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Tight-binding molecular-dynamics study of ferromagnetic clusters
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A minimal parameter tight-binding molecular-dynamics scheme incorporating a Hubbard Hamiltonian for
the treatment of magnetic effects is detailed. The computational efficiency of the scheme allows applications to
cluster sizes well beyond the range ofab initio techniques. The method is used to obtain magnetic moments of
Ni, Fe, and Co clusters in excellent agreement with experiment.@S0163-1829~98!01416-7#
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I. INTRODUCTION

Stern-Gerlach experiments performed on clusters
transition-metal atoms1–6 ~CTMA’s! are usually analyzed
under the assumption that the CTMA’s are single-dom
magnetic particles. Depending on the conditions of each
periment, the profiles of the CTMA’s being deflected by t
Stern-Gerlach magnet exhibit either superparamagneti
anisotropy-induced relaxation.7 The latter case occurs whe
the thermal relaxation timet th of the clusters is much large
than their observation time,tp , i.e., the time required by the
clusters to pass through the poles of the Stern-Gerlach m
net. On the other hand, superparamagnetic behavior is ex
ited if the experimental setup allows the conditiont th!tp to
be satisfied. According to the theory o
superparamagnetism,8,9 the magnetic moments within
CTMA move coherently, and thus the magnetic momentMn
of a CTMA consisting ofn atoms can be represented by
single vector of magnitude equal to

Mn5n^mn& , ~1!

where^mn& is the average value of the magnetic moment
atom of the cluster.

Recent experimental results1–6 have confirmed the super
paramagnetic behavior of CTMA’s in suitably chosen e
perimental setups. The basic quantity that is measured f
these experiments is the average value of the magnetic
ment per atom,̂ mn&, and its variation with temperature
magnetic field, and size of the cluster. Such data have b
recently reported for the clusters Nin , Fen , and Con with
n<700.2–6 The variation of^mn& with the cluster size~i.e.,
the number of atoms of the cluster,n) has been experimen
tally obtained at temperaturesT578 K ~Ref. 5! and 73<T
<198 K ~Ref. 6! for Nin ,T5120 K ~Ref. 5! for Fen , and
T578 K ~Ref. 5! for Con clusters. From these results on
observes that, for small clusters,^mn& exhibits values much
larger than those corresponding to the bulk materials
that, asn increases,̂ mn& decreases, although not alwa
monotonically, toward its corresponding bulk value, the l
ter being practically attained forn'500–700. Further analy
570163-1829/98/57~16!/10069~13!/$15.00
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sis of the existing experimental findings for the variation
^mn& with the cluster size shows sharp dips superimposed
the monotonic decrease of^mn& with n for cluster sizes for
which closed icosahedral geometries are possible~i.e., for
n513,33,55, etc.!6 Furthermore, a comparison among th
reported experimental data reveals a noticeable sp
within relatively large error bars for the measured valu
of ^mn&, especially in the case of small Nin , Fen , and Con
clusters.5,6 Such a spread may be partially attributed to t
different experimental temperatures at which the repor
data were obtained.

Although a lot of experimental data have been repor
that confirm the superparamagnetic behavior of
CTMA’s,2–6 detailed analysis of experimental data about
dependence of̂mn& on the cluster size and/or the clust
geometry is limited. This dependence is formally expres
by the relationship

^mn&5m~n,$Rn%!, ~2!

where$Rn% denotes the geometric configuration of the clu
ter or, alternatively, the set of position vectors of the ato
of the cluster. To the best of our knowledge, the exist
experimental information about the relationship described
Eq. ~2! is limited, and refers only to the detailed dependen
of ^mn& on the cluster size,5,6 and no experimental data hav
been found reporting the dependence of^mn& on the cluster
configuration$Rn%, a case for which only theoretical data a
available.10–32

The ground state geometry of the CTMA’s is usually o
tained from a different class of experiments, namely, th
utilizing either photoelectron spectroscopy33–35 or chemical
probe methods.36,37The chemical probe experiments indica
strong evidence for icosahedral packings of small CTMA
and this geometry is assigned to the geometry of the
clusters by assuming that the probings do not affect the
ometry of the clusters. The icosahedral geometries of
small CTMA’s, as well as a growth mechanism which is w
explained by the umbrella model of cluster growth, ha
gained strong support from experimental results using
photoionization spectroscopy.33,34
10 069 © 1998 The American Physical Society
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10 070 57ANTONIS N. ANDRIOTIS AND MADHU MENON
The theoretical studies of CTMA’s need to explain n
only the experimental findings but also a host of other int
esting features. They include the study of how an atom
property evolves into its corresponding bulk feature. An e
ample of this property would be, say, the atomic~local! mag-
netism. Another interesting feature is the possibility of co
structing new materials, relying on a cluster-type buildin
block, that has recently attracted much technological inte
and, in turn, generated theoretical interest as well.

The main challenge to the theoretical study is summari
by Eq.~2!, which shows the dependency of^mn& on $Rn% for
a given value of the number of atomsn of the cluster. The
important issue that needs to be addressed is how the
metric ordering of the cluster affects its magnetic orderi
and vice versa. From early investigations,17,18,38,39it became
clear that the magnetic behavior of the cluster is the resu
a very delicate interplay among various factors, such as
symmetry of the cluster, the bond lengths, the coordina
numbers, the size of the cluster, and, finally, the chemistr
its constituent atoms. Any one of these factors could pla
dominant role in the magnetic behavior of the cluster.
noted by Castro and Salahub,26 the types of chemical bond
and patterns of charge distribution influencing the^mn& val-
ues in CTMA’s depend on the total spin states. A striki
example is the result of Dunlap,19 who showed that for fcc-
Fe13, an increase in the bond length from 4.4 to 4.81 a.u
accompanied by an increase inMn from 32 to 44 Bohr mag-
netons,mB . Other examples illustrating this delicate inte
play between geometric and magnetic ordering were gi
by Mlynarski and Salahub,11 who observed that, for Ni4 and
Ni5 clusters, a significant decrease in the coordination nu
ber increases the splitting between the spin-up and s
down electrons, thereby enhancing the value of^mn&. On the
other hand, they also noticed that a contraction in the Ni
bond in Ni4 may result in a reduction of the local magne
moments due to an increase in thed-band-width. We have
also shown31 that the energies of the various spin states o
CTMA of given size lie very close to each other, and cor
spond to almost identical geometric configurations.

All these results indicate that, in order for one to prope
describe the magnetic behavior of the CTMA’s, it is nec
sary to obtain an accurate estimation of the ground stat
the CTMA as a function of the independent parameters m
tioned above. This means that accurate total-energy calc
tions need to be performed for each cluster in order to loc
its minimum-energy configuration with respect to a simul
neous variation in all the independent parameters~on which
the total energy depends!. Additionally, it must be kept in
mind that a profound understanding of the cluster magnet
requires that electron correlation effects be approximated
isfactorily.

