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Classification of disordered phases of quantum Hall edge states

Joel E. Moore and Xiao-Gang Wen
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

~Received 21 October 1997!

The effects of impurity scattering on a general Abelian fractional quantum Hall~FQH! edge state are
analyzed within the chiral-Luttinger-liquid model of low-energy edge dynamics. We find that some disordered
edges can have several different phases characterized by different symmetries. The stable impurity edge phases
are in general more symmetric than the original clean system and demonstrate the phenomenon of dynamical
symmetry restoration at low energies and long length scales. The phase transitions between different disordered
phases are characterized by broken symmetries and obey Landau’s symmetry-breaking principle for continuous
phase transitions. Phase diagrams for various edges are found using a system of coordinates for the interactions
between modes in a quantum Hall edge. The temperature dependence of tunneling through a point contact is
calculated and is found to be able to distinguish different impurity edge phases of the same FQH state.
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I. INTRODUCTION

It was realized soon after the discovery of the integ
quantum Hall effect~QHE! that interesting phenomena occ
at the one-dimensional boundary of a two-dimensional e
tron gas.1 In a strong applied magnetic field, the bulk ele
tron gas forms an incompressible quantum liquid2 at certain
filling factors n which are found experimentally to be eith
integers or simple fractions. The only gapless excitation
these filling factors are along the edge of the liquid and a
result current flow is confined to the edge.3 The low-energy
excitation spectrum at the edge is accessible to tunnel4

and magnetoplasma5 experiments, and in principle allows th
structure of complicated fractional quantum Hall~FQH! liq-
uids to be probed because of the connection between
internal topological orders of the bulk electron gas6,7 and the
‘‘chiral-Luttinger-liquid’’ theory of the edge.8

The properties of disordered quantum Hall edges are
portant for a number of reasons. The edge is described
chiral Luttinger liquid (xLL) theory similar to the ordinary
Luttinger liquid,9 the generic state of a one-dimensional
teracting electron gas, which is known to be sensitive
impurities. In fact, the difficulty involved in fabricating suf
ficiently clean and conducting one-dimensional elect
gases has led to interest in quantum Hall edges as an
one-dimensional system.10 The quantum Hall edge can b
impervious to disorder, as in then51 state, which has a
single branch of low-energy excitations propagating in o
direction, and hence remains conducting when random
purities are added.

The effects of disorder on a nonchiral Hall edge~one with
excitations moving in both directions! are more complex.
The xLL theory of a clean edge withn condensates is char
acterized by two matricesK andV and a charge vectort: the
K matrix describes the topological orders of the bulk sta
such as the relative statistics of quasiparticles, and thV
matrix gives the edge Hamiltonian and related proper
such as velocities.K is taken to be the same for all edges
the same quantum Hall state, while the values inV are non-
universal and expected to vary for different experiments. T
570163-1829/98/57~16!/10138~19!/$15.00
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conductance of a maximally chiral edge~all modes propagat-
ing in the same direction! is independent ofV and hence
universal. For clean nonchiral edges, the conductance ca
lated using the Kubo formula depends onV and thus appears
to be nonuniversal, contradicting experiment. The cond
tance is bounded below by the quantized valuene2/h asso-
ciated with the bulk filling factorn, but only has this value
for a subset of the allowedV matrices. However, in rea
samples, the different modes at the edge equilibrate and
conductance takes the quantized value. Kane, Fisher,
Polchinski~KFP! argued that for then5 2

3 edge this equili-
bration is caused by scattering from random impurities.11

Haldane argued that an additional term must be inclu
in the Kubo conductance formula to account for contrib
tions from the bulk QHE liquid.12 With this term the conduc-
tance is always fixed at the quantized valuene2/h, even for
a nonchiral edge. This argument involves some subtle qu
tions which were partly explored in later work;13 here we
will just mention that disorder-driven instabilities can affe
other measurable properties besides the conductance, su
tunneling behavior through a point contact. Thus such ins
bilities are relevant to experiments whether or not the or
nal use of the Kubo formula is correct. One result of o
work is that for some edges measurably different phases
occur even when the conductance, calculated with or with
the additional term, is fixed at the quantized value.

The equilibration of different edge modes is also an i
portant process in the integer quantum Hall effect~IQHE!
with n5n, since nonideal contacts will populate then dif-
ferent edge channels at different chemical potentials. In
channel electron scattering can equilibrate the modes, as
dicted by Büttiker14 and demonstrated in several innovati
experiments.15–17 Experiments show equilibration in th
IQHE on a length scalel e;40 mm. Nonchiral FQH edges
differ in that even ideal contacts do not give rise to an equ
brated edge. Some interactions capable of transferring ch
between channels, such as backscattering by random im
rities and/or electron-phonon interactions, are necessary
edge equilibration.13 In real samples the different branches
FQH edges are always close to each other, and the diffe
10 138 © 1998 The American Physical Society
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57 10 139CLASSIFICATION OF DISORDERED PHASES OF . . .
branches are always in equilibrium, which leads to a qu
tized Hall conductance.

The n5 2
3 edge contains one branch propagating in e

direction. KFP showed that when impurity scattering is r
evant, it can drive the velocity matrixV to one of the subse
of possible values which give conductance quantization. T
subset of ‘‘charge-unmixed’’V matrices has a simple phys
cal property: one eigenmode of edge fluctuation is char
and the others are neutral, with no interaction between
charged and neutral eigenmodes. Impurity scattering is
relevant for every velocity matrix, so conductance may
always be quantized. But for all velocity matrices sufficien
close to a charge-unmixed matrix, weak impurity scatter
drives the edge state to the fixed point, where the velo
matrix is charge unmixed and the conductance is quanti

The V matrices for current experimental setups may
fall within the basin of attraction of the KFP fixed point.
velocity matrix is close to a charge-unmixed matrix if th
interaction between charged modes has much higher en
than the interaction between a charged mode and a ne
mode. The Coulomb interaction between charges in an
perimental QHE setup is typically only screened at a dista
of many magnetic lengthsl 5A\c/eB from the edge, so tha
the charge-charge interaction may indeed be much la
than the residual interaction between a charged mode a
neutral one.18

The flow to the impurity fixed point is especially interes
ing from the point of view of symmetries of thexLL action.
TheK matrix of the staten5n/(2n21) has a hidden SU(n)
symmetry, as first pointed out by Read.19 A genericV matrix
breaks the symmetry of theK matrix, but, precisely at the
impurity fixed point, the velocity matrix does have all th
symmetries ofK.20 The impurity scattering thus acts toin-
creasethe symmetry of the edge. In this paper we find tha
some quantum Hall edges the impurity fixed points ha
some but not all of the symmetries of theK matrix. In this
case different fixed points are related by symmetry trans
mations, in the same way as the spin-up and spin-down fi
points of the Ising ferromagnet in zero external field are d
ferent but are related by a symmetry of the starting Ham
tonian. This new type of broken symmetry is discussed
Sec. IV. Edge states differ from ferromagnets in that sy
metry is ‘‘spontaneously restored’’ rather than spontaneou
broken: a starting Hamiltonian of low symmetry is driven
impurity scattering to a more symmetric fixed point.

In this paper we analyze the effects of impurity scatter
on a general nonchiral quantum Hall edge. Not all ed
states have a potentially relevant impurity scattering ope
tor, which is required for impurity scattering to cause ed
equilibration. For example, it is shown in Sec. III that th
only nonchiral level two states in the Haldane-Halpe
hierarchy21,22with a possibly relevant impurity scattering op
erator are the principal hierarchy states with filling factorn
52/(2p11), wherep is an odd integer. The other level tw
states, such asn5 4

5, have an equilibration length from im
purity scattering which diverges at low temperature.13 Edges
with no relevant operators may still equilibrate by anoth
process such as inelastic scattering from phonons. In ord
determine whether a given state flows to an impurity fix
point, it is necessary to consider all the potentially relev
scattering operators in the chiral-Luttinger-liquid theory.
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Section II defines a functionK(m) whose absolute value
is twice the minimum scaling dimension of the vertex ope
tor Om5exp(i(jmjfj), wheremj are integers andf j are the
fields of thexLL theory. For impurity scatteringOm has
charge zero, andK(m) is an even integer. Impurity scatte
ing operators withuK(m)u>4 are never relevant. Equilibra
tion by impurity scattering depends on having scattering
erators with uK(m)u52 to drive the velocity matrix to a
charge-unmixed matrix. Haldane argued that a neutral op
tor Om with K(m)50 drives a topological instability which
removes a pair of oppositely directed neutral modes from
low-energy theory.12 Edges with no neutralK(m)50 opera-
tors are ‘‘T stable’’ and it is conjectured that onlyT stable
states are seen experimentally. All the examples studie
this paper areT stable, but the methods introduced do n
depend onT stability.

T stability is useful because there are only finitely ma
classes ofT-stable states with neutral modes in both dire
tions, as we now explain. In Sec. II we introduce a system
coordinates for theV matrix which simplifies the treatmen
of states with several condensates. The dimension of the
ordinate space is less than the number of free paramete
V. For states with all neutral modes traveling opposite to
charge mode, the charge-unmixed subset is a single poin
these coordinates and a small number ofuK(m)u52 opera-
tors are relevant in a region around this point, which is
only impurity fixed point. This class includes then5n/(2n
21) states. For dimK53 there are also states in which th
charge-unmixed matrices form a line in our coordinate spa
and there are infinitely manyuK(m)u52 operators. These
states have many impurity fixed points. With dimK54 the
charge-unmixed states can form a plane or a point. For
K55 there are no principal hierarchy states, and for dimK
.5 no states at all which areT stable and have neutra
modes moving in both directions, as a consequence of a d
theorem on integral quadratic forms.12,23

Section III studiesT stable hierarchical quantum Ha
states, and finds that several classes of such states ex
‘‘ V stability:’’ every V matrix sufficiently close to a charge
unmixed matrix is driven to a charge-unmixed matrix
weak impurity scattering. In particular, every principal hie
archy state with two or three condensates is shown to h
this property. Some of the three-species states have infin
many possibly relevant operators which lead to ma
impurity-fixed points with different charge-unmixedV ma-
trices. ForV stable states, impurity scattering can explain t
edge equilibration and robust quantization seen experim
tally.

The rest of this paper is organized as follows. Section
puts the model of a general Abelian quantum Hall edge w
impurities into a form which isolates the dependence of sc
ing dimensions of various operators on the velocity matr
This is convenient for the calculation of phase diagrams
particular edges in Sec. III. Section III applies the formalis
to states in the hierarchy containing several species of q
siparticles, and finds behaviors associated with the existe
of a large number of possibly relevant operators. Two clas
of edges with high symmetry are studied in some detail:
SU(n)3U(1) edge solved exactly by Kane and Fisher,20 and
the ‘‘Fibonacci’’ edge, in which the sequencean115an
1an21 plays a special role. All principal hierarchy state



e
xe
n

tie

re

o
u
ti
ar

tip

ric

he
ro
s

ira
-
or
en

ze

at

s
tiv
t
a

de

-
ar

in
i

-
ity

d
in

ing

he
,

ve
l

or

the

in

la.
ki-
ts

n-
is

ther
the
-

,
r

s
d

z-

10 140 57JOEL E. MOORE AND XIAO-GANG WEN
with three condensates are shown to belong to one of th
two classes. The Fibonacci edge has two types of fi
points which correspond to different phases with differe
tunneling conductance and other measurable proper
Some four-condensate edges, such asn5 12

17, are shown to
have three different types of fixed points, representing th
different broken symmetries of theK matrix.

