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We have generalized the scattering–matrix theory of multiple Andreev reflections in mesoscopic Josephson
junctions to the multiple-mode case, and applied it to short superconductor–normal-metal–superconductor
~SNS! junctions with diffusive electron transport. Both the dc and ac current-voltage characteristics are ana-
lyzed for a wide range of bias voltagesV. For voltages smaller than the supeconducting gap the dc differential
conductance of the SNS junction is predicted to diverge as 1/AV. @S0163-1829~97!51838-8#

Considerable interest, both in experiments1–6 and in
theory,7–9 is attracted currently to finite-voltage transport
properties of mesoscopic Josephson junctions with high elec-
tron transparency. The mechanism of conduction in such
junctions is the process of multiple Andreev reflections10,11

~MAR! that takes place at the interfaces of the junction scat-
tering region, and bulk superconducting electrodes. Phenom-
elogically, the MAR processes manifest themselves in the
so-called ‘‘subharmonic gap structure’’~SGS! in the current-
voltage (IV) characteristics of the junction: current singu-
larities at voltagesVn52D/en, n51,2, . . . ,whereD is the
superconducting energy gap of the junction electrodes. Re-
cently developed quantitative description of MAR in junc-
tions with arbitrary electron transparencyD ~Ref. 8! is based
on the usual scattering approach for Bogolyubov–de Gennes
equations,12–14 extended to account for acceleration of qua-
siparticles in the junction by nonvanishing bias voltage.
Point contacts fabricated with the controllable break junction
technique2,6,15allow for accurate comparison between theory
and experiment. In particular, the most recent experiment6

found that theIV characteristics of aluminum point contacts
can be well explained by theory for the whole range of the
contact transparenciesD, from the tunnel junction limit
D→0 all the way to the ballistic contacts withD→1.

So far the scattering theory of MAR has been formulated
only for junctions with one propagating electron mode. The
aim of this work is to extend the theory to the multiple-mode
case and apply it to diffusive SNS junctions. We show that if
the scattering matrixS of the junction does not depend on
energy on the scale ofD, the time-dependent current in the
junction can be represented as a sum of independent contri-
butions from individual transverse modes. Therefore, the
current depends only on the distribution of the transparencies
Dm of these modes.

We assume that the junction lengthL ~Fig. 1! is smaller
than the coherence lengthj of the superconducting elec-
trodes of the junction and inelastic scattering lengthl in :
L!j,l in . In this case the transport properties of the junction
are determined by the interplay of scattering inside the junc-
tion characterized by the scattering matrixS, and the An-
dreev reflection with amplitudea(«) at the two interfaces
between the junction scattering region and bulk supercon-
ducting electrodes@see Ref. 8 for the definition ofa(«)].
The scattering matrixS is a unitary and symmetric matrix
2N32N, whereN is the number of propagating transverse

modes supported by the junction, and can be written in terms
of reflection and transmissionN3N matricesr , t:

S5S r t

t8 r 8
D , ~1!

wheret85tT, r 852(t* )21r †t, andtt†1rr †51.
Due to acceleration of quasiparticles by the applied bias

voltage, an electron with energy« emerging from one of the
electrodes generates electron and hole states at energies
«12neV with arbitraryn. Thus, the electron and hole wave
functions in regions I and II of the junction~Fig. 1! can be
written as follows:
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ch5(
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FIG. 1. Schematic diagram of the mesoscopic disordered Jo-
sephson junction. I and II denote the portions of the contact region
separated by the scattering region~hatched! where the motion of the
quasiparticles is diffusive.
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wherean[a(«1neV). In these equations we took into ac-
count that the amplitudes of electron and hole wave func-
tions are related via Andreev reflection. Furthermore, we ne-
glected variations of the quasiparticle momentumk with
energy assuming that the Fermi energy in the electrodes is
much larger thanD. The quasiparticle energies in regions I
and II are measured relative to the Fermi level in the left and
right electrode, respectively.

The amplitudes of electron and hole wave functions have
transverse mode indexm not shown in Eqs.~2! and~3!, e.g.,
An[$An,m%, m51, . . . ,N. The source termJ describes an
electron generated in thej th transverse mode by a quasipar-
ticle incident on the junction from the left superconductor:
J(«)5(12ua0u2)1/2dm j . The currentI (t) in the constriction
can be calculated in terms of the wave function amplitudes.
Equations~2! and ~3! imply that the current oscillates with
the Josephson frequencyvJ52eV/\ and can be expanded in
Fourier components:I (t)5(kI ke

ikvJ. Summing the contri-
butions to the current from electrons incident both from the
left and right superconductors at different energies« we ob-
tain the Fourier componentsI k :

I k5
2e

p\E2m2eV

m

detanhS e

2TD TrF S JJ†dk01a2k* JAk
†

1a22kA2kJ
†1(

n
~11a2na2~n1k!

* !

