliem;h; ensures that the hop proceeds from p=Q (2 i )

occupied to empty sites onlyiJ;;At=J;; — »;;n;h;At is the

fluctuation of the number of adparticles hops from thie

site to thejth site during the small time intervalt. The ~ptdp=p
balance equation in new notation has the following form:

(11)

1+ B2 dmi(ni—n)|;

heren=(n;) is the mean surface density of adparticles.
The averaging of the balance equation with the local-

E[nO(Hm)_nO(t)]:Z (7ioNiho= voiNoh) equilibrium statistical operator gives the following equation
for evolution of the fluctuation of the zeroth site occupation
number

+Z (8Jig—8dg)). (10
— L
The last sum on the right-hand side of Efj0) plays the role ﬂt5n0(t)_zi [8(vioniho) = 8(woinghi) 1+ Jg (1), (12)

of the Langevin source of quctuatiodg(t). The correlation
function of the source was investigated in Ref. 11. where
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of
5”02B2i Spi{no(ni—n)), n=£,
(13
2 of
5(Vi0nih0)=ﬂ; dpi{viohihg(n;—n)). <n0n1>=—§%, (16)
In order to obtain a closed equation for surface density o ?f\ 1t _
fluctuations, one must obtain expressions #pt; and fluc- Bl onl= kgT ouZ =(on;on;)~",

tuation of adparticle fluxes as functions &f; . For this pur- . _ .
pose one must know the mechanism of an adparticle hophere(sn;on;) is the mean-square adparticle density fluc-
from one lattice site to another one. Here we restrict considtuation.

erations to nearest-neighbor hops only. An adparticle on the It should be noted that the expression for the diffusion
zeroth site can Jump to one of its nearest_neighbor iﬂH?S coefficient is valid in the hydrodynamical limit for adparticle
beled 1, 2, and 3 in Fig.)lif the destination is empty. The density inhomogeneities slowly varying in space and time
diffusing adparticle must surmount the potential barrier fromand when the adparticle hop frequency is determined by Eq.
the initial site to the final site. In case of interacting lattice (14).

gases the activation energies of hops are affected by the pres-

ence of adjacent adparticles. If is assumed that the lateral 1Il. HONEYCOMB LATTICE AND REAL-SPACE
interactions modify the minima of the periodic potential but RENORMALIZATION GROUP

not the saddle points, then the hop frequency from the zeroth

site to the first site is simply given by We obtain an expression for the diffusion coefficienby

using a very simple model for adparticle hops. All we need
vo1=v exd Be(ny+ns3)]. (14)  to calculate the diffusion coefficient is the free energy of the

) . ] systemf. Even for a simple model the problem remains too
Herev is the hop frequency of a single adparticle on a C|ea’bomplex to be solved exactly. The well-known Onsager's
surface. The terms in brackets account for the variation ofg|ution for a 2D Ising spin model was obtained in zero
the potential minimum due to the lateral interaction betweer}nagneﬁC field, which is equivalent oML adparticle den-
the jumping particleon site 0 and its nearest neighbors on sty "|n order to obtain the explicit dependences of the diffu-
sﬂgs 2 and/_or 8the energy of_ mtgractlon between the neareskjg coefficient on the adparticle densi{n), the approxi-
neighbors is equal te). This simple hop model neglects mate methods must be used to calculate the free energy of
interaction of the jumping adparticle at the saddle point ofie system. In this section we outline briefly the RSRG
the potential relief with its neighbors. As already mentioned,ethod used for this purpose.
this condition permits one to obtain diffusion coefficients by  \ye consider the Hamiltonian of the adparticle syst@n

purely thermodynamical calculations. Using the expressioyith account of the nearest-neighbors interaction only:
for hop frequencyEq. (14)], one arrives at the simple equa-

tion

N
H:_Szi n|+QD<E> ninj. (17)
1]

3

ddny(t) = hoh Sui— o)+ J5(t
1ONo(t) =B expB)(ho l>i§1( #i~ Otto) +Jo(t) The summation is performed over all lattice bondig ) just

ce.

It is well known that the lattice-gas model as described
above is equivalent to the Ising spin model with an external
magnetic field. The equivalent reduced Hamiltonian of the
Ising model has the form

where(hgh,)=((1—ng)(1—n,)) is the correlation function
of two holes on the nearest-neighbor sites.