It is thus clear that the determination of the ground st
of magnetic clusters is a very difficult computational tas
which, at theab initio level, becomes formidable, even fo
clusters of intermediate sizes, i.e., for 10,n,100. So far,
most of the calculations on CTMA’s have been perform
within the local-electron-spin-density approximatio
~LSDA!, because the size and the complexity of t
transition-metal atoms do not allow a configuratio
interaction~CI! approach to CTMA’s. The CI calculation
are usually restricted only to monomers and/or dimers,
t
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very often the accuracy of the CI calculation achieved
crucial in the ground-state determination of a transiti
metal-atom and/or a dimer. In Ref. 29, we give a summary
various methods used and results obtained from applicat
on Nin clusters. On the other hand, due to the formida
computational requirements, the LSDA-basedab initio cal-
culations, which include a global symmetry unconstrain
geometry-relaxation and an unrestricted total spin value
the cluster, are very rare and are usually restricted to clu
sizes withn<10. For larger clusters, the common practice
to allow the variation of only a limited number of the inde
pendent parameters of the system while performing a
stricted~constrained! minimization of the total energy of the
cluster in order to determine its ground state. The most co
monly employed calculational restrictions include one
more of the following approximations:~i! A global-
symmetry-constrained geometry relaxation, which allo
only a variation in the bond length while keeping the sy
metry of the cluster fixed.~ii ! A limited symmetry variation
keeping the bond lengths fixed~the latter usually kept at thei
bulk values!. ~iii ! Suppression of some Hamiltonian intera
tions @e.g., neglect of thes-d interactions in a tight-binding
~TB! description#. ~iv! Restriction of the total spin value~or
equivalently the value ofMn) during geometry optimization
@In such an approximation,Mn is not allowed to take any
dependence on the cluster configuration$Rn% during a mo-
lecular dynamics~MD! relaxation process. Instead, seve
MD processes are repeated, keeping a different value ofMn
each time. Unless many such processes of various fixedMn
value are carried out, the spin-restricted results will not
accurate considering the large number of closely spa
local-energy minima resulting from the$Rn% dependence#.
~v! Electron correlations are usually treated within the LSD
and/or Hubbard model approximation.

The above list of approximations also includes vario
model approximations,. They include, for example, the po
lar spherical jellium-drop model and its modifications,41–46

which have been found to be successful in describing vari
properties of clusters of simple metals. In the case
CTMA’s, however, the models based on the jellium appro
mation are inadequate to describe the cluster magne
and/or its effect on the cluster geometry. Even the reint
duction of lattice effects within a pseudopotenti
formalism,43,44 in a fashion similar to that proposed b
Andriotis47 for the semi-infinite metals, cannot overcome t
inherent limitations of the jellium approximation. Furthe
more, the conducting spherical jellium-drop model45,46 has
also been found to be inadequate in describing nonmagn
properties of CTMA’s, namely, their ionization energies.34,40

Faced with these difficulties, the theoretical efforts ha
been led to a search for workable simpler computatio
schemes in order to describe both small and large CTM
at the same level of accuracy. Among the models propo
those which combine MD schemes with the embedded-a
many-body potential methods20,48–50were found to be rea-
sonably successful in determining the structural propertie
nonmagnetic CTMA’s. Similarly, methods based on emp
cal model potentials51,52 have been used for analyzing th
structural, dynamical, meltinglike, and evaporation behavi
of transition- and noble-metal clusters~see Ref. 51 and ref-
erences therein!. However, by their nature, these metho
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cannot be used for a description of cluster magnetism, ex
for the embedded potential methods which can be used
an approximate description of the cluster magnetism p
vided that additional approximate corrections be incor
rated into the original scheme of these theories.20 A better
way to describe the cluster magnetism is provided by
tight-binding method, which has been used successfully
description of the bulk53,54 and surface magnetism.55–57 For
this reason, and motivated by the success of the tight-bind
molecular-dynamics~TBMD! method in the treatment o
semiconductor systems,58 we have recently introduced th
TBMD calculational approach in the studies of CTMA’s.
a series of recent works,27–29 we have demonstrated that th
TBMD method can be used to successfully describe
structural and dynamical properties of nonmagnetic Nin clus-
ters of small and intermediate sizes~i.e., for n<55). Using
the TBMD scheme we were able to show that, in agreem
with the experiment, Nin clusters, in their ground state, ‘‘pre
fer’’ the icosahedral structure over the fcc ones when
cluster size permits the cluster to form a closed icosahed
~i.e., for n513,33,55, etc.!. For all other cluster sizes, how
ever, the fcc-based structures were found to be energetic
more favorable than the icosahedral ones.27–29Subsequently,
by including electron correlations within the Hubbard mod
approximation in our TBMD approach, we were able to e
tend our applications to the magnetic Nin , Fen , and Con (n
<55) clusters.30,31We also showed in earlier reports30,31that
our extended TBMD approach—to be referred to as
H-TBMD method—leads to a description for the variation
the average magnetic moment^mn& per atom with the cluste
size in very good agreement with the existing experimen
data.5,6

In our H-TBMD approach, as in our original TBMD
much emphasis is focused on the flexibility and efficiency
the method to allow for spin and symmetry unrestricted to
energy optimizations for CTMA’s of small and intermedia
sizes within the LSDA.H-TBMD imposes no symmetry an
spin constraints, while at the same time including
electron-electron interactions within the TB picture and
LSDA without restricting them only among thed electrons
~as is the case sometimes16!. As a result, within our
H-TBMD method, one avoids all the drawbacks associa
with any neglect of thes-d interactions~which seem to re-
duce^mn& by 10% in small iron clusters,59 and could possi-
bly affect the geometry of the nickel clusters16!. Addition-
ally, one can study changes in the electron populations
take place among the electron subbands as the total spin
the geometry of the cluster change during the MD simu
tions.

