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Classification of disordered phases of quantum Hall edge states
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The effects of impurity scattering on a general Abelian fractional quantum (F&H) edge state are
analyzed within the chiral-Luttinger-liquid model of low-energy edge dynamics. We find that some disordered
edges can have several different phases characterized by different symmetries. The stable impurity edge phases
are in general more symmetric than the original clean system and demonstrate the phenomenon of dynamical
symmetry restoration at low energies and long length scales. The phase transitions between different disordered
phases are characterized by broken symmetries and obey Landau’s symmetry-breaking principle for continuous
phase transitions. Phase diagrams for various edges are found using a system of coordinates for the interactions
between modes in a quantum Hall edge. The temperature dependence of tunneling through a point contact is
calculated and is found to be able to distinguish different impurity edge phases of the same FQH state.
[S0163-182698)02016-3

I. INTRODUCTION conductance of a maximally chiral ed¢gl modes propagat-
ing in the same directignis independent oV and hence
It was realized soon after the discovery of the integeruniversal. For clean nonchiral edges, the conductance calcu-
quantum Hall effecQHE) that interesting phenomena occur lated using the Kubo formula depends‘drand thus appears
at the one-dimensional boundary of a two-dimensional electo be nonuniversal, contradicting experiment. The conduc-
tron gast In a strong applied magnetic field, the bulk elec-tance is bounded below by the quantized valeé/h asso-
tron gas forms an incompressible quantum liguiticertain  ciated with the bulk filling factow, but only has this value
filling factors v which are found experimentally to be either for a subset of the allowe® matrices. However, in real
integers or simple fractions. The only gapless excitations aséamples, the different modes at the edge equilibrate and the
these filling factors are along the edge of the liquid and as @onductance takes the quantized value. Kane, Fisher, and
result current flow is confined to the ed§@he low-energy Polchinski(KFP) argued that for ther=2 edge this equili-
excitation spectrum at the edge is accessible to tunrfelingoration is caused by scattering from random impurities.
and magnetoplasmaxperiments, and in principle allows the ~ Haldane argued that an additional term must be included
structure of complicated fractional quantum H@QH) lig- in the Kubo conductance formula to account for contribu-
uids to be probed because of the connection between thins from the bulk QHE liquid? With this term the conduc-
internal topological orders of the bulk electron 4and the  tance is always fixed at the quantized vahe2/h, even for
“chiral-Luttinger-liquid” theory of the edgé. a nonchiral edge. This argument involves some subtle ques-
The properties of disordered quantum Hall edges are imtions which were partly explored in later wotk;here we
portant for a number of reasons. The edge is described byill just mention that disorder-driven instabilities can affect
chiral Luttinger liquid (¢LL) theory similar to the ordinary other measurable properties besides the conductance, such as
Luttinger liquid? the generic state of a one-dimensional in-tunneling behavior through a point contact. Thus such insta-
teracting electron gas, which is known to be sensitive tdilities are relevant to experiments whether or not the origi-
impurities. In fact, the difficulty involved in fabricating suf- nal use of the Kubo formula is correct. One result of our
ficiently clean and conducting one-dimensional electronwork is that for some edges measurably different phases can
gases has led to interest in quantum Hall edges as an ideatcur even when the conductance, calculated with or without
one-dimensional systefl.The quantum Hall edge can be the additional term, is fixed at the guantized value.
impervious to disorder, as in the=1 state, which has a The equilibration of different edge modes is also an im-
single branch of low-energy excitations propagating in oneportant process in the integer quantum Hall effdQHE)
direction, and hence remains conducting when random imwith v=n, since nonideal contacts will populate thedif-
purities are added. ferent edge channels at different chemical potentials. Inter-
The effects of disorder on a nonchiral Hall edgee with  channel electron scattering can equilibrate the modes, as pre-
excitations moving in both directionsare more complex. dicted by Bitiker'* and demonstrated in several innovative
The yLL theory of a clean edge with condensates is char- experiment$®~1" Experiments show equilibration in the
acterized by two matrices andV and a charge vectdrthe  IQHE on a length scale’',~40 um. Nonchiral FQH edges
K matrix describes the topological orders of the bulk statediffer in that even ideal contacts do not give rise to an equili-
such as the relative statistics of quasiparticles, and\the brated edge. Some interactions capable of transferring charge
matrix gives the edge Hamiltonian and related propertiebetween channels, such as backscattering by random impu-
such as velocitieX is taken to be the same for all edges of rities and/or electron-phonon interactions, are necessary for
the same quantum Hall state, while the value¥iare non-  edge equilibratior® In real samples the different branches of
universal and expected to vary for different experiments. Thé&QH edges are always close to each other, and the different
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branches are always in equilibrium, which leads to a quan- Section Il defines a functiok(m) whose absolute value
tized Hall conductance. is twice the minimum scaling dimension of the vertex opera-
The v=1% edge contains one branch propagating in eactior O, =exp(Z;m;¢;), wherem; are integers andg; are the
direction. KFP showed that when impurity scattering is rel-fields of the yLL theory. For impurity scattering, has
evant, it can drive the velocity matri to one of the subset charge zero, an&(m) is an even integer. Impurity scatter-
of possible values which give conductance quantization. Thi§g operators withK(m)|=4 are never relevant. Equilibra-
subset of “charge-unmixed¥ matrices has a simple physi- tion by impurity scattering depends on having scattering op-
cal property: one eigenmode of edge fluctuation is charge@rators with|K(m)|=2 to drive the velocity matrix to a
and the others are neutral, with no interaction between theharge-unmixed matrix. Haldane argued that a neutral opera-
charged and neutral eigenmodes. Impurity scattering is nder Oy, with K(m)=0 drives a topological instability which
relevant for every velocity matrix, so conductance may notemoves a pair of oppositely directed neutral modes from the
always be quantized. But for all velocity matrices sufficiently low-energy theory? Edges with no neutraf(m) =0 opera-
close to a charge-unmixed matrix, weak impurity scatteringors are “T stable” and it is conjectured that only stable
drives the edge state to the fixed point, where the velocitytates are seen experimentally. All the examples studied in
matrix is charge unmixed and the conductance is quantizedhis paper arel stable, but the methods introduced do not
The V matrices for current experimental setups may alldepend onrl stability.
fall within the basin of attraction of the KFP fixed point. A T stability is useful because there are only finitely many
velocity matrix is close to a charge-unmixed matrix if the classes ofT-stable states with neutral modes in both direc-
interaction between charged modes has much higher enerdipns, as we now explain. In Sec. Il we introduce a system of
than the interaction between a charged mode and a neutrabordinates for th&/ matrix which simplifies the treatment
mode. The Coulomb interaction between charges in an exof states with several condensates. The dimension of the co-
perimental QHE setup is typically only screened at a distancerdinate space is less than the number of free parameters in
of many magnetic lengths= \#c/eB from the edge, so that V. For states with all neutral modes traveling opposite to the
the charge-charge interaction may indeed be much larggharge mode, the charge-unmixed subset is a single point in
than the residual interaction between a charged mode andtbese coordinates and a small numbefkofm)|=2 opera-

neutral one?® tors are relevant in a region around this point, which is the
The flow to the impurity fixed point is especially interest- only impurity fixed point. This class includes the=n/(2n
ing from the point of view of symmetries of theLL action. = —1) states. For dinik=3 there are also states in which the

TheK matrix of the states=n/(2n—1) has a hidden SW)  charge-unmixed matrices form a line in our coordinate space,
symmetry, as first pointed out by ReXdA genericV matrix ~ and there are infinitely manjK(m)|=2 operators. These
breaks the symmetry of thi€ matrix, but, precisely at the states have many impurity fixed points. With dikn=4 the
impurity fixed point, the velocity matrix does have all the charge-unmixed states can form a plane or a point. For dim
symmetries ofK.?° The impurity scattering thus acts to-  K=5 there are no principal hierarchy states, and for #im
creasethe symmetry of the edge. In this paper we find thatin>5 no states at all which ar& stable and have neutral
some quantum Hall edges the impurity fixed points havemodes moving in both directions, as a consequence of a deep
some but not all of the symmetries of thematrix. In this  theorem on integral quadratic forrfs?

case different fixed points are related by symmetry transfor- Section Il studiesT stable hierarchical quantum Hall
mations, in the same way as the spin-up and spin-down fixestates, and finds that several classes of such states exhibit
points of the Ising ferromagnet in zero external field are dif-* V stability:” every V matrix sufficiently close to a charge-
ferent but are related by a symmetry of the starting Hamil-unmixed matrix is driven to a charge-unmixed matrix by
tonian. This new type of broken symmetry is discussed inwveak impurity scattering. In particular, every principal hier-
Sec. IV. Edge states differ from ferromagnets in that sym-archy state with two or three condensates is shown to have
metry is “spontaneously restored” rather than spontaneouslyhis property. Some of the three-species states have infinitely
broken: a starting Hamiltonian of low symmetry is driven by many possibly relevant operators which lead to many
impurity scattering to a more symmetric fixed point. impurity-fixed points with different charge-unmixéd ma-

In this paper we analyze the effects of impurity scatteringtrices. ForV stable states, impurity scattering can explain the
on a general nonchiral quantum Hall edge. Not all edgeedge equilibration and robust quantization seen experimen-
states have a potentially relevant impurity scattering operatally.
tor, which is required for impurity scattering to cause edge The rest of this paper is organized as follows. Section ||
equilibration. For example, it is shown in Sec. Il that the puts the model of a general Abelian quantum Hall edge with
only nonchiral level two states in the Haldane-Halperinimpurities into a form which isolates the dependence of scal-
hierarchy?2with a possibly relevant impurity scattering op- ing dimensions of various operators on the velocity matrix.
erator are the principal hierarchy states with filling factor This is convenient for the calculation of phase diagrams for
=2/(2p+1), wherep is an odd integer. The other level two particular edges in Sec. Ill. Section Il applies the formalism
states, such as= ¢, have an equilibration length from im- to states in the hierarchy containing several species of qua-
purity scattering which diverges at low temperatti&€dges ~ siparticles, and finds behaviors associated with the existence
with no relevant operators may still equilibrate by anotherof a large number of possibly relevant operators. Two classes
process such as inelastic scattering from phonons. In order ©f edges with high symmetry are studied in some detail: the
determine whether a given state flows to an impurity fixedSU(n) X U(1) edge solved exactly by Kane and Fisfeand
point, it is necessary to consider all the potentially relevanthe “Fibonacci” edge, in which the sequenag.,;=a,
scattering operators in the chiral-Luttinger-liquid theory.  +a,_; plays a special role. All principal hierarchy states
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with three condensates are shown to belong to one of these Now consider the correlation functions of these scattering
two classes. The Fibonacci edge has two types of fixedperators with respect to the clean acti§p For integer
points which correspond to different phases with differentvectorsm, define the functiorK(m)Emi(K‘l)ijmj. K(m)
tunneling conductance and other measurable propertiegoverns the topological part of the correlation function of the
Some four-condensate edges, suchvasf, are shown to scattering operatdd,, as follows: the correlation function is,
have three different types of fixed points, representing thregnoring cutoffs,
different broken symmetries of th€ matrix.