Sections IV–VI contain results obtained using the meth
developed in the earlier, more technical sections, and req
only a general understanding of the earlier sections. Sec
IV explains how the many fixed points in some edges
related to broken symmetries of theK matrix. Section V
examines the experimental consequences of the mul
phases in disordered edges. The low-temperature scaling
havior of the tunneling conductance through a point const
tion is calculated for all phases of allT stable principal hi-
erarchy states with filling fractionsn. 1

4. This experiment is
capable of distinguishing different impurity phases of t
same edge state. In Sec. VI, we summarize our results f
the point of view of general principles of phase transition

II. GENERAL PROPERTIES OF THE DISORDERED
EDGE

Edges of quantum Hall systems are described by a ch
Luttinger-liquid (xLL) theory related to the topological or
ders of the bulk quantum Hall state. We introduce the the
for a clean edge and diagonalize it to obtain scaling dim
sions of impurity scattering operators. ThexLL action in
imaginary time for a clean edge of a QH state characteri
by the matrixK containsn5dim K bosonic fieldsf i , and
has the form8

S05
1

4pE dx dt @Ki j ]xf i]tf j1Vi j ]xf i]xf j #, ~2.1!

where, as in the rest of this paper, the sum over repe
indices is assumed.K is a symmetric integer matrix, andV a
symmetric positive matrix.K gives the topological propertie
of the edge: the types of quasiparticles and their rela
statistics.V, the velocity matrix, is positive definite so tha
the Hamiltonian is bounded below. The charges of quasip
ticles are specified by an integer vectort and the filling factor
is n5t i(K

21) i j t j .
Scattering by spatially random quenched impurities is

scribed by the action

S15E dx dt @j~x!eimjf j1j* ~x!e2 imjf j #. ~2.2!

Here j is a complex random variable and@j(x)j* (x8)#
5Dd(x2x8), with D the ~real! disorder strength. The inte
ger vectorm describes how many of each type of quasip
ticle are annihilated or created by the operatorOm
5exp(imjfj). For a real system all charge-neutral scatter
operatorsmj are expected to appear, but most of these w
be irrelevant in the renormalization-group~RG! sense, as dis
cussed in the following. The condition for charge neutral
is t i(K

21) i j mj50. The random variablesjm for different
scattering operatorsOm may be uncorrelated or correlate
depending on the nature of the physical impurities caus
the scattering.
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Now consider the correlation functions of these scatter
operators with respect to the clean actionS0. For integer
vectorsm, define the functionK(m)[mi(K

21) i j mj . K(m)
governs the topological part of the correlation function of t
scattering operatorOm as follows: the correlation function is
ignoring cutoffs,

G~x,t!5^eimjf j ~x,t!e2 imjf j ~0,0!&

}F )
k51

n1

~x1 ivk
1t!2akGF )

k51

n2

~x2 ivk
2t!2bkG .

~2.3!

Here n1 and n2 are the numbers of positive and negati
eigenvalues ofK, andvk

6 , ak , andbk are non-negative rea

numbers which depend onV and K. However, (k51
n1

ak

2(k51
n2

bk5K(m), independent ofV. Setting all velocities
vk

651, and introducingz5x1 i t,

^eimjf j ~x,t!e2 imjf j ~0,0!&}
1

zK~m!

1

uzu2D~m!2K~m!
, ~2.4!

with K(m) assumed positive. D(m)5((k51
n1

ak

1(k51
n2

bk)/2 is the scaling dimension of the operat
exp(imjfj).

The scaling dimensions of the various operators in
theory are functions ofV, ann3n matrix. Much of the phys-
ics of a disordered edge depends onV only through the scal-
ing dimensions of various operators. The conductance
units ofe2/h is given by twice the scaling dimensionD(t) of
the charge operator as a consequence of the Kubo formu11

This is the conductance measured with ideal contacts; a
netic theory model for nonideal tunnel-junction contac
gives a different nonuniversal value.13 It remains true that
edge equilibrium is required for the universal value of co
ductancene2/h to be observed, and a necessary condition
2D(t)5n.

The scaling dimension of an operator determines whe
that operator is relevant in the RG sense when added to
clean actionS0. The operator is relevant with a uniform co
efficient whenD(m),2, relevant with a spatially random
coefficient whenD(m), 3

2, and relevant at a point~with a
d-function coefficient! whenD(m),1. For the random case
this follows from the leading-order RG flow equation fo
disorder strengthD,24

dD

dl
5~322D!D. ~2.5!

It is thus useful to writeV in a way which isolates the part
of V which affectD(m) so that scaling dimensions depen
on as few parameters as possible.

Equation~2.3! is obtained by simultaneously diagonali
ing K and V by a basis changef i5Mi j f̃ j . SupposeM1
bringsK to the pseudoidentityI (n1,n2), i.e.,

M1
TKM15I n1,n25S I n1 0

0 2I n2
D . ~2.6!
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Basis changes preserve the number of positive and neg
eigenvalues of a matrix~‘‘Sylvester’s law of inertia’’!. Now
consider another basis changeM2 which will diagonalizeV
without affecting the pseudoidentity:M2PSO(n1,n2)
⇒M2

TI (n1,n2)M25I (n1,n2), introducing the proper
pseudo-orthogonal group SO(m,n). The real positive sym-
metric matrix V8[M1

TVM1 can be written as
(M2

21)TVDM2
21 for some diagonal matrixVD and some

M2PSO(n1,n2). The entries inVD are all positive and are
thevk

6 from Eq.~2.3!, with (v1,v2) corresponding to~posi-
tive, negative! eigenvalues ofK.

Since VD and I (n1,n2) are diagonal, the correlatio
functions in the basisf̃5(M1M2)21f are trivial:

^ei f̃ j ~x,t!e2 i f̃ j ~0,0!&5e^f̃ j ~x,t!f̃ j ~0,0!&2^f̃ j ~0,0!f̃ j ~0,0!&}
1

x6 iv jt
,

~2.7!

where the sign depends on whetherf̃ j appears with21 or
11 in I (n1,n2). Going back to the original fieldsf, we
obtain

K215M1M2I n1,n2M2
TM1

T5M1I n1,n2M1
T , ~2.8!

VD5M2
TM1

TVM1M2 . ~2.9!

Let us define a matrixD through

I 5M2
TM1

T~2D!21M1M2⇒2D5M1M2M2
TM1

T . ~2.10!

The positive definite matrixD gives the scaling dimension o
the operatorOm : D(m)5miD i j mj . Note that under the ba
sis changef i5Mi j f̃ j , the vectorm transforms to preserve
m̃if̃ i5mif i5miMi j f̃ j , so m̃5MTm. Thus the functions
K(m) andD(m) are basis invariant.

The scaling dimensions are independent of then5n1

1n2 velocities inVD , as expected on physical grounds.M1
depends only onK, not onV, so all possible matricesD for
a given edge are obtained asM2 ranges over SO(m,n) with
M1 fixed. We now introduce a parametrization ofM2 in
which onlyn1n2 coordinates affectD. The physical picture
is that the scaling dimensions are independent of the vel
ties of the eigenmodes and also of the interactions betw
modes going in the same direction; the scaling dimensi
are only affected by interactions between counterpropaga
modes. Thus of then(n11)/2 free parameters inV, n cor-
respond to velocities of eigenmodes,@n1(n121)1n2(n2

21)#/2 to same-direction interactions, andn1n2 to
opposite-direction interactions.

The study of a nonchiral edge with several branches
excitations is thus feasible if one is willing to concentrate
edge properties and renormalization-group flows determi
by the scaling dimensions of various operators. There
interesting physical phenomena which are not determi
solely by scaling dimensions, such as the equilibration
velocities of modes moving in the same direction by int
channel hopping~which does not affect the conductance!.
But the effects of disorder on the commonly measured ph
cal properties can be obtained from studying only then1n2

parameters ofV which affect scaling dimensions, rather tha
the n(n11)/2 needed for a complete description of t
ive
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en
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ng

f
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re
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theory. This is apparent in the study of ann52 case
(n5 2

3 ):11 the velocity matrix has the form

V5S v1 v12

v12 3v2
D , ~2.11!

with one branch in each direction, and the conductance
the structure of the RG flow are found to depend only on
combinationc52v12(v11v2)21/A3.

The separation ofV comes about because every eleme
M in SO(m,n) can be written as a product of a symmetr
positive matrixB and an orthogonal matrixR, both of which
are in SO(m,n). This is a generalization of the familiar de
composition of a Lorentz transformation@an element of
SO(3,1)# into a boost~a symmetric positive matrix! and a
rotation ~an orthogonal matrix!. For all examples in this pa
per m51 or n51 and this decomposition follows easil
from the parameterization of boost matrices given belo
More details are in Appendix A. WritingM25BR,

2D5M1M2M2
TM1

T5M1BRRTBTM1
T5M1B2M1

T . ~2.12!

So D is independent ofR and depends only on then1n2

parameters inB. B can be written

B5expS 0 b

bT 0D ~2.13!

for somen13n2 matrix b.
For a maximally chiral edge, the boost partB is just the

identity matrix, so the scaling dimension of every opera
exp(imjfj) is independent ofV, and in particular the conduc
tances52D(t)5K(t)5n. For nonchiral edges, nonunive
sal values of the conductance are possible with 2D(t)>n
and equality if and only if the velocity matrix is charge u
mixed. This is a special case of the general prope
2D(m)>uK(m)u for all integer vectorsm ~with equality if
and only if theV1 j vanish in the basis withe1im and K21

diagonal!. Consequently the scattering term exp(imjfj) can
only be relevant ifuK(m)u<3. The scattering operator mus
have bosonic commutation relations, so the three possi
ties areK(m)52, 0, and22. If a null vector exists with
K(m)50, the edge is notT stable. Operators withuK(m)u
562 are necessary if the impurities are to drive the ed
state to a fixed point. The next step is to calculate wh
velocity matrices make the scattering termsj(x)exp(imjfj)
1j* (x)exp(2imjfj) relevant.

The possible matricesD for a given edge can be studie
simply by calculating 2D5M1B2M1

T for all boostsB. For a
two-component edge with one branch propagating in e
direction, there is just one boost parameter. For a thr
component edge, there are two parameters, and the sc
dimensions of various operators can be plotted on the p
as functions of these two parameters. For SO(1,m) a useful
parametrization of boosts as a function of momentum co
dinates (p1 , . . . ,pm) is25

B115g5A11p2, B1i5Bi15pi 21 ,
~2.14!

Bi j 5d i j 1pi 21pj 21~g21!/p2,
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TABLE I. Possible nonchiral edge types for dimK<4. For dimK55 there are no principal hierarch
states, and for dimK.5 no states at all which areT stable and have neutral modes in both directions.

dim K Mode directions Example Boost parameters Boost parameters wi
~charge always→) charge mode unmixed

2 1→
1←

n5
2
3 1 0

3 2→
1←

n5
5
3 2 1

1→
2←

n5
3
5 2 0

4 3→
1←

n5
12
31 3 2

2→
2←

n5
12
17 4 2

1→
3→

n5
4
7 3 0
-
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where 2< i , j <m11. It is convenient to work with dimen
sionless momentump5gv because of the singularity atv
5c51 in the velocity coordinates. However, in Sec. III, w
mention an advantage of the velocity coordinates for cer
edges. Permuting indices gives a version appropriate
SO(m,1).

