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Recently, Tiekeet al. @Phys. Rev. Lett.78, 4621~1997!# have observed the relationSyx5aB(dSxx /dB) for
the components of the thermopower tensor in the quantum Hall regime, wherea is a constant andB is the
magnetic field. Simon and Halperin@Phys. Rev. Lett.73, 3278 ~1994!# have suggested that an analogous
relation observed for the resistivity tensorRxx5aB(dRxy /dB) can be explained with a model of classical
transport in an inhomogeneous medium where the local Hall resistivity is a function of position and the local
dissipative resistivity is a small constant. In the present paper, we show that this thermopower relation can be
explained with a similar model.@S0163-1829~97!52532-X#

I. INTRODUCTION

For a wide range of conditions, high mobility quantum
Hall systems have been observed to display a derivative
relation,1

Rxx5a rB
dRxy

dB
, ~1!

whereRxx andRxy are the diagonal and off diagonal compo-
nents of the measured resistivity tensorRJ , B is the magnetic
field, and a r is a sample-dependent~and weakly
temperature-dependent! constant. In Ref. 2 an explanation
for this relation was proposed based on a classical analysis of
transport properties of a system with a local Hall resistivity
rxy(rW) that is a function of position and a local longitudinal
resistivity rxx which is a small constant. It was found that if
the correlations in the disorder ofrxy(rW) exist on several
length scales,3 then the derivative law can be reasonably ex-
plained.~A detailed review of Ref. 2 will be given in Sec. II,
below.!

In a recent letter, Tiekeet al.4 have observed an analo-
gous derivative relation for the thermopower given by

Syx5asB
dSxx

dB
, ~2!

whereSxx andSyx are the diagonal and off-diagonal parts of
the thermopower tensorSJ andas is a constant found to be
approximately equal toa r . ~The thermopower is defined via

EW 5SJ¹W T under conditions where no current is allowed to
flow into or out of the sample withEW the electric field andT
the temperature!. In Ref. 4, it was conjectured that similar
physics may be at work in thermopower as may be at work
in resistivity. The purpose of this paper is to demonstrate that
the derivative relation for thermopower@Eq. ~2!# can be de-
rived in a similar manner to the derivative relation for resis-
tivity @Eq. ~1!#.

II. REVIEW OF RESISTIVITY PROBLEM

We begin by reviewing the derivation of the derivative
relation for resistivity@Eq. ~1!# that was proposed in Ref. 2.
In that work it is assumed that there is a local resistivity
tensor r(rW) whose off diagonal componentrxy(rW)
52ryx(rW) is some arbitrary functionf of the local filling
fraction n(rW),

rxy~rW !5 f „n~rW !… , ~3!

with

n~rW !5n~rW !f0 /B , ~4!

where n(rW) is the local density andf05hc/e is the flux
quantum. The density is assumed to have some average
value ^n& and some root-mean-square fluctuationdn, such
that the filling fraction also has some average value^n&, and
some root-mean-square fluctuationdn given by

^n&5^n&f0 /B; dn5dn f0 /B . ~5!

~Throughout in this paper,^ & is a spatial average, andd is a
root-mean-square fluctuation around this average.! We will
assume that the local fluctuations in density are smooth and
much smaller than the average density. Thus,rxy also has an
average valuêrxy& and a fluctuationdrxy!^rxy& given by

^rxy&5 f ~^n&!; drxy5dnu f 8~^n&!u . ~6!

To complete the model, we must also include a mecha-
nism for dissipation. We will consider a model discussed in
Ref. 2 which assumes that the local dissipative resistivity
rxx5ryy is a small constant. The major result@Eq. ~1!# turns
out to be relatively independent of the precise model of dis-
sipation so long as the local dissipation is very small. For
this resistive model, one must assume thatrxx!drxy .

In order to solve the transport problem we must satisfy
current conservation, Maxwell’s equation, and Ohm’s law:

¹W • jW50 , ~7!
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¹W 3EW 50 , ~8!

EW 5rJ jW . ~9!

These must be supplemented with the boundary condition
that a fixed total current runs through the system, or equiva-
lently, that the spatial average of the current^ jW& has a speci-
fied value. Substituting Eq.~9! into Eq.~8! and using Eq.~7!,
we obtain the fundamental equation2

¹W rxy• jW2rxx~¹W 3 jW !50 . ~10!

