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Electron transport in mesoscopic disordered superconducternormal-metal—superconductor
junctions
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We have generalized the scattering—matrix theory of multiple Andreev reflections in mesoscopic Josephson
junctions to the multiple-mode case, and applied it to short superconductor—normal-metal—superconductor
(SNS junctions with diffusive electron transport. Both the dc and ac current-voltage characteristics are ana-
lyzed for a wide range of bias voltag¥s For voltages smaller than the supeconducting gap the dc differential
conductance of the SNS junction is predicted to diverge a¥1JS0163-182¢97)51838-4

Considerable interest, both in experiménfsand in  modes supported by the junction, and can be written in terms
theory/~® is attracted currently to finite-voltage transport of reflection and transmissiod <X N matricesr, t:
properties of mesoscopic Josephson junctions with high elec-
tron transparency. The mechanism of conduction in such
junctions is the process of multiple Andreev reflectidrid S=< rot ) 1)
(MAR) that takes place at the interfaces of the junction scat- tor')’
tering region, and bulk superconducting electrodes. Phenom-
elogically, the MAR processes manifest themselves in th%vheret’=tT r
so-called “subharmonic gap structuré3GS in the current- '

vo!tgge (V) characteristics of the junction: curreqt singu- voltage, an electron with energyemerging from one of the
larities at voltages/,=2A/en, n=1,2,...,whereA is the  gjecirodes generates electron and hole states at energies
superconducting energy gap of the junction electrodes. R€; 1 o2nev with arbitraryn. Thus, the electron and hole wave
cently developed quantitative description of MAR in junc- f nctions in regions | and Il of the junctiofFig. 1) can be

tions with arbitrary electron transparenby(Ref. 8 is based \yritten as follows:

on the usual scattering approach for Bogolyubov—de Gennes
equations?~1* extended to account for acceleration of qua-
siparticles in the junction by nonvanishing bias voltage.
Point contacts fabricated with the controllable break junction

=—(t*)"'r't, andttT+rrf=1.
Due to acceleration of quasiparticles by the applied bias

lﬂeF; [(aZnAn+J6n0)eikx+ Bne—ikX]e—i(e+2ne\l)t/ﬁ,

techniqué®*®allow for accurate comparison between theory (1)

and experiment. In particular, the most recent experifnent =2, [Ae*+a,,B, e Kxe (et eVt

found that thdV characteristics of aluminum point contacts n

can be well explained by theory for the whole range of the ()

contact transparencie®, from the tunnel junction limit
D—0 all the way to the ballistic contacts wifb—1.

So far the scattering theory of MAR has been formulated _ ikx —ikx1a—i[e+(2n+1)eV]t/A
only for junctions withgone prB(/)pagating electron mode. The we'_; [Cae™ " azn.1Dne e '
aim of this work is to extend the theory to the multiple-mode (Il
case and apply it to diffusive SNS junctions. We show that if In= E [asns1CreR+ D, e KXeilet(2ntDeViva
the scattering matriXs of the junction does not depend on n
energy on the scale &, the time-dependent current in the ©)
junction can be represented as a sum of independent contri-
butions from individual transverse modes. Therefore, the
current depends only on the distribution of the transparencies
D,, of these modes.

We assume that the junction lendth(Fig. 1) is smaller —
than the coherence length of the superconducting elec- S | - N 11 S
trodes of the junction and inelastic scattering length :

