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We study the phase separation that a particle-conserving~‘‘canonical’’! full-layered metal surface must
undergo at temperatures between preroughening and roughening. The separation is into two disordered flat
~DOF! domains of opposite order parameter with a step between them, each domain exhibiting a half-filled top
layer. It is shown that both Gibbs-ensemble simulation and canonical Monte Carlo plus finite-size scaling,
carried out on a specific lattice Hamiltonian model, demonstrate this phase-separation phenomenon micro-
scopically. A number of existing particle-conserving molecular-dynamics simulations for fcc~110! metal sur-
faces are then analyzed, and it is found that some display clear, previously unnoticed evidence of this DOF
phase separation. Its main signal is a plateau of layer occupancies with temperature, around values close to3

4

for the first surface layer, and around1
4 for the adatom layer. It is proposed that this unusual type of phase

separation could be observable on sufficiently step-free metal surfaces.@S0163-1829~98!07215-4#
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I. INTRODUCTION

Recently, there has been growing interest in the ther
disordering of crystal surfaces since the introduction, by d
Nijs and Rommelse, of the preroughening transition lead
to disordered flat phases,1 and the suggestion that the
should be realized on metal surfaces.2–4 Preroughening~PR!
is an equilibrium phase transition atT5TPR between the
ordered flat~OF! phase and the disordered flat~DOF! phase.
Conventional roughening occurs at a higher tempera
TR.TPR. As recent studies have brought out, the ultim
mechanism leading to PR is anextended repulsiveinterac-
tion between parallel steps, favoring the onset of a dis
dered array of alternating up and down steps. Repulsive
teractions between parallel steps originate, for example, f
the elastic strains accompanying the steps.5 PR is expected to
be present so long as parallel steps repel each other stro
enough, if at the same time antiparallel steps do not.

Surface reconstruction, found atT50 in many metal sur-
faces, provides another route to PR. Within solid-on-so
~SOS! models, a reconstructed ground state can be obtai
for example, when the first-neighbor height-height inter
tion is negative, and only second- and further-neighbor in
actions are positive. Most of the existing studies focus on
~110! face of noble metals, with a tendency, either manif
or latent, toward (132) missing-row reconstruction. SO
models have been used to address this case in Refs. 6,
and 8. In particular, thermal deconstruction of (132) sur-
faces, e.g., Au~110!, is believed to lead to a stable DO
phase below roughening.2,8 So far, on the other hand, n
clear evidence of PR has been reported forunreconstructed,
i.e., (131) metal surfaces, like Ag, Cu, and Ni~110!. Vari-
ous SOS models predict the possibility of PR for these fac
at least under favorable conditions. Dormant reconstruc
570163-1829/98/57~16!/10157~9!/$15.00
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tendencies2,8 as well as elastic parallel-step repulsion, a
certainly present at these surfaces, but it is uncertain if t
are strong enough. Therefore, to this date, it is not known
any quantitative level whether a real unreconstructed m
surface meets the conditions for a PR transition, and fo
corresponding stable DOF phase below roughening. T
situation clearly calls for a more intense experimental effo
as well as for realistic simulations.

A realistic simulation of PR on a metal surface is, in sp
of the availability of reasonably good potentials and tec
niques, still a very difficult task, for two main reasons. T
first are very tough requirements of large sizes and size s
ing, as well as of very long simulation times. These requi
ments are mandatory for PR—a two-dimensional~2D! criti-
cal phenomenon—and even more so for surface roughen
The second, subtler reason, is the necessity to addres
within a grand-canonical ensemble, as clearly suggested
the jump from integer or nearly integer population of the t
layer, to the half-integer population which characterizes
DOF phase. This requirement raises a difficulty, in particu
for molecular dynamics ~MD!, where grand-canonica
schemes are still under debate, and far from well establis
What is available so far is a number of very reliable, go
quality canonical~i.e., particle-conserving! MD simulations
of metal surfaces, covering the relevant temperature ra
T'TR .

Similar to simulation, experimental realization of a DO
phase on a metal surface also requires grand-canonical
ditions, i.e., an adjustable particle number. Experimenta
grand-canonical conditions, despite the absence of evap
tion and/or condensation which is a typical condition
study of metals under ultrahigh-vacuum conditions, are u
ally obtained by diffusion of adatoms to and from steps.
sufficiently high temperature, these diffusion processes
10 157 © 1998 The American Physical Society
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10 158 57SANTI PRESTIPINO AND ERIO TOSATTI
generally be present, and make a metal surface effecti
grand canonical, in a relatively slow experiment and in
presence of preexisting steps, inevitable in a real surf
Alternatively, approximate canonical conditions could be
alized, for a limited time duration, in the center of a large fl
surface terrace, for a surface of very good quality~low step
concentration!.