It is worth emphasizing that the TB method meets a m
general acceptance in studies of CTMA’s, and many ap
cations have been reported at various levels
approximation.16,20,21,28–31,59–61corresponding mostly to the
various ways that one can achieve the optimum transfera
ity of the TB parameters. The transferability of the T
Hamiltonian depends on, among other factors, the scalin
the matrix elements with the interatomic distance~see, for
example, Ref. 62 and references therein! as well as the scal
ing factors that take into account the effects of the lo
environment of each atom.61,63 In the case of theH-TBMD
method, the accuracy of the TB approximation also depe
pt
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on the proper description of the electron correlations wit
the Hubbard model. This, in turn, is reflected in the choice
the Hubbard parameters for the intrasite and intersite C
lomb and exchange interactions, and also on the degre
self-consistency which is required for the
description.16,20,21,30,31,59–61,64,65

Our method is very general, and can be applied at vari
levels of approximations depending on the accuracy des
and the availability of computer resources. The results p
sented in this work have been performed within the simp
possible approximation. In particular, we have retained
universal TB description of the electronic interactions as p
posed by Harrison,66 using the Slater-Koster67 scheme, and
have included electron correlations within the Hubba
model approximation. Finally, our total-energy express
for the cluster also includes a pair repulsive potential te
suitably fitted to experimental~or ab initio! data. These ap-
proximations are consistent with our initial motivation
present an efficient methodology based on a minimal se
adjustable parameters~in our case there are only five suc
parameters!, and flexible enough to accurately reprodu
known properties when applied to both covalent and meta
systems. On the other hand, theH-TBMD method can easily
incorporate more accurate TB scaling schemes, as for
ample the one proposed by Mehl and Papaconstantopoul68

which will allow our method to take a firmab initio charac-
ter.

II. METHOD

Our TBMD method was described in detail in Ref. 29.
the present work, we focus on the generalization of
TBMD method, namely, theH-TBMD method, which was
recently introduced in the studies of the magne
CTMA’s.30,31 A number of minor modifications in the pa
rameters, including the scaling, have been deemed nece
for better transferability of the TB parameters. Whenev
necessary, a brief review of the aspects of the origi
TBMD theory will be given for reasons of completeness.
in our original TBMD approach, theH-TBMD method in-
volves the following computational steps.

~i! Construction of the spin unrestricted TB Hamiltonia
Hs ,s561, for electrons with spin-up (s511) and spin-
down (s521), respectively, from which the electroni
eigenstates,ucis&, and eigenvalues,e is , are calculated
~within the LSDA! by solving the Schro¨dinger equation

Hsucis&5e isucis&. ~3!

~ii ! Calculation of the total-energy of the system by su
ming over occupied levels and adding a sum over pair
tentials. The total-energy expression is then used in the
culation of forces acting on each atom of the system.

~iii ! Full geometry optimization of the system by follow
ing its time evolution starting from specific initial geom
etries.

A. Construction of the spin-unrestricted TB Hamiltonian

In constructing the TB Hamiltonian, we assume an
thogonal atomic basis set. For the case of nonmagn
CTMA’s the diagonal Hamiltonian~i.e., the intrasite! matrix
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elementsEm
( i ) ,m5s,d, associated with the atom at the lattic

site Ri , are taken to be configuration independent and eq
to the values given by Harrison.66 Note thatp orbitals are not
used here, and we takeEs

( i )5Ed
( i ) . For the latter approxima

tion, Harrison readjusted the value of the intersite ma
elementVsss in order to fit the bulk band structure. It is clea
that Harrison’s diagonal elements cannot be directly used
studying cluster properties which depend explicitly on t
relative strength and position of the atomic orbital energi

In the case of the magnetic CTMA’s, the necessary s
dependence of the diagonal matrix elements is introdu
using the Hubbard approximation according to which69 the
intra-atomic Coulomb and exchange interactions result~in
the case of atoms with band degeneracy! in an effective
intra-atomic Coulomb repulsionUeff

( i ) and a corresponding ef
fective intra-atomic exchange interactionJeff

( i ) , in terms of
which the correctionsDEm

( i ) ,m5s,d, to the diagonal ele-
mentsEm

( i ) ,m5s,d take the form

DEms
~ i ! 5Ueff

~ i !Dnms
~ i ! 2smm

~ i !Jeff
~ i !1DEMad

~ i ! 1DEconfig
~ i ! , m5s,d

~4!

wheres denotes the spin (11 for spin-up and21 for spin-
down!, nms

( i ) denotes the occupation number of theums& or-
bital at the lattice siteRi and

mm
~ i !5nms

~ i ! 2nm2s
~ i ! , Dnms

~ i ! 5nms
~ i ! 2n0ms

~ i ! , ~5!

wheren0ms
( i ) are the corresponding orbital occupancies for

bulk material. The termsDEMad
( i ) andDEconfig

( i ) contained in the
right-hand side of Eq.~4! denote the Madelung-type intera
tions ~resulting from the charge transfer among the atoms
the cluster! and the coordination dependence of the ma
elements, respectively.56,59–61,64

The off-diagonal~i.e., the intersite! matrix elements are
taken within the two-center approximation of Slater a
Koster67 and scaled exponentially with respect to the int
atomic distancer ,

Vll8m~r !5Vll8m~d!exp@2a~r 2d!#, ~6!

whered is the equilibrium bond length in the correspondi
bulk material, anda is an adjustable parameter in the theo
We use a smooth Fermi-type function to cutoff interactio
between atoms separated by large distances, ensuring th
average cutoff distancer c ('3.00 Å) is between the near
est and next-nearest neighbors in the bulk solid. For
present calculations we follow our previous calculation
scheme,27–29 and assume that the values of the parame
Vll8m(d) can be expressed in terms of the universal c
stantshll8m of Ref. 66,

Vll8m~d!5hll8m

\r d
t

md21t
, ~7!

where r d is a characteristic length associated with ea
transition-metal atom.66 The parametert50 for s-s interac-
tions, t5 3

2 for s-d interactions, andt53 for d-d interac-
tions. In Table I we list the values of the universal consta
hll8m with the exception ofhsss , which is now an adjust-
able parameter, and in Table II we list various elements u
in the present calculations.
al
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While our assumption that the intra-atomic~diagonal! TB
matrix elements are configuration independent can be ju
fied from the fact that for large CTMA’s~i.e., for the systems
for which the presentH-TBMD method is being formulated!,
the cluster stability is mainly an interplay between two m
tually competing close-packed structures. However, it sho
be emphasized that in CTMA’s of small size, charge trans
and anisotropy effects may induce significant corrections
the diagonal TB matrix elements, making a self-consist
approach necessary in their determination. Furthermore,
consistency may also be necessary for an accurate inco
ration of the electron correlation effects in order to obtain
reliable description of the cluster magnetism. In the Hubb
model approximation of the electron correlations, this
quirement translates into a boundary condition that impo
self consistency on the occupation numbers of the elec
orbitals. The exponential scaling of the interatomic~off-
diagonal! TB matrix elements, on the other hand, employ
in the present work, can be justified from our experience
Si clusters.62

In our H-TBMD approach, we make the simplest possib
approximation to the correction terms,DEms

( i ) , and take

DEms
~ i ! 52ss0m

~ i ! , ~8!

wheres0m
( i ) are adjustable parameters, to be adjusted so a

reproduce the correct spacing of the higher-spin states
small clusters~for cluster sizen<5), whose values are avail
able from results of accurateab initio calculations. From
Eqs. ~4! and ~8!, it is apparent that the parameterss0m

( i ) cor-
respond to effective exchange interactionJeff

( i ) terms accord-
ing to the relation

s0m
~ i ! 5mm

~ i !Jeff
~ i ! . ~9!