For a given edge it is now possible to search for all p
sibly relevant neutral operators (uK(m)u52) and then calcu-
late where in the space of boost parameters each opera
relevant. The rest of this section describes a few techn
details needed to carry out this program. The search
uK(m)u52 operators is done on a computer: there is a fin
p-adic test for whether an integer quadratic form takes
value zero,23 but we know of none to determine all vecto
for which an integer quadratic form takes a particular no
zero value. When finding phase diagrams in the next sec
it will be useful to consider basis changes not inSL(n,Z)
which bringK21 to diagonal form, so that the locality con
dition is no longer thatm be an integer vector. The loca
operators in the theory are the transforms of integer vec
in the original theory. The advantage of such a basis cha
K21→OK21OT, m→OT21m, which makesK21 diagonal
and brings the charge vectort to the first basis vectore1, is
that some of the boost parameters can be interpreted a
strength of mixing of the charge mode with neutral mod
Then the charge-unmixed velocity matrices will be exac
those with these boost parameters equal to zero. Table I s
marizes the possible parameter spaces for all nonchiral e
with four or fewer components.

For each operator withuK(m)u52, there is some velocity
matrix which gives that operator scaling dimension 2D(m)
52: this follows from the possibility of choosingM1 in Eqs.
~2.8!–~2.10! to makem one of the basis vectors and choo
ing M2, so that all parameters rotatingm into other basis
vectors are zero. The operation of changing bases distort
phase diagram nonlinearly but preserves its topology
produces the same set of possible scaling matricesD. The
sign of K(m) will turn out to affect the dimension of the
subset of matricesV which make exp(imjfj) maximally rel-
in
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evant. The examples of different types of edges listed
Table I are the subject of Sec. III.

III. STRUCTURE OF DISORDERED EDGES

The method described in Sec. II greatly simplifies t
analysis of a nonchiral edge of several condensates. In
ticular, it allows us to determine in which regions of th
space of velocity matricesV a particular impurity scattering
operator exp(imjfj) is relevant, and hence determine th
phase diagram of the edge state. We find that the edge
single quantum Hall state can have different phases, w
transitions between phases caused by changes inV. We also
find that only a special class of edge states~‘‘principal hier-
archy states’’! have enoughuK(m)u52 impurity scattering
operators to ensure that the conductivity is driven to
quantized value. The phase diagrams for this class of e
states show remarkable symmetries absent in the phase
gram of a general edge. In Sec. IV these symmetries
shown to reflect broken symmetries of theK matrix.

All the examples are in the hierarchy of quantum H
states.21,22 Hierarchical states have tridiagonalK matrices
with all off-diagonal matrix elements equal to 1 andK115 l
an odd integer,Kii 5ni even for i 52, . . . ,dimK. The ma-
trix will often be given simply by its diagonal elemen
( l ,n2 , . . . ). Thecharge vector ist5(1,0, . . . ,0). Thenum-
ber of modes moving opposite the direction of the cha
mode is equal to the number of negative elements on
main diagonal. States with alluni u52 are called principal
states and are the most stable states at each level o
hierarchy.

First we study the edges of all hierarchy states at sec
level ~dim K52), and show that the principal hierarch
states are all similar to then5 2

3 state studied by KFP. The
states which are not principal have no relevant random
erators, and are thus unaffected by weak impurity scatter
In particular, for these states elastic impurity scattering alo
is insufficient to give edge equilibration at low temperatu

A rich variety of behavior is possible for dimK53 states,
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where the two neutral modes can move in the same direc
~opposite the charge mode! or in opposite directions~cf.
Table I!. The principal hierarchy state of dimK5n with all
neutral modes in the same direction flows to an SU(n)
3U(1) fixed point, which is the only point where condu
tance is quantized. The charge mode satisfies a U(1) K
Moody algebra, and then21 neutral modes satisfy a
SU(n) Kac-Moody algebra. The highly symmetric pha
diagram for the SU~3! case is shown not to describe th
simplest few nonprincipal states.

For the dimK53 case with neutral modes in both dire
tions, conductance is quantized along a line in the ph
diagram, and for the principal hierarchy states we find
infinite number of fixed points along this line correspondi
to the infinite number of possibly relevant random operato
There are two different types of fixed points which corr
spond to two measurably different phases. A few results
the dimK54 cases are also presented. No principal hie
chy edges with dimK.4 are topologically stable excep
those with all neutral modes in the same direction.12

A. Edges with dim K52

The K matrix in the hierarchy basis has the form

K5S l 1

1 nD , t5~1,0!, ~3.1!

with l odd andn even. For the state to be nonchiral,n,0. A
quick calculation shows that ifm5(m1 ,m2) is a charge-
neutral K(m)522 operator @there are no charge-neutr
K(m)52 operators#, m1

2522/n which has the solutions
m1561 if n522 and no integer solution otherwise. Hen
for principal hierarchy states (n522) there is one complex
conjugate pair of possibly relevant operators labeled bym
56(1,22), while for other hierarchy states there are
relevant random operators.

For a dimK52 state there is a single boost parametep
and a single value of this parameter that makesV charge
unmixed. It remains to show that this value is exactly t
value which gives the scattering operator exp(imjfj) its mini-
mum scaling dimensionD51. In the basis oft5(1,0) and
m5(1,22), K21 is diagonal with elements (n,22) and the
scaling dimension matrix is

2D5S An 0

0 A2
D B2S An 0

0 A2
D

5S An 0

0 A2
D S A11p2 p

p A11p2D S An 0

0 A2
D .

~3.2!

The conductance 2D(t) is nA11p2 and the scaling dimen
sion D(m) is A11p2. So D(m)51 exactly at the charge
unmixed point (p50), as required. The region of attractio
of this fixed point is determined by the equationD(m)< 3

2,
giving 2A5/2<p<A5/2 for n5 2

3.
Now we briefly outline the exact solution at the fixe

point found by KFP which also shows the stability of th
fixed point under RG transformations. Let the element
n

c-

se
n

s.
-
n
r-

e

y

fields in the basis defined above be the charge modefr and
neutral modefs . At the fixed point,

K5S n 0

0 22D , V5S vr 0

0 2vs
D . ~3.3!

The three operators]xfs , exp(ifs), and exp(2ifs) all have
scaling dimension 1 and satisfy an SU~2! algebra. The action
at the fixed point is

S5E
x,t

Fn]xfr

4p
~ i ]t1vr]x!fr1

2]xfs

4p
~2 i ]t1vs]x!fs

1@j~x!eifs1H. c.#G , ~3.4!

obtained by substituting the fixed pointK and V into Eqs.
~2.1! and~2.2!. Now the fixed-point action can be written i
terms of a two-component Fermi field by introducing an au
iliary bosonic fieldx which does not affect physical quant
ties: c15exp@i(x1fs)/A2# andc25exp@i(x2fs)/A2#. The
clean part of the action is diagonal in the components, wh
the impurity term becomes a Hermitian combination of ra
ing and lowering operators,c1

†c2 and c2
†c1, with random

coefficients. The impurity term is then eliminated by a loc
SU~2! gauge transformation which preserves the clean p
of the action. The clean part of the action is just the act
for free chiral fermions.

When the system is near but not at the fixed point, ther
a weak couplingVrs]xfr]xfs between the charged an
neutral modes. The scaling dimension of this term in
original action is 2, so the operator is marginal with a u
form coefficient. However, the SU~2! rotation of]xfs gives
this term a random coefficient and makes it irrelevant. A
cording to this picture, onceV falls into the basin of attrac-
tion of the fixed point, i.e.,upu⇐A5/2 in Eq.~3.2!, it flows to
the fixed pointp50 with K andV given by Eq.~3.3!. Since
the boost part ofV is uniquely determined at the fixed poin
many physical properties are uniquely determined, such
the conductances5ne2/h. The same technique of fermion
ization followed by a gauge transformation solves t
SU(n)3U(1) fixed point described below.

B. Three-branch edges with parallel neutral modes

Such edges have both neutral modes antiparallel to
charge mode~line 3 of Table I!. There is a single charge
unmixed point in the boost coordinates of Sec. II. In t
hierarchy representation such edges haveK matrix (l ,2n1 ,
2n2). The principal hierarchy edges of this type aren5 3

5

with K5(1,22,22), n5 3
11 with K5(3,22,22), and so

forth. The principal hierarchy edges withn condensates and
all neutral modes antiparallel to the charge mode have
SU(n) symmetry (n5dim K) in their K matrix (l ,
22, . . . ,22), as first pointed out by Read.19 The filling
fraction is n5n/@n( l 11)21#. Kane and Fisher showed20

that each of these edges has a fixed point with a charge
fr of dimensionn/2 and a set ofn21 dimension 1 neutra
fields fs

i obeying an SU(n) algebra. There aren21 roots
of SU(n) which correspond to then21 operators]xfs

i .
Now we obtain the phase diagram for then53 case, which
is easily generalized ton.3.
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Any neutral operatorOm for these edges has negativ
K(m) because all neutral modes travel opposite the direc
of charge. There must be (n221)2(n21)5n(n21) opera-
tors with K(m)522 in order to obtain the complete SU(n)
algebra~here m and 2m are counted independently!. For
n5 3

5 this requires six such operators, which in the hierarc
basis are labeled bym56(0,1,22),6(1,22,1),6(1,21,
21). Now the technique of Sec. II can be used to find wh
these operators become relevant, and thus the region o
traction of the fixed point. For this case the procedure
described in detail for the sake of clarity; for subsequ
cases some intermediate steps will be skipped.

The basis$(1,0,0),(0,1,22),(2,23,0)% bringsK21 to di-

agonal form with elements (3
5 ,22,26). The above six op-

erators withK(m)522 become6(0,1,0), 6(0,1
2 , 1

2 ), and

6(0,1
2 ,2 1

2 ). At the fixed point point,V is also diagonal in
the new basis$fr ,f1 ,f2%, and exp(ifr) has scaling dimen-
sion n/25 3

10, exp(if1) scaling dimension 1, and exp(if2)
scaling dimension 3, so that a neutral operator exp(im1f1
1im2f2) has scaling dimensionm1

213m2
2. Let D be the

diagonal matrix with diagonal elements (A3
5 ,A2,A6), which

are the square roots of twice the scaling dimensions of
basis fields at the fixed point. Using the boost parame
(p1 ,p2), g5A11p1

21p2
2, to parametrize nondiagonalV,

we find the scaling dimension matrix in the bas
$fr ,f1 ,f2% is

2D5DS g p1 p2

p1 11
p1

2~g21!

p1
21p2

2

p1p2~g21!

p1
21p2

2

p2
p1p2~g21!

p1
21p2

2
11

p2
2~g21!

p1
21p2

2

D 2

D.

~3.5!

From this equation it is apparent that forp15p250 ~a diag-
onalV in our basis! all six operators have scaling dimensio
equal to 1, and this is the only charge-unmixed point sinc
pi is nonzero the charge mode is partly mixed with thei th
neutral mode. Figure 1 shows the scaling dimension of
possibly relevant operators as functions of (p1 ,p2). The

FIG. 1. Plot of scaling dimension of the threeuK(m)u52 opera-
tors for then5

3
5 edge as functions of boost parameters (p1 ,p2).