The question we pose here is the following: how wou
surface PR, and the subsequent onset of a DOF phase, m
fest itself in such a fast, canonical experiment on a go
quality metal surface, where particles do not have a cha
to evaporate, and do not have the time to diffuse away
step? Equivalently, how will PR show up in a realist
particle-conserving MD or Monte Carlo~MC! simulation,
unable by construction to change number of atoms, and
to switch from a full to a half-full surface layer?

In the rest of this paper, we employ a lattice model
fcc~111! surfaces4 for a MC study of layer abundancies an
occupancies~defined in Sec. II! at a fixed particle number. A
possible phase separation into two DOF domains is in
duced and its signature in terms of occupancies is presen
In Sec. III we demonstrate phase separation through a Gi
ensemble simulation of the lattice model. This calculation
followed in Sec. IV by the finite-size scaling analysis
layer occupancies under canonical conditions. Again, res
indicate that the expected phase separation actually t
place. Based on this outcome, we review, in Sec. V,
results of realistic published MD simulations for seve
metal surfaces, and identify, for some of them, previou
undetected signals of DOF phase separation. This findin
important, in that it invalidates many of the conclusions p
viously drawn by ignoring phase separation. Finally, it
suggested that the search of this phenomenon could
should be pursued experimentally.

II. LAYER OCCUPANCIES, ABUNDANCES,
AND FINITE-SIZE BEHAVIOR

In a SOS model, a height variable is assigned at each
of a regular lattice so as to mark the border between
interior of the crystal~assumed to have no vacancies! and the
outside. It is generally believed that SOS lattice models
crystal surfaces provide an acceptable~although rather quali-
tative! description of the surface thermodynamics in the a
of roughening and growth. Recently, we have constructe
restricted SOS model for fcc~111! surfaces~called FCSOS!
which exhibits, in a range of parameters, a PR transition
some T5TPR.4 Above TPR, there is a well-defined DOF
phase characterized by a nonzero DOF order parameter
lowed at a higher temperatureTR , by a roughening transi
tion.

In the FCSOS model, the height-height interactions are
positive~nonreconstructive!, but long ranged enough to giv
rise to a DOF phase with a half-occupied top layer a
consequently, a half-integer average height. The mode
defined as follows:~a! heights are defined on a triangul
lattice ~three sublatticesl 50,1,2!; ~b! a heighthi5 l ~mod 3!
is required for any sitei in sublatticel , so as to reproduce
the typicalABCABC... stacking of triangular planes in a fc
crystal; and~c! nearest-neighbor heights can only differ b
Dh(1)561,62. The FCSOS Hamiltonian reads
ly
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H5J(
~2!

d~ uhi2hj u23!1K(
~3!

d~ uhi2hj u24!

1L(
~4!

d~ uhi2hj u24!, ~1!

where( (n) is a shorthand notation for the sum over all pa
of nth neighbors in the triangular lattice and couplingsJ, K,
and L are taken positive, so as to have a finite step ene
and to penalize parallel steps when approaching each ot

The minimal requirement to obtain a stable DOF phase
the FCSOS model is a nonzeroL value.16 For L50 there is
no PR or DOF phase. This indicates that the longer-ra
part of the step-step repulsion is crucial in leading to a
transition in the model. The hypothetical inclusion of longe
ranged, realistic power-law step-step repulsive interactio
even if not feasible at present, could be expected to favor
even further. The phase diagram of the FCSOS model
worked out forL5K in Ref. 4. In that case, the boundarie
of the DOF region were found to beebJ.1.5 andebK.1.8,
with b215kBT.

Now, consider a SOS model of the crystal surface cho
in such a way as to exhibit a PR transition atT5TPR. We
force this surface~i.e., the whole semi-infinite crystal! to
possess a fixed number of particles and thus a fixed ave
heighth̄5(1/Nt)( ihi ~hi is the height at sitei , andNt is the
number of sites in the plane!. At a temperatureT aboveTPR,
this system is in principle similar to an Ising model bein
brought belowTc , while keeping a fixed magnetizationM .
One expects in that case a phase separation into spin up
spin down domains, divided by a 1D interface. The up a
down domain areas are in a ratio which is directly dicta
by the required magnetizationM . For the canonical surface
aboveTPR, it is natural to expect1 a similar phase separatio
between even and odd parity~‘‘even on top’’ and ‘‘odd on
top’’ ! DOF regions, separated by a monatomic step. Si
the top layer is half-occupied within each DOF region, t
phase-separated surface with canonically fixed ‘‘magnet
tion’’ M ~M50 corresponding to two equal-size region
M561 to a pure DOF phase! will generally exhibit frac-
tional average lattice occupancies over a number of lay
Since phase separation is a macroscopic phenomenon
corrections due to the monatomic step are negligible in
thermodynamic limit, and the occupancies will be det
mined byM only. More generally, dealing with SOS model
we can introduce a layer-dependentabundancy an , besides
the corresponding layer-dependentoccupancy on . The nth
layer abundancy can be defined as

an5
1

nNs
(

i
dhi ,n , ~2!

wheren is the number of sublattices@n52 for fcc~110!, and
n53 for fcc~111!# andNs is the total number of sites in eac
sublattice~thus nNs5Nt!; an represents the probability to
find the surface at layern. A sum rule holds separately fo
each sublattice,
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(
k52`

1`

al 1nk51/n~ l 50,...,n21!, ~3!

reflecting the absence, in SOS models, of overhangs, an
totally surrounded inner-layer vacancies. The occupancy
layer n is determined by the abundances of all lower~or
upper! ‘‘companion’’ layers m @i.e., those with
mod(n2m,n)50#,

on512n(
k51

1`

an2nk5n(
k50

1`

an1nk . ~4!