Sections IV-VI contain results obtained using the method ~ G(x,7)=(e'Mi%ix g~ 1M;#;(0.0)
developed in the earlier, more technical sections, and require N _
only a general understanding of the earlier sections. Section ! ) ! o
IV explains how the many fixed points in some edges are of [T (x+ivgm) e (x—ivi 7))~ Pl
related to broken symmetries of th€ matrix. Section V -
examines the experimental consequences of the multiple 2.9
phases in disordered edges. The low-temperature scaling bﬁeren+ andn~ are the numbers of positive and negative

havior of the tunneling conductance through a point constric- . | K ando® d . |
tion is calculated for all phases of all stable principal hi- €!9envalues oK, andv,., ey, andpy are non-negative rea

. +
erarchy states with filling fractions> . This experiment is numbers which depend oW and K. However, 2;_ ;e

capable of distinguishing different impur_ity phases of the—x?_, B8, =K(m), independent oV. Setting all velocities
same edge state. In Sec. VI, we summarize our results frog= =1 "and introducing=x+ir,
the point of view of general principles of phase transitions.

=

=1

1 1

Il. GENERAL PROPERTIES OF THE DISORDERED (eMi#j(xmgim;$;(0.0) o ,
ZK(m) |Z|2A(m)fK(m)

EDGE

(2.9

Edges of quantum Hall systems are described by a chiralyith  K(m) assumed positive. A(m)= (Eﬂllak

Luttinger-liquid (yLL) theory related to the topological or- +EE;1,3k)/2 is the scaling dimension of the operator

ders of the bulk quantum Hall state. We introduce the theory
e i o eXPimy ).

for a clean edge and diagonalize it to obtain scaling dimen- I : . . .
The scaling dimensions of the various operators in the

isr:;)ans' of Impurity scattering operators. ThelL action in . g1eory are functions d¥, annxn matrix. Much of the phys-
ginary time for a clean edge of a QH state characterize :
by the matrixK containsn=dim K bosonic fields¢;, and 1cs of_a dlsqrdered edg_e depends\bonly through the scal- .
has the forr ing d|men3|c.ms.0f various operator; The conductance in
units ofe?/h is given by twice the scaling dimensia(t) of
1 the charge operator as a consequence of the Kubo forthula.
So:rf dx dr [Kijdxeid, oj+ Vijdxdidxpi], (2.1)  This is the conductance measured with ideal contacts; a ki-
m netic theory model for nonideal tunnel-junction contacts
where, as in the rest of this paper, the sum over repeate@ives a different nonuniversal valdélt remains true that
indices is assumed is a symmetric integer matrix, anda  €dge equilibrium is required for the universal value of con-
symmetric positive matrixK gives the topological properties ductanceve?/h to be observed, and a necessary condition is
of the edge: the types of quasiparticles and their relative?A(t) = v.
statistics.V, the velocity matrix, is positive definite so that ~ The scaling dimension of an operator determines whether
the Hamiltonian is bounded below. The charges of quasiparthat operator is relevant in the RG sense when added to the
ticles are specified by an integer vectand the filling factor ~ clean actionS,. The operator is relevant with a uniform co-

is v=ti(K’1)ijtj ) efficient whenA(m)<2, relevant with a spatially random
Scattering by spatially random quenched impurities is decoefficient whenA(m)<3, and relevant at a poirtwith a
scribed by the action S-function coefficientwhenA(m)<1. For the random case,

this follows from the leading-order RG flow equation for

. . disorder strengtiD,**
Sl=f dx dr [&(x)eMi%i+ & (x)e M%), (2.2 g

dD
Here ¢ is a complex random variable ard(x)&* (x')] W=(3—2A)D. (2.9
=Dd&(x—x"), with D the (rea) disorder strength. The inte-
ger vectorm describes how many of each type of quasipar-t js thus useful to writev in a way which isolates the parts
ticle are annihilated or created by the operat®r,  of v which affectA(m) so that scaling dimensions depend
=exp(m;¢;). For a real system all charge-neutral scatteringon as few parameters as possible.
operatorsm; are expected to appear, but most of these will  Equation(2.3) is obtained by simultaneously diagonaliz-
be irrelevant in the renormalization-gro(RG) sense, as dis- ing K andV by a basis change,=M, & . SupposeM
cussed in the following. The condition for charge neutralitybringlsK 0 the pseudoidentity(n+l n‘)”i o !
is t;(K™1);;m;=0. The random variables,, for different e
scattering operator®,, may be uncorrelated or correlated - 0
depending on the nature of the physical impurities causing MIKM =1+ n:< " ) (2.6)
the scattering. ’ 0 —Iy
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Basis changes preserve the number of positive and negatiteeory. This is apparent in the study of an=2 case

eigenvalues of a matrik'Sylvester’s law of inertia”). Now
consider another basis chanlye which will diagonalizeV
without affecting the pseudoidentityM,e SOn*,n")
=MJl(n",n")M,=1(n",n"), introducing the proper
pseudo-orthogonal group S@(n). The real positive sym-
metric matrix V'=M[VM; can be written as
(M;1H)TVpM, ! for some diagonal matriv/, and some
M, e SO(n",n"). The entries iV are all positive and are
thev, from Eq.(2.3), with (v*,v ™) corresponding tgposi-
tive, negative eigenvalues oK.

Since Vp and I(n*,n”) are diagonal, the correlation

functions in the basigh=(M;M,) 1¢ are trivial:

1
X*iv;7’
(2.7)
where the sign depends on wheth'quappears with—1 or

+1 in 1(n*,n7). Going back to the original fieldg, we
obtain

<ei$,»<x,r>ef i$j<o,0>> = e(4j(x 1 j(0,0)~($;(0,0$;(0,0)

K™ 1=M;Mylp+ i-MIM{=Myl+ -M], (2.9
Vp=MIMIVMM,. (2.9

Let us define a matrixA through
I=MIMI(2A) M M,=2A=M;M,MIM].  (2.10

The positive definite matrid gives the scaling dimension of
the operatoOp,: A(m)=m;A;;m;. Note that under the ba-
sis changep; = Mijaj , the vectorm transforms to preserve
m;$;=m;;=mM;;$;, som=MTm. Thus the functions
K(m) andA(m) are basis invariant.

The scaling dimensions are independent of then™
+n~ velocities inVp, as expected on physical groundié;
depends only ofK, not onV, so all possible matriceA for
a given edge are obtained Bk, ranges over SO,n) with
M, fixed. We now introduce a parametrization bf, in
which onlyn™n~ coordinates affech. The physical picture
is that the scaling dimensions are independent of the veloc
ties of the eigenmodes and also of the interactions betwe

are only affected by interactions between counterpropagatin
modes. Thus of tha(n+1)/2 free parameters X, n cor-
respond to velocities of eigenmodés, " (n* —1)+n"(n~
—1)]/2 to same-direction interactions, and*n~ to
opposite-direction interactions.

The study of a nonchiral edge with several branches o
excitations is thus feasible if one is willing to concentrate on
edge properties and renormalization-group flows determine
by the scaling dimensions of various operators. There ar
interesting physical phenomena which are not determine

solely by scaling dimensions, such as the equilibration oft

velocities of modes moving in the same direction by inter-
channel hoppingwhich does not affect the conductance
But the effects of disorder on the commonly measured physi
cal properties can be obtained from studying only rifie ~
parameters o which affect scaling dimensions, rather than
the n(n+1)/2 needed for a complete description of the

K

modes going in the same direction; the scaling dimensions

(v=2): the velocity matrix has the form

s

with one branch in each direction, and the conductance and
the structure of the RG flow are found to depend only on the
combinationc=2v (v +v,) /3.

The separation of comes about because every element
M in SO(m,n) can be written as a product of a symmetric
positive matrixB and an orthogonal matri®, both of which
are in SO(M,n). This is a generalization of the familiar de-
composition of a Lorentz transformatioan element of
S0O(3,1) into a boost(a symmetric positive matrjxand a
rotation (an orthogonal matrix For all examples in this pa-
per m=1 or n=1 and this decomposition follows easily
from the parameterization of boost matrices given below.
More details are in Appendix A. Writini/1,=BR,

U1 VU1

\Y; (2.1

V12 302

2A=M;M,M;M[=M;BRRB™M[=M;B?M]. (2.12

So A is independent oR and depends only on the*n~
parameters iB. B can be written

B=exp<
for somen* X n~ matrix b.

For a maximally chiral edge, the boost p&tis just the
identity matrix, so the scaling dimension of every operator
exp(m;¢;) is independent o¥/, and in particular the conduc-
tanceo=2A(t)=K(t)=wv. For nonchiral edges, nonuniver-
sal values of the conductance are possible with(t2=v»
and equality if and only if the velocity matrix is charge un-
mixed. This is a special case of the general property
2A(m)=|K(m)| for all integer vectoram (with equality if
and only if theVy; vanish in the basis witle;[m andK™*
diagonal. Consequently the scattering term erpe;) can
only be relevant if K(m)|<3. The scattering operator must
have bosonic commutation relations, so the three possibili-
bes areK(m)=2, 0, and—2. If a null vector exists with
(m)=0, the edge is noT stable. Operators withK(m)|
= +2 are necessary if the impurities are to drive the edge
Sate to a fixed point. The next step is to calculate which
velocity matrices make the scattering terg(x)exp(m;¢)

+ & (x)exp(—im;¢)) relevant.

The possible matriceA for a given edge can be studied
§imply by calculating 2 =M,B2M] for all boostsB. For a
two-component edge with one branch propagating in each
girection, there is just one boost parameter. For a three-

omponent edge, there are two parameters, and the scaling
imensions of various operators can be plotted on the plane
s functions of these two parameters. For S@jla useful

0 b

o (2.13

parametrization of boosts as a function of momentum coor-
dinates pq, ... .,py) is®®

Byy=y=V1+p?, By=Biu=pi_1,

(2.19
Bij= &ij + pi—1pj—1(y—1)/p?,
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TABLE |. Possible nonchiral edge types for dikh<4. For dimK=5 there are no principal hierarchy
states, and for dink>5 no states at all which arE stable and have neutral modes in both directions.