TABLE I. Universal constants~values taken from the solid stat
table of Ref. 66! used in Eq.~7! for obtaining the interaction pa
rameters in the present work.

Parameter Value

hsps 1.84
hpps 3.24
hppp 20.81
hsds 23.16
hpds 22.95
hpdp 1.36
hdds 216.20
hddp 8.75
hddd 0.00

TABLE II. Adjustable parameters used in the present sche
for Ni, Fe, and Co.

Element hsss a f0 s0 a b
(Å 21) eV

Ni 20.47 1.04 0.264 0.50 0.5674 21.2637
Fe 20.78 0.75 0.349 1.05 0.1748 24.6613
Co 20.51 0.80 0.773 0.55 0.6880 22.1694



he

e

a
l

rg

ng

n
g

a

na

es

n

o
m

is-

ect
etic

t for

c-
o-
h
t-
in
the
the
r,
n
ond
:

the
e

s

our

ive

uce

ry
m-

c

rd.

fo

. 6
ia
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In order to simplify our model further, we assume t
effective exchange interaction to depend only on^mn& ~and
not on the individualmn

( i ) value! and be independent of th
types of the orbitals and lattice sites; i.e., we take

s0m
~ i ! 5s0 , ;m,i . ~10!

Thus the presentH-TBMD method includes just one extr
adjustable parameters0, when compared with our origina
TBMD method.29

The approximations made in Eq.~10! are consistent with
the inherent approximations of the method and, to a la
extent, can be justified based on the results ofab initio cal-
culations. In particular, from the early calculations of Ya
et al.,38 it was observed that for thed bands, the effective
exchange splitting between corresponding majority- a
minority-spin levels in a cluster is of the same order of ma
nitude as those obtained from band theory~see also Ref. 30!.
The exchange splitting was found38 to be a very localized
property, not very sensitive to cluster size. Equation~10! is
also consistent with Harrison’s approximation used here,
cording to whichEd

( i )5Es
( i ) .66 These, along with the bond

length in the bulk solidd, are seta priori, and are listed in
Table III.

B. Calculation of total energy and atomic forces

The total-energy calculation proceeds along the origi
TBMD method.29 Briefly, the procedure is as follows.

The total energyU is written as a sum of three terms:

U5Uel1U rep1Ubond. ~11!

The electronic partUel is obtained by performing a sum
over the eigenvaluese is of the occupied one-electron stat
of the TB Hamiltonian, given by Eq.~3!, i.e.,

Uel5(
is

occ

e isu is , ~12!

whereu is is the occupation number of theu is& state.
The second term in Eq.~11!, U rep, is a pair repulsive term

that includes contributions from the ion-ion interactions a
a correction to the double-counting terms included inUel ,
coming either from Coulomb and exchange interactions
the ~Hubbard! correlation terms. This term is given by a su
of repulsive pair potentials,f i j ,

U rep5(
i

(
j . i

f i j ~r i j !. ~13!

TABLE III. A priori parameters used in the present scheme
Ni, Fe, and Co.Es andEd are diagonal Hamiltonian~i.e., intrasite!
matrix elements, and are taken from the solid-state table of Ref
d is the equilibrium bond length in the corresponding bulk mater

Element Es5Ed d
eV Å

Ni 218.96 2.5
Fe 216.54 2.48
Co 217.77 2.48
e

d
-

c-

l

d

r

f i j is taken to scale exponentially with the interatomic d
tancer i j :

f i j ~r i j !5f0exp@24a~r i j 2d!#. ~14!

The value off0 is chosen so as to reproduce the corr
experimental bond length of the dimer at its correct magn
state.30 In Table II we list our adjusted values for boths0 and
f0 for Ni, Fe, and Co clusters. The cutoff distance,r c , used
for the repulsive potential, is taken to be the same as tha
the electronic term.

The third termUbond is a coordination-dependent corre
tion term to the total energy, originally introduced by T
manek and Schluter70 in their studies of Si clusters. Althoug
in our earlier works we used a quadratic polynomial for fi
ting Ubond, we find that a linear polynomial is adequate
our improved scheme. This term does not participate in
calculation of the forces and, therefore, does not affect
MD procedure for geometry optimization. It is, howeve
very crucial in distinguishing various isomers for a give
cluster size. Assuming no appreciable dependence on b
length, theUbond term is given by the following expression

Ubond5nFaS nb

n D1bG , ~15!

wherenb /n is the average number of bonds per atom of
cluster, andn is the number of atoms in the cluster. Th
value ofnb is determined by a Fermi-type function, i.e.,

nb

n
5

1

2n(i , j FexpS r i j 2r c

D D11G21

, ~16!

where the sum is over all bonds of the cluster andD is taken
equal to 0.01 Å. The parametersa and b are obtained by
fitting Ubond, given by Eq.~15!, to eitherab initio results for
the total energy,Uab initio, of small clusters of different size
in their ground state~if available!, or experimental results
according to the equation

Ubond5Uab initio2Uel2U rep. ~17!

Thus there are a total of five adjustable parameters in
scheme:a andb from Eq. ~15!, f0 for the repulsive poten-
tial, s0 for the average exchange splitting, anda for the
scaling of both the electronic Hamiltonian and the repuls
potential with the interatomic distance according to Eqs.~6!
and ~14!. These parameters, once adjusted to reprod
known results~theoretical or experimental! for small clusters
~with number of atoms less than or equal to 5!, are then kept
fixed in subsequent calculations for clusters of arbitra
sizes. In Table II we give our fitted values for these para
eters.

The forcef i acting on thei th atom due to the interatomi
interactions are obtained from the equation

f i52¹ i~Uel1U rep!. ~18!

The simple analytic form ofU rep @Eq. ~14!# makes the evalu-
ation of the corresponding force term rather straightforwa
The contribution to the forcef i from Uel is obtained by using
the Hellmann-Feynman theorem, according to which

¹ ieks5^cksu¹ iHsucks&. ~19!

r

6.
l.
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The spatial derivative of the Hamiltonian appearing in E
~19! is obtained by taking the spatial derivative of the Ham
tonian matrix elements parametrized according to Eq.~6!.
The advantages of the exponential scaling scheme over o
schemes in facilitating the evaluation of analytic derivativ
should be obvious.