The charge-unmixed point is the origin. Dashed lines indicate w
operators become marginal@D(m)5

3
2#, and solid lines indicate

when operators become maximally relevant@D(m)51#.
n

y

n
at-
s
t

e
rs

if

e

scaling dimension of (0,1,0) is independent ofp2, so its
contours are exactly vertical. Note that such a plot can
drawn without any information about the fixed point.

The interpretation of RG flows from Fig. 1 is quit
simple. Each relevant scattering operator causes the velo
matrix to move to make the operator maximally releva
(D51). If the starting velocity matrix is near the origin, a
three operators are relevant and drive the velocity matrix
the origin, the only point at which all three are maximal
relevant. The high symmetry of the graph reflects the SU~3!
symmetry of the fixed point. General three-species hierar
states do not have this symmetry in the phase diagram,
do not have enoughuK(m)u522 operators to determine
unique fixed point. For example, then5 7

11 state (1,22,
24) and then5 7

9 state (1,24,22) both have just one
K(m)522 operator which is maximally relevant along
line through the origin. The phase diagram is like Fig. 1 w
only one line instead of three. Now the charge-unmix
point has an SU~2! symmetry rather than an SU~3! symme-
try, because only one impurity operator is relevant. It is n
clear that the system flows to this point in the absence
long-range interactions, even if it starts near the char
unmixed point, because other points along the maxima
relevant line are also possible fixed points.

The n5 15
19 state (1,24,24) has nouK(m)u52 operators

at all, so no stable fixed points result from the addition
weak disorder. States with nouK(m)u52 operators are pre
dicted to have diverging equilibration lengths from impuri
scattering as temperature is lowered, since impurity sca
ing is never relevant. For the other type of third-level hie
archical states, which have one neutral mode parallel to
charge mode, the same basic property is seen: only for p
cipal hierarchy states are there enoughuK(m)u52 operators
for impurity scattering to determine a discrete set of char
unmixed fixed points.

C. Three-branch edges with antiparallel neutral modes

These edges have a line in the phase diagram along w
the conductance is quantized, rather than a point as in
previous cases. For the principal hierarchy states, there
infinitely many uK(m)u52 operators, and these can be en
merated by a simple linear recursion relation. Examples
n5 5

3 with K5(1,2,22), n5 5
7 with K5(1,22,2),n5 5

13 with
K5(3,2,22), and n5 5

17 with K5(3,22,2). These four
edges all have the property that theiruK(m)u52 operators
Om form a ~vector! Fibonacci sequence:mn115mn1mn21.
The reason why these four edges have the same Fibon
pattern is that theirxLL theories have, up to a minus sign
the same neutral sector. Thus properties which depend
on neutral operators are shared by all statesK5( l ,2,22) and
K5( l ,22,2) independent ofl . The familiar scalar Fibonacc
sequence (1,1,2,3,5, . . . ) haspreviously appeared in physic
in growth models of phyllotaxis. Note that the proper
mn115mn1mn21 is linear and hence independent of bas

The n5 5
3 edge is convenient to study because of

SL(3,Z) equivalence to the diagonalK matrix with elements
(1,1,23). The charge vector in this basis ist5(1,1,1). This
gives the state a natural interpretation as an5 1

3 gas of holes
in two filled Landau levels. Also in this basis
K(m1 ,m2 ,m3)5K(m2 ,m1 ,m3). The uK(m)u52 operators

n
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in this theory are labeled bym56(1,21,0), 6(1,0,3),
6(2,21,3),6(3,21,6),6(5,22,9), . . . , plus the same list
with first and second elements exchanged. The sign ofK(m)
alternates between terms in this sequence: (1,21,0) has
K(m)52 ~as befits hopping between two rightward-movi
modes!, (1,0,23) hasK(m)522, and so forth. There is a
important difference betweenK(m)52 andK(m)522 op-
erators:K(m)52 operators are maximally relevant along
line in the phase diagram, whileK(m)522 operators are
maximally relevant at a single point. This happens for
same reason that the charge-unmixed region was a s
point for edges with all neutral modes opposite the cha
mode. In a basis withm an eigenvector, if there are no oth
eigenvectors with the same direction, then every boost
volvesm and affects its scaling dimension. If there are oth
eigenvectors in the same direction, there is a nontrivial lin
space of boosts which do not affect the scaling dimensio
Om .

The scaling dimension of the first fewuK(m)u52 opera-
tors for n5 5

3 are plotted in Fig. 2 as functions of boost p
rameters (pn ,pc) according to

2D5D8S 11
pc

2~g21!

pc
21pn

2
pc

pcpn~g21!

pc
21pn

2

pc g pn

pcpn~g21!

pc
21pn

2
pn 11

pn
2~g21!

pc
21pn

2

D D8.

~3.6!

This expression forD is in the basist5(1,1,1), m15(1,
21,0), and m25(1,1,6) in terms of the original basis
@whereK5(1,1,23)#. Let fr , f1, andf2 be the three bo-
son fields in our basis. The diagonal matrixD8 has elements
(A5/3,A2,A10). This expression forD is similar to Eq.~3.5!
for n5 3

5 with two important differences: the scaling dime
sion of eif2 is 5 rather than 3 at the fixed point (pn5pc
50), and the timelike row and column of the boost mat

FIG. 2. Plot of the scaling dimension of the first 11uK(m)u
52 operators for then5

5
3 edge as functions of boost paramete

(pn ,pc). Dashed and solid lines are as in Fig. 1. The char
unmixed line is thex axis. At each point on thex axis where one
operator is maximally relevant, two other operators are margi
Points A and B are examples of the two different types of fixe
point.
e
le
e

-
r
r

of

correspond tof1 rather thanfr , because now it is one o
the neutral modes rather than the charge mode which ha
other modes parallel to it.

In the coordinate space (pn ,pc) ~Fig. 2!, K(m)522 op-
erators are relevant on compact regions andK(m)52 opera-
tors on noncompact regions of the plane. The fixed po
form lines and isolated points in Fig. 2, where one opera
with uK(m)u52 is maximally relevant. For fixed points o
the charge-unmixed linepc50 ~the x axis in Fig. 2!, there
are two marginal operators with the opposite sign ofK(m).
Thex coordinates of these special points are found by tak
alternately the rational part and the coefficient ofA5 in @(1
1A5)/2#n. The theory at each of these fixed points is sim
lar: in a basis bringing the maximally relevant opera
exp(imjfj) to exp(if1), f2 can be chosen so that the ma
ginal operators at the fixed point are exp@i(f16f2)/2#, and
exp(if2) has a scaling dimension 5 rather than 3 in then
5 3

5 case. The scaling dimension of the marginal operator
then @D(f1)1D(f2)#/45(115)/45 3

2, as required. The
marginal operators cannot form an SU~3! multiplet with the
maximally relevant operator because their scaling dim
sions are different. We have not been able to obtain an e
solution of this fixed point. Appendix B describes th
leading-order RG flows along the charge-unmixed line
tween pointsA andB, and addresses the stability of the tw
types of fixed points. The reasons for the periodicity of F
2 are discussed in Sec. IV.

Several dimK53 nonprincipal edges of this type~anti-
parallel neutral modes! were studied, and all were found t
have too fewuK(m)u52 operators for the system to flow t
a quantizeds. The four hierarchical states withK matrices
@(1,2,24), (1,22,4), (1,24,2), and (1,4,22), n5 9

5,
9
13,

9
11,

and 9
7# are notT stable, and have only oneuK(m)u52 op-

erator. The two states withK matrices (1,4,24) and (1,
24,4), n5 17

13 and 17
21, each have a Fibonacci sequence

uK(m)u54 operators as well as oneK(m)52 and one
K(m)522 operator. The resulting phase diagram forn5 17

13

is shown in Fig. 3. Most velocity matrices near the charg
unmixed line are not affected by eitheruK(m)u52 operator.
If the startingV matrix makes theK(m)522 operator rel-
evant, the system is driven by impurity scattering to the (0
point on the charge-unmixed line. For starting points w

-

l.

FIG. 3. Plot of scaling dimension of the twouK(m)u52 opera-
tors forn5

17
13. Axes are as in Fig. 2. At most points on the charg

unmixed line, there are no relevant disorder operators. PointsA and
B are the two charge-unmixed fixed points.
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this operator irrelevant, impurity scattering is insufficient
give edge equilibration at low temperatures.

Tuning theV matrix in then5 17
13 state in principle allows

a transition like the KFP transition forn5 2
3 to be observed,

even if the system is always on the charge-unmixed li
Recall that forn5 2

3 the system has continuous, nonuniver
scaling dimensions as long asV is not too close to the
charge-unmixed point. A transition occurs whenupu5A5/2
in Eq. ~3.2!, and for upu<A5/2 the system has a univers
scaling dimension matrix. In then5 17

13 state, asV is tuned on
the charge-unmixed line the scaling dimension matrix is c
tinuously variable until one of the disorder operators b
comes relevant; thenV is driven to one of the two fixed
points, depending on which operator is relevant. Unfor
nately then5 17

13 state is expected to be quite difficult t
observe, as it is a nonprincipal state with three condensa

D. Edges with dim K54

The edges with all neutral modes opposite the cha
mode have a single charge-unmixed point in the thr
dimensional space of boost parameters, while the other
types of edges~Table I! have a plane of charge-unmixe
points. This section studies the charge-unmixed plane
four-condensateT-stable principal hierarchy states, and fin
a pattern with high symmetry and three different types
fixed points, two of which are exactly solvable. The sta
studied haveK5( l ,2,22,2) or K5( l ,22,2,22), which
were shown by Haldane to be the only dimK54 T-stable
principal hierarchy states with neutral modes traveling
both directions.12 Examples aren5 12

31 with K5(3,22,2,
22), andn5 12

17 with K5(1,2,22,2).
These states behave differently away from the char

unmixed plane, but have identical structures on the pla
where each state has two neutral modes traveling in one
rection and one neutral mode traveling in the opposite dir
tion, as well as a decoupled charge mode. For definiten
we study then5 12

17 state, although all four statesn5 12
7 , 12

17,
12
31 , and 12

41 have the same neutral sector. Each of these st
has an infinite number ofuK(m)u52 operators. For then5
12
17 state,K(m)52 operators are relevant on compact regio
and K(m)522 operators on noncompact regions of t
plane. The maximally relevant points and contours are p
ted in Fig. 4 as functions of boost parameters. The points
the intersections of the contours mark the position of fix
points. The points markedA, B, andC are examples of the
three different types of fixed points. Plotting the margin
contours of theuK(m)u52 operators gives Figs. 5~a!–5~c!.
Figure 5~a! was obtained by choosing a basis to bring a po
(A) of sixfold symmetry to the origin. There are also poin
of fourfold symmetry (B) as at the origin of Fig. 4, Fig. 5~b!,
and Fig. 6, and points of twofold symmetry (C) as in Fig.
5~c!. There is noa priori reason to favor one type over th
others. In the same way, Fig. 2 could have been drawn u
a different basis to bring pointB at the origin. The third type
of fixed point has one operator maximally relevant and fo
marginal operators: these points are visible in Figs. 5~a!–5~c!
as the crossings of four marginal lines at the center o
marginal circle. These ‘‘double-marginal’’ fixed points re
semble the fixed points of the Fibonaccin5 5

3 state, except
that there are four rather than two marginal operators. Fig
.
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6 shows a curious property of these four-condensate ed
the most relevant contours plotted as functions of ‘‘velocit
coordinates rather than ‘‘momenta’’pi in Eq. ~2.14! turn out
to be straight lines. Marginal contours are not straight lin
even those which are straight lines in Fig. 5~b!. Mathemati-
cally the most relevant contours are straight because
square-root terms cancel in the equationD(m)51 which
determines the contour, leaving only linear terms.