Developing the fluctuations of the chemical potential in
series, one can obtain easily the diffusion equation

N
—BH,=h>, si+k<z> s;s;+ Ne, (18)
I ij
where h=B(u+¢)/2+3k, k=—pB¢l4, c=h+3k/2, and
The expression for the diffusion coefficient has the form s;==*1. Empty sites are equivalent #5= —1, and full sites
to s=1. Strong lateral interactionk cause ferromagnetic
_ I (k>0) or antiferromagnetick<0) phase transitions. The
D=Dof exp(,BM)[l—2n+2<nonl>](%>, (9 exact critical value of the interaction paramelef in the
absence of an external magnetic field is equat-10.5 In(2
+v3)~ *+0.658 478*
€ Although the lattice-gas mod¢Eq. (17)] and Ising spin
model [Eq. (18)] are fully equivalent, we prefer to use the
f=kgTN"11In Q spin representation in the following sections because of its
' symmetry with respect to the magnetic field. However, we
then all quantities in the expression for the diffusion coeffi-will refer to lattice-gas terms where they appear to be neces-
cient can be calculated as follows: sary.

-, o\ oy -
don(r,t)=(3a%/4)vBexp Bu){hohy) o veon(r,t)

+3N(r b).

whereD,=3va?/4 is the diffusion coefficient of the nonin-
teracting adparticles. If one introduces the free energy of th
systemf as
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It the RSRG method of Niemeyer and van Leeutfemd The RSRG transformation functions. .. depend on the
Nauenberg and Nienhut$;?*the whole lattice is divided into  size and symmetry of the block of sites. The most important
blocks ofL sites®® All blocks together must form a honey- property of any RSRG transformation is the existence of
comb lattice with the side/La. In the framework of the fixed points of the system of the renormalization equations
RSRG approach, one usually employs periodic boundaryhere the transformation is analytic. The fixed points are
conditions. It is assumed that the whole lattice is given bydetermined by conditions;=h andk;=Kk. The nontrivial
the periodic continuation of a small cluster of blocks. A (i.e., noth=k=0) unstable fixed points of the systeq.
block spinS, is assigned to each blocg,, is determined by (22)] correspond to the critical points of the corresponding

the so-called “majority rule” Hamiltonian[Eq. (18)]. From the symmetry of the first equa-
. tion of Eq.(22), it is obvious that all fixed points are located

+1 if x>0 on thek axis (h,=0). In order to determine the stability of

Sazsgr( 21 Si) where  sgX)=|_; it y<o. the fixed point b ,k.), one must investigate the properties

(19 of the transformation at the point. In the vicinity of the fixed

oint, we have
Each value of the block spiS,= *+1 corresponds to'2'* P

site spin configurations. If we carry out the partial summa- hi—he=Thn(h—h¢) + Th(k—ke),
tion over all those configurations, which leave block spins (23
unchanged, we are able to do an exact real-space renormal- kKi—Ke=Tyn(h—ho) + T (k—ke),

ization of the original lattice to the lattice composed of the . . :
. L .- The matrixT,, describes the linear response of the renor-
block spins. The main idea of the RSRG transformation is_ . S
. malized parameters of the Hamiltonian E#8), h, andk,
that the result of the summation would have the same form

as the original HamiltoniaEq. (18] plus insignificant on variations of the original valuds andk around the fixed

terms, which do not affect the critical behavior of the system.pomt.s.' This matrix has two _elgenval_ue?s,;, and A The
For the RSRG transformation. one can write condition for cr|t|ca.l behav!or is the gmstence of eigenvalues
' A k>1 (unstable fixed poinis The eigenvalues are related

to the critical indices of the 2D Ising model and 6 as

exd ¢<{Sa}>]z{2} exp{H } follows:2®
Si
N/L a=2—InL/In Ny, and Ss=InA,/(InL—=In\}).
=exp{ hS S, 4k S sasﬂ+g(h,k)]. (24)
@ (aB) For the 2D Ising spin model, the exact values of these critical