Molecular dynamics can subsequently be performed
numerically solving Newton’s equation

m
d2r i

dt2
5f i ~20!

to obtain the atomic coordinates as a function of time.
small damping force is added to simulate energy loss
reaching the equilibrium configuration for the cluster. Ma
widely differing initial geometric configurations are consi
ered in the simulations. The final equilibrium configuratio
thus obtained correspond to local minima of the total ener
Our aim is to identify the cluster configuration correspond
to the absolute minimum of the total energy. For small cl
ters this is readily achieved. For large clusters, however,
construct initial geometries using clues from experimenta
other theoretical works and perform a full symmetr
unrestricted optimization. Although such an approach is c
siderably efficient, it can still leave out some cluster config
rations containing the most stable geometry.

C. Accuracy of the model

The TB parameters are usually obtained by fitting to b
band-structure results obtained by accurateab initio calcula-
tions. As shown by Harrison,66 the bulk properties are wel
described by the universal constantshll8m . Therefore, the
only remaining problem with the choice of the TB param
eters is their transferability, i.e., their applicability in env
ronments different from the ones used to obtain the TB
rameters. This is not always the case, and the TB param
obtained by fitting to the bulk band structure cannot descr
in general, surfaces and/or clusters in an accurate way
such cases, transferability can be significantly improved w
a judicious choice of the adjustable parametersf0 anda that
enter the force calculations. These are fitted to a dimer
experimental bond length and frequency. This fitti
uniquely determinesa andf0, for a given range ofs0 values
~see below!. Although a small dependence on the cutoff d
tancer c is observed, no appreciable change in results is
tected ifr c is taken within the range determined by first- a
second-nearest-neighbor distances. Largerr c values are not
consistent with the implicit assumption that the universal
parameters are obtained by keeping only first-near
neighbor interactions. It is worth emphasizing that the p
cedure followed here is different from the one followed
our earlier calculations,27–31 in which the value ofa was
taken equal to 2/d, whered is the equilibrium bond length o
the bulk material. The current approach is an improvem
over the previous one, as it allows for better transferabi
by an accurate description of the two extreme structu
namely, the bulk and the dimer, and, therefore, a better
terpolation for structures in between. It must be remembe
that distance dependence of the TB parameters implic
contains the effect of the local environment.63
.
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It is also desirable to choose a simple analytical expr
sion for the scaling in order to be efficiently used in larg
scale computations. This is just the case when Harrison66

universal TB parameters for the intersite interactions
scaled with the interatomic distance according to Eq.~6!.
Bulk properties are found to be well described by this sim
scaling.62 Additionally, the scaling of the intrasite~diagonal!
TB matrix elements requires, in general, a more careful tre
ment as discussed earlier, and with consideration of term
Eq. ~4!.

The parameters0 is chosen from a range of values that d
not alter the fitting result ofa and f0 and, in addition, re-
produces the higher-spin states of small clusters. As
pected, we find thats0 depends ona; the larger the value of
a, the larger the value ofs0 that is needed to reproduce th
magnetic states of small clusters. Under a constant valu
a, small changes ins0 do not alter the results appreciably.30

Usually,s0 is chosen within a range of values that satisfy o
result found by fittinga andf0. We find that changing the
values ofs0 by up to 5–10 % do not change results app
ciably. This is shown in Table IV, where we present o
results for small Ni clusters for two fitted values ofs0, ~and
similarly in Table 1 of Ref. 30 for Fen). From these results
one observes that the geometries of the various spin stat
the Ni ~and Fe! clusters are quite stable within fairly larg
uncertainties of thes0 value, the latter being very close to th
average value of the exchange splitting as obtained fr
band-structure calculations;16,17,26,53~see also Table VI!. It is
also worth noting that small changes ins0 ~while keeping all
the other parameters constant! do not result in any changes i
the vibrational frequencies.

The other two parameters, namely, the coefficientsa and
b which are used to expressUbond in Eq. ~15!, are obtained
by fitting Ubond values, defined by Eq.~17!, to a linear poly-
nomial in the number of bonds per atom (nb /n) according to
Eq. ~15!. The major problem encountered in the evaluati
of the coefficientsa andb is the lack of sufficientab initio
data for fully optimized~symmetry unrestricted! structures.
The situation is exacerbated by the fact thatab initio results
for cluster geometries, frequencies, and magnetic states
to agree among themselves and also with experiment, e
for small clusters. Since the coefficientsa andb require only
two sets of data, we chose to use experimental data for
binding energies of the dimer and bulk solid for their det
mination. As will be shown in Sec. III, this choice leads
good agreement withab initio results when data for fully
optimized structures are available. In some cases when
perimental results are available for some ‘‘magic numbe
clusters, the results obtained using the present scheme
to give better agreement with experiment thanab initio val-
ues reported, suggesting that symmetry unconstrained o
mization might be more relevant than other factors cons
ered for these clusters.

III. RESULTS

In this section we present our results for Nin , Fen , and
Con clusters obtained using theH-TBMD scheme.
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TABLE IV. Results for Nin clusters obtained for two different values of the parameters0. (* ) Relative to
the energy of the lowest energy state~otherwise them50 state has the same energy for differentso values.!
(** ) The calculations of Ref. 11 for Ni4 refer to theTd geometry.

Total energy/atom~eV! re ~Å!

Cluster Symmetry m Present work Ref. 11 Present work Ref. 11
so50.45 so50.50 LDA NL LDA NL

0 0.450 0.500 2.20
Ni2 2 0.000 0.000 0.000 0.000 2.20 2.20 2.0

C3y 0 0.156 0.189 2.28
Ni3 C2y 2 0.000 0.000 2.3132,2.29

C2y 4 0.071 0.038 2.4132,2.28

square 0 0.468(* ) 0.518(* ) 0.165(** ) 0.083 2.2734,3.1632 2.49
Td 2 0.032 0.057 0.068 0.020 2.3132,2.4134 2.49

Ni4 Td 4 0.000 0.000 0.000 0.000 2.3533,2.4633 2.49 2.36
Td 6 0.066 0.041 0.163 0.156 2.31,2.4834,2.49 2.49

Trig-Pyr 0 0.249(* ) 0.298(* ) 2.27–2.84
C4y 0.375 0.423 0.260 2.2834,2.27,2.77 2.49

Trig-Pyr 2 0.241 0.269 2.3236
C4y 0.166 0.195 2.31–2.35

Trig-Pyr 4 0.000 0.009 2.36–2.91
Ni5 C4y 0.054 0.063 0.044 2.49

Trig-Pyr 6 0.055 0.043 2.40–2.52
C4y 0.080 0.101 0.000 2.49

Trig-Pyr 8 0.031 0.000 2.4434,2.4734,2.56
C4y 0.135 0.164 0.088 2.49

Ni6 D4h 6 0.000 0.000 2.33–2.51
~distort! 8 0.083 0.067 2.38–2.50

10 0.074 0.041 2.41–2.59
12 0.097 0.047 2.53312
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A. Ni clusters