dim K Mode directions Example Boost parameters Boost parameters with
(charge always—) charge mode unmixed
2 1— v=2 1 0
1
3 2— v=3 2 1
1—
1— V:g 2 0
2
4 3— v="2 3 2
1—
2., y=1 4 2
2
4
1— v=73 3 0
3—

where 2<i, j<m+1. It is convenient to work with dimen- evant. The examples of different types of edges listed in
sionless momenturp= yv because of the singularity at  Table | are the subject of Sec. IlI.
=c=1 in the velocity coordinates. However, in Sec. lll, we
mention an advantage of the velocity coordinates for certain
edges. Permuting indices gives a version appropriate for
SO(m,1). The method described in Sec. Il greatly simplifies the
For a given edge it is now possible to search for all pos-analysis of a nonchiral edge of several condensates. In par-
sibly relevant neutral operator{(m)|=2) and then calcu- ticular, it allows us to determine in which regions of the
late where in the space of boost parameters each operatordpace of velocity matrice¥ a particular impurity scattering
relevant. The rest of this section describes a few technicadperator expn;¢)) is relevant, and hence determine the
details needed to carry out this program. The search fophase diagram of the edge state. We find that the edge of a
|K(m)|=2 operators is done on a computer: there is a finitesingle quantum Hall state can have different phases, with
p-adic test for whether an integer quadratic form takes theransitions between phases caused by chang¥s We also
value zerc’?® but we know of none to determine all vectors find that only a special class of edge statgzincipal hier-
for which an integer quadratic form takes a particular non-archy states) have enoughK(m)|=2 impurity scattering
zero value. When finding phase diagrams in the next sectiomperators to ensure that the conductivity is driven to the
it will be useful to consider basis changes notSh(n,Z) guantized value. The phase diagrams for this class of edge
which bringK ~! to diagonal form, so that the locality con- states show remarkable symmetries absent in the phase dia-
dition is no longer tham be an integer vector. The local gram of a general edge. In Sec. IV these symmetries are
operators in the theory are the transforms of integer vectorshown to reflect broken symmetries of tiematrix.
in the original theory. The advantage of such a basis change All the examples are in the hierarchy of quantum Hall
K 1-0K 10", m—0O" !m, which makesKk ~! diagonal states’}?? Hierarchical states have tridiagonkl matrices
and brings the charge vectbto the first basis vectog, is  with all off-diagonal matrix elements equal to 1 akd,=|

Ill. STRUCTURE OF DISORDERED EDGES

that some of the boost parameters can be interpreted as the odd integerK;;=n; even fori=2,...,dimK. The ma-
strength of mixing of the charge mode with neutral modestrix will often be given simply by its diagonal elements
Then the charge-unmixed velocity matrices will be exactly(l,n,, . ..). Thecharge vector i$=(1,0, ...,0). Thenum-

those with these boost parameters equal to zero. Table | surber of modes moving opposite the direction of the charge
marizes the possible parameter spaces for all nonchiral edgesode is equal to the number of negative elements on the
with four or fewer components. main diagonal. States with alh;|=2 are called principal
For each operator wittK(m)| =2, there is some velocity states and are the most stable states at each level of the
matrix which gives that operator scaling dimensiofu(#h) hierarchy.
= 2: this follows from the possibility of choosind ; in Egs. First we study the edges of all hierarchy states at second
(2.89—(2.10 to makem one of the basis vectors and choos-level (dim K=2), and show that the principal hierarchy
ing M,, so that all parameters rotating into other basis states are all similar to the=3 state studied by KFP. The
vectors are zero. The operation of changing bases distorts ttgates which are not principal have no relevant random op-
phase diagram nonlinearly but preserves its topology anerators, and are thus unaffected by weak impurity scattering.
produces the same set of possible scaling matrice¥he  In particular, for these states elastic impurity scattering alone
sign of K(m) will turn out to affect the dimension of the is insufficient to give edge equilibration at low temperature.
subset of matrice¥ which make exg;¢;) maximally rel- A rich variety of behavior is possible for ditk=3 states,
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where the two neutral modes can move in the same directiofields in the basis defined above be the charge mpgand
(opposite the charge moder in opposite directiongcf. neutral modep,,. . At the fixed point,
Table ). The principal hierarchy state of dikh=n with all
neutral modes in the same direction flows to an BU( K—(V 0 ) V_(Up ) 3.3
X U(1) fixed point, which is the only point where conduc- “lo -2/ o 2,/ :
tance is quantized. The charge mode satisfies a U(1) Kac- _
Moody algebra, and then—1 neutral modes satisfy an |he€ three operato¢,, exp{#,), and expt-ig,) all have
SU(n) Kac-Moody algebra. The highly symmetric phasescallng.dlmens_lon_1and satisfy an @Jalgebra. The action
diagram for the S(B) case is shown not to describe the 2t the fixed point is
simplest few nonprincipal states. Vi, b 20,6

For the dimK=3 case with neutral modes in both direc- S:f #(Mﬁvpﬁx)(ﬁﬁ T (—i0,+ v ,dy) by
tions, conductance is quantized along a line in the phase xl A4m 4m
diagram, and for the principal hierarchy states we find an
infinite number of fixed points along this line corresponding Jr[g(x)ei ¢o+H.cl]
to the infinite number of possibly relevant random operators.
There are two different types of fixed points which corre-gptained by substituting the fixed poilt and V into Egs.
spond to two measurably different phases. A few results of2.1) and(2.2). Now the fixed-point action can be written in
the dimK=4 cases are also presented. No principal hierarterms of a two-component Fermi field by introducing an aux-
chy edges with dimK>4 are topologically stable except jliary bosonic fieldy which does not affect physical quanti-

, (3.9

those with all neutral modes in the same directidn. ties: ¥, = exfi(x+ ¢.)/\2] and ¥, =exdi(x— ¢,)/v2]. The
clean part of the action is diagonal in the components, while
A. Edges with dim K=2 the impurity term becomes a Hermitian combination of rais-

ing and lowering operatorsyl ¢, and ¢5i;, with random
coefficients. The impurity term is then eliminated by a local
SU(2) gauge transformation which preserves the clean part
. t=(1,0), (3.1  of the action. The clean part of the action is just the action
for free chiral fermions.

When the system is near but not at the fixed point, there is
a weak couplingV,,ds¢,dc¢, between the charged and
neutral modes. The scaling dimension of this term in the
original action is 2, so the operator is marginal with a uni-
form coefficient. However, the SQ) rotation ofd, ¢, gives
this term a random coefficient and makes it irrelevant. Ac-
cording to this picture, onc¥ falls into the basin of attrac-
tion of the fixed point, i.e.p|</5/2 in Eq.(3.2), it flows to
the fixed pointp=0 with K andV given by Eq.(3.3). Since
the boost part o¥ is uniquely determined at the fixed point,

(Ij:or a_d|r|nK:|2 sta]tcetrt]here IS a St'nglﬁ] btoost‘garﬁmepter many physical properties are uniquely determined, such as
and a singie value of this parameter that maesharge .o cqnqyctance = ve?/h. The same technique of fermion-
unmixed. It remains to show that this value is exactly the,

. ; ) . . C ization followed by a gauge transformation solves the
value which gives the scattering operator éxpé;) its mini- % : : .
mum scaling dimensioth=1. In the basis ot=(1,0) and SU(n)*U(1) fixed point described below.
m=(1,—2), K~ 1 is diagonal with elementsi{—2) and the
scaling dimension matrix is

The K matrix in the hierarchy basis has the form

s

with | odd andn even. For the state to be nonchinak0. A
quick calculation shows that im=(m;,m,) is a charge-
neutral K(m)=—2 operator[there are no charge-neutral
K(m)=2 operator§ m;?=—2/n which has the solutions
m,;= =1 if n=—2 and no integer solution otherwise. Hence
for principal hierarchy statesiE& — 2) there is one complex-
conjugate pair of possibly relevant operators labeledrby
==*(1,—2), while for other hierarchy states there are no
relevant random operators.

B. Three-branch edges with parallel neutral modes

Such edges have both neutral modes antiparallel to the

Jv 0 Jv 0 charge modgline 3 of Table ). There is a single charge-
2A= 0 2 B2 0 2 unmixed point in the boost coordinates of Sec. Il. In the
hierarchy representation such edges hidvenatrix (I,—n,,
0 1+ p2 p » 0 —n,). The principal hierarchy edges of this type are 2
=<\/_ ) P 5 \/— ) with K=(1,-2,—2), v== with K=(3,—2,—2), and so
0 \/E p vl+p 0 \/E forth. The principal hierarchy edges withcondensates and

(3.2  all neutral modes antiparallel to the charge mode have an
SU(n) symmetry @=dimK) in their K matrix (I,
The conductance &(t) is »y/1+ p? and the scaling dimen- —2, ... —2), as first pointed out by Redd.The filling
sion A(m) is Y1+ p® SoA(m)=1 exactly at the charge- fraction is v=n/[n(l+1)—1]. Kane and Fisher show&t
unmixed point =0), as required. The region of attraction that each of these edges has a fixed point with a charge field
of this fixed point is determined by the equatiafm)< 3, ¢, of dimensiony/2 and a set oh—1 dimension 1 neutral
giving — \6/2<p=</5/2 for v=2. fields ¢,' obeying an SUg) algebra. There ara—1 roots
Now we briefly outline the exact solution at the fixed of SU(n) which correspond to the—1 operatorsd,¢,,'.
point found by KFP which also shows the stability of the Now we obtain the phase diagram for the3 case, which
fixed point under RG transformations. Let the elementaryis easily generalized to>3.
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nEn 032 _pn scaling dimension of (0,1,0) is independent @f, so its
N T contours are exactly vertical. Note that such a plot can be
drawn without any information about the fixed point.

The interpretation of RG flows from Fig. 1 is quite
simple. Each relevant scattering operator causes the velocity
matrix to move to make the operator maximally relevant
(A=1). If the starting velocity matrix is near the origin, all
three operators are relevant and drive the velocity matrix to
the origin, the only point at which all three are maximally
relevant. The high symmetry of the graph reflects th¢33U
g symmetry of the fixed point. General three-species hierarchy
= = : ; states do not have this symmetry in the phase diagram, and

o ) do not have enoughK(m)|=—2 operators to determine a
FIG. 1. Plot of scaling dimension of the thrge(m)|=2 opera- unique fixed point. For example, the=7 state (1;2,

tors for the V=§ edge as functions of boost parameteps,p,). —4) and thev= 7 state (1-4,—2) both have just one
The charge-unmixed point is the origin. Dashed lines indicate wherk(m): —9 operaior which ,is }naximally relevant along a

. 3 . . . .

Sv%ir:tggzrgﬁnigrgzc?niregﬁgﬁi%nezl&Er]éle?/r;(sni;li 1I|]n es indicate line through the origin. The phase diagram is like Fig. 1 with
' only one line instead of three. Now the charge-unmixed

point has an S(2) symmetry rather than an $8) symme-

ﬁry, because only one impurity operator is relevant. It is not

cClear that the system flows to this point in the absence of

long-range interactions, even if it starts near the charge-

unmixed point, because other points along the maximally

relevant line are also possible fixed points.