L<¢,l;, . In this case the transport properties of the junction
are determined by the interplay of scattering inside the junc- L

tion characterized by the scattering mat8x and the An-

dreev reflection with amplitude(e) at the two interfaces

between the junction scattering region and bulk supercon- F|G. 1. Schematic diagram of the mesoscopic disordered Jo-
ducting electrode$see Ref. 8 for the definition ai(¢)].  sephson junction. | and Il denote the portions of the contact region
The scattering matrdXS is a unitary and symmetric matrix separated by the scattering regitvatchedl where the motion of the
2NX 2N, whereN is the number of propagating transverse quasiparticles is diffusive.
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wherea,=a(e+neV). In these equations we took into ac- probabilitiesD,,, m=1,... N. The functionsf,(D) are de-
count that the amplitudes of electron and hole wave functermined by the solution of the recurrence relat{@h with
tions are related via Andreev reflection. Furthermore, we nethe diagonalized transmission mattt{. Therefore, the con-
glected variations of the quasiparticle momentkmwith  tribution of the amplitudesB, to the currents(4) can be
energy assuming that the Fermi energy in the electrodes igritten as T[BnBz,]=(1—IaOIZ)Tr[fn(D)f’;,(D)(l—D)],
much larger thamd. The quasiparticle energies in regions | je_ it can be represented as a sum of independent contribu-
and Il are measured relative to the Fermi level in the left andijons from different transverse modes with the transparencies
right electrode, respectively. D,,. Following similar steps we can show that the same is
The amplitudes of electron and hole wave functions haverye for the amplitudes\,. Therefore, the Fourier compo-
transverse mode inder not shown in Egs(2) and(3), .9.,  nents(4) of the total current can be written as sums of inde-

An={Anm}, m=1,... N. The source ternd describes an pendent contributions from individual transverse modes:
electron generated in thjeh transverse mode by a quasipar-

ticle incident on the junction from the left superconductor:
J(e)=(1—|ag|?)?8y;. The current (t) in the constriction
can be calculated in terms of the wave function amplitudes.
Equations(2) and (3) imply that the current oscillates with where the contribution of onéspin-degenerajemode is
the Josephson frequenay=2eV/A and can be expanded in
Fourier components(t) =3l ,&%“. Summing the contri-
butions to the current from electrons incident both from the

|k=§ I(D), @)

Ik(D)= eVDékO_J d&'tan.‘(%)(l_|ao|2)

h

left and right superconductors at different energiese ob-
tain the Fourier componentg:

e |“ detanf ]| T
k—ﬁ _M_evean ﬁ I

+a_yA T+ ; (1+ap,a5n+ k)

38+ ak IAL

X (AnALk— BnBLk)

, (4)

M0

where Tr is taken over the transverse modes.
Amplitudes of the wave function&) and (3) are related

via the scattering matri$. Taking into account that the scat- of

X agkA:+a—2kA—k+; (1+azp85n+k)

X(AnALk_ BnBLk) ) (9)

with the integral overe taken in large symmetric limits.
Thus, the time-dependent current in a short constriction with
arbitrary distribution of transparencies is completely deter-
mined by Eqgs(8) and(9) with, the amplitudes,, given by

the recurrence relatiof¥) with the substitutiontt—D and
rJ—+R=1-D. CoefficientsA, can be found from the
recurrence relation that follows from a single-mode version
Egs. (5 and (6) (Ref. 8: Apii—ax1a0A,

tering matrix for the holes is the time-reversal of the electron= RY*¥(B,; 1821+ 2~ Bnazn+ 1) +818n0-

scattering matrixS, we can write

Bn a2nAn+J5nO
=S : 5
Cn an+1Dn
( An )=S* aZan )’ (6)
anl a2nflcnfl

Eliminating A,, between Eq(5) and inverse of Eq(6), we
find a relation between the amplitudBg andD,,. Combin-
ing this relation with the expression f@, in terms ofB,
that follows from the inverse of E@5) and Eq.(6) we arrive
at the following recurrence relation:

2 2
tT{azmzaznﬂ ( n+1 azn )B
2 n+1— 2 2 n
1_a2n+1 1_a2n+1 1_a2n—1
axndon-1 2
1-a2 Bn-1|—[1—a5,]By=—rJdno. (7
T Y2n-1