A schematic illustration of surface abundances and occup
cies is given in Fig. 1. For instance, a DOF surface in
FCSOS model spreads over four layers, with abundan

close to a2350, a225 1
6 , a215 1

3 , a05 1
3 , a15 1

6 , and
a250, and corresponding occupancieso2351, o2251,

o2151, o051, o15 1
2 , ando250.

Two phase-separated DOF domains, giving an ove
magnetizationM , will correspond to average abundances

an5
11M

2
an

~1!1
12M

2
an

~2! . ~5!

Conversely, the magnetizationM is given in terms of
h̄5(nnan by

M5
2h̄2h̄~1!2h̄~2!

h̄~1!2h̄~2!
. ~6!

For example, a FCSOS surface with an integer numbe
layers, corresponding toM50, would give rise to two equal
size phase-separated domains, implying overall abunda

a2350, a225 1
12 , a215 1

4 , a05 1
3 , a15 1

4 , a25 1
12 , and

a350, and layer occupancieso2351, o2251, o2151,

o051, o15 3
4 , o25 1

4 , ando350. More generally, the phase
separated occupancieson for outermost crystal layers
n521, 0, 1, 2, and 3 will be given, aboveTPR, by o2151,
o051, o15(31M )/4, o25(11M )/4, ando350. This re-
sult is clearly not specific to the model just assumed.
example, phase separation can be easily seen to lea

FIG. 1. Layer abundancy and occupancy profiles for a cry
surface~schematic!.
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analogous occupancies in a rectangular surface for arbit
M , in spite of the different symmetry and sublattice numb

Later in this paper, we shall seek a DOF-induced ph
separation by means of numerical finite-size scaling. A
preliminary to that, we first consider the expected behav
based on the Ising analogy mentioned above.

Phase separation in a system of lateral sizeN introduces a
boundary, from which the free energy density can be writ
in the general form~similar to that for, e.g., smooth vicina
surfaces9!,

f ~N!5 f `2mN211O~N23!, ~7!

where f ` is the thermodynamic-limit free energy of eithe
phase, andm is the boundary or step-free energy per u
length ~step line tension!. In the vicinal-surface problem
what determines theN21 form of the dominant size correc
tion is thesmoothnessof the step-free face, which implies fo
the step a locally finite transverse extension and a nonz
free energy~if instead the face were rough, the step wid
would diverge, and the first correction would be of ord
N22!. In the present problem, a well-defined monatomic s
between the two phase-separated regions also implies
global abundances~and occupancies! must differ from their
macroscopic value~4! by corrections which are also of orde
N21, namely

an~N!5an
`1CnN211O~N23!, ~8!

whereCn should again be proportional to the step line te
sion m. In analogy with the Ising case, we expectm to be
finite so long as the DOF order parameter is nonzero, an
vanish both atTPR and atTR .8 After these preliminaries, we
can move on to consider the phase separation issue in a
able Hamiltonian model.

III. DOF PHASE-SEPARATION: GIBBS-ENSEMBLE
STUDY OF A LATTICE MODEL

Phase coexistence is the signature of a first-order tra
tion with an abrupt change of at least one extensive quan
The description of phase equilibria in fluids and fluid mi
tures is a long-standing problem in the realm of compu
simulation. Before the advent of the Gibbs-ensemble te
nique, the standard way to study phase separation wa
calculate the chemical potential or the free energy of e
phase during a long series of MC or MD simulations10

When the two phases are found to share the same temp
ture, pressure, and chemical potential they are in equilibriu
Obviously, this procedure is rather impractical and en
mously time consuming. The Gibbs-ensemble method p
vides a more direct route to phase coexistence, which is
complished in a single simulation.11 Its main use has bee
for fluid-fluid equilibria, such as liquid-gas coexistence in
simple fluid, but it has also been applied to other systems12 ~a
comprehensive list of applications is included in Ref. 13!.

The Gibbs-ensemble method relies on a reasonable n
ber of successful particle insertions. As such, the Gib
ensemble method can only be used to study equilibria
volving phases that are not too dense. In fact, this is just
case of interest here, since in a half-occupied layer~like the

l
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10 160 57SANTI PRESTIPINO AND ERIO TOSATTI
topmost one in a DOF surface! there is enough room fo
insertions.