(20)  indices are well knownae=0 and 6=15. Therefore, the

H h . ied I bl . exact RSRG transformation should have two nontrivial fixed
ere the summation is carried out over all possible con |gu-points (0:£K*) with A% :\/E and\} — L1516 (for the ferro-

rations{s;} for fixed values of the block spi{sS,}. h; is the
renormalized magnetic field, arld is the renormalized in-

teraction energyg is the “empty set” term which plays an for the accuracy of the RSRG transformation.

important role in the method. As was shown by Nauenberg We have investigated 11x2 RSRG transformations
and Nienhui$!?? the free energy of the systefncan be r\%

magnetic fixed point Comparing the computed values of
ke, A, andA, with the exact ones gives a valuable measure

luated in th . f tial RSRG t ¢ i using the notation of Refs. 27,P®ith the clusters shown in
evaluated in the series ol sequentia ranstormatio igs. 1 and 2. The first series of blocks used in the RSRG
of the Hamiltonian Eqg. (18)]

transformations are shown in Fig. 1. It should be noted that
o the computing time grows exponentially with the number of
f=kgT >, L-™g(hy,Km). (21)  spins in the blocks. Using a fully parallelized algorithm for a
m=0 supermassive parallel computéintel Paragon with 136
node$, we have been able to handle clusters consisting of up
to 42 spins for the honeycomb lattifas the 2Kk 2 cluster,
shown in Fig. 1a)].
In the present work we have also investigated an alterna-

Hereh,, andk,, are the parameters of tmth RSRG trans-
formation;hy=nh; ko=k.
In the present work we consider only antiferromagnetic

interactions between the spiri# lattice-gas terminology Slive method of dividing the lattice into blocks. In this method

these interactions represent repulsion between adjacent . 0 o
particles. In this case the lattice can be subdivided into twosyggested by Schick, Walker, and Wofis, the lattice is

sublattices with opposite magnetizations and, therefore, the vided Into subla’;hc_es. For each sublatpce one chdose
must be at least two blocks in the cluster. For this choice '[hé'teS forming a periodic array. The blocks interpenetrate each

system of the renormalization equations has the form Other as|s seenn Fig. 2. For the honeycomb lattice symme-
try requires the hexagonal form of the blocks. The two small-

hy= (s — )4, est possible hexagons contain seven or 19 sites, and are
shown in Fig. 2. The properties of all transformations used in
Kiy= (o s+ =29, )12, (22)  the present work are summarized in Table I.
g=(¢y +o__+2¢,_)IBL, IV. PHASE DIAGRAM OF THE HONEYCOMB LATTICE
with ¢ =y(S;=x1S,=*1), ¢,_=¢_,., and All RSRG transformations have some general properties.

Y__(h,Ky=¢, (—hK). As usual, the transformations have two fixed points; one in



FIG. 2. Sites of the honeycomb lattice grouped into interpen
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etrating hexagonal blockst—L =19; e—L=7.

the number of the spin in the block is increased. However,
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FIG. 3. Critical line of the RSRG transformation X2a.

ter, but for the relatively small 282a cluster(Table )). This
striking finding obviously indicates that the error in deter-
mining the critical value of the interaction energyloes not
“follow a simple power law in the present case, although such

a exL ™! dependence was obtained in Ref. 31 for a square
. ) ) lattice. The accuracy for the XRa cluster, e=0.38, is

the ferromagnetic regiork(>0) and another one in the an- close to the remarkable result of Niemeyer and van Leeuwen,
tiferromagnetic domaink;<0). In general, the critical val- ¢=0.182° obtained with a cluster of 21 spins for the ferro-
ues of the interaction parameter approach the exact valuesifagnetic phase transition on the triangular lattice.

The b- andc-type blocks do not appear to be suitable for

the accuracy of the transformation depends not only on thévestigations of the antiferromagnetic phase transition on
block sizeL but also on the symmetry of the block and the the honeycomb lattice. For thetype blocks the accuracy of

relation between the spins from different sublattifess, the

the RSRG method is not improved upon increasing the block

relative numbers of intrablock and interblock spin-spin inter-size. As a matter of fact, the>42 cluster gives a better

accuracy than the 262 one. RSRG transformation with the
The phase diagram of antiferromagnetic spins on the horP-type blocks yield an unrealistically narrow stability range

eycomb lattice shows two critical lines which divide the an-for the antiferromagnetically ordered lattice-gas phase.

actions.

tiferromagnetic half-plane h(k<<0) into antiferromagneti-
cally ordered and disordered spin phas€gy. 3). These
critical lines have asymptotds= + h/3 corresponding to the
exact relation for the zero-temperature critical figha,|
=z|k|. Herez is the lattice coordination number.