The parametersa and f0 were chosen to reproduce th
experimental bond length~2.20 Å! ~Ref. 23! and vibrational
frequency (330 cm21) ~Refs. 23 and 71! of the dimer. The
bulk bond length obtained using the same parameters is
Å, which compares favorably with the experimental value
2.49 Å. The value fors0 was chosen so as to reproduce t
energy spacing of the lower-spin states of small clusters
found by ab initio methods.11 The best fit was obtained b
choosings050.5 eV, although small variations in the valu
of s0 do not change the results appreciably~as apparent from
the results in Table IV!. Finally, the values fora andb were
obtained by fittingUbond in Eq. ~15! to the experimental val-
ues of the cohesive energy of the bulk@4.44 eV/atom~Ref.
72!# and the experimental binding energy of the dimer~0.933
eV/atom, the value quoted in Ref. 23; a more recent repo71

gives the value of 1.04 eV/atom!. We used the cohesive en
ergy of a relaxed 147-atom cluster to obtain an approxim
figure for the bulk value. This fit reproduces fairly well th
ab initio results of Ref. 32, which, as it is worth pointing ou
indicate a noticeable dependence on the bond length.
adjustable parameters used for Ni are listed in Table II. A
listed in the same table are the adjustable parameters use
Fe and Co.
60
f

as

te

he
o
for

We have considered Nin clusters of arbitrary sizes. Al-
though several of our results for the magnetic Ni clust
have been published recently,30,31we recalculate many of the
structures using the currrent parametrization scheme. In
ticular, we focus on cluster sizes most studied using ot
theoretical methods for purposes of comparison.

As will be shown below, the current parametrization do
not introduce qualitative differences in our results wh
these are compared with those obtained with our ear
parametrization.27–31 Only small quantitative differences ar
introduced by the current parametrization, and these per
mainly to the energetics of the various cluster structur
Thus, within the current parametrization, we find that,
agreement with our previous parametrization,31 the magnetic
Ni13 cluster does not exhibit a stable icosahedral grou
state; instead, initial icosahedral geometries relax to a v
distorted geometry of a prismlike structure, which is on
0.020 eV/atom less stable than the one obtained by rela
fcc structures. For Ni19, we find that the nonmagnetic icosa
hedral cluster is less stable than the corresponding fcc on
0.135 eV/atom. For the magnetic Ni19, the fcc structure
~with ^mn&50.842mB) is found to be more stable than th
icosahedral one~with ^mn&51.158mB) by 0.013 eV/atom.
Similarly, we find that the magnetic~nonmagnetic! fcc Ni43
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is more stable than the corresponding icosahedral geom
by 0.131 eV/atom~0.130 eV/atom!. It is thus clear that our
results for both Ni19 and Ni43 ~being more or less indepen
dent of the parametrization used! do not agree with those
obtained using the embedded-atom method,73 according to
which Ni19 and Ni43 exhibit ground states of icosahedr
structure.

From these results it is apparent that the current par
etrization does not substantially affect the calculated m
netic moments of the clusters~as compared with our result
based on our earlier parametrization!. In Fig. 1 we plot the
average magnetic moment per atom for Ni clusters withn
52 –20 atoms. We also include in the same figure the
perimental results of Apselet al.,6 the theoretical results o
Reuse and Khanna,13 and the recent theoretical results b
Bouarabet al.14 Reuse and Khanna used density-functio
theory in the local-density approximation~LDA !, while
Bouarabet al. used a self-consistent tight-binding meth
~applied to geometries obtained by MD and therefore
fully relaxed within the self-consistent approach! to calculate
the average magnetic moments. Our values are in pe
agreement with the LDA results reported in Ref. 13 forn
52, 3, 5, and 6. Full optimization can readily be done
clusters of these sizes. As seen in Fig. 1, however, resul
Ref. 13 predict a much lower value for the magnetic mom
when compared with experiment for Ni13. This may be due
to lack of full symmetry and spin unconstrained minimiz

FIG. 1. Theoretical results using the present method (h) and
experimental results~Ref. 6! (d) for the average magnetic mo
ments ~per atom! of Ni clusters. Results of density-functiona
theory calculations in the local-density approximation~LDA ! ~Ref.
13! are indicated byD. Also shown are results of a self-consiste
tight-binding method~without full symmetry unconstrained relax
ation! reported in Ref. 14 (s).
try
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ct
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tion for this structure. Our results are much closer to exp
ment than those reported in Ref. 14.

On the other hand, the current parametrization does aff
as expected, the calculated vibrational frequencies of
clusters. For Ni3 we find the eigenfrequencies to be equal
98, 183, and 327 cm21, which are in good agreement wit
the experimental values of 198, 300, and 405 cm21 as mea-
sured by Nouret al.71

The present method can easily be extended to the tr
ment of larger Ni clusters. For comparison, we have used
method to study Nin clusters forn533 ~twin closed icosahe-
dron!, 43 ~fcc!, and 147~icosahedron! shown in Fig. 2. The
magnetic moments for these clusters, along with experim
tal results for these clusters reported by Apselet al., are
listed in Table V. As seen in the table, there is excelle
agreement with experiment for the magnetic moment
atom. The discrepancies, when they arise, have to do w
the fact that the experimental results have been obtaine
temperatures high enough to account for thermal ener
which are comparable with the energy differences among
various isomers of a given cluster. It is also possible that
adsorption of various atoms on the cluster surface tend
promote equilibrium cluster geometries which are differe
from those exhibited by the adsorption-free magnetic cl
ters.

FIG. 2. Relaxed geometries of magnetic Nin for n5 ~a! 33 ~twin
icosahedron!, ~b! 43 ~fcc!, and~c! 147 ~icosahedron!.

TABLE V. Magnetic moment per atom (mB) for Nin clusters
with n.20.

n Structure

Magnetic moment per atom (mB)

Present work Expt.a

33 twin icosahedron 0.970 0.94
43 fcc 1.070–1.160 1.05
147 icosahedron 0.925 0.85

aReference 6; experimental data have been reexpressed usin
gyromagnetic constantg52.0.
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B. Fe clusters

As in the case of Ni, the parametersa andf0 for the Fen
clusters are obtained by fitting to the ground-state proper
of the dimer. In particular, our parameters were fitted so a
reproduce the experimental bond length of 2.02 Å,74 and the
experimental vibrational frequency,n5300 cm21, ~Refs. 71
and 75–77! of the dimer. The parameters0, on the other
hand, was fitted to reproduce the theoretical spin states o
small clusters.10,30,31The values of the parametersa and b
were obtained by fittingUbond @given by Eq. ~15!# to the
experimental value of the cohesive energy of the bulk@4.28
eV/atom~Ref. 72!# and the experimental binding energy
the dimer@0.65 eV/atom~Ref. 75!#. The values ofa,f0, and
s0 ~listed in Table II!, thus obtained, are slightly differen
from our previous ones.30,31 However, the current parametr
zation does not introduce any quantitative differences in
calculated values of the average magnetic moments^mn& for
n,10, while for larger clusters (10<n<55) the current pa-
rameters result in magnetic moments which are at most
greater than our previously reported values,30,31 indicating
only a minimal sensitivity of our results to the adjustab
parameters. Also, we find no qualitative differences in
ground-state geometries of the clusters studied using the
parametrization. In Table VI, we present our results for so
selected Fen clusters for comparison. The geometries
some of the relaxed Fen clusters are shown in Fig. 3.