This equation determines the current paths through the sys-
tem and hence the resistivity of the sample. There are two
important things to note about this equation. To begin with,
the solution to this equation is clearly independent of the
average value of the Hall resistivitŷrxy& and can therefore
only depend on its fluctuations. Since the current profile de-
termines the dissipation, on dimensional grounds, in the limit
of small rxx , the macroscopic dissipative resistivityRxx
must scale as

Rxx5Cr~drxy!
12vrxx

v , ~11!

with Cr a dimensionless constant. We will find below that
the exponentv depends on the details of the disorder in the
sample, but is typically small, and can often be quite close to
zero. We will show below that a sufficiently small value ofv
will allow us to derive the derivative relation for resistivity
@Eq. ~1!#. The important physical result in Eq.~11! is that the
macroscopically measured dissipative resistivity can depend
very strongly on the fluctuations in localrxy and can be
relatively independent of the microscopic dissipative resis-
tivity rxx .

The second thing to note about Eq.~10! is that for rxx
50, the current paths must flow perpendicular to the gradi-
ent of rxy , or along an equi-rxy contour. A nonzerorxx in
Eq. 10 can be viewed as a diffusion constant for the current
distribution,5 and for sufficiently smallrxx the current cannot
diffuse very far away from these contours. Thus, in the limit
of smallrxx , in order for current to flow over distances large
compared to the correlation length of the inhomogeneities
~which is assumed to be small compared to the sample size!,
it must follow contours ofrxy that percolate across a macro-
scopic portion of the system. We know from percolation
theory2,5 that such a percolating contour will be extremely
convoluted. Thus, for smallrxx , the current path is anoma-
lously long so the macroscopic resistivity is anomalously
large.

As we increaserxx two things happen. On the one hand,
the dissipation per unit length increases, but on the other
hand the current can diffuse somewhat from the equi-rxy
contours, cutting off corners of the long tortuous path, de-
creasing the length of the current path, and thus acting to
decrease the dissipation. These competing effects keep the
macroscopic dissipative resistivityRxx relatively indepen-
dent of the microscopic dissipative resistivityrxx , thus keep-
ing the exponentv small. For Gaussian correlated disorder
on a single length scale2,5,6 it is found thatv53/13. ~For a
similar model with viscous dissipation,2 one finds v
53/19.)

If disorder exists on several length scales, however, the
exponentv can be much smaller.2,5 To see this we consider
a system where there is Gaussian correlated disorder on two
well separated length scalesl ! l 8, which are both much less
than the size of the system. Using the above argument we
find that the dissipative resistivityrxx8 on a scale much larger
than l but much less thanl 8 would berxx8 ;rxx

3/13(drxy)
10/13.

Now usingrxx8 as a microscopic resistivity and repeating the
argument for the disorder on length scalel 8 yields Rxx
;(rxx8 )3/13(drxy)

10/13;rxx
9/169(drxy)

160/169 or an exponent of
v5(3/13)2.

Throughout this paper, we will assume that disorder exists
on several length scales so that the exponentv is very small.
@The experimental observation of the derivative relation Eq.
~1! for resistivity will be taken as one piece of evidence for
disorder on several length scales. Further evidence is given
in Ref. 3.#

We now show that a sufficiently small exponentv results
in the derivative relation shown in Eq.~1!. Considering the
case ofv50, we have

Rxx5Crdrxy

5Crdnu f 8~^n&!u . ~12!

Note that the macroscopic dissipative resistivity here de-
pends entirely on the fluctuations in the microscopicrxy . On
the other hand, the macroscopic Hall resistivity is just

Rxy5^rxy&5 f ~^n&! . ~13!

Differentiation of this equation with respect to the magnetic
field ~using dn/dB52n/B) leads to Eq. ~1! with a r
5Crdn/^n&. In general, we do not know the value ofCr ,
but assuming it to be order unity yieldsa r on the order of a
few percent, which is in agreement with experimental obser-
vation.

If the exponentv is only slightly different from zero, then
the resistivity law Eq.~1! will be observed to hold to a rea-
sonably good approximation. Ifv were substantially differ-
ent from zero, one would have to know the precise depen-
dence of rxx on the magnetic field to make any further
statements.

III. MAPPING THERMOPOWER TO RESISTIVITY

In the case of thermopower, we will once again look for
the effects of inhomogeneities in the local transport proper-
ties on the measured response of the sample. Thus, we con-
sider a local7 thermopower tensorsJ(rW) such that

EW 5rJ jW1sJ ¹W T . ~14!

We will write sxx(rW)5syy(rW) as a functiong of the local
filling fraction, and of the magnetic fieldB,

sxx~rW !5g„n~rW !,B…

[gB„n~rW !…. ~15!