In order to illustrate the method, we consider classi
liquid-gas coexistence, which was the context where
Gibbs-ensemble method has originally appeared. Parti
are distributed into two separate boxes, each with its o
periodic boundary conditions. The total particle number a
the total volume are conserved. Moreover, particles only
teract with other particles in the same box. These rules de
an ensemble of configurations, called the Gibbs ensem
which is equivalent, in the thermodynamic limit, to theca-
nonical ensemble, even in presence of phase separatio14

The reason for this is that the two ensemble partition fu
tions differ for at most a surface term.

In a Gibbs-ensemble simulation, MC moves of thr
kinds are considered:~1! displacement of a particle within
box, ~2! change of the volume of one box at the expenses
the other, and~3! exchange of a particle between the box
As usual, moves are accepted according to detailed bala
At a first-order transition, the advantage of this method o
the standard canonical MC simulation is obvious: it remo
the interface between the two coexisting phases without
venting the exchange of particles and volume between th
Gibbs-ensemble simulations of a fluid system at a temp
ture lower than critical lead, in fact, to liquid in one box an
gas in the other, both densities being equal to the coexiste
values at that temperature.

Moving to our problem, we wish to adapt this method
the SOS problem. The main use of the FCSOS model in
present context is simply to provide a case study for D
phase separation. We simulate this model in the Gibbs
semble by considering two separateANt3ANt ‘‘boxes’’ that
can exchange ‘‘particles’’ with each other, in such a way t
detailed balance holds at any MC step. Such a simula
setup would allow phase separation to develop if thermo
namically necessary.

MC moves of two kinds are included:~1! displacement of
a randomly selected particle from a lattice site to anot
~sufficiently close by! within the same box, and~2! exchange
of a random particle between the two boxes. Note that th
is no volume exchange here. This means that although
mean heights of the two boxes can fluctuate, volume fluc
tions of each are totally suppressed.15 This raises no problem
for all transitions in the lattice models addressed here,
must be contrasted with the case of the liquid-gas transit
where phase coexistence is not conceivable without the
sibility of volume exchange between the two phases. For
and the DOF-phase coexistence we are interested in, the
of volume fluctuations is of no consequence and fully jus
fied.

Although the total mean surface height is kept fixed d
ing the simulation, within each box the system is free
adjust its own mean height. If we start the simulation from
full-layered, h̄50, surface~M50 in magnetic language!,
with FCSOS parameters corresponding to a smooth~OF!
surface, each box should separately end up in that phas
instead, parameters call for a DOF phase, the system sh
phase-separate into two DOF surfaces, one withh̄5 1

2 in one
box and another withh̄52 1

2 in the other.
This is indeed what happens, as illustrated in Table I. T
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table shows the height statistics~i.e., unnormalized abundan
cies! from a Gibbs-ensemble simulation of a double 60360
lattice where, after equilibration, averages were compu
over about 3 000 000 MC sweeps. At the higher temperat
the system clearly phase separates into a pair of DOF
faces 1 ML apart. Comparison with an independent M
simulation carried out in the grand-canonical ensemble c
firms ~Table I! that both the OF and DOF phases beco
ensemble-insensitive in the thermodynamic limit. Moreov
we find that energy, specific heat, interface width, and or
parameters are to a very good approximation the same
both ensembles~Table II!.

Although the evidence provided by the Gibbs-ensem
simulation is striking, a more direct proof of the thermod
namical phase coexistence should still be provided. For
reason, we decided to calculate the chemical potential of
surface in each box, defined as the intensive parameter
jugate to the mean surface height. This quantity describes
response of the surface to the attempt of inserting one
ticle. Widom first derived in the context of simple fluids th
relationship between the chemical potential and the inser
probability for an extra particle.17 In a canonical setup
namely, at fixedh̄, one can readily show that an expressi
similar to that originally found by Widom holds form,

m52kBT lnK 1

Nt
(
i 51

Nt

e2bDEi
1L , ~9!

where the average~over a canonical ensemble of surfa
configurations! is the SOS analog of the insertion probab

TABLE I. Unnormalized abundances,anNs , in a 60360 FC-
SOS lattice atK5L51`, ebJ51.1 ~above! and 1.8~below!, cor-
responding to a DOF phase and a smooth phase, respectively
each crystal layer, the average population is reported after t
million sweeps. Evidence of a DOF phase separation in the Gib
ensemble simulation is striking.

layer
Gibbs ensemble

box 1
Gibbs ensemble

box 2
grand

canonical

24 0.00 0.00 0.00
23 1.13 0.00 1.30
22 599.97 1.18 600.10
21 1198.85 600.06 1198.72

0 1198.87 1198.81 1198.70
1 600.03 1198.82 599.90
2 1.15 599.94 1.28
3 0.00 1.19 0.00
4 0.00 0.00 0.00

layer
Gibbs ensemble

box 1
Gibbs ensemble

box 2
grand

canonical

23 0.00 0.00 0.00
22 48.22 48.57 49.41
21 1151.47 1151.74 1150.50

0 1200.00 1200.00 1199.99
1 1151.78 1151.43 1150.59
2 48.53 48.26 49.50
3 0.00 0.00 0.00
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ity, and DEi
1 is the difference in energy between a surfa

with one more particle on sitei and the original surface~see
Appendix A!.