Any neutral operatoiO,,, for these edges has negative
K(m) because all neutral modes travel opposite the directio
of charge. There must b@a{—1)— (n—1)=n(n—1) opera-
tors withK(m)=—2 in order to obtain the complete Sk)(
algebra(herem and —m are counted independenklyFor
v= 2 this requires six such operators, which in the hierarchy The v=1 state (14, 4) has ngK(m)|=2 operators

basis are labeled byn==*(0,1,-2),%+(1,—2,1),£(1,—1, . . "
B . . at all, so no stable fixed points result from the addition of
1). Now the technique of Sec. Il can be used to find Whenweak disorder. States with rj&(m)| =2 operators are pre-

thes_e operators_becomg relevant,_and thus the region Of.aéfcted to have diverging equilibration lengths from impurity
traction of the fixed point. For this case the procedure is

described in detail for the sake of clarity; for subsequentCaLerng as temperature is lowered, since impurity scatter-

cases some intermediate steps will be skipped ing i; never relevant. For the other type of third-level hier-
The basis{(1,0,0),(0,1- 2),(2,- 3,0)} bringsKn‘l to di- archical states, which have one neutral mode parallel to the
g AT _ charge mode, the same basic property is seen: only for prin-
agonal form with elementss(—2,—6). The above six op-  cjpal hierarchy states are there enoli§iim)| =2 operators
erators withK(m)=—2 become=(0,1,0), =(0,3,3), and  for impurity scattering to determine a discrete set of charge-

+(03,—1). At the fixed point pointV is also diagonal in Unmixed fixed points.
the new basi$ ¢, ,¢1,¢,}, and expip,) has scaling dimen-
sion v/2= 1, expl¢,) scaling dimension 1, and exigi) C. Three-branch edges with antiparallel neutral modes

iﬁﬂ;ﬁ)dggserggﬁng’ dSir%etEgitoﬁ]lgiugglzfpl_eer?tlthrSlﬂexifflle These edges hz_ive a Iin_e in the phase diagram_ along WhiCh
] T ) the conductance is quantized, rather than a point as in the
diagonal matrix with diagonal elements/€,\2,16), which previous cases. For the principal hierarchy states, there are
are .the. square roots of twic_e the _scaling dimensions of thgyfinitely many|K(m)|=2 operators, and these can be enu-
basis fields at the fixed point. Using the boost parameterferated by a simple linear recursion relation. Examples are
(P1.P2), y=V1+p,°+p,?, to parametrize nondiagon®, =3 with K= (1,2~ 2), »= 2 with K=(1,— 2,2), v= 2 with

we find the scaling dimension matrix in the basisk=(3,2-2), and v=2 with K=(3,—2,2). These four

{¢p. 41,02} is edges all have the property that thgit(m)|=2 operators
O,, form a(vectop Fibonacci sequencen,,,;=m,+m,_;.
P p 2 : i
Y 1 2 The reason why these four edges have the same Fibonacci
p2(y—1)  pipa(y—1) pattern is that theiyLL theories have, up to a minus sign,
P11+ the same neutral sector. Thus properties which depend only

2A=D P1*+p2° p1*+po” D. on neutral operators are shared by all st&tes(l,2,—2) and
p1po(y—1) p2(y—1) K=(l,—2,2) independent df. Thg familiar scalar Fibonac_ci
202 1+ 21 p.2 sequence (1,1,2,3,5..) hasprev'lously appeared in physics
P1"7T P2 P17 P2 in growth models of phyllotaxis. Note that the property
(39 m,.1=mMm,+m,_; is linear and hence independent of basis.
From this equation it is apparent that foy=p,=0 (a diag- The v=23 edge is convenient to study because of its
onalV in our basi$ all six operators have scaling dimension SL(3,Z) equivalence to the diagonKl matrix with elements
equal to 1, and this is the only charge-unmixed point since i{1,1,—3). The charge vector in this basistis (1,1,1). This
p; is nonzero the charge mode is partly mixed with ttie  gives the state a natural interpretation as=as gas of holes
neutral mode. Figure 1 shows the scaling dimension of thén two filled Landau levels. Also in this basis,
possibly relevant operators as functions qf; (p,). The  K(my,m,,mg)=K(m,,m;,mz). The |K(m)|=2 operators
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FIG. 2. Plot of the scaling dimension of the first 14(m)] FIG. 3. Plot of scaling dimension of the twk (m)|=2 opera-
=2 operators for the/=3 edge as functions of boost parameters yors for y= & Axes are as in Fig. 2. At most points on the charge-

(Pn.Pc). Dashed and solid lines are as in Fig. 1. The chargeynmixed line, there are no relevant disorder operators. PAiatsd
unmixed line is thex axis. At each point on th& axis where one g are the two charge-unmixed fixed points.

operator is maximally relevant, two other operators are marginal.

Points A and B are examples of the two different types of fixed o
point. correspond tap, rather thang,, because now it is one of

the neutral modes rather than the charge mode which has no
other modes parallel to it.

In the coordinate space{,p.) (Fig. 2, K(m)=—2 op-
erators are relevant on compact regions Kifich) =2 opera-

alternates between terms in this sequence=(10) has tors on noncompact regions of the plane. The fixed points

K(m)=2 (as befits hopping between two rightward—movingfo_rm lines and i;olated' points in Fig. 2, whgre one 'operator
modes, (1,0~ 3) hasK(m)=— 2, and so forth. There is an with |K(m)|=2 is ma_X|maIIy relevant. For f|x_ed points on
important difference betweeti(m)=2 andK(m)=—2 op- the charge-uqm|xed linp,=0 (thex axis |n'F|g.. 3, there
erators:K(m) =2 operators are maximally relevant along a '€ two marginal operators with the opposite sigrké¢fm).
line in the phase diagram, whilé(m)=—2 operators are Thex coordinates of these special points are found by taking
maximally relevant at a single point. This happens for thealternately the rational part and the coefficientyd in [ (1
same reason that the charge-unmixed region was a singtey5)/2]". The theory at each of these fixed points is simi-
point for edges with all neutral modes opposite the chargéar: in a basis bringing the maximally relevant operator
mode. In a basis witm an eigenvector, if there are no other exp(m;¢;) to exp{¢;), ¢, can be chosen so that the mar-
eigenvectors with the same direction, then every boost inginal operators at the fixed point are Xgh,* ¢,)/2], and
volvesm and affects its scaling dimension. If there are otherexp(¢,) has a scaling dimension 5 rather than 3 in the
eigenvectors in the same direction, there is a nontrivial Iinea&g case. The scaling dimension of the marginal operators is
space of boosts which do not affect the scaling dimension ofj,ep [A(¢y)+A(hy)])/4=(1+5)/4=2, as required. The
Om. ) . ) i marginal operators cannot form an &Ymultiplet with the
The scaling dimension of the first fell((m)|=2 opera-  maximally relevant operator because their scaling dimen-
tors for »=3 are plotted in Fig. 2 as functions of boost pa- sjons are different. We have not been able to obtain an exact
rameters p,,p.) according to solution of this fixed point. Appendix B describes the
leading-order RG flows along the charge-unmixed line be-
tween pointsA andB, and addresses the stability of the two

in this theory are labeled byn==*(1,-1,0), =(1,0,3),
+(2,-1,3),*(3,—1,6),*(5,—2,9),...,plus the same list
with first and second elements exchanged. The sidf(af)

1+ p(y—1) . PcPn(y—1) types of fixed points. The reasons for the periodicity of Fig.
P2+ pp2 [ 2 are discussed in Sec. IV.
, , Several dimK=3 nonprincipal edges of this typ@nti-
2A=D Pe 4 Pn D" parallel neutral modgsvere studied, and all were found to
PePn(y—1) pr2(y—1) have too few K(m)|=2 operators for the system to flow to
— 5 P A a quantizedr. The four hierarchical states witk matrices
Pe™+Pn PPl g [(2274). (1-24), (1-4.2), and (L4-2), v=2 & £,

and 2] are notT stable, and have only orl&(m)|=2 op-
erator. The two states witKk matrices (1,4-4) and (1,
This expression foA is in the basist=(1,1,1), m;=(1, —4,4), v=% and £, each have a Fibonacci sequence of
—1,0), andm,=(1,1,6) in terms of the original basis. |K(m)|=4 operators as well as on&(m)=2 and one
[whereK=(1,1,-3)]. Let ¢,, ¢1, and ¢, be the three bo- K(m)=—2 operator. The resulting phase diagram fer i
son fields in our basis. The diagonal matfix has elements is shown in Fig. 3. Most velocity matrices near the charge-
(/5/3,1/2,1/10). This expression fak is similar to Eq.(3.5)  unmixed line are not affected by eithg¢(m)|=2 operator.
for v=2 with two important differences: the scaling dimen- If the startingV matrix makes the&(m)= —2 operator rel-
sion of %2 is 5 rather than 3 at the fixed poinp{=p. evant, the system is driven by impurity scattering to the (0,0)
=0), and the timelike row and column of the boost matrix point on the charge-unmixed line. For starting points with
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this operator irrelevant, impurity scattering is insufficient to 50
give edge equilibration at low temperatures.

Tuning theV matrix in thev= 1, state in principle allows
a transition like the KFP transition far= 3 to be observed,
even if the system is always on the charge-unmixed line. . .
Recall that forv= 3 the system has continuous, nonuniversal . .
scaling dimensions as long as is not too close to the A
charge-unmixed point. A transition occurs whigi= \/5/2 ¢
in Eq. (3.2, and for |p|</5/2 the system has a universal 0o
scaling dimension matrix. In the= 1 state, a8/ is tuned on . Bl .
the charge-unmixed line the scaling dimension matrix is con- . .
tinuously variable until one of the disorder operators be-
comes relevant; theW is driven to one of the two fixed * .
points, depending on which operator is relevant. Unfortu-
nately thev=1. state is expected to be quite difficult to
observe, as it is a nonprincipal state with three condensates.

-5.0

D. Edges with dimK=4 50 00 50

The edges with all neutral modes opposite the charge g, 4. The most relevant contours j6€(m)| =2 operators on
mode have a single charge-unmixed point in the threéefme charge-unmixed plane of the= £ edge as functions of boost
dimensional space of boost parameters, while the other tWgarametersg, ,p,). PointsA, B, andC are examples of the three
types of edgeqTable |) have a plane of charge-unmixed different types of fixed pointsA is an SU3) point, B an SU(2)
points. This section studies the charge-unmixed plane ok Su(2) point, andC a “double-marginal” point. Dots are the
four-condensat@ -stable principal hierarchy states, and findsmost relevant points dk(m)=2 operators, and lines are the most
a pattern with high symmetry and three different types ofrelevant lines oK(m)= —2 operators.
fixed points, two of which are exactly solvable. The states
studied haveK=(l,2,—-2,2) or K=(l,—2,2,—2), which
were shown by Haldane to be the only d=4 T-stable
principal hierarchy states with neutral modes traveling in

both directions? Examples arev=% with K=(3,—2,2,

6 shows a curious property of these four-condensate edges:
the most relevant contours plotted as functions of “velocity”
coordinates rather than “momentgd; in Eq. (2.14) turn out
~2), andw= 2 with K=(1,2—2,2). to be tsr;crr;ught rI]l_ncre]s. Martgma:]tc?ntou_rs grebno':/lsttrhalghttl.mes,
These states behave differently away from the charge‘-aven ose which are straight lines in Figbb Mathemati-

unmixed plane, but have identical structures on the plane(fa"y the most relevant contours are straight because the
quare-root terms cancel in the equatidtim)=1 which

where each state has two neutral modes traveling in one dP ] ] ¢
rection and one neutral mode traveling in the opposite direcd€términes the contour, leaving only linear terms.

tion, as well as a decoupled charge mode. For definiteness The complicated patterns in Figsa-5(c) have physical

we study thev= 2 state, although all four states= %, 1, consequences. The sixfold symmetric points likehave

£, and ¥ have the same neutral sector. Each of these statdgree maximally relevant operators and an($symmetry

has an infinite number gk (m)|=2 operators. For the= identical to that of thev= 2 fixed point previously studied.