3~AnAn1k
† 2BnBn1k

† ! D GU
m→`

, ~4!

where Tr is taken over the transverse modes.
Amplitudes of the wave functions~2! and ~3! are related

via the scattering matrixS. Taking into account that the scat-
tering matrix for the holes is the time-reversal of the electron
scattering matrixS, we can write

S Bn

Cn
D 5SS a2nAn1Jdn0

a2n11Dn
D , ~5!

S An

Dn21
D 5S* S a2nBn

a2n21Cn21
D , ~6!

Eliminating An between Eq.~5! and inverse of Eq.~6!, we
find a relation between the amplitudesBn andDn . Combin-
ing this relation with the expression forDn in terms ofBn
that follows from the inverse of Eq.~5! and Eq.~6! we arrive
at the following recurrence relation:

tt†Fa2n12a2n11

12a2n11
2

Bn112S a2n11
2

12a2n11
2

1
a2n

2

12a2n21
2 D Bn
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2

Bn21G2[12a2n
2 ]Bn52rJdn0 . ~7!

Since the Hermitian matrixtt† can always be diagonalized
by an appropriate unitary transformationU, the recurrence
relation~7! implies that the structure of the amplitudesBn as
vectors in the transverse-mode space isBn5U†f n(D)UrJ,
where D5Utt†U† is the diagonal matrix of transmission

probabilitiesDm , m51, . . . ,N. The functionsf n(D) are de-
termined by the solution of the recurrence relation~7! with
the diagonalized transmission matrixtt†. Therefore, the con-
tribution of the amplitudesBn to the currents~4! can be
written as Tr@BnBn8

†
#5(12ua0u2)Tr@ f n(D) f n8

* (D)(12D)#,
i.e., it can be represented as a sum of independent contribu-
tions from different transverse modes with the transparencies
Dm . Following similar steps we can show that the same is
true for the amplitudesAn . Therefore, the Fourier compo-
nents~4! of the total current can be written as sums of inde-
pendent contributions from individual transverse modes:

I k5(
m

I k~Dm!, ~8!

where the contribution of one~spin-degenerate! mode is

I k~D !5
e

p\ FeVDdk02E detanhS e

2TD ~12ua0u2!

3S a2k* Ak* 1a22kA2k1(
n

~11a2na2~n1k!
* !

3~AnAn1k* 2BnBn1k* ! D G , ~9!

with the integral over« taken in large symmetric limits.
Thus, the time-dependent current in a short constriction with
arbitrary distribution of transparencies is completely deter-
mined by Eqs.~8! and ~9! with, the amplitudesBn given by
the recurrence relation~7! with the substitution:tt†→D and
rJ→AR[A12D. CoefficientsAn can be found from the
recurrence relation that follows from a single-mode version
of Eqs. ~5! and ~6! ~Ref. 8!: An112a2n11a2nAn
5R1/2(Bn11a2n122Bna2n11)1a1dn0 .

We can use this approach to calculate the current in a
short disordered SNS junction with large number of trans-
verse modesN@1 and diffusive electron transport in the N
region. In this case, the distribution of transmission prob-
abilities is quasicontinuous, and is characterized by the den-
sity functionr(D) ~see, e.g., Ref. 17!

(
m

•••5E
0

1

dDr~D ! . . . , r~D !5
p\G

2e2

1

D~12D !1/2
,

~10!

whereG is the normal-state conductance of the N region.
Figure 2 shows the results of the numerical calculation of

the dc IV characteristic and differential conductance of the
short SNS Josephson junction based on Eqs.~8!–~10!. We
see that theIV characteristics have all qualitative features of
highly transparent Josephson junctions: subgap current sin-
gularities ateV52D/n and excess currentI ex at eV@2D. It
is instructive to compare quantitatively these features to
those in theIV characteristics of a single-mode Josephson
junction plotted in Ref. 8. Such a comparison shows that the
magnitude of the excess current in the SNS junction, as well
as the overall level of current in the subgap region corre-
spond approximately to a single-mode junction with large
transparencyD.0.8. At the same time, the subharmonic gap
structure and the gap feature ateV52D are much more pro-
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nounced than in a single-mode junction of this transparency.
The amplitude of the oscillations of the differential conduc-
tance corresponds roughly to the junction withD.0.4 ~al-
though this comparison is not very accurate because of the
different shapes of the curves!. This ‘‘discrepancy’’ reflects
the two-peak structure of the transparency distribution~10!
of the diffusive conductor: the abundance of nearly ballistic
modes leads to large excess and subgap currents, while the
peak at low transparencies determines the SGS features.

At large and small bias voltages the time-dependent cur-
rent through the constrictionI (w), wherew52eVt/\, can be
found analytically. At large voltages,eV@D, the probability
of MAR cycles decreases rapidly with the number of An-
dreev reflections in them. This implies that the higher-order
harmonicsI k of the current decrease rapidly with increasing
k, and we can limit ourselves to the first harmonic:
I (w)5I (V)12 ReI 1cos(w)12 ImI 1sin(w). Truncating then
the recurrence relations at the coefficientsB61 andA0,1 we
can solve them explicitly and find the current from Eq.~9!.
For a single mode atT!D we get

I ~V!5
eD

p\ H eV1
DD

R F12
D2

2AR~11R!
lnS 11AR

12AR
D G

2
D2

2eVJ ,

ImI 1~V!5
D2

\V

DR

11R
, ~11!