Actually, as shown by Smit and Frenkel,18 formula ~9!
should be modified for application in the Gibbs ensemb
However, as shown in Appendix A, the lack of volume flu
tuations in the present case leads to a simple extensio
form ~9!,

m52kBT lnH 1

2 (
a51,2

K 1

Nt
(
i 51

Nt

e2bDEi
1L

a
J . ~10!

In the Gibbs-ensemble simulation, the two boxes have
principle a finite probability to interchange their identit
even under phase-separation conditions. However, our s
are sufficiently large that this switch does not occur with
3M sweeps. Because of this, the separate averages for
box can be used to define separate chemical potentials.

Even if h̄’s are different we expect, due to the identic
nature of the phases in the two boxes, that the quantity in
~9! be the same for both. We take a double lattice of t
different lateral sizes, 36 and 60, atebJ51.1 and
K5L51`. After a 3 000 000-sweep simulation, we fin
bm(box1)51.8023(1) andbm(box2)51.8022(2) for the
double 36336 lattice, and bm(box1)51.80424(7) and
bm(box2)51.80438(4) for the double 60360 lattice.
Therefore, within the numerical errors, the two chemical p
tentials are the same. We conclude that Gibbs-ensemble

TABLE II. Equilibrium averages in a 60360 FCSOS lattice at
K5L51`, ebJ51.1 ~above! and 1.8~below!, corresponding to a
DOF phase and a smooth phase, respectively~see Ref. 13 for the
precise definition of each quantity!. The equilibrium properties are
practically the same in the two ensembles~see Table I!.

layer
Gibbs ensemble

box 1
Gibbs ensemble

box 2
grand

canonical

u/J 0.471 188 0.471 082 0.470 938
dh2 0.920 270 0.920 429 0.920 552
P 0.020 809 0.020 732 0.028 918
S 0.348 370 0.347 974 0.347 519
CV 0.002 899 0.002 909 0.002 932

dCV

dT

20.000 610 20.000 616 20.000 621

xP 0.028 427 0.028 345 0.054 829
xS 0.073 759 0.073 664 0.133 141

layer
Gibbs ensemble

box 1
Gibbs ensemble

box 2
grand

canonical

u/J 0.126 787 0.126 941 0.128 037
dh2 0.747 144 0.747 200 0.748 738
P 0.838 741 0.838 629 0.835 172
S 0.816 233 0.816 390 0.812 806
CV 0.247 216 0.248 825 0.251 141

dCV

dT

0.091 036 0.102 770 0.136 561

xP 0.463 799 0.459 185 0.521 648
xS 0.609 640 0.603 688 0.759 530
.

of

in

es

ach

l
q.
o

-
C

clearly demonstrates the existence of the DOF phase sep
tion, once the average surface height is clamped to a fi
value.

IV. SURFACE OCCUPANCIES AND ABUNDANCIES
IN PRESENCE OF PHASE SEPARATION

In this section, we carry out an MC study of layer occ
pancies in the FCSOS model, now under strictcanonical,
particle-conserving conditions. We do this to see whether
phase-separation scenario earlier introduced is confirm
and if so what are the implications for a realistic canoni
situation, such as that of a standard MD simulation, or o
suitably fast experiment on a step-free metal surface.

We choose convenient, but otherwise arbitrary, Ham
tonian parameters and temperature, namely,J50 and
ebK5ebL55. Here, Hamiltonian~8! is known to give rise to
a DOF phase.19 We start with a full layer, i.e.,M50 in
magnetic language. Canonical MC moves are of the K
wasaki type, which conservesh̄. They consist of choosing
pairs of lattice sitesi and j some distancel i j apart, and then
updating heightshi→hi23 andhj→hj13, as if a particle
jumped from i to j . In our casel i j includes up to fourth
neighbors in the triangular lattice. Moves are always
cepted in accordance with detailed balance.

After a short transient, about 3 000 000 MC sweeps
generated at equilibrium. Over this trajectory in phase spa
we evaluate the abundancy and occupancy of each sur
layer. This is done for increasing linear sizes, name
N5ANt524,36,48,60,72. The results are then plotted
check the form ln@an

`2an(N)#5ln Cn1ln N, suggested by Eq
~8!. This form is in fact used as a fitting form, withan

` and
Cn as parameters.