We can use this approach to calculate the current in a
short disordered SNS junction with large number of trans-
verse modedN>1 and diffusive electron transport in the N
region. In this case, the distribution of transmission prob-
abilities is quasicontinuous, and is characterized by the den-
sity functionp(D) (see, e.g., Ref. 7

7ThG 1

26? D(1-D)¥?’
(10)

whereG is the normal-state conductance of the N region.
Figure 2 shows the results of the numerical calculation of

the dclV characteristic and differential conductance of the

short SNS Josephson junction based on Egs-(10). We

see that théV characteristics have all qualitative features of

highly transparent Josephson junctions: subgap current sin-

gularities ateV=2A/n and excess currehf, ateV=2A. It

is instructive to compare quantitatively these features to

those in thelV characteristics of a single-mode Josephson

junction plotted in Ref. 8. Such a comparison shows that the

1
s ...=f0de(D)..., p(D)=

Since the Hermitian matrixt™ can always be diagonalized magnitude of the excess current in the SNS junction, as well
by an appropriate unitary transformatidh the recurrence as the overall level of current in the subgap region corre-

relation(7) implies that the structure of the amplitudggs as
vectors in the transverse-mode spac@®js=U'f (D)UrJ,

spond approximately to a single-mode junction with large
transparency) =0.8. At the same time, the subharmonic gap

where D=Utt'U" is the diagonal matrix of transmission structure and the gap featureea¥=2A are much more pro-
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. . eD AD D? 1++R
4 (V)= —1{ eV+ —| 1— In R
@) mh R 2JR(1+R) |1-4R
3 - A2
2eV|’
<
22- [ Iml V—AZ—DR 11
v mL(V)=+y T3 R’ (11
L I el (V)= DA? AV, TR
V)== Ty |Riny +
°3 A S + 21+ Lo |
= ——InD||.
2 R
eV/A
4 ) . Expression for the excess curr¢aecond term i (V)] was
obtained before in Refs. 18 and 19. Asymptotics of the ac
(b) components of the current agree both with the known results
3 | for the tunnel junction limit D—0) and ballistic junction
8
(D—1).
> Averaging Eqs(11) with the distribution(10) we obtain
g 5 ] | the large-voltage asymptote of the current in the SNS junc-
-~ tion:
&
1 - (vy=clvs AT ) A 12
M=CG\V+ ol 771~ 5ay/" (12
0 T ——— Iml 4 (V) 7TGA2< 77)
0 1 2 3 mh(V)=—3 4
4
eV /A eV
FIG. 2. The quasiparticle curre(d) and the differential conduc- Rel (V)= — GA? In i/ n Z
tance(b) versus voltage at various temperatures, for a disordered 1 3e2Vv 4A 3

SNS junction. From top to botto=0,1,2,3\. At low voltages,

the dc currenta) has a square root dependence on voltage, while aThe second term in the equation V) represents the ex-

high voltages exhibits excess current. The conductabrepos-

cess current and was first found in Ref. 16 by the quasiclas-

sesses subharmonic singularities, diverges at low voltages, and gical Green's function method. The asympt¢1®) agrees
high voltages asympotically tends to the normal state conductanoge|| with the numerically calculated zero-temperatuké

of the disordered region.

characteristic shown in Fig.(®.
Analytical results at low voltageg,V<A can be obtained

nounced than in a single-mode junction of this transparencyusing the understandifighat the small voltag® drives the
The amplitude of the oscillations of the differential conduc- | andau-Zener transitions between the Andreev-bound states

tance corresponds roughly to the junction widk=0.4 (al-

of the modes with small reflection coefficierf®&s<1. Aver-

though this comparison is not very accurate because of thgging the nonequilibrium voltage-induced contribution to the

different shapes of the curvesThis “discrepancy” reflects

the two-peak structure of the transparency distributib®)

current[Eq. (11) of Ref. 8| with the distribution(10) we find
the nonequilibrium part of the dynamic current-phase rela-

of the diffusive conductor: the abundance of nearly ballistiction of a short SNS junction a&V<A:
modes leads to large excess and subgap currents, while the

peak at low transparencies determines the SGS features.
At large and small bias voltages the time-dependent cur-

rent through the constrictiol{¢), wherep=2eV1t#, can be
found analytically. At large voltages, V> A, the probability