1£ state, K (m) =2 operators are relevant on compact regionsThe fourfold symmetric points lik® have two independent
and K(m)=—2 operators on noncompact regions of the|K(m)|=2 operators and an SU(X)SU(2) symmetry
plane. The maximally relevant points and contours are plotwhich is similar to the S(2) symmetry of thev=$ fixed

ted in Fig. 4 as functions of boost parameters. The points angoint. The double-marginal points liké are shown in Sec.
the intersections of the contours mark the position of fixedv to give a different tunneling exponent than the roughly
points. The points marked, B, andC are examples of the similar v=3 fixed point. These different phases within the
three different types of fixed points. Plotting the marginalcharge-unmixed plane are important even if quantum Hall
contours of thg K(m)|=2 operators gives Figs.(&-5(c).  systems necessarily have quantized conductance, as has been
Figure Fa) was obtained by choosing a basis to bring a pointsuggested? PointsA andB are stable and solvable, but are
(A) of sixfold symmetry to the origin. There are also points shown in Sec. V to have different measurable properties, so a
of fourfold symmetry B) as at the origin of Fig. 4, Fig.(),  single FQH edge with impurities can have several physically
and Fig. 6, and points of twofold symmetr) as in Fig. different stable phases.

5(c). There is noa priori reason to favor one type over the A complete understanding of these dik=4 states
others. In the same way, Fig. 2 could have been drawn usingould require studying the three- or four-dimensional plots
a different basis to bring poir at the origin. The third type of which Figs. %a—5(c) are sections. One difference be-
of fixed point has one operator maximally relevant and foutween the dimK =4 states and the states studied up to this
marginal operators: these points are visible in Figa)-55(c) point is that there are small regions of the charge-unmixed
as the crossings of four marginal lines at the center of alane on which only one operator is relevant, making it less
marginal circle. These “double-marginal” fixed points re- certain that points not on the plane but near one of these
semble the fixed points of the Fibonaagck 2 state, except regions would flow toward the plane as required for robust
that there are four rather than two marginal operators. Figurguantization. The dashed line betwegrandB in Fig. 5a)
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FIG. 5. Plots(a)—(c) show themarginal contours rather than the most relevant contouris@f)| =2 operators for the= }—5 edge. The
three plots were obtained using different bagashas the S(B) point A at the origin, andb) the SU(2)< SU(2) pointB, while (c) has the
“double-marginal” pointC. Note that the three plots have the same topology. B)as the same as Fig. 4, except that marginal rather than
most relevant contours are shown.

passes through one such region. Some experimental propevtost velocity matrice§/ do not have such symmetries. Thus

ties of the dimK =4 states are discussed in Sec. V. a symmetry possessed By is in general broken by th¥
terms in theyLL action.
IV. SYMMETRIES OF THE EDGE One result of KFP is that impurity scattering can drive the

velocity matrix to a fixed point where all the symmetries of
This section discusses the effects of impurity scattering ofK are symmetries of the full theory. In this section we show
the symmetries in thgLL theories of various edges. The that, for the edges with infinitely many fixed points found in
restoration of symmetry by impurity scattering will be shown Sec. Ill, impurity scattering sometimes restores some but not
to explain the patterns in the phase diagrams found in Seall of the symmetry of théK matrix. Because of this broken
[ll. The yLL theory of a quantum Hall edge contains two symmetry, the different fixed points are like spin-up and
matricesK andV and a charge vectdr as described in Sec. spin-down fixed points for an Ising ferromagnet below the
Il. The integer matrixk may admit discrete symmetries, transition temperature: the Ising fixed points are carried into
which are described by integer matrickk invertible over  each other by spin rotation, which is a symmetry of the start-
the integers with ing Hamiltonian but not of the fixed points. The infinitely
many impurity fixed points are carried into each other by
MTKM=K, MTt=t. (4.)  symmetries oK which are not symmetries of at the fixed
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(0.0,1.0)

W to go to independent fieldg;, change the sign of one
field, and then return to the original fields. The problem is
that M is only integral for some choices &%. One hopes
that by choosing different matric&¥, , one can find enough
integral M; to generate the entire group of symmetries. The
M; are improper, since deé¥l;=—1; the proper symmetry
group contains only products of even numbersvif.
For v=3, two generators found using this trick are

(-1.0,0.0) {1.0,0.0)

10 0 1 0 0
x={0 1 0|, y=[1 -1 1|. @3
01 -1 0 0 1

The elementxy is a proper symmetry which generates a
i X 120° rotation of Fig. 1, and, as expectedy)®=1. The sym-
©00.10) metry group has six elements: three proper elements
{1,xy,(xy)>=y~x"1} and three improper elements
{x,y,xyx}. It is easy to check that these six elements are the
full symmetry groupG. The velocity matrix at the fixed
point also has all of these symmetri¢or the sake of ex-
actness, recall that the origin of Fig. 1 represents the set of all
yelocity matrices with certain values of the boost parameters,
as described in Sec. Il. There is an additional RG flow of the
other parameters i which makes the two neutral modes
%]ave the same velocity. Without this additional flow, only
the boost part of the velocity matrix would have the symme-

FIG. 6. The most relevant contours |¢f(m)|=2 operators on
the charge-unmixed plane of the= % edge as functions ofve-
locity” coordinates ¢, ,v,). The plot is the same as Fig. 4, except
that contours are shown as functions of “velocities” rather than
“momenta.” Only the 42 most relevant operators at the origin are
shown, because the full diagram becomes infinitely dense at th
edge of the circle.

points. The broken-symmetry structure can be very rich, a
in the case of the= 1 state, which has three different types

of fixed points, each breaking different symmetrieskof try.()) ol ¢ th ¢ ¢ thel
The matrix M in Eq. (4.1 gives a transformationp; ne simpié consequence or the symmetry a 5

~ L . . fixed point is that th&/-dependent scaling dimension matrix
=M;; ¢; of the bosonic fieldsp; under which the action is b P 9

. . . A, which determines the scaling dimension of the operator
form invariant. The discrete symmetry transformatdrcan 5 —expm ¢) according to A(m)=mA;m;, has the
reflect an underlying continuous symmetry, as in the theong it symr%ejtries a1 XAXT:yAyTZI A Note thatA
O]; tT]e V;%,%,%, e 'ﬂ states, évhere the discret$ ng?elgiestransforms likeK "1 rather thank, so its symmetries are
of the K matrix {99 ect an Uf) symmetry of the 1€ transposed symmetries Kt At the fixed pointA is invariant
theory,n=d|m K'. Itis easily seen that th_e symmetri¥b —qer all symmetries oK ~! for any edge with all neutral
of a givenK matrix form a group with matrix multiplication odes moving opposite the charge mode, as now shown
as Fhe group p_rodyct. The_ key difference petyvegr_u edges wit hese edges have fixed points whéte? anéj A are both
a single Impurity fixed point and edges with .|n.f|n|tely many diagonal in some integral basis with first basis ve&grt.
fixed points is that the the f_O”.“’?r have finite Symmetryy -1 hag all diagonal entries negative except for the first, and
groups, while the latter have |nf|n|te symmetry groups. A52A=|K‘1| has all diagonal entries positive. Any vector
examples of the two types, we find the symmetries ofithe with chargeg=tK ~m can be written am=at+n, wheren
=2 (finite) and § (infinite) edges. The results presented forhas charge zeratk ~*n=0) anda=tK‘1m/tK‘1,t=qv‘1

v=3 also apply to the other Fibonacci-type edges: : -1
=32 2 2. Section V shows that the two different types of Now, with K (x) =xK~"x,
fixed points in thev=2 edge have different experimentally q?
observable properties. The= 1 edge (likewise v=2%, £ 2A(m)=2A(at+n)=a%K(t)—K(n)=——K(n).
and %) is shown to have three different types of fixed points v
related by a complicated symmetry group. (4.4
The v=£ state in the hierarchy basis has Let m’=Mm be the image ofn under a symmetry ok ~*.
Then 2A(m’)=q%/ v—K(n')=qg% v—K(n)=2A(m), since
1 1 0 n’=Mn. Thus A has every symmetry oK~ ! for any
K=|1 -2 1], t=(1,00. (4.2) charge-unmixed fixed point in a state with all neutral modes

opposite the charge mode. Broken-symmetry fixed points
therefore appear only in states with neutral modes in both
directions. The same argument gives that at any charge-
unmixed fixed point wher& andA are diagonal,

0o 1 -2

One way to find the symmetries &f is to start with trans-
formationsW, bringingK to diagonal form and preservirg
as were yseq in Sec. Il to obtain phase diagrams.[]_@ 2A(mM)=q?/ v, (4.5)
the matrix with diagonal elements (11,1). If WKW is

diagonal, thenM=WDW ! is a symmetry ofK with the  whereq is the charge ofn. This inequality appears in the
property thatM?=1, the identity. The effect oM is to use discussion of quasiparticles in Sec. V.
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The same technique can be used to find the symmetries all the fixed points are continuously connected. Such a situ-
K for the =3 Fibonacci-type edge shown in Fig. 2. Two ation occurs if the discrete symmetries of the bosonized
elements of the symmetry group are found from changing théK,V) theory arise from continuous symmetries of the un-
sign of (1-1,0), which corresponds to reflecting~—x in  derlying fermionic Lagrangian. We discuss this point further
Fig. 2, and from changing the sign of (0,1,3), which corre-for the v=£ state in Sec. VI. Stable fixed points of different
sponds to reflecting the axis through poinB. The resulting  types always give different phases.

matrices are Multiple-condensate edges have quite complicated sym-
metry groups, and it is an interesting mathematical exercise
01 0 1 0 0 to classify these groups in terms of familiar finitely generated
_ _ groups. The symmetry group of= 2 found above iD, the
u={ 1 0 0f, v={0 2 3] 49 triangular dihedral group, for example. Principal hierarchy
0 0 1 0 -1 -2 states with all neutral modes opposite the charge mode have

finite symmetry groups, and principal hierarchy states with

The difference between this case and the previous one apeutral modes in both directions have infinite symmetry
pears whenu andv are multiplied to obtain other group groups. Nonprincipal hierarchy states often have no non-
elements. The elememt=uv is a proper symmetry of infi- trivial symmetries. Here we will be content to mention some
nite order:1,w,w?, ... are all different matrices and all results on the four-condensate principal hierarchy states dis-
symmetries oK. Each application ofv corresponds to trans- cussed previously. The four-condensate states?, £, 2
lating Fig. 2 horizontally. The Fibonacci property,.;  and£ have three distinct types of fixed poirjt&, B, andC
=m,+m,_, mentioned earlier is a consequence of symmein Figs. §a)—5(c)]. The phase diagram has sixfold symmetry
try underw. The powers ofv and its inverse give the entire about pointA, fourfold symmetry about poir, and twofold
proper symmetry group, which is isomorphic ®", the  symmetry about poinC. It seems likely that these point
group of integers under addition. The full symmetry group issymmetries are sufficient to generate the full symmetry
isomorphic to the semidirect product @f" and the binary  group, which at poinA is broken to a six-element subgroup,
group{1,—1}. and similarly for B and C. A fundamental period of the