Figure 2 shows the fitting details for the topmost~adatom!

layer 1. The fit is quite good, yieldingatop
` 5 1

12 60.003 and
Ctop'0.365. For the first surface layer~layer 0!, we similarly
found the expected abundancy of1

4 with exactly the same
finite-size behavior as that of adatoms in Fig. 2. On the ot
hand, the abundancy of the second layer below adato
layer 21, deviates progressively from1

3 , as N grows, as
shown in Fig. 3. This is physically reasonable, reflecting,
required by sum rule~2!, the presence of a small bu

FIG. 2. Top layer~layer 1, adatoms! occupancy as a function o
the inverse size for a FCSOS model with full layers. The best fi
with atop

` 5
1
12 and an exponent near21, indicating phase separatio

into DOF domains.
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finite number of ‘‘ad-adatoms’’ in the second adlayer, lay
2. Similar evidence ofT-dependent deviations from the ide
abundancy map was also found in the DOF phase, as
tained in Ref. 4 by grand-canonical MC simulation. Th
account for the small but nonzero deviation of^dh2& from
11
12 , visible in their Fig. 8~similarly, in the canonical simula
tion ^dh2& tends to approximately76 ; see Fig. 3 below!. We
note here that SOS models are artificially asymmetric in t
they permit adatoms, but forbid buried vacancies. The ar
cial absence of deep vacancies appears to be the main re
why abundancies in layers 1 and 0 scale very accuratel
1
12 and 1

4 . Deviations would, of course, be expected in a mo
realistic description.

We cannot at this stage rule out deviations from the s
ing behavior~8! which could arise if, for example, som
microscopic length scale were to enter the problem; in
case, we have found no evidence of them. We therefore
clude that the expected macroscopic phase separation
flat integer-layer surface into two half-integer DOF doma
is confirmed. Although obtained at a single point in the ph
diagram, it is reasonable to assume that this behavior is
neric, and applicable for different temperatures or even
ferent Hamiltonians, so long as one stays inside the D
phase.

V. DOF PHASE SEPARATION
IN PARTICLE-CONSERVING MD SIMULATIONS

Preroughening-related phenomena have been prop
earlier for metal surfaces, in particular fcc~110! noble metal
faces.2,3,6,7 In spite of some experimental suggestions in t
direction,20,21 there is as yet no clear consensus about th
existence on real surfaces. One might even suspect tha
stricted SOS models lack some fundamental ingredi
which makes real surfaces different. A useful step is the
fore to consider whether PR and DOF phases are or are
present inrealistic simulations of metal surfaces. Particl
conserving, off-lattice MD simulations, with continuos coo
dinates and realistic interparticle potentials, have been v
popular for crystal surfaces. Lennard-Jones surfaces and

FIG. 3. FCSOS model with full layers: above, scaling of abu
dancy of layer21 as a function of the lattice size. This quanti
appears to saturate at a value slightly smaller than1

3 ~see text!;
below, scaling of the average square height difference as a fun
of the lattice size. In an ideal DOF-separated surface, this qua
must be equal to76 .
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thermal disordering have been extensively investigated
over two decades.22 Since the advent of quantitatively con
structed, even if empirical or semiempirical, many-body p
tentials, metal surfaces have also been widely studied in
manner. Simulation evidence has been reported or const
about a variety of phase transitions—among them rec
struction, deconstruction, roughening, surface melting, fa
ting, etc.9 However, no evidence or claim of PR~or the lack
of it! is usually advanced based on this kind of simulati
results.23 The main difficulty in trying to do that is precisel
because of the fixed particle number, most often full laye
involved in the simulation.

However, the mechanism just described of phase sep
tion into DOF domains separated by monatomic ste
should be at work in these simulations too. The scope of
section is to reexamine some of the existing metal surf
simulations, searching for possible evidence of a previou
unnoticed DOF phase separation. In particular, we conc
trate on layer occupancies, a quantity particularly easy
extract from realistic simulations, and therefore often ava
able. Our qualitative expectations are summarized in Fig
for an initial full layer at T50. At low temperatures, the
number of first-layer vacancies and of adatoms
expected—in thermal equilibrium—to be very small, grow
ing in an Arrhenius-like fashion with temperature. On su
faces such as metal fcc~110!, eventually undergoing rough
ening and surface melting close toTm , this adatom/vacancy
concentration is known to grow very substantially withT,
reaching values as high as 0.1 already atT'0.6Tm ~Tm is the
bulk melting temperature!.24 It was actually pointed out,
some time ago, that proliferation of surface vacancies an
adatoms is one of the earliest precursors of surf
melting.24,25

Our basic expectation is that the particle-conserving sim
lated metal surface will phase separate into two coexis
DOF phases, as soon asT5TPR is reached. Since the DOF
phase remains stable up toT5TR , the occupancies of the
first layer and of the adatom layer should be pinned at3

4 and
1
4 , from PR until roughening. Hence, if the lattice mod
predictions hold in a realistic case, PR should be signaled
the onset of a characteristic plateau—due to ph
separation—of the first-layer vacancy and adatom concen
tions. In other words, atT5TPR the previously activated

-

on
ity

FIG. 4. Schematic behavior of occupancies of the first two l
ers of an initially full-layered surface as a function of temperatu
A characteristic plateau between preroughening and roughenin
expected, indicating phase separation into DOF domains.



io
ni
e
th

-
-

a-

u

t o
m
e
e
ce

o
a
lt
rd
ou

p
a
e

ia
an
di

a
re

e
rt

le

nt

by

ts
se
w
lo

in
th

s
e
b

3/4
up

ing
os-

n of

r
he
by a
el.
ed
he
ives

D
ed
lay
ase
oc-

, or
s of
la-
al-
ith

ses,
ta,
ed

h a

eat-
ur-
can-

S.
ion,
us

ch
lle
i

ts
6,

ical

of
the

57 10 163PREROUGHENING, FRACTIONAL-LAYER . . .
growth of the surface vacancy and adatom concentrat
should suddenly pause, and not restart again until roughe
is reached atT5TR . We can now examine in this light som
existing metal surface simulations, in particular those of
~110! surfaces, where disordering is more pronounced.