As in our previous calculations,30,31 our results for Fen
clusters are in very good agreement with both experime
data and theoretical results when the latter pertain to f
relaxed cluster geometries. Thus, we see from our prev
results,30 and from those included in Table VI, that the ave
age magnetic moment̂mn& per cluster atom exhibits a
strong dependence on the cluster size and/or geometry, e
cially in the case of very small clusters. In Fig. 4 we sho
the calculated relationship between^mn& and the average
number of bonds per atom@given by Eq.~16!#. From this it is
clear that, as the ratio of surface to bulk atoms becom

FIG. 3. Relaxed geometries of magnetic Fen for n5 ~a! 5 ~trigo-
nal bipyramid!, ~b! 13 ~icosahedron!, and~c! 169 ~bcc!.
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smaller, the average magnetic moment tends to stabiliz
the corresponding bulk value. For small clusters, howev
for which the surface to bulk atoms ratio is larger, a stro
dependence of̂mn& on nb /n is found, although in this figure
it is difficult to separate the effects due to the bond leng
from those due to the average coordination number of
cluster-atoms.

The calculated values of̂ mn&, in agreement with
experiment5 and other theoretical reports,10,12,16,20,60 are
found to be much larger than those for the bulk (2.2mB) ~see,
for example, Ref. 78!. It is worth noting that clusters consis
ing of hollow structures are found to be stable, in agreem
with Christensen and Cohen.20 These hollow cluster geom
etries exhibit excessively high magnetic moments. Strik
cases appear to be the distortedC4v structure of Fe6, the
cubic Fe8 and the hollow~no central atom! bcc structure of
Fe14. ~The hollow icosahedral structure of Fe12 ~being an
icosahedron with no central atom! does not exhibit such
property; it is found to be unstable.

Another observation concerning Fen clusters is that our
results for the magnetic moments of the relaxed cluster
ometries are in very good agreement with the results repo
by Ballone and Jones12 and by Pastor, Dorantes-Davila, an
Bennemann16 for relaxed cluster geometries. This indicat
that the neglect of thes-d interactions, as noticed in Ref. 16
does not appreciably affect the results, in contrast to the
sults for Nin clusters. At the same time, a comparison b
tween our results and those obtained in Ref. 16 indicates

FIG. 4. Average magnetic moment^mn& for Fe plotted as a
function of the average number of bonds per atom@given by Eq.
~16!#. As seen in the figure, the average magnetic moment tend
stabilize at the corresponding bulk value as the ratio of surfac
bulk atoms becomes smaller.
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TABLE VI. Results for Fe; experimental results have been reexpressed usingg52.0.

n Symmetry Bonds (Å) ^mn& (mB) v (cm21) 2s0 (eV) Ref.

2 2.02 3.00 300 2.1 Prese
1.96 ~2.00! 3.00 1.7-2.5 26

1.98 3.00 461 10
2.04~2.01! a 3.00 12

3.3 60.5 expt.~1!

3 C3v 2.12 2.67 180, 180, 318 2.1 Prese
C3v 2.10 2.67 270, 274, 433 26
C3v 2.04 2.67 10
C3v 2.18~2.14! a 2.67 12

2.760.3 expt.~1!

180, 220 expt.~71,75
4 Trig. Bip. 2.1933 3.00 134, 134, 176 2.1

2.3033 184, 184, 308 Presen
Dist. Td 2.22 3.00 103, 112, 222

223, 227, 412 26
Dist. Td 2.17,2.43 3.00 12
Dist. Td 2.25 3.00 10

5 Sq. Pyram 2.1734,2.2934 2.80 68, 100, 117, 144 2.1
183, 200, 214, 219, 296 Prese

Trig. Bipyr 2.2036,2.4133 2.80 37, 127, 188, 198 2.1
213, 296 Presen

Trig. Bipyr 2.22–2.32 2.8–3.2 102, 121, 141, 191
205, 256, 270, 323, 401 26

Trig. Bipyr 2.2036,2.3133 2.80 12
Trig. Bipyr 2.41 3.00 1.46 16

2.860.2 expt.~26!

6 Tetr. Bipyr 2.32312 3.33 2.1 Presen
Tetr. Bipyr 2.46 3.00 1.46 16

Capped Trig. Bipyr 2.16–2.34 3.33 12
7 D5v 2.2335,2.33310 2.86 Presen

D5v 2.2135,2.11310 3.14 12
D5v 2.46 3.00 1.46 16

8 Dist. Cube 2.16–2.26 3.00 2.1 Pres
9 bcc 2.14 2.89 2.1 Prese

bcc 2.26 2.33 1.46 16
bcc 2.54 2.89 2.3 17

13 icos 2.23–2.69 2.77 2.1 Prese
fcc 2.54 2.77 2.0 17
bcc 2.41 2.54 1.46 16

14 bcc~hollow! 2.24 2.86 2.1 Presen
15 bcc 2.28 2.80 2.1 Prese

bcc 2.41 2.60 1.46 16
bcc 2.54 2.93 2.4 17

43 fcc 2.32 2.65 2.1 Prese
55 icos 2.3–2.4 2.62 2.1 Prese
169 bcc 2.59 2.1 Prese

aValue obtained by employing a modified spin-polarization function.
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significant differences can arise when comparing results
tained for relaxed structures with those obtained for un
laxed structures. This clearly shows the necessity of perfo
ing spin- and symmetry-unconstrained calculations
determining the ground state properties of the CTMA’s
curately.

In addition to obtaining the average magnetic mome
our scheme can also provide us with information about
b-
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-

r
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distribution of the magnetic moments and their relations
to the electronic charge transfer among the atoms of then

clusters. Our calculational results lead to the following co
clusions.

~i! The actual value of the magnetic momentmn
( i ) of the

i th atom of a Fen cluster is the result of a very delica
interplay of three main factors:~1! the ~local! coordination
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TABLE VII. Results for Co ; experimental results have been reexpressed usingg52.

n Symmetry Bonds~Å! ^mn& (mB) v (cm21) Ref.