At each fixed point, A has a much smaller symmetry symmetry group is drawn in Fig.(8. A set of generating
group tharK. The only symmetry oA at a fixed point other matrices forv= % in the hierarchy basis is then
thanl is the unique reflection which changes the sign of the
operator maximally relevant at the fixed point. For example,
u is a symmetry of poinA (UA,UT=A,), butv is not. It is
apparent from Fig. 2 that some symmetrykof! is broken m,=
at each fixed point, because neutral operatorswith the
same minimum scaling dimensioKgm;) =2 have different
actual scaling dimensionA(m;). The matrixw=uv is a
symmetry of no fixed point, but its effect is to move the
system from one fixed point to the nexttA,w'=A,, 4,
wherei labels fixed pointof the same typei.e., w never
takes maximally relevant points &f(m)= —2 operators to
maximally relevant points oK(m)=2 operators, sincev
preserveX. Thus in Fig. 2 there is no symmetry taking point
A to pointB. In Sec. V, it is shown that the two different Thesem; were obtained with the sign-flip procedure used
types of fixed points have different experimentally measurapove: for eacti, detm,= —1 andm;,?=1. The symmetries
able properties. of point B are generated by, andm,, which commute, and

By applying symmetries oK, the boost part of any ve- m, gives a rotation byr around pointC. A sample element
locity matrix can be made to lie in the region bounded by thepf order 3 ism;mzm,m;, and an element of infinite order is
maximally relevant lines of (1 1,0) and ¢ 1,2,3) in Fig. 2. Msm.
This region is a “fundamental period” of the symmetries of
K. However, different fixed points of the same type may
correspond to experimentally different phases, even though
they are related by a discrete symmetry and will have the The conductance and other experimental properties of a
same scaling dimensions, etc. The reason is that an expeguantum Hall state are affected by disorder according to the
mental probe will couple nonuniversally to some combina-RG flows described in the preceding sections. One important
tion of the original fieldsp; , which after applying a symme- feature of the three- and four-condensate principal hierarchy
try of K will be some different combination of the redefined states is that they can have multiple phases within the
fields ¢; . Experiments will measure different prefactors for charge-unmixed subset of velocity matrices. This is different
various quantities at different fixed points of the same typefrom the situation in two-condensate states and for any state
Hence even if only points of typ& are found to be stable for with all neutral modes moving in the same direction, where
v=2, for example, there would still be multiple edge phaseshe quantization of conductance occurs at a single point in
with true transitions at phase boundaries. This is not true iboost-parameter space and no phase transitions are predicted
there arecontinuousrather than discrete symmetries of the within the charge-unmixed subset of velocity matrices.
xLL system relating fixed points of the same type, since then In this section we consider first the= 2, state and argue

0
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o O » O
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that experimental setups are likely to be close to pBinh K, O
the phase diagrartFig. 2). The v=2 state probably offers 1 0 0
the best chance for an experimentally accessible phase tran- K’ = =0 -3 —-1], (5.2
sition. We calculate electron and quasiparticle tunneling ex- — Ko 0 -1 2
ponents for the different types of fixed points found in the 0
preceding sections, and show that different phases at the
same filling fraction have different temperature dependences 11 0
of electron tunneling through a barrier. M=l0 -1 0

The v=3 state seen experimentally is likely to contain o o0 1
both up and down spins: it consists of & 1 state of spin-up
electrons and =3 state of spin-down electrons, or vice However, thev matrix V; _y with no interactions between
versa. The fully polarized state has higher energy than thE€ =7 hg)les and1;=l electrons gives a cor;ductan()e
mixed-spin state because some electrons lie in the secor']rl#:'.ts of e/h) o=37=1+2/7 rather thano=35=1-2/7.
Landau level rather than the first, costing energy proportional 'S happens for exactly the same reason that=% state

: . . with velocity matrix describingy=3 holes not interacting

to Aw., Wherew, is the cyclotron frequency. This domi-

) . ) with »=1 electrons gives a conductanee- 3: the quantized
nates the savings in the Zeeman and Coulomb energies froffyj e of conductance is only obtained if the edge equili-

polarizing the spins, at least in GaAs, where the effecive prates, and all charged eigenmodes move in the same direc-
factor and Zeeman energy are small. The fully polarized statggp

might appear in other materials with larggy or in tilted- It is not difficult to find the point represented B _ 7 in
field configurations which allow the Zeeman energy to bethe v=3 version of Fig. 2(which looks similar but with
increased withw. constant. some stretching along the axis): it lies on they axis with

In the mixed-spinv=$ state, scattering between up and boost coordinates (¢2/5). This is not a fixed point in the
down spins is expected to be very weak unless magnetipresence of disorder, and we expect the system to flow to a
impurities are added. Thus the spin-up and spin-down comfixed point of typeA or type B. Unlike in the v=3 case,
ponents are largely independent. Independentl and3  where typeB was easily interpreted ass=1 state plus a
liquids are described by poif in Fig. 2 because the veloc- v=1$ state with no interactions between the two, fet 2 we
ity matrix which has no interactions between the two liquidshave no simple interpretation of either phase as two indepen-
gives the scaling dimension matrix dent subedges. The matrix K,, is inequivalent to a combi-

nation of »=3% and 3 because detK;#(detK,y)

X(detKy1), so no invertible integral basis change can re-

2A; 0 O late the two. Below we show that teandB phases can be
0 1 0 O distinguished experimentally, so that measurements of a
A= =0 2/3 0|, t=(11,0 =2 sample edge would allow its phase to be determined.
2753 Then changes in thé matrix (from, e.g., changes in the gate
0 0 0 2 voltage$ might drive an interesting type of impurity phase

(5.1 transition.
Before calculating tunneling properties for the various
fixed points, we would like to suggest briefly an experimen-
which is brought by a change of basis to pditlt is shown tal approach to edge impurity scattering based on the exis-
below that pointB has the same low-temperature tunnelingtence of spin-polarized and spin-singlet states-at. At v
conductance expone@~T° as a combination of a=1 =2 there is an unpolarized spin-singlet state with the skme
state G~T° and v=2 state G~T?) would have. The matrix and charge vector as the well-known spin-polarized
fixed pointA is not easily interpreted as a sum of two inde-state. The polarized state is naturally interpreted as the
pendent edges. AA the operator (1 1,0) which hops particle-hole conjugate of the Laughlin= 1 state? while the
charge between the two right-moving modes is maximallyunpolarized state igot the double-layer state consisting of a
relevant, suggesting that in this phase the} left-moving  spin-up»= 3 state and a spin-down= 3 state, which has an
mode pairs with a bound, §P) symmetric combination of inequivalentK matrix. The unpolarized state can be studied
right-moving modes rather than with just one right-movingin tilted-spin experiments such as those of Eisensteial 2
mode as at poinB. and appears because of the relatively low Zeeman energy in
The =2 ground state is spin polarized, and its two edgeGaAs as suggested by HalpefitiThe KFP treatment should
fixed points may be more easily found experimentally tharbe just as valid for the unpolarized edge as for the polarized
those of thev=2 state. Thev=2 state is equivalent in edge because they have the sdtnmatrix. The unpolarized
K-matrix terms to av=2 gas of holes in a=1 state:K,, edge has an exact $2) symmetry if the Zeeman energy is

=MTK’'M,MTt’ =t, with t’=(1,1,0) andt=(1,0,0): ignored, however, and this symmetry has physical conse-
guences.

Numerical results on the unpolarized edge show that at

1 1 O low energy there are two branches of excitations: one spin-

singlet charge branch and one spin branch described by the
SU(2) Kac-Moody algebra® This is the structure found at
0o 1 2 the KFP fixed point and different from the numerical results
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on the clean polarized edge, which indicate two spatiallydifferent fixed points have three different valuesaof2 for
separated subedges with no special symnféttyIt seems the double-marginal points, 2 for the SU(2BU(2) points,
logical that the physical requirement of 8Yspin symmetry and$ for the SU3) fixed points.
of the unpolarized edge forces the system to the KFP fixed Other tunneling experiments are sensitive to the most rel-
point even in the absence of disorder, assuming the “hidevant quasiparticle operator at a fixed point, rather than the
den” SU(2) symmetry is only found at the fixed point. The most relevant electron operator. One experiment sensitive to
SU(2) structure of the unpolarized edge is found in a smallthe quasiparticle scaling dimension is tunneling through a
system (hence without RG flowsfor both Coulomb and slight constriction rather than through a deep constriction as
short-range interactions. The separation ofithe? edge into  described abov& We have calculated the scaling dimension
charge modes and neutral modes can thus be causgddry  of the most relevant quasiparticle operators for the various
exactly charge-unmixed velocity matrixii) an unbroken fixed points. No simple patterns are observed: often two or
SU(2) symmetry, or(iii) random impurities. The possibility more quasiparticle operators have nearly the same minimum
that impurities affect the polarized edge but not the unpolarscaling dimension, and the charge of the most relevant qua-
ized edge suggests that measurements of the edge equilibsiparticle operator varies among different fixed points of the
tion length and tunneling conductance across the topologicaame edge. As an example, in theedge the most relevant
phase transitiott between the two may be illuminating. quasiparticles at the different fixed points a2 andq
In FQH states the tunneling conductance through a point3e/17 at the SUB8) points, 2A= 2 and q=2e/17 at the
constriction in a Hall bar decreases with decreasing tempera&U(2) points, and A =1, q=e/17 at the double-marginal
ture. In the integer effect this conductance is temperatur@oints. Typically the most relevant quasiparticles have small
independent. The physical electron operator is a superpos¢harges, as expected from inequaligys).
tion of all chargee fermionic operators, and the low- Time-domain experiments have so far not resolved the
temperature conductance is determined by the scaling dimemeutral modes in nonchiral edge statdsyt in principle a
sion A, of the most relevant such operator accordingt®  perturbation at one contact on a sample edge should excite
propagating charged and neutral modes observable at another
G(T)=~t?T2%e™ 1), (5.3 contact. Such an experiment might reveal whether the neutral
modes in the Fibonacci-type states 3, 2, 5, and propa-

wheret is the amplitude for the dominant tunneling process. locali h ¢ flibrati
Different fixed points in the same FQH state can have dif-gate or are localized. The measurement of edge equilibration

ferent A, and different tunneling exponents. These expo_lengths might also give interesting results: measurements on

. : -~ the edge of thes= £ edge, which has n{K(m)|=2 opera-
nents can be calculated for the marginal-type fixed pomtiprs angd hence noSKFIg-type instabilityb(c(oul)cL shOV\I/D another

even though the electron dynamics at these points is uncleat L . h as inelasti )
All fixed points of the same type have the same scaling ext Pe of eqU|I|bra_t|on m_echanlsrﬁsuc as inelastic scattering
ponents but are expected to have measurably different pre“[om phonong with a different temperature dependence.
actors as described in Sec. IV.