~i! Al ~110!. The full-layer canonical MC and MD simula
tions by van der Gonet al. indicate that the first-layer occu
pancy decreases steadily from 1 to.0.85 at the bulk melting
point of Al. Another more recent and detailed MD simul
tion of Al~110! in our group9 similarly yieldso050.82, 0.85,
and 0.82 atT/Tm50.946, 0.973, and 0.989, respectively, b
also corresponding adatom occupancieso150.22, 0.25, and
0.28. Hence adatoms display an approximate plateau a
cupancy 1/4. Vacancies also have a plateau, even if so
what below the1

4 occupancy. While this kind of evidenc
perhaps cannot be considered conclusive, it is certainly v
suggestive of a DOF phase separation. The smaller con
tration of surface first-layer vacancies~between 0.15 and
0.18 instead of 1/4! appears mostly related to the presence
deep vacancies, which are absent in SOS models. As
shown by other MD simulations for metals, close to the me
ing point buried vacancies spread very substantially inwa
to layers deeper than the first, while adatoms spread
wards much less. For instance, the above occupancies im
that on Al~110! at 0.95Tm the deep vacancies are as many
10% of a monolayer. At the moment, it is not clear if th
deep vacancies could partly represent an artifact assoc
with the phase separation, or whether they are real,
would therefore persist under fully grand-canonical con
tions. This question remains open.

~ii ! Pb~110!. Full-layer simulations of this surface with
‘‘glue’’ model forces have been published in Ref. 26. The

are clear signs of surface mobility at 400 K' 2
3 Tm

~Tm561965 K for this potential27!. However, the layer oc-
cupancies were not provided by these authors. Experim
tally, antiphase scattering anomalies have been repo
around 340 K,21 which might correspond toTPR for this sur-
face. This temperature is very low, but it is not incompatib
with the knownTR'415 K for Pb~110!.21 A more detailed
analysis of simulation results as well as fresh experime
are thus called for also in this case.

~iii ! Ni~110!. den Nijs3 suggested that scattering data
Cao and Conrad20 support PR of this surface atT'1300 K,
while roughening does not take place until.1400 K. An
early simulation in Ref. 28, on the other hand, sugges
nonzero population of adatoms only at 1450 K. Sub
quently, in that simulation, the adatom occupancy gro
with temperature, reaching 0.25 only some 30 degrees be
their embedded-atom-method model potential’s melt
point, Tm51733K, without much of a plateau, at least wi
the relatively small sizes used~70 atoms/layer!. Larger size
simulations would be necessary in this case, as well a
critical assessment of the quality of the description provid
for Ni~110! by this potential, since the results appear to
inconsistent with Cao and Conrad’s data.

~iv! Cu~110!. Old data by Stock and Menzel29 indicate
that this surface roughens well belowTm . A recent MC/MD
simulation by Merikoski et al.30 suggestedTR'1000 K.
Their full-layer large-size MD simulation atT51150 K, in
particular, found occupancieso2150.96, o050.77,
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o150.25, ando250.025. The closeness of theseo0 ando1
values to the phase-separated DOF values3

4 and 1
4 is striking.

This suggests, interestingly, that the plateau occupancies
and 1/4 typical of DOF phase separation not only show
very clearly, but also that they may persist even aboveTR , at
least under the conditions of finite terrace size correspond
to this simulation. It should be interesting to pursue the p
sibility of PR of this surface experimentally.

VI. CONCLUSIONS

In this paper, we have considered the phase separatio
a particle-conserving~‘‘canonical’’! full-layered metal sur-
face into disordered flat~DOF! domains of opposite orde
parameter, each domain having a half-full layer on top. T
phase separation has been demonstrated microscopically
Gibbs-ensemble calculation on a lattice Hamiltonian mod
A fully canonical MC study of layer occupancies, conduct
with finite-size scaling in order to reduce progressively t
importance of the interface between the two phases, g
further strength to the phase-separation picture.

A number of published particle-conserving realistic M
simulations for fcc~110! metal surfaces have been analyz
in this light. It is argued that at least some of them disp
clear, previously unrecognized evidence of a DOF ph
separation. The main signal of that is a plateau of layer
cupancies with temperature, around values close to3

4 for the
first crystal layer, and around14 for the adatom layer.