In the present work, the most accurate results are obtained
for blocks of thea series(Fig. 1). The best accuracy for
determiningk, was not obtained for the largest:22a clus-

RSRG transformations with the-type blocks do not show
fixed points fork<O at all. The clusterk X 2c are less sym-
metrical (blocks have not mirror plangsas compared with

the clustelL X 2a. In Table I the critical values are compiled

for the different clusters studied in the present work.

In order to calculate the phase diagrams of the antiferro-
magnetic honeycomb lattice gas, we used the best RSRG
transformations with thea-type blocks(see Fig. 4. The
phase boundaries between ordered and disordered lattice-gas

TABLE I. Critical values of interaction parameter, indices and adparticle demsisyands for ferro- and
AF stands for antiferromagnetic phase transitions.

Cluster k. (F) |ke| (AF) a B n:(0)

3X2a 0.516 (22%) 0.516 (22%) —-1.24 6.75 0.333
7X2a 0.6835 (3.8% 0.6475(1.7% —-0.77 20.6 0.433
13X2a 0.6826 (3.7% 0.6610 (0.38% —0.55 20.9 0.443
21X2a 0.6768 (2.8% 0.6635 (0.76% —0.55 20.0 0.447
4X2b 0.85 (29%) 0.85 (29%) —1.61 67.6 0.408
9X2b 0.725 (10%) 0.8230 (25%) —0.63 30.3 0.485
16x2b 0.6854 (4.1% 0.8853 (34%) —-0.47 21.7 0.493
7X2c 0.725 (10% — —-0.70 29.7 —

19x2c 0.6847 (4%) — —0.44 21.9 —

19%x2d 0.5761 (13% 0.5761(13% —1.26 6.22 0.400
7X2e 0.5694 (14%) 0.5694 (14%) —-1.23 7.63 0.388
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1) T=g/k,
0061 2 . 0F 2 T=gp2k,
| 2 | F o 3) T=pnk,
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FIG. 5. Coverage dependence of the normalized chemical sur-

e diffusion coefficienD/D,. The calculations are performed for
different temperatures as indicated in the figure.

FIG. 4. Phase boundaries for the antiferromagnetic honeycomPaC
lattice gas, calculated with different RSRG transformations.

phasegcorresponding to the phase boundaries between an-

tiferromagnetically ordered and disordered spin phases ifbtained the dependences of the chemical diffusion coeffi-
magnetic terminologyare symmetric about half-coverage, cientD and the mean-square density fluctuations vs adpar-
n=1 For the 21X 2a transformation the ordered phase is ticle density for different values of the interaction parameter
found to exist only in a very narrow region of coverages nearp- 1he coverage dependence of the chemical surface diffu-
3 ML. The width of the region depends on the temperaturesion coefficient,D(n), is shown in Figs. 5 and 6. In the
monotonically increasing from zero value &t=T, to disordered phase the diffusion coefficient grows with the av-
0.447=n=0.553 atT=0 (Fig. 4). It is interesting to note €rage density of adparticles as the mean number of nearest
that all RSRG transformations exhibit the same asymptotid€ighbors for any hopping particle is also growing. One can
behavior of the critical lines in spin representation, but yieldsee qualitatively the same behavior at a coverage region of
different zero-temperature critical adparticle densitiggd) ~ Nearly a monolayer. The relaxation of the density fluctua-