The complicated patterns in Figs. 5~a!–5~c! have physical
consequences. The sixfold symmetric points likeA have
three maximally relevant operators and an SU~3! symmetry
identical to that of then5 3

5 fixed point previously studied
The fourfold symmetric points likeB have two independen
uK(m)u52 operators and an SU(2)3SU(2) symmetry
which is similar to the SU~2! symmetry of then5 2

3 fixed
point. The double-marginal points likeC are shown in Sec.
V to give a different tunneling exponent than the rough
similar n5 5

3 fixed point. These different phases within th
charge-unmixed plane are important even if quantum H
systems necessarily have quantized conductance, as has
suggested.12 PointsA andB are stable and solvable, but a
shown in Sec. V to have different measurable properties,
single FQH edge with impurities can have several physica
different stable phases.

A complete understanding of these dimK54 states
would require studying the three- or four-dimensional plo
of which Figs. 5~a!–5~c! are sections. One difference be
tween the dimK54 states and the states studied up to t
point is that there are small regions of the charge-unmi
plane on which only one operator is relevant, making it le
certain that points not on the plane but near one of th
regions would flow toward the plane as required for rob
quantization. The dashed line betweenA andB in Fig. 5~a!

FIG. 4. The most relevant contours ofuK(m)u52 operators on
the charge-unmixed plane of then5

12
17 edge as functions of boos

parameters (p1 ,p2). PointsA, B, andC are examples of the thre
different types of fixed points:A is an SU~3! point, B an SU(2)
3SU(2) point, andC a ‘‘double-marginal’’ point. Dots are the
most relevant points ofK(m)52 operators, and lines are the mo
relevant lines ofK(m)522 operators.
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FIG. 5. Plots~a!–~c! show themarginalcontours rather than the most relevant contours ofuK(m)u52 operators for then5
12
17 edge. The

three plots were obtained using different bases:~a! has the SU~3! point A at the origin, and~b! the SU(2)3SU(2) pointB, while ~c! has the
‘‘double-marginal’’ pointC. Note that the three plots have the same topology. Plot~b! is the same as Fig. 4, except that marginal rather t
most relevant contours are shown.
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passes through one such region. Some experimental pro
ties of the dimK54 states are discussed in Sec. V.

IV. SYMMETRIES OF THE EDGE

This section discusses the effects of impurity scattering
the symmetries in thexLL theories of various edges. Th
restoration of symmetry by impurity scattering will be show
to explain the patterns in the phase diagrams found in S
III. The xLL theory of a quantum Hall edge contains tw
matricesK andV and a charge vectort, as described in Sec
II. The integer matrixK may admit discrete symmetries
which are described by integer matricesM invertible over
the integers with

MTKM5K, MTt5t. ~4.1!
er-

n

c.

Most velocity matricesV do not have such symmetries. Thu
a symmetry possessed byK is in general broken by theV
terms in thexLL action.

One result of KFP is that impurity scattering can drive t
velocity matrix to a fixed point where all the symmetries
K are symmetries of the full theory. In this section we sho
that, for the edges with infinitely many fixed points found
Sec. III, impurity scattering sometimes restores some but
all of the symmetry of theK matrix. Because of this broken
symmetry, the different fixed points are like spin-up a
spin-down fixed points for an Ising ferromagnet below t
transition temperature: the Ising fixed points are carried i
each other by spin rotation, which is a symmetry of the sta
ing Hamiltonian but not of the fixed points. The infinitel
many impurity fixed points are carried into each other
symmetries ofK which are not symmetries ofV at the fixed
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points. The broken-symmetry structure can be very rich
in the case of then5 12

17 state, which has three different type
of fixed points, each breaking different symmetries ofK.

The matrix M in Eq. ~4.1! gives a transformationf i

5Mi j f̃ j of the bosonic fieldsf i under which the action is
form invariant. The discrete symmetry transformationM can
reflect an underlying continuous symmetry, as in the the
of the n5 2

3 , 3
5 , 4

7 , . . . states, where the discrete symmetr
of the K matrix reflect an SU(n) symmetry of the field
theory,n5dim K.19 It is easily seen that the symmetriesM
of a givenK matrix form a group with matrix multiplication
as the group product. The key difference between edges
a single impurity fixed point and edges with infinitely man
fixed points is that the the former have finite symme
groups, while the latter have infinite symmetry groups.
examples of the two types, we find the symmetries of thn
5 3

5 ~finite! and 5
3 ~infinite! edges. The results presented f

n5 5
3 also apply to the other Fibonacci-type edges:n

5 5
7 , 5

13 , 5
17. Section V shows that the two different types

fixed points in then5 5
3 edge have different experimental

observable properties. Then5 12
17 edge ~likewise n5 12

7 , 12
31,

and 12
41! is shown to have three different types of fixed poin

related by a complicated symmetry group.
The n5 3

5 state in the hierarchy basis has

K5S 1 1 0

1 22 1

0 1 22
D , t5~1,0,0!. ~4.2!

One way to find the symmetries ofK is to start with trans-
formationsW, bringingK to diagonal form and preservingt,
as were used in Sec. III to obtain phase diagrams. LetD be
the matrix with diagonal elements (1,21,1). If WTKW is
diagonal, thenM5WDW21 is a symmetry ofK with the
property thatM25I , the identity. The effect ofM is to use

FIG. 6. The most relevant contours ofuK(m)u52 operators on
the charge-unmixed plane of then5

12
17 edge as functions of‘‘ve-

locity’’ coordinates (v1 ,v2). The plot is the same as Fig. 4, exce
that contours are shown as functions of ‘‘velocities’’ rather th
‘‘momenta.’’ Only the 42 most relevant operators at the origin a
shown, because the full diagram becomes infinitely dense at
edge of the circle.
s

y
s

ith

s

W to go to independent fieldsf̃ i , change the sign of one
field, and then return to the original fields. The problem
that M is only integral for some choices ofW. One hopes
that by choosing different matricesWi , one can find enough
integralMi to generate the entire group of symmetries. T
Mi are improper, since detMi521; the proper symmetry
group contains only products of even numbers ofMi .

For n5 3
5, two generators found using this trick are

x5S 1 0 0

0 1 0

0 1 21
D , y5S 1 0 0

1 21 1

0 0 1
D . ~4.3!

The elementxy is a proper symmetry which generates
120° rotation of Fig. 1, and, as expected, (xy)35I . The sym-
metry group has six elements: three proper eleme
$I ,xy,(xy)25y21x21% and three improper element
$x,y,xyx%. It is easy to check that these six elements are
full symmetry groupG. The velocity matrix at the fixed
point also has all of these symmetries.~For the sake of ex-
actness, recall that the origin of Fig. 1 represents the set o
velocity matrices with certain values of the boost paramet
as described in Sec. II. There is an additional RG flow of
other parameters inV which makes the two neutral mode
have the same velocity. Without this additional flow, on
the boost part of the velocity matrix would have the symm
try.!

One simple consequence of the symmetry at then5 3
5

fixed point is that theV-dependent scaling dimension matr
D, which determines the scaling dimension of the opera
Om5exp(imjfj) according to D(m)5miD i j mj , has the
same symmetries asK21: xDxT5yDyT5D. Note thatD
transforms likeK21 rather thanK, so its symmetries are
transposed symmetries ofK. At the fixed pointD is invariant
under all symmetries ofK21 for any edge with all neutra
modes moving opposite the charge mode, as now sho
These edges have fixed points whereK21 and D are both
diagonal in some integral basis with first basis vectore15t.
K21 has all diagonal entries negative except for the first, a
2D5uK21u has all diagonal entries positive. Any vectorm
with chargeq5tK21m can be written asm5at1n, wheren
has charge zero (tK21n50) anda5tK21m/tK21t5qn21.
Now, with K(x)5xK21x,

2D~m!52D~at1n!5a2K~ t!2K~n!5
q2

n
2K~n!.

~4.4!

Let m85Mm be the image ofm under a symmetry ofK21.
Then 2D(m8)5q2/n2K(n8)5q2/n2K(n)52D(m), since
n85Mn. Thus D has every symmetry ofK21 for any
charge-unmixed fixed point in a state with all neutral mod
opposite the charge mode. Broken-symmetry fixed po
therefore appear only in states with neutral modes in b
directions. The same argument gives that at any cha
unmixed fixed point whereK andD are diagonal,

2D~m!>q2/n, ~4.5!

whereq is the charge ofm. This inequality appears in the
discussion of quasiparticles in Sec. V.
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The same technique can be used to find the symmetrie
K for the n5 5

3 Fibonacci-type edge shown in Fig. 2. Tw
elements of the symmetry group are found from changing
sign of (1,21,0), which corresponds to reflectingx↔2x in
Fig. 2, and from changing the sign of (0,1,3), which cor
sponds to reflecting thex axis through pointB. The resulting
matrices are

u5S 0 1 0

1 0 0

0 0 1
D , v5S 1 0 0

0 2 3

0 21 22
D . ~4.6!

The difference between this case and the previous one
pears whenu and v are multiplied to obtain other grou
elements. The elementw[uv is a proper symmetry of infi-
nite order: I ,w,w2, . . . are all different matrices and a
symmetries ofK. Each application ofw corresponds to trans
lating Fig. 2 horizontally. The Fibonacci propertymn11
5mn1mn21 mentioned earlier is a consequence of symm
try underw. The powers ofw and its inverse give the entir
proper symmetry group, which is isomorphic toZ1, the
group of integers under addition. The full symmetry group
isomorphic to the semidirect product ofZ1 and the binary
group$1,21%.

At each fixed point,D has a much smaller symmetr
group thanK. The only symmetry ofD at a fixed point other
than I is the unique reflection which changes the sign of
operator maximally relevant at the fixed point. For examp
u is a symmetry of pointA (uDAuT5DA), but v is not. It is
apparent from Fig. 2 that some symmetry ofK21 is broken
at each fixed point, because neutral operatorsmi with the
same minimum scaling dimensionsK(mi)52 have different
actual scaling dimensionsD(mi). The matrix w5uv is a
symmetry of no fixed point, but its effect is to move th
system from one fixed point to the next:wD iw

T5D i 11,
where i labels fixed pointsof the same type, i.e., w never
takes maximally relevant points ofK(m)522 operators to
maximally relevant points ofK(m)52 operators, sincew
preservesK. Thus in Fig. 2 there is no symmetry taking poi
A to point B. In Sec. V, it is shown that the two differen
types of fixed points have different experimentally meas
able properties.