In all cases where DOF phase separation is proven
even only suspected, one should reconsider the result
canonical simulations with new eyes. In fact these simu
tions will not automatically represent the experimental re
ity, unless the experiment is very specially designed, w
very short times and very large terraces. In all other ca
which means a vast majority of all presently available da
the true state of affairs, corresponding to a well-defin
single-domain DOF surface, could only be compared wit
yet-to-come realisticgrand-canonicalsimulation. We are
currently developing such a scheme in our group.

On the experimental side, time-resolved fast surface h
ing experiments could be used on very flat, step-free s
faces, as a tool to uncover a DOF phase separation on
didate metal surfaces, such as Pb~110! or Cu~110!.
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APPENDIX

In this appendix we derive an expression for the chem
potential in general SOS systems~including restricted ones!
in terms of the average Boltzmann weight for the insertion
a new particle. We do this both in the canonical and in
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10 164 57SANTI PRESTIPINO AND ERIO TOSATTI
Gibbs ensemble. This result generalizes to SOS systems
standard Widom expression for continuous simple fluids17

Moreover, we explain how to implement our formula in
MC calculation.

The partition function of the SOS model at fixedh̄ reads

Zh̄,Nt
~b!5(

$h%

~ h̄!

e2bE$h%, ~A1!

where the sum is over height configurations~of energyE$h%!
such that( ihi5Nth̄.

Inserting one particle into the surface changes the m
height by a factor 1/Nt , and the partition function become

Zh̄1 ~1/Nt! ,Nt
~b!5 (

$h%

@ h̄1 ~1/Nt!#

e2bE$h%5(
$h%

~ h̄!
1

Nt
(
i 51

Nt

e2bE$h% i
1

,

~A2!

where$h% i
1 has an extra particle at sitei , and 1/Nt avoids

multiple counting.
Now we multiply and simultaneously divide bye2bE$h%,

obtaining

Zh̄1 ~1/Nt! ,Nt
~b!5Zh̄,Nt

~b!K 1

Nt
(
i 51

Nt

e2bDEi
1L , ~A3!

whereDEi
15E$h% i

12E$h% and the average is over the con

stanth̄ ensemble. Finally, the chemical potential is

bm52
kBT

Nt
S ] ln Zh̄

]h̄
D

b

52kBT ln
Zh̄1 ~1/Nt! ,Nt

~b!

Zh̄,Nt
~b!

52kBT lnK 1

Nt
(
i 51

Nt

e2bDEi
1L . ~A4!

By analogy with the hard-sphere system, the average in
~A4! can be viewed as a sort of ‘‘insertion probability.’’ Th
best way to calculate this quantity in a MC calculation is
alternate attempted insertions of an extra particle to stand
particle-conserving Kawasaki moves. During an inserti
trial move, a height chosen at random is incremented and
factore2bDE is evaluated~in case of a restricted SOS mode
this factor is zero if the move does not fit the constraints!. In
the

an

q.

rd
n
he

any case, the particle that has been added is then remo
At the end, all those factorse2bDE are summed and the sum
is divided by the number of trial insertions.

In the Gibbs ensemble, we consider first the express
for the partition function,

Zh̄,2Nt

GIBBS
~b!5E

2`

1`

dDZh̄1D,Nt
~b!Zh̄2D,Nt

~b!, ~A5!

in terms of the canonical partition functions of the surfac
in the twoANt3ANt boxes at fixed mean heightsh̄15h̄1D

and h̄25h̄2D, respectively.
Now observe that it is possible to increment the to

mean height by 1/2Nt ~i.e., to add a particle! in two equiva-
lent ways, namely, by inserting one particle either into box
or into box 2. Thus

Zh̄1 ~1/2Nt!,2Nt

GIBBS
~b!

5
1

2 E
2`

1`

dDZh̄1 ~1/Nt! 1D,Nt
~b!Zh̄2D,Nt

~b!

1
1

2 E
2`

1`

dDZh̄1D,Nt
~b!Zh̄1 ~1/Nt! 2D,Nt

~b!

5
1

2
Zh̄,2Nt

GIBBS
~b! (

a51,2
K 1

Nt
(
i 51

Nt

e2bDEi
1L

a

, ~A6!

which finally givesm as

m52kBT lnH 1

2 (
a51,2

K 1

Nt
(
i 51

Nt

e2bDEi
1L

a
J . ~A7!

It is important to stress that the average^¯&a is now a
Gibbs-ensemble average. Looking at Eq.~A7!, it is not
strictly possible, as also observed in Ref. 18, to calculate
chemical potential of the two subsystems separately. Ho
ever, if the two phases maintain their own identities duri
the MC run, and the two averages are identical, then we
conclude that the chemical potential of each box is prope
defined and is the same for both. Finally, observe that,
noticed in Ref. 11, we can obtain the test particle interact
energies in the course of the attempted exchange steps, w
out inclusion of extra test particles. This avoids suppleme
tary insertion moves and speeds up the calculation.
.
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