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We study the Hubbard model on a hypercubic lattice with regard to the possibility of itinerant ferromag-
netism. Dynamical mean-field theory is used to map the lattice model on an effective local problem, which is
treated with the help of the noncrossing approximation. By investigating spin-dependent one-particle Green’s
functions and the magnetic susceptibility, a region with nonvanishing ferromagnetic polarization is found in
the limit U→`. Thed-T phase diagram as well as thermodynamic quantities are discussed. The dependence
of the Curie temperature on the Coulomb interaction and the competition between ferromagnetism and anti-
ferromagnetism are studied in the large-U limit of the Hubbard model.@S0163-1829~97!51338-5#

The microscopic description of ferromagnetism in
narrow-band metals like Fe, Ni, Co, and others is one of the
most interesting problems in solid state physics. Since the
electrons in these systems are mobile one cannot use
localized-spin models with effective interactions like, e.g.,
the Heisenberg model, but has to take into account this itin-
eracy together with the electron-electron interaction on a
more fundamental level. The first model set up to describe
such a system is the Hubbard model1
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However, it was realized relatively early that the Hubbard
model rather seems to be a generic model for antiferro-
magnetism2 and a correlation driven metal-insulator transi-
tion instead. Just these properties made it an early and rather
successful candidate for the description of the high-Tc
compounds.3

Nevertheless the question about ferromagnetism in the
Hubbard model was never abandoned, since one of the few
rigorous theorems about this model definitely proves its ex-
istence. In 1965 Nagaoka showed that forU5` and one
hole doped into the half-filled band the state with a fully
polarized background is the ground state for several lattice
structures due to a gain of kinetic energy for the hole.4 This
theorem initiated a large amount of work on questions like
the stability of the Nagaoka state with respect to dopingd,
finite U, etc.5 Moreover, even after 30 years of research the
situation appears to be rather controversial, especially for
bipartite lattices: One obtains critical dopings in the rangedc
from 0 to 0.3, depending on the method used.6,7 Only for the
infinite dimensional hypercubic lattice the situation seems to
be clear: The work by Fazekaset al. suggests that the Na-
gaoka state is unstable for any finite doping,8,9 unless explic-
itly favored by long-range Coulomb interactions10 or band
structure effects.11

Most of the above studies are based on a variational an-
satz and are thus restricted to the Nagaoka—i.e., fully polar-
ized—state and its stability as the ground state. There is still
the possibility of partially polarized ferromagnetism and in
any case the necessity to calculateTc as function ofd andU

etc. Generally speaking the question to what extent ferro-
magnetism is a generic feature of the Hubbard model or not
is still unanswered.

In this paper we discuss the magnetic phase diagram of
the Hubbard model on a hypercubic lattice for large Cou-
lomb repulsionU. In the latter limit the ground-state and
low-energy properties of the model are well captured by a
t-J model with an effective antiferromagnetic exchangeJ
52t2/U.12 To solve thet-J model or, more precisely, the
underlying Hubbard model atU5` we use the dynamical
mean field theory~DMFT!.13 This theory leads to purely
local dynamical renormalizations of one-particle properties,
which can be obtained from an effective impurity problem
coupled to a self-consistent medium.14,15

In addition to the one-particle properties the DMFT also
allows us to calculate two-particle correlation functions and
thermodynamic quantities consistently.16,17 Especially in the
limit of large U one obtains17
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for the homogeneous@xF
U(T)# and staggered@xAF

U (T)# sus-
ceptiblities of the Hubbard model, respectively. The quantity
xa

`(T) denotes the susceptibility forU5` andd is the spa-
tial dimension of the system. These expressions allow us to
discuss the influence of finiteU once thexa

`(T) are known.
In the following we use 4dt251 as an energy unit. With

this choice the bare density of states for the hypercubic lat-
tice is of Gaussian form for larged:r0(«)51/Apexp(2«2).
The effective impurity problem of the DMFT is solved
within the NCA ~Refs. 18 and 19! and forU5` we further-
more do the calculations with spin-dependent quantities to
explicitly look at the properties in the symmetry-broken
phase. An extension of these calculations to finiteU is ex-
tremely tedious and studies along this line are in progress.20

We begin the discussion of our results with the caseU
5`. Figure 1 shows the inverse susceptibility~homogeneous
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and staggered! as a function of temperatureT for a doping
d512^n&50.03. WhilexAF

` (T)21 remains finite for allT,
xF

`(T)21 vanishes linearly for aTC.0 and belowTC we
observe a finite magnetizationm5n↑2n↓ with m(T)
5cAuT2Tcu. Note that the critical points found fromm(T)
andxF

`(T) coincide indicating a second-order transition~see
Fig. 1!. Unfortunately our data are not sufficient to extrapo-
late form(T50), which according to the results by Fazekas,
Menge, and Mu¨ller-Hartmann8 we would expect to have a
valuem(T50),n. Clearly, this point needs further investi-
gation.