Chargee operatorsm havetiKi_jlm]:l and scaling di- VI. SUMMARY
mensionA.=m;A;;m;, whereA is the same symmetric ma- ) . . .
trix calculated in Sec. Ill. Sincé is known at each fixed e have developed a technique for studying impurity
point, it is simple to search for the most relevant chazge- SCaltering in a general FQH edge, and used it to find phase

; i ; diagrams and experimentally measurable properties for a
operator. The SW() fixed points found by Kane and Fisher .
fopr the v=n/(2nL101) statgs have & :3{ 2n~! and tun-  Proad class of nonchiral edges. We find that some FQH
e

neling exponent edges can have several different pha(s&iagd pointg in the _
presence of randomness. These phases in general have higher
G(T)~t2T®, a=4—4n"1, (5.4 ~ symmetry at low energies and long wavelengths than the
original system. Thus random edges demonstrate an interest-
In Table II, we list the low-temperature conductance behaving phenomenon of dynamical restoration of symmetries at
ior for each of the fixed points found in Sec. Ill. Note that Jow energies and long length scales. Different phases have
corresponding fixed points in states with the same neutralifferent experimentally observable properties. It would be
sector, such as=3 and3, can have different tunneling ex- very interesting to find these phases and study transitions
ponents because the charge sectors of the two edge theoriestween them experimentally.
are different. The Fibonacci-type states have two possible The transitions between phases are interesting from the
values of the low-temperature tunneling conductance expopoint of view of Landau’s symmetry-breaking principle for
nent, so that there is a real physical difference betweeAthe continuous transitions: A continuous phase transitisec-
andB phases. ond order in the Ehrenfest classificatjaan only occur be-
The level-4 states studied € %, 3, 3, and#?) have three  tween two phases which differ in symmetry, and the symme-
different tunneling exponents corresponding to the three diftries of one phase are a subset of the symmetries of the other
ferent types of fixed points. For example, in the % state  phase. This principle appears to be satisfied by all the tran-
the SU3) fixed points have\ .= £ anda=$, as appear in the sitions between definitely stable fixed points in the edges we
SU(3) fixed point of thev=2 state. The SU(2XSU(2) study. The principle is satisfied even though the RG flows for
fixed point is the same as the &) fixed point for v=2,  some transitiongsuch as the'= £ transitiort!) are similar to
except that there are two chargeperators of minimal scal- those in the Kosterlitz-Thouless transition, which is not
ing dimension rather than one. The double-marginal fixectlearly interpreted in terms of a broken symmetry. The

point has an operator withh,=13, so a=32. So the three symmetry-breaking principle also has some implications for



10 152 JOEL E. MOORE AND XIAO-GANG WEN 57

TABLE Il. Low-temperature tunneling conductance behav®r T for hierarchical daughter states of
v=1 (top) and :%. Only “charge-unmixed” phaseg&hose with quantized conductance or, alternatively,
those which can occur with long-range interactioase shown. The different fixed poinfs andB for the
Fibonacci-type states correspond to the labeling in Fig. 2. The phasés 2, £ and 2 have fixed linet.
and three types of fixed point with SU(2)SU(2) symmetryfabbreviated S(2) in the tabld, SU3) sym-
metry, or two independent marginal operatoBsM). The tunneling exponent on the fixed linesis non-
universal. Note that each exponent in the lower table is givenfpy= 4+ a4, wherea, is the exponent of
the state in the upper table at the same position in the hierarchy. The pattern continues to lower filling

fractions: daughter states ®f=%, have filling fractions betwee%< y<%1 and tunneling exponents, e.g., 8

sa<l12.
v=n G~T°
v=3,G~T° G~T° DM
v=2,G~T° v=12/7 G~TY* SU(2)
v="5/3,G~ fs B G~T'  SU@3)
G~T* L
v=1,G~T°
v=5/1,G~ T B G~T5* DM
v=2/3,G ~ T? v=12/17 G~T* SU(2)
v=23/5G~T>* G~ T SU(@3)
G~T* L
v =gte G~ Tn
cv=gis G~ T
v=3/T,G~T* G~T* DM
v=2/5G~T* v=12/31 G~TB? SU(2)
v=5/13,G ~ 5 & G~T°  SU(®3)
G~T* L
v=1/3,G ~T*
v=5/17,G ~ T3° B G~TY3 DM
v=2/7,G ~T® v=12/41 G~T¢ SU(2)
v =3/11,G ~ T/ G~ T®3 SU(3)
G~T L

=2 G~ TE4n

4n—-1

a possible phase transition in the=3 state, which has two exponenta of electron tunneling between two edges,,

types of possibly stable fixed points. _ _ «T% are not universal. In the other phase the edge has an
To summarize our results, two situations, with or wnhoutSU(Z) symmetry and is charge unmixe@.e., only one

It(;ng-lrjange |nt?|ract|ons, ne_e;j to ?e d'sclﬁrs]ed dseparatdely. opagating mode, the charge mode, carries charge and other
€ absence ot long-range interactions, afl the €dge modes, opagating modes are neujrdh this case ¢, «) take uni-

general, carry some amount of charge and the edge is call )

charge mixed. Several different situations are illustrated byersal values {e?/h,2).

the following examples. (i) The v= £ edge has three phases, described by a fixed
(i) The v=2 edge has two phases. In one phase the edgeoint [the point (0,0) in Fig. , fixed lines(the solid lines

is charge mixed and the two-terminal conductaamcand the  outside the hexagon bounded by the dashed lines in Fig. 1
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and fixed planegthe region outside the region bounded by scribed by fixed pointgsuch asB in Fig. 2, but notA), fixed

the dashed lingsThis is because a point on the fixed planeslines (the solid lines in Fig. 2and fixed planesthe region
does not flow as the energy is lowered, while a point be-outside the region bounded by the dashed )inAgain the
tween two parallel dashed lines flows to the fixed line befixed-point phase is charge unmixed and has universal
tween them and a point inside the hexagon flows to the fixedo,a). The fixed-line and fixed-plane phases are charge
point. The fixed point has an $8) symmetry and is charge mixed and have nonuniversab-(«). However, here the
unmixed. @, a)=(2e?h,%) are universal. The fixed-line fixed point contains two marginal operators. It is not clear
and fixed-plane phases are charge mixed, ana) are not Whether the fixed point is stable or nétepending on
universal. But in the fixed-line phase there is an(®sym- whether t_he two margm_al opera_tors are margmally relevant
metry, and ¢, ) and other exponents all depend on a single°" nod. It is not clear |f dlfferent flxgd Ime_s and fixed planes _
parameter which parametrizes the fixed line. The fixed-plan@r€ connected or not in a higher-dimensional space. There is
phase has no particular symmetries. We would like to poing continuous phase transition between the fixed-line phase
out that although the fixed-line phase in Fig. 1 contains si¥With SU2) symmetry and fixed-plane phadith no sym-

disconnected segments, this does not guarantee that there J18"Y)- We note that both the fixed-point and fixed-line

six disconnected fixed-line phases. This is because the dig_hases have S@) symmetry. According to the symmetry-

connected fixed lines may be connected in a higher-a :]eoatllég]rg Fr’]ra'lng'plz f;)rragﬁnt't';]ueoltﬁetrfanesét_'og.'nf'tm‘;rséhZrne q Ifhe
dimensional space of Lagrangians, of which Fig. 1 is just & °r phase separating he Tixed-point p

. . : : : ixed-line phase, or the fixed-point phase is unstable, or the
two-dimensional cross section. If different line segments a

connected in the enlaraed space. it is possible to Move C(;(?r_ansition is first orden(discontinuous and the first-order
! 9 pace, 1t IS possi V€ COkhe does not terminate in a second-order point for any finite

t!nuously from 2”9 segment to anpther \.N'thOUt any translyic rqer strength. The perturbative RG in Appendix B is
tion. For thev= ¢ state the higher-dimensional space results

) . consistent with the last possibility.
from applying the SI@B) transformation on the the full La- ; _1 _ B -
grangian. Note that the SB) transformation does not (iv) The v=1; edge [K=(14,-4)] again has three

change the commutators between fermigwdiich can be phases described by a fixed point, a fixed line, and a fixed
9 - ‘ : . plane(Fig. 3). However, the phase diagram is quite different
seen in the fermionic form of the Lagrangian but is not evi-

dent in the (Abelian) bosonized formy and hence leaves from the above two. There can only be continuous phase

. : ; transitions between the following phases: the fixed-point
the Hilbert space unchanged. Acting with the (SlUgenera- . g .
tors creates off-diagonal interaction terms of the formphase[wIth SU(2) symmetry < the fixed-plane phasivith

= p no symmetry < the fixed-line phas¢with SU(2) symme-
F(X)(1405) (o1h5), after we make the local SB) transfor- try].

mation to remove the random hopping term between differ- () The K=(1,2,—2,2) and (,—2,2~2) edges are too

ent fermions. Thus the precise form of the functibfx)  complicated, and we will only discuss them for the case of
depends on the impurities which generate the random hopgyng-range interactions.

ping terms. If the off-diagonal terms have precisely the vari- | the presence of long-range interactions, the edge is
able coefficientsf(x), then the different fixed-line phases always (nearly charge unmixed, and the two-terminal con-
can be continuously connected via inclusion of such off-q,ctance always takes the quantized valuer(e?/h). We
diagonal terms. However, in real experiments it is impossiblgan restrict our discussion to the charge-unmixed subspace
to control the precise form of the variable coefficief(x), [the (0,0) point in Fig. 1 and the axis in Figs. 2 and B

and the Lagrangians for experimental samples do not contatfigpje || gives the low-temperature tunneling exponent for all
the above off-diagonal terms. Therefore for real samples allye charge-unmixed phases of principal hierarchy states. The
different fixed-line phases are disconnected. Similarly allypoye examples with short-range interactions can be easily
fixed planes are disconnected for real samples. Howevemqgified to cover the case of long-range interactions.

since fixed-line phase®r fixed-plane phasgsll have the (a) The v=2 edge has only one phase which is described
same symmetry, the symmetry-breaking principle prohibit y a fixed point. ¢ a) take universal values2g?/h, 2).

continuous phase transitions between two connected fixed- b) The »—2 edae h | h described b
line phases or two connected fixed-plane phases. But there (b) T_ € v=75 edge has only one phase, described by a
are still continuous phase transitions between a fixed-lind*€d Point[the point (0,0) in Fig. 1 The fixed-point phase

phase and a fixed-plane phase, and a fixed-line phase andsathe same as the fixed-point phase for short-range interac-
fixed-point phase. tions: it has an S(B) symmetry and universal of «)

We would like to stress that the sequence of the phase (§€°/h.5).
transition: fixed-point phase- fixed-line phase— fixed- (c) The v=2 edge has twdtypes oj phases described by
plane phase represents a sequence of symmetry breakingy: andB-type fixed points in Fig. 2. The fixed-point phases
SU(3)—SU(2)—SU(1). This is consistent with the have universakx given by a=% for A-type points anda
symmetry-breaking principle discussed above. It appears that 0 for B-type points. However botl- and B-type fixed
the symmetry-breaking principle that governs the continuoupoints contain two marginal operators, and it is not clear
transitions between clean phases in other condensed matthether the fixed points are stable.
systems also governs the continuous transitions between dis- (d) The v=1 edge[K=(1,4,—4)] has three phases de-
ordered phases of FQH edges. All the continuous phase traseribed by two fixed pointsA andB in Fig. 3) and a fixed
sitions between different disordered edge phases that we firlthe (the x axis outside the region bounded by the dashed
in this paper are related to symmetry breaking. lines). All three phases are stable. The two fixed-point phases
(iii) The v=2 edge also has thregypes of phases de- have different universal values for the temperature exponent:
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a=2 for the A-type fixed-point phase and= 13} for the  SO(m,n), where it ceases to hold. In the next paragraph we
B-type fixed-point phasex is not universal for the fixed-line outline a global proof of the decomposition. The details are
phase. The only continuous phase transitions are betwegjiven for SOM,1), which is the only case used in the body
one of the two fixed-point phasgSU(2) symmetry and the  of this paper.