in the lattice-gas representati¢see Table | and Fig.)4 tions proceeds due to diffusion of holes. It should be noted
that the diffusion coefficient for holes is equal to
V. DIFFUSION COEFFICIENT DEPENDENCES Dy exp(28¢) for zero density of holesn=0). Due to the
The expression for the diffusion coefficient in spin vari- 19 — : : :
ablesh andk has the forntr - 18k h
D=Dg, exp2h—6k)]{1-2f,+2f/3}/fn,, (25 % }Z L ]
wherefy, and f, are the first derivatives of the free energy Q I5p T=¢/5k, ]
over magnetic field and interaction parameter, respectively, }‘3‘ - (@)]
and f,, is the second derivative of the free energy over the L ' : ' |
magnetic field. The derivatives have simple physical mean- 040 042 n 044 0.46
ings. The first derivative over the magnetic fiefd,, gives )
the mean magnetizatidrs;), and is proportional to the mean J34r 10° :
surface density of adparticles The first derivative over the Q 32k 4
interaction parameterf,, is equal to the nearest-neighbor @ 30 ]
correlation functionses;). The second derivative of the free A gL T=0ik ]
energy over magnetic field is proportional to the mean- 26k (b)]
square density fluctuation,,=4(n;on;). In the vicinity ‘05'45; — 05'50 — 05'55 :
of the critical points these fluctuations diverge, which results ’ h :
in a critical slowdown of the diffusion coefficient. T - T : T ]
In the limits ofn— 0,1, a hopping adparticle has none or S20F .
two nearest neighbors, respectively. Therefore, the limiting a 15k ]
values of the diffusion coefficient are equal to @ L 1
a Lor T=¢/5k, .
lim D=Dy, 05k (C)—
n—0 1 L 1 1
(26) 0.498 0.500 0.502
lim D=Dg, exp2B¢). n

—1
" FIG. 6. (a) and(b) Singularities of the coverage dependence of

We have calculated the required derivatives of the free enb/D, in the critical regions(a) n.< 3 and(b) n.> 3. (c) Maximum
ergy using the expression for the free enef§y. (21)], and  of the chemical diffusion coefficier/D,, at half coveragen= 3.
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This growth is due to the fast increase of the mean number of
the nearest neighbors for hopping adparticlesiat;. For
n<3 the density inhomogeneities may be considered as de-
letion of adparticles from perfect structure, and fior 5 they

5 . ~ are formed by inserting additional adparticles into the ideally
Yool ?;"_‘0 . | ordered phase. Roughly speaking the system has two values
- sl )T=0/k 4 of the diffusion coefficientD(n<3) and D(n>3); more-
3)T=¢/3k, 1 1 ; N g
L 4T=o/5% 4 ] over,D(n>3)>D(n<3). This creates additional difficulties
6+ " . for experimental investigations of the weak diffusion coeffi-
r 1 cient peculiarities, arising due to order-disorder phase transi-
7 [ i tions. It seems that the most suitable method for measuring
gL ) . . ) . ) . ) . the diffusion coefficient fine details will be the fluctuation
0.0 0.2 0.4 0.6 0.8 1.0 method, suggested by Gomeee, for example, Ref)5The

n measurements are carried out at a constant adparticle density,

FIG. 7. Coverage dependence of the mean-square density flu¥hich can be adjusted to any desired value. The methods,

tuations, (8n;on;). The calculations are performed for different USINg Boltzmann-Matano analysis, give an average over
temperatures, as indicated in the figure. some density interval values of the diffusion coefficient.

The dependencesin;on;) versus adparticle density are
evident Hamiltonian’s symmetry “particlesholes,” the ~ Shownin Fig. 7. In the absence of lateral interaction between
nearest-neighbor interaction parameter for holes is also equle adparticles, the intensity of the fluctuations is propor-
to ¢. Increasing the density of adparticles or holes increaseional to n(1—n) [curve (1) is close to this dependenice
the effective hopping frequency of the particles, dhdilso ~ Repulsion inhibits any density disturbances as is clearly seen
increases. When approaching the critical density, the densif@r curves(2) and (3) of Fig. 7. The disorder-order phase
fluctuations grow rapidly, and cause a reduction of thelransitions cause cusplike peaks at the critical points as al-
chemical diffusion coefficient. The nonanalytical nature offéady mentioned. The minimum at=3 corresponds to the
these minima, caused by a phase transition between the diglaximum on the coverage dependence of the chemical dif-
ordered and ordered phase, is clearly seen in Figs.(for  fusion coefficient. It does not depend on the symmetry of the
n<0.5 and &b) (for n>0.5). The shapes of both minima lattice, and is caused by the strict ordering of adparticles on
are similar to the exact logarithmic slowdown of the diffu- the sublattices. Qualitatively the same behaviob¢h) and
sion coefficient, obtained in Ref. 18 for a reconstructive sur{dn;on;) at n=3 was also found using mean-fiefdand
face. The depth of the minima is determined by the criticalBethe-Peierls approximations.
index «. The exact valuer=0 vyields a logarithmic diver- It should be noted that the classical Bethe-Peierls approxi-
gence of the mean-square density fluctuations and a criticdnation and RSRG method give similar dependences of the
slowdown of D atn=n.. If —1<a<0, one must expect diffusion coefficientD(n,<p)_in t_he regions far from critical
cusplike maxima fot 8n; 6n;) and corresponding minima for Points of the system both in disordered and ordered phases,
D(n).Y” If a<—1, there should be no singularities of the butin the vicinities of the critical points the dependences are