Repeating the above calculation for different dopings we
obtain thed-T phase diagram in Fig. 2, which shows a fairly
extended region of ferromagnetism with a maximum inTc at
d between 0.07 and 0.08. Although the NCA in principle
does not allow us to do calculations down toTc beyondd
50.1, the observed Curie-Weiss form ofxF

`(T) enables us to
obtain data points in this region of the phase diagram from

xF
`(T) at high temperatures. Obviously this procedure be-

comes less accurate for increasing doping so that the behav-
ior of the phase lineTc(d) currently remains unknown for
d.0.2. The extrapolation of the available data nevertheless
indicates that a critical dopingdc between 0.3 and 0.4 exists
beyond whichTC50.

The stability of the ordered phase depends on the inter-
play of internal energyE(T) and entropyS(T) entering the
free energyF5E2TS. In Fig. 3 we thus show the differ-
ence in free energiesDF(T)5FFM(T)2FPM(T) together
with the internal energy, specific heat and entropy for the
ferromagnetic and paramagnetic state. To relate the data to
the preceeding discussion the magnetization and inverse sus-
ceptibility from Fig. 1 are shown again in the upper part of
Fig. 3. BelowTC the differenceDF(T) becomes negative,
i.e., the ferromagnetic state is indeed thermodynamically
stable.

The internal energyE(T,n) is given by the expectation
value of H, which for U5` is equivalent to the kinetic
energy. As is evident from Fig. 3,E(T) for the ferromag-
netic solution is lower than the corresponding values in the
paramagnet belowTc . Therefore the transition to the ferro-
magnetic phase is obviously connected with a gain in kinetic
energy. This leads to the conjecture that the physics under-
lying the stability of the ferromagnetic state should be
roughly the same as in the particular case studied within the
Nagaoka theorem. Since atTc the slope of the internal en-
ergy E(T) changes for the ferromagnetic solution the spe-
cific heat C(T)5]E/]T shows a jump characteristic for a
second-order phase transition. Note that only a very small
temperature region aroundTC is shown in Fig. 3 and that
C(T) decreases again for lower temperatures. Finally, the

FIG. 1. Magnetizationm(T) ~crosses!, inverse homogeneous
susceptibility xF

`(T)21 ~circles! and staggered susceptibility
xAF

` (T)21 ~squares! for d50.03 as a function of temperature.

FIG. 2. Magnetic phase diagram for the Hubbard model on a
hypercubic lattice. The dashed line represents a fit to the last data
points and predicts a critical dopingdc'0.33 beyond whichTC

50.

FIG. 3. Squared magnetizationm(T)2, inverse homogeneous
susceptibility xF

`(T)21, difference in free energiesDF(T)
5FFM(T)2FPM(T), internal energyE(T), specific heatC(T) and
entropyS(T) for d50.03 in the paramagnetic~circles! and ferro-
magnetic phase~crosses! close toTC . From DF(T,TC),0 it is
clear that belowTc the ferromagnetic solution is stable.
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entropyS(T) is obtained fromF5E2TS. Just aboveTC its
value is very close to ln2, the value expected for a spin 1/2
system, while belowTC the increasing spin order leads to a
strong decrease ofS(T).

The ordered state of course also shows up in the dynami-
cal properties such as the one-particle Green’s function. In
Fig. 4 we show the density of states~DOS! for a dopingd
50.03 at a temperatureT51/70,TC for both the paramag-
netic ~full line! and ferromagnetic solution~dashed lines!.
The basic features in the ferromagnetic phase are similar to
those of the paramagnet. One finds the lower Hubbard band
represented by a broad peak and a quasiparticle resonance
near the Fermi energy.14,15 Due toU5` the upper Hubbard
band does not appear.

Depending on temperature and doping spectral weight is
transferred between the states with spins and that of2s,
most prominent in the charge-fluctuation peaks, which re-
sults in differences in the occupation numbersns and in a
finite magnetizationm5n↑2n↓ . Note that this does not oc-
cur due to any explicit magnetic exchange but rather to the
fact that the energy loss by increasing the population of thes
band is outweighed by the gain in kinetic energy from the
holes in the2s states.4 In addition the peak positions for the
minority and/or majority spins are shifted to a somewhat
higher and/or lower energy. In terms of a band picture this
means a slight splitting of the lower Hubbard band.