fixed-line phaséno symmetry. _ The boost part of a given matri can be constructed if
1(26)12The K=(1.2,-2,2) and (,—2,2,-2) edges withv  every symmetric positive definite element of $00) has a
=%,17, ... are very interesting. There are four different square root within the group which is also symmetric. The

phases described by three types of fixed poidsg, andC square root is simple fom=1 or n=1, where every sym-

in Figs. 4 and $and a fixed lingthe middle segment of the metric positive definite matrix is of the form introduced in
dashed line connecting andB in Fig. 5@]. Certainly there  Sec. Il, and associated with a unique velocity vector
are infinitely many different disconnectéd, B-, andC-type ~ =p/y. Then the square root is the boost with velooity
fixed points and fixed lines in Fig.(&, and it is not clear if  =y(1—1—-v?)/v2, which is chosen so that the special-
all fixed points(lines) of each type are connected in a higher- re|ativistic velocity addition formula holdsv=2v'/(1
dimensional space. Thé-type fixed point has an S8)  +;2). For the general S@¢,n) case, a square root can be
symmetry, theB-type fixed point has an SU(2)SU(2)  defined by the inverse function theorem within a neighbor-
symmetry, and the fixed line ar@-type fixed point have an  hood of the identity, and continued analytically. Such a
SU(2) symmetry. The exponent has universal value§ 2,  square root exists globally if every boost matrix can be writ-

and 3 for the A-, B-, and C-type fixed points, respectively. ten as an exponential of only boost generators, since then
The C-type fixed point has four marginal operators, and it is

not clear whether it is a stable fixed point. Among the three b

e ; . . 0 —
definitely stable phases the only possible continuous transi- 0 b 2
tions are.A-type phasedSU3) symmetry < fixed-line B’=exp( bT 0), VB’ =exp bT . (A2
phasg[SU(2) symmetry < B-type phase$SU(2)X SU(2) 0
symmetry. These transitions are consistent with the 2

symmetry-breaking principle for continuous transitions. An i L ) )

A-type < B-type transition would violate the symmetry- With a square root, the prToqf is simple. _leen an arp!trary

breaking principle, and is not found in the phase diagram. €lémentM e SO(m,n), MM" is symmetric and positive
This study just starts to reveal some general intrinsicdefinite, so letB=+yMM'. It remains to show thaR

structures of disordered phases of FQH edges and transitiorsB ~*M is in SO(m,n) and is orthogonal:

between those phases. It is amazing to see that different dis-

T_Rp-1 TR-1T
ordered phases are characterized by symmetries, and that RlpR'=B""MI,,M'B

phase transitions are characterized by broken symmetries. =B~ 1. B 1T—] (A3)
Certainly there are many open problems, and much needs to mn mn

be done in order to have a complete theory of disordered RTR=(JMMT M) (VMMM

edges. The possibilities of transitions between different dis- ( ) )

ordered phases on the edge of a single bulk quantum Hall =MT(\MMT3)"IM=]. (A4)

liquid also open up directions for experimental explorations.
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tation and becomes irrelevant. The fixed point is no longer
APPENDIX A: BOOSTS AND ROTATIONS necessarily stable if there is an additional marginal disorder

operator, since this term has a random coefficient to begin
ith, and does not have its scaling dimension decreased by
e SU2) rotation. Therefore such a term remains marginal
and must be treated. In this section we obtain the first-order
coupled RG equations for the Fibonacci-type edge2,
which has additional marginal operators present at each of its
fixed points.
These first-order equations suggest that both typesd
BR=(1+€b)(1+8r)~1+ebi+ 81 (A1) B of fixed points are in fact stab_le, and that which fixed _pqi_nt
' ! ! o the system flows to asymptotically depends on the initial
wheree; and §; are arbitrary infinitesimal parameters. There velocity matrix and the disorder strengths. The picture from
are exactly enough free parameters to cover a neighborhodtle first-order equations is incomplete at the fixed point be-
of the identity in SOf,n). Thus if the decomposition does cause the higher-order effects of one disordered operator
not hold on the entire group, there must be some boundary inpon another are ignored, although these effects may well

The decomposition of an element of @) into a
product of a boost and a rotation follows in a neighborhoocn/]
of the origin simply by writing the produd¥l =BR in terms
of infinitesimal generators of the Lie group. It are the
boost generators ang the rotation generators, then a boost
(similarly, rotatior) close to the identity element contains
only boost(rotation) generators
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determine the properties of the fixed point. The main conclu- Suppose that the system is in between the maximally rel-
sion of the somewhat complicated discussion below is thagvant points of two disorder operators with strendihsand

the fixed points with marginal operators are probably stabl®,. Then, from Eq(B1), the scaling dimensions flow as
under RG transformations, although the long-length-scale

dynamics at the fixed point are unclear. Note that even if ~ dA; 2 3A1-24; ,
only one type of fixed point turns out to be stable, different 7§/ — _Cl(Al_l)DlJrCZM(AZ_ 1)Da,
fixed points of that type are distinguishable phases as dis- (B4)
cussed in Sec. IV. Fixed points of the same type have the
same stability properties because they have the sginhe dA, ) 3A,-24, ,
theory up to a redefinition of fields. a7~ C2(A2=1)Do+ C1m(A1— 1)Dy,

For the calculation on the= § edge, we will assume that (B5)

the system is on the charge-unmixed line, and use the scaling
dimension of one operatak, as a coordinate on this line. With c; andc, some positive constants. These two equations
This is reasonable since points close to the line are driven tare not independent, and each together with (B4) deter-
the line under RG by th&(m) = — 2 operators. It is possible Mmines the other. A complete set of first-order equations con-
that the strengths of ak(m)= —2 operators may decrease Sists of one scaling-dimension equation plus the flow of the
sufficiently rapidly that the system is left on one of the disorder strengths, with the other scaling dimension found by
K(m)=2 marginal lines away from the charge-mixed point. Ed. (B1). The two disorder operators compete to drive the
Then there is only one relevant operator, and the fixed poingystem to one of the maximally relevant points. The disorder
is solvable with an S(2) symmetry, exactly as for the strength flow implies that the fixed point which must exist
= 2 fixed point studied by KFP. Only on the charge-unmixedsomeWhere between the two maximally relevant points is
line does another type of fixed point appear. unstable, as expected, because on each side of this unstable
At most three disorder operators can be relevant at a poir0int the disorder strength pushing the system away is the
on the charge-mixed line. One operator's scaling dimensiofnore rapidly growing of the two disorder operators. What
serves as an independent coordinate, and determines tR@Ppens at one of the maximally relevant points is a little
other scaling dimensions: writingy; for the scaling dimen- tricky, because at such a point one disorder stretigths
sion of the operator whose maximally relevant point will be 9rowing rapidly but does not push the system in either direc-
studied, the scaling dimensions of the two neighboring option sinceA?—1=0.

erators(Fig. 2 are the two roots\ . of The main physical question to be settled is whether the
B disorder strength of one of the marginal operators becomes
A2 —3A.A;+A3+5=0. (B1) infinite, remains finite, or decreases to zero as the system

moves to the fixed point. Now we show that in the leading-

The disorder strength of each operator has leading-order RGrder equations the marginal disorder strengths remain finite
flow dD;/d/=(3—2A;)D; . It remains to calculate how the as the system decays exponentially to the fixed point. This
velocity matrix and scaling dimensions flow. does not necessarily mean that the disorder strength of a

The decomposition of the velocity matrix in Sec. Ill into a marginal operator actually remains finite, since exactly at the
boost part which determines the scaling dimensions, plus fixed point this disorder strength is a constant to leading
remaining “rotational” part, isnot compatible with the RG  order but may increase or decrease at higher order. Lineariz-
transformation. The rotational part affects the flow of theing the flow equations about; =1 andA,= 2, and, keeping
boost part, and vice versa. However, the qualitative charactex, as independent variable and writing=3—A,>0, we
of the boost part is in some sense not affected by the rotahave
tional part as now explainedNote that theK matrix is in-

variant under the RG transformation, because it is purely dD, )
topological and does not enter the Hamiltonja@Gonsider V:(l_‘lf /5)D1~Dy, (B6)
the perturbative RG flow equation for the scaling dimension
of the one|K(m)|=2 operator for thev= 2 edge!! dD,
——~=2eD,, (B7)
=3 ds
a_ P (a?2-1)D B2
G/~ 87, 4, (4°-1D. ®
The eigenmode velocities, andv _ are in the rotational ds C2(9/4+3e~1)Do+ 1Dy 5C2D2/4+ C1¢Dy.
part of the velocity matrix, and flow according to (B8)

) An asymptotic solution is found by takingD;
dv_t: 4 U (AT1)D B3 D1(0)expt), e=A exp(—/). The right side of Eq(B8)
d/ viv> ' will balance ifD,—4c,A/5¢, as/—« since the left side is
much smaller in magnitude. This limiting form is consistent
The eigenmode velocities affect how fastflows to 1, but  since with this form ofe, Eq. (B7) yields a finite D,
the basic idea thaA flows smoothly to 1 is independent of =exp(f2ed/). The linearized analysis suggests that eventu-
the precise values af, andv_ and of the details of their ally the system decays exponentially to the fixed point, with
flow. In order to make the coupled RG flows tractable weD, asymptotically finite. This prediction is confirmed by nu-
will replace velocity-dependent prefactors by constants.  merical integration of the original differential equations.
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Which fixed point the system reaches/&s>» depends the possibly giving a uniform coefficient for the marginal opera-
initial scaling dimensions and disorder strengths. tor, which then becomes relevant. In the case of uncorrelated
A more complete RG treatment would give a deeper unimpurities, the possibility of carrying out this rotation shows

derstanding of the fixed points, but determining the RGthat no terms involvind, appear in the flow equation for
equations to second order in the disorder becomes quite cori*» exactly at the fixed point, so there is still hope for a
plicated. We discuss some features here, and hope to treggrturbative treatment. Near but not at the fixed point, the
this problem more fully in another publication. A prelimi- SU(2) rotation of the dominant impurity operator may affect
nary step is to assume that the system is driven near the fixglle marginal operator even if the impurities are uncorrelated.
point by the first-order terms in the equation, and then tdEven if the second-order terms in this case have the proper
carry out an S(P) rotation to eliminate the random term sign to driveD, to zero,dDzld/oc—Dz, the decrease @,
with the maximally relevant operator. If the impurity opera- is only as 1/ rather than exp{/), and at finite temperature
tors are uncorrelated, the marginal operators will still havethe marginal operators should have significant effects. An-
random coefficients. However, it is physically likely that dif- other approach to understanding the marginal fixed point is
ferent impurity operators will be at least partially correlated,via an exact solution, which we have not been able to find.
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