By applying symmetries ofK, the boost part of any ve
locity matrix can be made to lie in the region bounded by
maximally relevant lines of (1,21,0) and (21,2,3) in Fig. 2.
This region is a ‘‘fundamental period’’ of the symmetries
K. However, different fixed points of the same type m
correspond to experimentally different phases, even tho
they are related by a discrete symmetry and will have
same scaling dimensions, etc. The reason is that an ex
mental probe will couple nonuniversally to some combin
tion of the original fieldsf i , which after applying a symme
try of K will be some different combination of the redefine
fields f i8 . Experiments will measure different prefactors f
various quantities at different fixed points of the same ty
Hence even if only points of typeA are found to be stable fo
n5 5

3, for example, there would still be multiple edge phas
with true transitions at phase boundaries. This is not tru
there arecontinuousrather than discrete symmetries of th
xLL system relating fixed points of the same type, since th
of
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all the fixed points are continuously connected. Such a s
ation occurs if the discrete symmetries of the bosoniz
(K,V) theory arise from continuous symmetries of the u
derlying fermionic Lagrangian. We discuss this point furth
for the n5 3

5 state in Sec. VI. Stable fixed points of differe
types always give different phases.

Multiple-condensate edges have quite complicated s
metry groups, and it is an interesting mathematical exerc
to classify these groups in terms of familiar finitely genera
groups. The symmetry group ofn5 3

5 found above isD3, the
triangular dihedral group, for example. Principal hierarc
states with all neutral modes opposite the charge mode h
finite symmetry groups, and principal hierarchy states w
neutral modes in both directions have infinite symme
groups. Nonprincipal hierarchy states often have no n
trivial symmetries. Here we will be content to mention som
results on the four-condensate principal hierarchy states
cussed previously. The four-condensate statesn5 12

7 , 12
17,

12
31,

and 12
41 have three distinct types of fixed points@A, B, andC

in Figs. 5~a!–5~c!#. The phase diagram has sixfold symmet
about pointA, fourfold symmetry about pointB, and twofold
symmetry about pointC. It seems likely that these poin
symmetries are sufficient to generate the full symme
group, which at pointA is broken to a six-element subgrou
and similarly for B and C. A fundamental period of the
symmetry group is drawn in Fig. 5~a!. A set of generating
matrices forn5 12

17 in the hierarchy basis is then

m15S 1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 21

D , m25S 1 0 0 0

1 21 1 0

0 0 1 0

0 0 0 1

D ,

m35S 1 0 0 0

0 1 0 0

0 21 21 21

0 0 0 1

D . ~4.7!

Thesemi were obtained with the sign-flip procedure us
above: for eachi , detmi521 andmi

25I . The symmetries
of point B are generated bym1 andm2, which commute, and
m3 gives a rotation byp around pointC. A sample element
of order 3 ism1m3m2m3, and an element of infinite order i
m3m2.

V. IMPLICATIONS FOR EXPERIMENT

The conductance and other experimental properties o
quantum Hall state are affected by disorder according to
RG flows described in the preceding sections. One impor
feature of the three- and four-condensate principal hierar
states is that they can have multiple phases within
charge-unmixed subset of velocity matrices. This is differ
from the situation in two-condensate states and for any s
with all neutral modes moving in the same direction, whe
the quantization of conductance occurs at a single poin
boost-parameter space and no phase transitions are pred
within the charge-unmixed subset of velocity matrices.

In this section we consider first then5 5
3, state and argue
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that experimental setups are likely to be close to pointB in
the phase diagram~Fig. 2!. The n5 5

7 state probably offers
the best chance for an experimentally accessible phase
sition. We calculate electron and quasiparticle tunneling
ponents for the different types of fixed points found in t
preceding sections, and show that different phases at
same filling fraction have different temperature dependen
of electron tunneling through a barrier.

The n5 5
3 state seen experimentally is likely to conta

both up and down spins: it consists of an51 state of spin-up
electrons and an5 2

3 state of spin-down electrons, or vic
versa. The fully polarized state has higher energy than
mixed-spin state because some electrons lie in the se
Landau level rather than the first, costing energy proportio
to \vc , wherevc is the cyclotron frequency. This dom
nates the savings in the Zeeman and Coulomb energies
polarizing the spins, at least in GaAs, where the effectivg
factor and Zeeman energy are small. The fully polarized s
might appear in other materials with largerg, or in tilted-
field configurations which allow the Zeeman energy to
increased withvc constant.

In the mixed-spinn5 5
3 state, scattering between up an

down spins is expected to be very weak unless magn
impurities are added. Thus the spin-up and spin-down c
ponents are largely independent. Independentn51 and 2

3

liquids are described by pointB in Fig. 2 because the veloc
ity matrix which has no interactions between the two liqu
gives the scaling dimension matrix

2D5S 2D1 0 0

0

2D2/3

0

D 5S 1 0 0

0 2/3 0

0 0 2
D , t5~1,1,0!

~5.1!

which is brought by a change of basis to pointB. It is shown
below that pointB has the same low-temperature tunneli
conductance exponentG;T0 as a combination of an51
state (G;T0) and n5 2

3 state (G;T2) would have. The
fixed pointA is not easily interpreted as a sum of two ind
pendent edges. AtA the operator (1,21,0) which hops
charge between the two right-moving modes is maxima
relevant, suggesting that in this phase then5 1

3 left-moving
mode pairs with a bound, SU~2! symmetric combination of
right-moving modes rather than with just one right-movi
mode as at pointB.

The n5 5
7 ground state is spin polarized, and its two ed

fixed points may be more easily found experimentally th
those of then5 5

3 state. Then5 5
7 state is equivalent in

K-matrix terms to an5 2
7 gas of holes in an51 state:Kh

5MTK8M ,MTt85t, with t85(1,1,0) andt5(1,0,0):

Kh5S 1 1 0

1 22 1

0 1 2
D ,
n-
-

he
es

e
nd
al

m

te

e

tic
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y
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n

K85S K1 0 0

0

2K2/7

0

D 5S 1 0 0

0 23 21

0 21 2
D , ~5.2!

M5S 1 1 0

0 21 0

0 0 1
D .

However, theV matrix V122/7 with no interactions between
the n5 2

7 holes andn51 electrons gives a conductance~in
units of e2/h) s5 9

7 5112/7 rather thans5 5
7 5122/7.

This happens for exactly the same reason that an5 2
3 state

with velocity matrix describingn5 1
3 holes not interacting

with n51 electrons gives a conductances5 4
3: the quantized

value of conductance is only obtained if the edge equ
brates, and all charged eigenmodes move in the same d
tion.

It is not difficult to find the point represented byV122/7 in
the n5 5

7 version of Fig. 2~which looks similar but with
some stretching along they axis!: it lies on they axis with
boost coordinates (0,A2/5). This is not a fixed point in the
presence of disorder, and we expect the system to flow
fixed point of typeA or type B. Unlike in the n5 5

3 case,
where typeB was easily interpreted as an51 state plus a
n5 2

3 state with no interactions between the two, forn5 5
7 we

have no simple interpretation of either phase as two indep
dent subedges. TheK matrix Kh is inequivalent to a combi-
nation of n5 2

3 and 1
21 because det KhÞ(det K2/3)

3(det K1/21), so no invertible integral basis change can r
late the two. Below we show that theA andB phases can be
distinguished experimentally, so that measurements ofn
5 5

7 sample edge would allow its phase to be determin
Then changes in theV matrix ~from, e.g., changes in the gat
voltages! might drive an interesting type of impurity phas
transition.

Before calculating tunneling properties for the vario
fixed points, we would like to suggest briefly an experime
tal approach to edge impurity scattering based on the e
tence of spin-polarized and spin-singlet states atn5 2

3. At n
5 2

3 there is an unpolarized spin-singlet state with the samK
matrix and charge vector as the well-known spin-polariz
state. The polarized state is naturally interpreted as
particle-hole conjugate of the Laughlinn5 1

3 state,2 while the
unpolarized state isnot the double-layer state consisting of
spin-upn5 1

3 state and a spin-downn5 1
3 state, which has an

inequivalentK matrix. The unpolarized state can be studi
in tilted-spin experiments such as those of Eisensteinet al.,26

and appears because of the relatively low Zeeman energ
GaAs as suggested by Halperin.27 The KFP treatment should
be just as valid for the unpolarized edge as for the polari
edge because they have the sameK matrix. The unpolarized
edge has an exact SU~2! symmetry if the Zeeman energy i
ignored, however, and this symmetry has physical con
quences.

Numerical results on the unpolarized edge show tha
low energy there are two branches of excitations: one s
singlet charge branch and one spin branch described by
SU~2! Kac-Moody algebra.28 This is the structure found a
the KFP fixed point and different from the numerical resu
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on the clean polarized edge, which indicate two spatia
separated subedges with no special symmetry.29,30 It seems
logical that the physical requirement of SU~2! spin symmetry
of the unpolarized edge forces the system to the KFP fi
point even in the absence of disorder, assuming the ‘‘h
den’’ SU~2! symmetry is only found at the fixed point. Th
SU~2! structure of the unpolarized edge is found in a sm
system ~hence without RG flows! for both Coulomb and
short-range interactions. The separation of then5 2

3 edge into
charge modes and neutral modes can thus be caused by~i! an
exactly charge-unmixed velocity matrix,~ii ! an unbroken
SU~2! symmetry, or~iii ! random impurities. The possibility
that impurities affect the polarized edge but not the unpo
ized edge suggests that measurements of the edge equi
tion length and tunneling conductance across the topolog
phase transition31 between the two may be illuminating.

In FQH states the tunneling conductance through a p
constriction in a Hall bar decreases with decreasing temp
ture. In the integer effect this conductance is tempera
independent. The physical electron operator is a superp
tion of all charge-e fermionic operators, and the low
temperature conductance is determined by the scaling dim
sion De of the most relevant such operator according to32,33

G~T!'t2T2~2De21!, ~5.3!

wheret is the amplitude for the dominant tunneling proce
Different fixed points in the same FQH state can have
ferent De and different tunneling exponents. These exp
nents can be calculated for the marginal-type fixed po
even though the electron dynamics at these points is unc
All fixed points of the same type have the same scaling
ponents but are expected to have measurably different p
actors as described in Sec. IV.

Charge-e operatorsm have t iKi j
21mj51 and scaling di-

mensionDe5miD i j mj , whereD is the same symmetric ma
trix calculated in Sec. III. SinceD is known at each fixed
point, it is simple to search for the most relevant charge
operator. The SU(n) fixed points found by Kane and Fishe
for the n5n/(2n21) states have 2De5322n21 and tun-
neling exponent

G~T!'t2Ta, a5424n21. ~5.4!

In Table II, we list the low-temperature conductance beh
ior for each of the fixed points found in Sec. III. Note th
corresponding fixed points in states with the same neu
sector, such asn5 5

3 and 5
7, can have different tunneling ex

ponents because the charge sectors of the two edge the
are different. The Fibonacci-type states have two poss
values of the low-temperature tunneling conductance ex
nent, so that there is a real physical difference between thA
andB phases.