chemical diffusion coefficient and of the mean-square denduite different. The classical approximations give stepwise
sity fluctuations at all. changes of the diffusion coefficient at the critical densities:

The diffusion coefficient grows rapidly ataML density, ~DP(nc—0)#D(n.+0). The RSRG method gives cusplike
and exhibits a sharp maximum at low temperatures. Théninima, which are similar to the exact logarithmic critical
physical origin of this maximum is not related to a corre- Slowdown of the diffusion coefficient obtained in Ref. 18 for
sponding singularity of the derivatives, and thus cannot padatom diffusion on a reconstructive surface. The accuracy
attributed to the disorder-order phase transitomafFig.  Of the RSRG method can be increased significantly by in-
6(c) clearly shows that the dependen@(n) at half- creasing the size of the block spins and choosing the most
coverage remains analytidalhe maximum of the chemical @ppropriate symmetry of the blocks.
diffusion coefficient can be explained on purely thermody-
namic ground$:'° At half-coverage the lattice gas is well
ordered, and thus largely incompressible. Density fluctua-
tions are strongly suppressed due to repulsive interactions We have investigated a number of RSRG transformations
between the adparticles: Any density disturbafice., the on the honeycomb lattice with blocks of different sizes and
inclusion of additional adparticles into the ideally orderedsymmetries. It has been shown that the accuracy of the
lattice-gas phagesubstantially increases the configurationalmethod depends strongly not only on the number of sites in
energy and is thermodynamically unfavorable. Thereforethe block but also on the symmetry of the blocks. The accu-
density disturbances result in a high mobility of adparticlesracy of the method increases in a nonmonotonic fashion with
allowing the density disturbances to heal out. As the densitghe number of sitek in the block. The most accurate results
is not equal to3, there are fluctuations of the nonstoichio- were obtained for relatively small cluster of 26 sites. Using a
metric nature that do not require energy for their existencdully parallelized algorithm on a supermassive parallel com-
(see Fig. 7. Therefore, the diffusion coefficient decreasesputer (Intel Paragoi we can handle clusters of up to 42
whenn deviates from thg-ML coverage. spins.

It should be mentioned that diffusion coefficient grows In the present work we have studied the phase diagram of
rapidly at 3-ML coverage, especially at low temperatures.the lattice gas with nearest-neighbor repulsive interactions

VI. SUMMARY
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and the fully equivalent antiferromagnetic spin model on a The RSRG approach used in the present work reproduces
honeycomb lattice. It is shown that the ordered phase in thall peculiarities of the chemical diffusion coefficient which
lattice system appears in the very narrow density intervahave been predicted by theoretical considerations. Thus the
0.447<n<0.553. RSRG approach is a very powerful method for the investi-
Using the RSRG method, we have investigated the surgation of surface diffusion processes on two-dimensional lat-
face diffusion of adparticles on the honeycomb lattice. Theices which, in contrast to the Monte Carlo technique, re-
accuracy of the RSRG transformations was sufficiently highguires only moderate computational resources.
and permits us to obtain all peculiarities of the chemical
surface diffusion coefficient. At the order-disorder phase
transitions the chemical diffusion coefficient exhibits
nonanalytical minima which are due to the rapid growth of This work was made possible by the Grant Agency of the
the mean-square density fluctuations. At half-coverage andcademy of Sciences of the Czech Republic under Grant
low temperatures, i.e., deeply within the ordered lattice-gadNo. A2010536, and by a Heisenberg stipend from the Deut-
phase, the diffusion coefficient shows a strong maximunsche Forschungsgemeinschaft. The authors would like to
which is attributed to the large incompressibility of the well- thank V. P. Zhdanov for a thorough reading of the manu-
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