ReI 1~V!52
DD2

p\V FRln
eV

D
1

11R

2
ln2

1
D

2 S 11
11R

R
lnD D G .

Expression for the excess current@second term inI (V)] was
obtained before in Refs. 18 and 19. Asymptotics of the ac
components of the current agree both with the known results
for the tunnel junction limit (D→0) and ballistic junction
(D→1).8

Averaging Eqs.~11! with the distribution~10! we obtain
the large-voltage asymptote of the current in the SNS junc-
tion:

I ~V!5GFV1
D

eS p2

4
21D2

D2

2eVG , ~12!

ImI 1~V!5
pGD2

e2V
S 12

p

4 D ,

ReI 1~V!52
GD2

3e2V
F lnS eV

4D D1
7

3G .
The second term in the equation forI (V) represents the ex-
cess current and was first found in Ref. 16 by the quasiclas-
sical Green’s function method. The asymptote~12! agrees
well with the numerically calculated zero-temperatureIV
characteristic shown in Fig. 2~a!.

Analytical results at low voltages,eV!D can be obtained
using the understanding8 that the small voltageV drives the
Landau-Zener transitions between the Andreev-bound states
of the modes with small reflection coefficientsR!1. Aver-
aging the nonequilibrium voltage-induced contribution to the
current@Eq. ~11! of Ref. 8# with the distribution~10! we find
the nonequilibrium part of the dynamic current-phase rela-
tion of a short SNS junction ateV!D:

I ~w!5
pGDn~D!

e H 0 , 0,w,p,

AeV/Dsin~w/2!, p,w,2p,
~13!

wheren(D)[tanh(D/2T). ~Equilibrium part of the current-
phase relation has been found before in Ref. 20.! From this
equation we can also find the voltage dependence of the Fou-
rier harmonics of the time-dependent current at low voltages.
The amplitudes of the first harmonics calculated numerically
for arbitrary voltages are shown in Fig. 3. The curves agree
with the high-voltage~11! and low-voltage~13! asymptotics
and exhibit the SGS singularities at intermediate voltages. In

FIG. 2. The quasiparticle current~a! and the differential conduc-
tance~b! versus voltage at various temperatures, for a disordered
SNS junction. From top to bottomT50,1,2,3D. At low voltages,
the dc current~a! has a square root dependence on voltage, while at
high voltages exhibits excess current. The conductance~b! pos-
sesses subharmonic singularities, diverges at low voltages, and at
high voltages asympotically tends to the normal state conductance
of the disordered region.
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general, the curves look qualitatively similar to those for the
single-mode junction with intermediate transparencyD @see
Figs. 2~b! and 2~c! in Ref. 8#.

Equation~13! implies that the dc differential conductance
of the junction has the square-root singularity atV→0:

G~V!5
dI

dV
5

n~D!

2
GA D

eV
. ~14!

This singularity reflects directly the high-transparency peak
in the distribution~10! and is not unique to the diffusive SNS
junctions. A junction with the strongly disordered tunnel
barrier21 should exhibit the same 1/AV singularity with the
prefactor 1/2 in Eq.~14! replaced with 2/p. Physically, the
origin of this conductance singularity is the overheating of
electrons in the junction by MAR. Electrons with energies
inside the energy gap traverse the junction many times and
as a result are accelerated to energies much larger thaneV.
This means that the effective voltage drop across the junction
is much larger thanV, leading to increased conductance.
This mechanism of conductance enhancement is qualita-
tively similar to the so-called ‘‘stimulation of
superconductivity’’22 ~which is one of the plausible explana-
tions of the zero-bias conductance singularities23 in long
semiconductor Josephson junctions!, although quantitatively
the phenomena are quite different. The fact that the singular-
ity is caused by electron overheating implies that at very low
voltages it should be regularized by any mechanism of in-
elastic scattering. Nevertheless, in junctions shorter than in-
elastic scattering lengthl in , there should be a voltage range
where the conductance follows the 1/AV behavior.

In summary, we have developed a theory of multiple An-
dreev reflections in multiple-mode Josephson junctions and
applied it to the diffusive SNS junctions and disordered tun-
nel barriers. The hallmark of the MAR processes in these
systems is the zero-bias 1/AV singularity of the dc differen-
tial conductance. We have also calculated the low- and high-
voltage asymptotes of the ac components of the time-
dependent current in the SNS junctions.
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FIG. 3. The cosine~a! and sine~b! part of the first Fourier
component of the ac current. From top to bottom~b! and from
bottom to top~a! T50,1,2,3D. The slope at small voltages diverges
as (D/V)1/2. See text for discussion about the high-voltage behav-
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