The level-4 states studied (n5 12
7 , 12

17,
12
31, and12

41! have three
different tunneling exponents corresponding to the three
ferent types of fixed points. For example, in then5 12

17 state
the SU~3! fixed points haveDe5 7

6 anda5 8
3, as appear in the

SU~3! fixed point of then5 3
5 state. The SU(2)3SU(2)

fixed point is the same as the SU~2! fixed point for n5 2
3,

except that there are two charge-e operators of minimal scal
ing dimension rather than one. The double-marginal fix
point has an operator withDe5 11

12, so a5 5
3. So the three
y
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different fixed points have three different values ofa: 5
3 for

the double-marginal points, 2 for the SU(2)3SU(2) points,
and 8

3 for the SU~3! fixed points.
Other tunneling experiments are sensitive to the most

evant quasiparticle operator at a fixed point, rather than
most relevant electron operator. One experiment sensitiv
the quasiparticle scaling dimension is tunneling through
slight constriction rather than through a deep constriction
described above.20 We have calculated the scaling dimensi
of the most relevant quasiparticle operators for the vari
fixed points. No simple patterns are observed: often two
more quasiparticle operators have nearly the same minim
scaling dimension, and the charge of the most relevant q
siparticle operator varies among different fixed points of
same edge. As an example, in the12

17 edge the most relevan
quasiparticles at the different fixed points are 2D5 5

17 andq
53e/17 at the SU~3! points, 2D5 6

17 and q52e/17 at the
SU~2! points, and 2D5 43

102, q5e/17 at the double-margina
points. Typically the most relevant quasiparticles have sm
charges, as expected from inequality~4.5!.

Time-domain experiments have so far not resolved
neutral modes in nonchiral edge states,5 but in principle a
perturbation at one contact on a sample edge should ex
propagating charged and neutral modes observable at an
contact. Such an experiment might reveal whether the neu
modes in the Fibonacci-type statesn5 5

3,
5
7,

5
13, and 5

17 propa-
gate or are localized. The measurement of edge equilibra
lengths might also give interesting results: measurement
the edge of then5 4

5 edge, which has nouK(m)u52 opera-
tors and hence no KFP-type instability, could show anot
type of equilibration mechanism~such as inelastic scatterin
from phonons! with a different temperature dependence.

VI. SUMMARY

We have developed a technique for studying impur
scattering in a general FQH edge, and used it to find ph
diagrams and experimentally measurable properties fo
broad class of nonchiral edges. We find that some F
edges can have several different phases~fixed points! in the
presence of randomness. These phases in general have h
symmetry at low energies and long wavelengths than
original system. Thus random edges demonstrate an inte
ing phenomenon of dynamical restoration of symmetries
low energies and long length scales. Different phases h
different experimentally observable properties. It would
very interesting to find these phases and study transit
between them experimentally.

The transitions between phases are interesting from
point of view of Landau’s symmetry-breaking principle fo
continuous transitions: A continuous phase transition~sec-
ond order in the Ehrenfest classification! can only occur be-
tween two phases which differ in symmetry, and the symm
tries of one phase are a subset of the symmetries of the o
phase. This principle appears to be satisfied by all the tr
sitions between definitely stable fixed points in the edges
study. The principle is satisfied even though the RG flows
some transitions~such as then5 2

3 transition11! are similar to
those in the Kosterlitz-Thouless transition, which is n
clearly interpreted in terms of a broken symmetry. T
symmetry-breaking principle also has some implications
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TABLE II. Low-temperature tunneling conductance behaviorG;Ta for hierarchical daughter states o
n51 ~top! and n5

1
3. Only ‘‘charge-unmixed’’ phases~those with quantized conductance or, alternative

those which can occur with long-range interactions! are shown. The different fixed pointsA andB for the
Fibonacci-type states correspond to the labeling in Fig. 2. The phasesn5

12
7 , 12

17,
12
31, and 12

41 have fixed linesL
and three types of fixed point with SU(2)3SU(2) symmetry@abbreviated SU~2! in the table#, SU~3! sym-
metry, or two independent marginal operators (DM ). The tunneling exponent on the fixed linesL is non-
universal. Note that each exponent in the lower table is given bya1/3541a1, wherea1 is the exponent of
the state in the upper table at the same position in the hierarchy. The pattern continues to lower
fractions: daughter states ofn5

1
5 have filling fractions between18 ,n,

1
4 and tunneling exponents, e.g.,

<a<12.
u
y.
s
al
b

d

an

other

xed

. 1
a possible phase transition in then5 5
3 state, which has two

types of possibly stable fixed points.
To summarize our results, two situations, with or witho

long-range interactions, need to be discussed separatel
the absence of long-range interactions, all the edge mode
general, carry some amount of charge and the edge is c
charge mixed. Several different situations are illustrated
the following examples.

~i! The n5 2
3 edge has two phases. In one phase the e

is charge mixed and the two-terminal conductances and the
t
In

, in
led
y

ge

exponenta of electron tunneling between two edgess tun

}Ta are not universal. In the other phase the edge has
SU~2! symmetry and is charge unmixed~i.e., only one
propagating mode, the charge mode, carries charge and
propagating modes are neutral!. In this case (s,a) take uni-

versal values (23 e2/h,2).
~ii ! The n5 3

5 edge has three phases, described by a fi
point @the point (0,0) in Fig. 1#, fixed lines~the solid lines
outside the hexagon bounded by the dashed lines in Fig!,
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and fixed planes~the region outside the region bounded
the dashed lines!. This is because a point on the fixed plan
does not flow as the energy is lowered, while a point
tween two parallel dashed lines flows to the fixed line b
tween them and a point inside the hexagon flows to the fi
point. The fixed point has an SU~3! symmetry and is charge

unmixed. (s,a)5( 3
5 e2/h, 8

3 ) are universal. The fixed-line
and fixed-plane phases are charge mixed, and (s,a) are not
universal. But in the fixed-line phase there is an SU~2! sym-
metry, and (s,a) and other exponents all depend on a sin
parameter which parametrizes the fixed line. The fixed-pl
phase has no particular symmetries. We would like to po
out that although the fixed-line phase in Fig. 1 contains
disconnected segments, this does not guarantee that the
six disconnected fixed-line phases. This is because the
connected fixed lines may be connected in a high
dimensional space of Lagrangians, of which Fig. 1 is jus
two-dimensional cross section. If different line segments
connected in the enlarged space, it is possible to move
tinuously from one segment to another without any tran
tion. For then5 3

5 state the higher-dimensional space resu
from applying the SU~3! transformation on the the full La
grangian. Note that the SU~3! transformation does no
change the commutators between fermions@which can be
seen in the fermionic form of the Lagrangian but is not e
dent in the ~Abelian! bosonized form#, and hence leave
the Hilbert space unchanged. Acting with the SU~3! genera-
tors creates off-diagonal interaction terms of the fo
f (x)(c̄1c2)(c̄2c2), after we make the local SU~3! transfor-
mation to remove the random hopping term between dif
ent fermions. Thus the precise form of the functionf (x)
depends on the impurities which generate the random h
ping terms. If the off-diagonal terms have precisely the va
able coefficientsf (x), then the different fixed-line phase
can be continuously connected via inclusion of such o
diagonal terms. However, in real experiments it is imposs
to control the precise form of the variable coefficientsf (x),
and the Lagrangians for experimental samples do not con
the above off-diagonal terms. Therefore for real samples
different fixed-line phases are disconnected. Similarly
fixed planes are disconnected for real samples. Howe
since fixed-line phases~or fixed-plane phases! all have the
same symmetry, the symmetry-breaking principle prohib
continuous phase transitions between two connected fi
line phases or two connected fixed-plane phases. But t
are still continuous phase transitions between a fixed-
phase and a fixed-plane phase, and a fixed-line phase a
fixed-point phase.

We would like to stress that the sequence of the ph
transition: fixed-point phase→ fixed-line phase→ fixed-
plane phase represents a sequence of symmetry brea
SU(3)→SU(2)→SU(1). This is consistent with the
symmetry-breaking principle discussed above. It appears
the symmetry-breaking principle that governs the continu
transitions between clean phases in other condensed m
systems also governs the continuous transitions between
ordered phases of FQH edges. All the continuous phase
sitions between different disordered edge phases that we
in this paper are related to symmetry breaking.

~iii ! The n5 5
3 edge also has three~types of! phases de-
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scribed by fixed points~such asB in Fig. 2, but notA), fixed
lines ~the solid lines in Fig. 2! and fixed planes~the region
outside the region bounded by the dashed lines!. Again the
fixed-point phase is charge unmixed and has unive
(s,a). The fixed-line and fixed-plane phases are cha
mixed and have nonuniversal (s,a). However, here the
fixed point contains two marginal operators. It is not cle
whether the fixed point is stable or not~depending on
whether the two marginal operators are marginally relev
or not!. It is not clear if different fixed lines and fixed plane
are connected or not in a higher-dimensional space. The
a continuous phase transition between the fixed-line ph
@with SU~2! symmetry# and fixed-plane phase~with no sym-
metry!. We note that both the fixed-point and fixed-lin
phases have SU~2! symmetry. According to the symmetry
breaking principle for continuous transition, either there
another phase separating the the fixed-point phase and
fixed-line phase, or the fixed-point phase is unstable, or
transition is first order~discontinuous!, and the first-order
line does not terminate in a second-order point for any fin
disorder strength. The perturbative RG in Appendix B
consistent with the last possibility.

~iv! The n5 17
13 edge @K5(1,4,24)# again has three

phases described by a fixed point, a fixed line, and a fi
plane~Fig. 3!. However, the phase diagram is quite differe
from the above two. There can only be continuous ph
transitions between the following phases: the fixed-po
phase@with SU~2! symmetry# ⇔ the fixed-plane phase~with
no symmetry! ⇔ the fixed-line phase@with SU~2! symme-
try#.

~v! The K5( l ,2,22,2) and (l ,22,2,22) edges are too
complicated, and we will only discuss them for the case
long-range interactions.

In the presence of long-range interactions, the edge
always~nearly! charge unmixed, and the two-terminal co
ductance always takes the quantized values5n(e2/h). We
can restrict our discussion to the charge-unmixed subsp
@the (0,0) point in Fig. 1 and thex axis in Figs. 2 and 3!.
Table II gives the low-temperature tunneling exponent for
the charge-unmixed phases of principal hierarchy states.
above examples with short-range interactions can be ea
modified to cover the case of long-range interactions.

~a! The n5 2
3 edge has only one phase which is describ

by a fixed point. (s,a) take universal values (2
3 e2/h,2).

~b! The n5 3
5 edge has only one phase, described by

fixed point@the point (0,0) in Fig. 1#. The fixed-point phase
is the same as the fixed-point phase for short-range inte
tions: it has an SU~3! symmetry and universal (s,a)

5( 3
5 e2/h, 8

3 ).
~c! Then5 5

3 edge has two~types of! phases described b
A- andB-type fixed points in Fig. 2. The fixed-point phas
have universala given by a5 2

5 for A-type points anda
50 for B-type points. However bothA- and B-type fixed
points contain two marginal operators, and it is not cle
whether the fixed points are stable.

~d! The n5 17
13 edge@K5(1,4,24)# has three phases de

scribed by two fixed points (A andB in Fig. 3! and a fixed
line ~the x axis outside the region bounded by the dash
lines!. All three phases are stable. The two fixed-point pha
have different universal values for the temperature expon
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a52 for the A-type fixed-point phase anda5 18
17 for the

B-type fixed-point phase.a is not universal for the fixed-line
phase. The only continuous phase transitions are betw
one of the two fixed-point phases@SU~2! symmetry# and the
fixed-line phase~no symmetry!.