The energy splitting is observed for the quasiparticle reso-
nance near the Fermi energy as well~see inset of Fig. 4!. In
contrast to the lower Hubbard bandboth peaksshow a loss
of spectral weight compared to the paramagnetic state. This
reflects the suppression of the Kondo-like effect underlying
the quasiparticle resonance by ferromagnetism, analogous to
the effect of an external magnetic field in conventional
Kondo physics. With increasing magnetization the reso-
nances will continuously decrease in height and eventually
vanish for very low temperatures.

Let us now turn to the interesting question of the depen-
dence of these results onU. Generally speaking we expect
that with decreasingU the Curie temperatureTC should be
suppressed and, due to the antiferromagnetism favored by a
finite U,21 a competition between ferromagnetic and antifer-

romagnetic order should occur. This anticipated behavior can
readily be read off the signs in Eqs.~2! and ~3!, i.e., U,`
tends to supressxF

U(T) and enhancexAF
U (T). In addition, the

Curie-Weiss form ofxF
U(T) andxAF

U (T) ~see Fig. 1! allows
us to rewrite Eqs.~2! and ~3! in such a way as to identify a
Curie temperatureTC(U,d)5TC

`(d)2C(d)/U and a Ne´el

temperatureTN(U,d)52Q(d)1C̃(d)/U, whereTC
`(d) and

C(d) are the Curie temperature and Curie constant forU

5`, while Q(d) andC̃(d) denote the intercept and inverse

slope of xAF
` (T)21. A detailed discussion ofC(d), C̃(d),

andQ(d) will be given elsewhere.20 Here we want to focus
on the resultingd-U phase diagram in Fig. 5, curvesA and
B, which were obtained by plotting max@TC(U,d),TN(U,d),0#.

One sees that for largeU an extended region of ferromag-
netism exists above curveA, which is completely suppressed
for U,Uc'20. For decreasingU the ferromagnetic order is
eventually replaced by antiferromagnetism in the region be-
low curveB. Note that up tod'0.07 we find a direct tran-
sition from the ferromagnet to the antiferromagnet, which we
would expect to be of first order ending in a second-order
critical point. A more detailed investigation of the region
would thus be of great interest. However, since the transition
temperatures are already very small there we do not see any
chance to achieve this with the methods currently available.
Beyond d*0.07 a paramagnetic region separates the two
phases. In addition to our findings we also include results on
the phase line between antiferromagnet and paramagnet for
the full Hubbard model~1! at smallU ~curveC!.16 The be-
havior for the largest-U values in this case extrapolates
nicely to our phase lineB for U→`. For decreasingU and
increasingd, however, the approximation of the Coulomb
term by an effective exchange becomes worse, i.e., the mag-
netic order is much stronger suppressed by doping for a
given U.

To conclude, we have shown that the Hubbard model on a
hypercubic lattice provides a scenario of ferromagnetism for
finite doping and at finite temperatures. We were able to

FIG. 4. Spectral functions ford50.03 andb570 for both spins.
The temperature is well belowTc , so that the spin-dependent solu-
tion ~dashed line! shows a difference in the spectral weight for the
two spin directions. The inset shows details near the Fermi energy.

FIG. 5. d-U phase diagram of the Hubbard model from the
large-U limit ~curvesA and B!. We find a region with ferromag-
netism above curveA. Below curveB antiferromagnetism is pre-
dicted. The phase line at smallU ~curveC! is taken from Ref. 16
and extrapolates to our phase line forU→`.
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obtain sensible results forTC as function ofd andU for the
strong-coupling case. As in Nagaoka’s case the phase transi-
tion originates from a gain of kinetic energy, as we could see
from thermodynamic quantities. Thed-T-U phase diagram
shows a fairly extended region of ferromagnetism for large
U that is completely suppressed forU,Uc'20 andd.dc
'0.3. For small doping and largeU we observed in addition
a direct transition from the ferromagnet into an antiferromag-
net as a function ofU.

Unfortunately our method to solve the DMFT does not
allow us to study temperaturesT!Tc . Thus several impor-
tant questions have to remain unanswered: What is the

ground-state magnetizationm(T→0) ~cf. Refs. 8 and 9! and
of what nature is the ferromagnetic↔ antiferromagnetic
transition, for example. In future works one also must inves-
tigate the order of the transition paramagnet↔ ferromagnet,
which is under current discussion~cf. Ref. 22, where a first-
order transition is stated within a different method!, more
closely.
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