2 2.473 2.00 236 Present
3 C2v 2.55,2.69,2.69 2.33 130 132 227 Presen
4 Td 2.61–2.80 2.50 43,78,109,121,132,222 Prese

2.202 25
5 Tetr. Pyr. 2.6934,2.7934 2.20 32,81,92,122, Presen

139, 141, 201
6 Td 2.76 2.33 58,100,113,135,212 Presen

2.332 25
13 hcp 2.71–2.75 2.08 Presen

hcp 2.105 25
fcc 2.08 80
icos 2.259a 1.77,2.23 81
fcc 2.301a 2.08 81
icos 2.329 25

19 icos 2.54–2.94 2.16 Presen
fcc 2.328a 1.95 81
fcc 2.508 2.147 25

29 hcp 2.69–2.72 1.90 Presen
39 hcp 1.87 Present
43 fcc 1.79 Present

fcc 2.116 80
43 2.01 expt.~5!

55 1.92 expt.~5!

141 1.82 Present

aOptimized bond length only.
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number,~2! the bond lengths~between a given atom and i
neighbors!, and~3! the excess electronic chargeDqn

( i ) of the
given cluster-atom.

~ii ! The cluster atoms on the surface exhibit greater m
netic moments than the inner cluster atoms, provided tha
corresponding bond lengths and excess electronic charg
the corresponding atoms do not differ appreciably.

~iii ! A correlation betweenDqn
( i ) and mn

( i ) cannot be es-
tablished, as this is strongly affected by the local coordi
tion number and the bond lengths of the atom with its nei
bors.

Thus, for example, in the case of the fcc Fe43, we find
that the value of magnetic moment for the central atom is
smallest, while it exhibits a large excess electronic charg
10.346 electrons. The values of the magnetic moment
the rest of the atoms are found to increase as the atoms m
away from the central atoms. Atoms belonging to the sa
shell exhibit the same value of the magnetic moments,
atoms with the highest magnetic moment are found to re
on the outer~surface! shell of the cluster. On the other han
the excess chargesDqn

( i ) exhibit a variation with the shel
number, the former taking values of20.256, 10.035, and
10.105 electrons on the first, second, and third~outer! shells,
respectively.

In the case of Fe55 we find the excess valence char
Dqn

( i ) to increase gradually from20.268 electrons on th
central atom to the value of10.066 electrons on the surfac
atoms. At the same time, the magnetic moments incre
from a value ofmn

( i )52.105mB ~very close to the bulk value!
at the central atom to the values 2.68mB and 2.78mB on the
g-
he

of

-
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e
of
of
ve
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nd
de

se

surface and subsurface cluster atoms, respectively, indica
the effect of the interplay of the various factors~discussed
above! in the development of the magnetic moment of ea
cluster atom. This picture is in agreement with the findin
of Refs. 16 and 38 in the case of Fe15.

Furthermore, we see from Table VI that our calculatio
also reproduce the experimental vibrational frequencies
the trimer, Fe3. In particular, we find n5179.5 and
318.0 cm21, which are in good agreement with the expe
mental values of 180 and 220 cm21 found from far-infrared
and resonance Raman spectra.71,75,76For larger Fen clusters,
the frequencies we calculate are included in Table VI alo
with the results reported by Castro and Salahub26 for com-
parison.

Finally, it should be noted that our results are in agr
ment with the general trends found by Ballone and Jon12

for small clusters. In particular, we have found that comp
clusters are more stable than open structures, and that
magnetic clusters exhibit shorter bond lengths than the
responding magnetic clusters. Additionally, it is worth noti
that, while the applicability of the method of Ballone an
Jones to Fen clusters is limited to cluster sizesn<10, our
method is easily applicable to much larger clusters, a
therefore, offers a significant advantage for studying m
complex systems.

C. Co clusters

Unlike in the case of Ni and Fe, the limited availability
the experimental data andab initio results do not permit an
accurate evaluation of the adjustable parameters for coba
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present. We relied on the data for the bond length and
vibrational frequency of the dimer suggested by Shim a
Gingerich79 ~on the basis of their CI calculations! to deter-
mine the parametersa and f0. According to these, the vi-
brational frequency of Co2 is approximately 240 cm21, and
the expected bond length is 2.43 Å. To the best of o
knowledge, data for small Con clusters are very limited. We
relied on the existing experimental3,4 and theoretical
data25,79–81as well as on our observation~following the stud-
ies of Fe and Ni clusters! that the average value of the ex
change splitting takes, to a good approximation, the co
sponding bulk value, for the determination of the parame
s0. The parametersa and b were obtained by fitting to the
experimental cohesive energy of the bulk@4.39 eV/atom
~Ref. 72!# and the experimental binding energy of the dim
@0.5 eV/atom as quoted in Ref. 79. This is very close to
reported theoretical value of 0.482 eV/atom~Ref. 71!#. The
adjusted parameters~listed in Table II! reproduce the mag-
netic ground state of Co2. This choice of the parameters
however, introduces a small charge transfer between the
Co atoms due to an oscillation in the ground state confi
ration. Due to the fact that no accurateab initio results are
available for Co2 which can be used for better fitting, w
used the parameters listed~in Table II! in our calculations for
the larger Con clusters in order to demonstrate the applic
bility of our method.

Our results for the larger Con clusters are included in
Table VII along with other reported results for compariso
From this table it is apparent that our results reproduce
ported results for Co6 ~Ref. 25! and for Co13

25,80 while they
decline from the theoretical and experimental results for C43

by 10–15%. On the other hand, our calculations on Co141

~Fig. 5! resulting in an average magnetic moment
1.823mB , are in very good agreement with the experimen
findings of Douglasset al.4 @who found that for cluster sizes
of 56–215 atoms the average magnetic moment per ato
1.96mB60.12mB ~re-expressed using gyromagnetic rat
g52.0)# and the experimental results of Billaset al.,5 which
indicate a value of 1.75mB for cluster sizes of approximately
140 atoms.
.

d

r

e
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r

-
r

r
e

o
-

-

.
e-

f
l

is

IV. CONCLUSION

We have detailed a minimal parameter tight-bindin
molecular-dynamics scheme incorporating a Hubbard Ham
tonian for the treatment of magnetic effects. The method
computationally fast, and can be easily used to treat clus
of a few hundred atoms (n<300). These cluster sizes ar
well beyond the range ofab initio techniques. The presen
method allows full symmetry and spin-unconstrained mi
mization for magnetic clusters of sizen.100. We have com-
pared our results with experiment and other theoreti
schemes. The excellent agreement with experiment for la
clusters shows that full geometry optimization is more cr
cial in obtaining good agreement with experiment than oth
considerations for magnetic clusters.
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