~e! The K5( l ,2,22,2) and (l ,22,2,22) edges withn
5 12

7 , 12
17 , . . . are very interesting. There are four differe

phases described by three types of fixed points (A, B, andC
in Figs. 4 and 5! and a fixed line@the middle segment of the
dashed line connectingA andB in Fig. 5~a!#. Certainly there
are infinitely many different disconnectedA-, B-, andC-type
fixed points and fixed lines in Fig. 5~a!, and it is not clear if
all fixed points~lines! of each type are connected in a highe
dimensional space. TheA-type fixed point has an SU~3!
symmetry, theB-type fixed point has an SU(2)3SU(2)
symmetry, and the fixed line andC-type fixed point have an
SU~2! symmetry. The exponenta has universal values83, 2,
and 5

3 for the A-, B-, andC-type fixed points, respectively
TheC-type fixed point has four marginal operators, and it
not clear whether it is a stable fixed point. Among the th
definitely stable phases the only possible continuous tra
tions are.A-type phases@SU~3! symmetry# ⇔ fixed-line
phase@SU~2! symmetry# ⇔ B-type phases@SU(2)3SU(2)
symmetry#. These transitions are consistent with t
symmetry-breaking principle for continuous transitions. A
A-type ⇔ B-type transition would violate the symmetry
breaking principle, and is not found in the phase diagram

This study just starts to reveal some general intrin
structures of disordered phases of FQH edges and transi
between those phases. It is amazing to see that different
ordered phases are characterized by symmetries, and
phase transitions are characterized by broken symmet
Certainly there are many open problems, and much need
be done in order to have a complete theory of disorde
edges. The possibilities of transitions between different d
ordered phases on the edge of a single bulk quantum
liquid also open up directions for experimental exploratio
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APPENDIX A: BOOSTS AND ROTATIONS

The decomposition of an element of SO(m,n) into a
product of a boost and a rotation follows in a neighborho
of the origin simply by writing the productM5BR in terms
of infinitesimal generators of the Lie group. Ifbi are the
boost generators andr i the rotation generators, then a boo
~similarly, rotation! close to the identity element contain
only boost~rotation! generators

BR5~11e ib
i !~11d j r

j !'11e ib
i1d j r

j , ~A1!

wheree i andd j are arbitrary infinitesimal parameters. The
are exactly enough free parameters to cover a neighborh
of the identity in SO(m,n). Thus if the decomposition doe
not hold on the entire group, there must be some bounda
en

t

e
i-

c
ns
is-
hat
s.
to
d
-

all
.

t

ie

d

t

od

in

SO(m,n), where it ceases to hold. In the next paragraph
outline a global proof of the decomposition. The details a
given for SO(m,1), which is the only case used in the bod
of this paper.

The boost part of a given matrixM can be constructed i
every symmetric positive definite element of SO(m,n) has a
square root within the group which is also symmetric. T
square root is simple form51 or n51, where every sym-
metric positive definite matrix is of the form introduced
Sec. II, and associated with a unique velocity vectorv
5p/g. Then the square root is the boost with velocityv8
5v(12A12v2)/v2, which is chosen so that the specia
relativistic velocity addition formula holds:v52v8/(1
1v82). For the general SO(m,n) case, a square root can b
defined by the inverse function theorem within a neighb
hood of the identity, and continued analytically. Such
square root exists globally if every boost matrix can be w
ten as an exponential of only boost generators, since the

B85expS 0 b

bT 0D , AB85expS 0
b

2

bT

2
0
D . ~A2!

With a square root, the proof is simple. Given an arbitra
element MPSO(m,n), MMT is symmetric and positive

definite, so let B[AMMT. It remains to show thatR
[B21M is in SO(m,n) and is orthogonal:

RIm,nRT5B21MI m,nMTB21T

5B21I m,nB21T5I m,n , ~A3!

RTR5~AMMT21M !T~AMMT21M !

5MT~AMMT2!21M5I . ~A4!

APPENDIX B: RENORMALIZATION-GROUP
TREATMENT OF THE FIBONACCI EDGE

The exactly solvable SU~2! fixed point found by KFP is
stable under RG transformations: near the fixed point
velocity matrix weakly couples the modes which are dec
pled at the fixed point, but this originally marginal term
the action acquires a random coefficient from the SU~2! ro-
tation and becomes irrelevant. The fixed point is no lon
necessarily stable if there is an additional marginal disor
operator, since this term has a random coefficient to be
with, and does not have its scaling dimension decreased
the SU~2! rotation. Therefore such a term remains margin
and must be treated. In this section we obtain the first-or
coupled RG equations for the Fibonacci-type edgen5 5

3,
which has additional marginal operators present at each o
fixed points.

These first-order equations suggest that both typesA and
B of fixed points are in fact stable, and that which fixed po
the system flows to asymptotically depends on the ini
velocity matrix and the disorder strengths. The picture fro
the first-order equations is incomplete at the fixed point
cause the higher-order effects of one disordered oper
upon another are ignored, although these effects may
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determine the properties of the fixed point. The main conc
sion of the somewhat complicated discussion below is
the fixed points with marginal operators are probably sta
under RG transformations, although the long-length-sc
dynamics at the fixed point are unclear. Note that even
only one type of fixed point turns out to be stable, differe
fixed points of that type are distinguishable phases as
cussed in Sec. IV. Fixed points of the same type have
same stability properties because they have the samexLL
theory up to a redefinition of fields.

For the calculation on then5 5
3 edge, we will assume tha

the system is on the charge-unmixed line, and use the sca
dimension of one operatorD1 as a coordinate on this line
This is reasonable since points close to the line are drive
the line under RG by theK(m)522 operators. It is possible
that the strengths of allK(m)522 operators may decreas
sufficiently rapidly that the system is left on one of th
K(m)52 marginal lines away from the charge-mixed poi
Then there is only one relevant operator, and the fixed p
is solvable with an SU~2! symmetry, exactly as for then
5 2

3 fixed point studied by KFP. Only on the charge-unmix
line does another type of fixed point appear.

At most three disorder operators can be relevant at a p
on the charge-mixed line. One operator’s scaling dimens
serves as an independent coordinate, and determines
other scaling dimensions: writingD1 for the scaling dimen-
sion of the operator whose maximally relevant point will
studied, the scaling dimensions of the two neighboring
erators~Fig. 2! are the two rootsD6 of

D6
2 23D6D11D1

21 5
4 50. ~B1!

The disorder strength of each operator has leading-order
flow dDi /dl 5(322D i)Di . It remains to calculate how th
velocity matrix and scaling dimensions flow.

The decomposition of the velocity matrix in Sec. III into
boost part which determines the scaling dimensions, plu
remaining ‘‘rotational’’ part, isnot compatible with the RG
transformation. The rotational part affects the flow of t
boost part, and vice versa. However, the qualitative chara
of the boost part is in some sense not affected by the r
tional part as now explained.~Note that theK matrix is in-
variant under the RG transformation, because it is pur
topological and does not enter the Hamiltonian.! Consider
the perturbative RG flow equation for the scaling dimens
of the oneuK(m)u52 operator for then5 2

3 edge:11

dD

dl
528p

Av1v2
23

v11v2
~D221!D. ~B2!

The eigenmode velocitiesv1 and v2 are in the rotational
part of the velocity matrix, and flow according to

dv6

dl
524p

v6
2

Av1v2
5 ~D71!D. ~B3!

The eigenmode velocities affect how fastD flows to 1, but
the basic idea thatD flows smoothly to 1 is independent o
the precise values ofv1 and v2 and of the details of their
flow. In order to make the coupled RG flows tractable
will replace velocity-dependent prefactors by constants.
-
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Suppose that the system is in between the maximally
evant points of two disorder operators with strengthsD1 and
D2. Then, from Eq.~B1!, the scaling dimensions flow as

dD1

dl
52c1~D1

221!D11c2

3D122D2

3D222D1
~D2

221!D2 ,

~B4!

dD2

dl
52c2~D2

221!D21c1

3D222D1

3D122D2
~D1

221!D1 ,

~B5!

with c1 andc2 some positive constants. These two equatio
are not independent, and each together with Eq.~B1! deter-
mines the other. A complete set of first-order equations c
sists of one scaling-dimension equation plus the flow of
disorder strengths, with the other scaling dimension found
Eq. ~B1!. The two disorder operators compete to drive t
system to one of the maximally relevant points. The disor
strength flow implies that the fixed point which must ex
somewhere between the two maximally relevant points
unstable, as expected, because on each side of this uns
point the disorder strength pushing the system away is
more rapidly growing of the two disorder operators. Wh
happens at one of the maximally relevant points is a li
tricky, because at such a point one disorder strengthD1 is
growing rapidly but does not push the system in either dir
tion sinceD22150.

The main physical question to be settled is whether
disorder strength of one of the marginal operators beco
infinite, remains finite, or decreases to zero as the sys
moves to the fixed point. Now we show that in the leadin
order equations the marginal disorder strengths remain fi
as the system decays exponentially to the fixed point. T
does not necessarily mean that the disorder strength
marginal operator actually remains finite, since exactly at
fixed point this disorder strength is a constant to lead
order but may increase or decrease at higher order. Linea
ing the flow equations aboutD151 andD25 3

2, and, keeping
D2 as independent variable and writinge5 3

2 2D2.0, we
have

dD1

dl
5~124e2/5!D1'D1 , ~B6!

dD2

dl
52eD2 , ~B7!

de

dl
52c2~9/413e21!D21c1eD1'25c2D2 /41c1eD1 .

~B8!

An asymptotic solution is found by takingD1
5D1(0)exp(l ), e5A exp(2l ). The right side of Eq.~B8!
will balance ifD2→4c1A/5c2 asl →` since the left side is
much smaller in magnitude. This limiting form is consiste
since with this form of e, Eq. ~B7! yields a finite D2
5exp(*2edl ). The linearized analysis suggests that even
ally the system decays exponentially to the fixed point, w
D2 asymptotically finite. This prediction is confirmed by nu
merical integration of the original differential equation
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Which fixed point the system reaches asl →` depends the
initial scaling dimensions and disorder strengths.

A more complete RG treatment would give a deeper
derstanding of the fixed points, but determining the R
equations to second order in the disorder becomes quite c
plicated. We discuss some features here, and hope to
this problem more fully in another publication. A prelim
nary step is to assume that the system is driven near the
point by the first-order terms in the equation, and then
carry out an SU~2! rotation to eliminate the random term
with the maximally relevant operator. If the impurity oper
tors are uncorrelated, the marginal operators will still ha
random coefficients. However, it is physically likely that d
ferent impurity operators will be at least partially correlate
.

t,

.

ett

ks
-

m-
eat

ed
o

e

,

possibly giving a uniform coefficient for the marginal oper
tor, which then becomes relevant. In the case of uncorrela
impurities, the possibility of carrying out this rotation show
that no terms involvingD1 appear in the flow equation fo
D2 exactly at the fixed point, so there is still hope for
perturbative treatment. Near but not at the fixed point,
SU~2! rotation of the dominant impurity operator may affe
the marginal operator even if the impurities are uncorrelat
Even if the second-order terms in this case have the pro
sign to driveD2 to zero,dD2 /dl }2D2

2 , the decrease ofD2

is only as 1/l rather than exp(2l ), and at finite temperature
the marginal operators should have significant effects. A
other approach to understanding the marginal fixed poin
via an exact solution, which we have not been able to fin
the
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