7GAn(A) [ O, O<op<m,

lp)=—74 JeViAsin(¢/2),

T<e<2T,
(13

of MAR cycles decreases rapidly with the number of An-wheren(A)=tanh@/2T). (Equilibrium part of the current-
dreev reflections in them. This implies that the higher-ordeiphase relation has been found before in Ref) Zdom this
harmonicsl, of the current decrease rapidly with increasing equation we can also find the voltage dependence of the Fou-
k, and we can limit ourselves to the first harmonic: rier harmonics of the time-dependent current at low voltages.

[(¢)=1(V)+2 Rdcosp)+2 Iml,sin(e). Truncating then
the recurrence relations at the coefficieBts, and Ay ; we

can solve them explicitly and find the current from E§).

For a single mode af<A we get

The amplitudes of the first harmonics calculated numerically
for arbitrary voltages are shown in Fig. 3. The curves agree
with the high-voltagg11) and low-voltagg(13) asymptotics

and exhibit the SGS singularities at intermediate voltages. In
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0.0 m———— : dl  n(A) A
: [ CV=v="2 ®Vev 4
<4 (a) -
-0.1 - This singularity reflects directly the high-transparency peak

<
% ] ] in the distribution(10) and is not unique to the diffusive SNS
- : . junctions. A junction with the strongly disordered tunnel
K] ] i barrief* should exhibit the same {¥ singularity with the
prefactor 1/2 in Eq(14) replaced with 2#. Physically, the
origin of this conductance singularity is the overheating of
l electrons in the junction by MAR. Electrons with energies
03 +————"——— ———— inside the energy gap traverse the junction many times and
: : | as a result are accelerated to energies much largeretfan
This means that the effective voltage drop across the junction
1.0 . e is much larger tharV, leading to increased conductance.
This mechanism of conductance enhancement is qualita-
(b) tively similar to the so-called ‘“stimulation of
superconductivity?? (which is one of the plausible explana-
tions of the zero-bias conductance singularfiieis long
0.5 A i semiconductor Josephson junctiprsithough quantitatively

: the phenomena are quite different. The fact that the singular-
ity is caused by electron overheating implies that at very low
—— T Ty voltages it should be regularized by any mechanism of in-

Im(I,)e/GA

elastic scattering. Nevertheless, in junctions shorter than in-
elastic scattering length,,, there should be a voltage range
00 10 2.0 3.0 where the conductance follows the¥ behavior.
eV/A In summary, we have developed a theory of multiple An-
dreev reflections in multiple-mode Josephson junctions and
FIG. 3. The cosing@ and sine(b) part of the first Fourier applied it to the diffusive SNS junctions and disordered tun-
component of the ac current. From top to bottém) and from  ne| barriers. The hallmark of the MAR processes in these
bottom to top(a) T=0,1,2,3\. The slope at small voltages diverges systems is the zero-bias\ﬂ singularity of the dc differen-
as (A/V)*" See text for discussion about the high-voltage behavyjs| conductance. We have also calculated the low- and high-
lor. voltage asymptotes of the ac components of the time-

general, the curves look qualitatively similar to those for thedependent current in the SNS junctions.

0.0

single-mode junction with intermediate transparefcysee We would like to thank K. Likharev for fruitful discus-
Figs. 2b) and 4c) in Ref. §]. sions. This work was supported by DOD URI through

Equation(13) implies that the dc differential conductance AFOSR Grant No. F49620-95-1-0415 and by ONR Grant
of the junction has the square-root singularityvatO: No. N00014-95-1-0762.
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