Note that, unlike for resistivity, we do not in general assume
thatsxx is a function ofn only ~this will be discussed further
below!. In microscopic derivations8 of the thermopower ten-
sor sJ, appropriate for the samples studied in Ref. 4, it is
found that the diagonal componentsxx is large compared to
the off diagonal componentsyx which is small or zero. Thus,
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we assumesyx52sxy is a small constant~which may be
zero!. Specifically, we will assume thatsyx!dsxx . As in the
case of the resistivity problem, the precise behavior ofsyx
will not affect the outcome of the analysis so long as it re-
mains very small.~In addition, our results do not depend on
whether the thermopower is dominated by the ‘‘phonon-
drag’’ or ‘‘diffusion’’ contributions.9!

We would like to make the thermopower problem look
more like the resistivity problem above. To do so, we define
a fictitious current which ‘‘flows’’ along the isothermal lines

jW T5 ẑ3¹W T , ~16!

with ẑ the unit vector normal to the plane. Since

¹W • jW T5¹W 3¹W T

50 , ~17!

we have jW T, a conserved current analogous to the charge
current jW in the resistivity problem. In terms of this new
current, Eq.~14! is written as

EW 5rJ jW1rJ T jW T , ~18!

where

rJ T~rW !5S rxx
T rxy

T ~rW !

2rxy
T ~rW ! rxx

T D
5S syx sxx~rW !

2sxx~rW ! syx
D , ~19!

with rxx
T !drxy

T .
Thus,syx is mapped to a dissipative resistivityrxx

T which
is assumed to be a small constant, andsxx is mapped to a
Hall resistivity rxy

T which is a function of the local filling
fraction. This mapping then suggests that the thermopower
law @Eq. ~2!# might be derived analogously to the resistivity
law @Eq. ~1!#.

IV. THERMOPOWER LAW

In the case of thermopower for a quantum Hall sample, it
is essential to realize that the lattice surrounding the two-
dimensional electron gas carries heat much more readily than
the electrons~since the number of electrons in the layer is
quite small!. The lattice surrounding the two-dimensional
electron gas is assumed to be homogeneous so that when a
thermal gradient is applied to the sample,¹W T is completely
uniform. ~Note that this assumes good thermal equilibration
between the lattice and the electrons.! Thus we should think
of ¹W T ~or equivalentlyjW T) as being applied externally to the
sample and as being a fixed quantity which is spatially uni-
form. This is very different from the above electrical case
where only the average valuêjW& is fixed and the actual
current distribution is quite inhomogeneous. Here, we must
also demand that no net electrical current travels in the sys-
tem (̂ jW&50). By substituting Eq.~18! into Maxwell’s equa-
tion @Eq. ~8!# and using current conservation@Eqs. ~7! and
~17!# we obtain the fundamental equation

¹W rxy
T

• jW T1¹W rxy• jW2rxx~¹W 3 jW !50 , ~20!

similar to Eq. ~10!. Recall here that bothrxy
T (rW)5sxx(rW)

5gB„n(rW)… andrxy(rW)5 f „n(rW)… are determined by the local
filling fraction. Thus, their gradients are proportional via@see
Eqs.~3!, ~15!, and~19!# ¹W rxy

T 5g¹W rxy where

g5
gB8 ~^n&!

f 8~^n&!
. ~21!

Similarly, we havedrxy
T 5gdrxy . Note that here, as else-

where in this work, we have assumed thatdn/^n& is small
enough so that we need only expand quantities linearly
around the average density.

We can now define a new current,

jW15 jW1g jW T , ~22!

in terms of which the fundamental Eq.~20! can be rewritten
as ~recalling thatjW T is a constant!

¹W rxy• jW12rxx~¹W 3 jW1!50 , ~23!

which is precisely the same as Eq.~10!. This must be supple-
mented by the boundary condition that

^ jW1&5^ jW&1g^ jW T&5g jW T.
We thus see that currentjW1 travels across the system in

the same inhomogeneous percolative manner as the electrical
current in the resistivity problem wherejW1 flows only
through very narrow channels and is zero~or very small!
throughout most of the volume of the system. Note that here
jW1 is made up of two pieces—a uniform piecejW T which is
nonzero, and an electrical piecejW that is highly inhomoge-
neous but has a zero average and carries no net current. The
two pieces are arranged to precisely cancel throughout most
of the system and only leave a nonzero contribution tojW1 in
narrow channels.

Extending the analogy with the resistivity problem, we
define a local ‘‘electric’’ field

EW 15rJ jW1 , ~24!

in terms of the local electrical resistivity tensor. One can then
calculateEW 1 precisely as described in Sec. II and~so long as
we assume disorder on several length scales! we obtain a
macroscopic average ofEW 1 that satisfies

^EW 1&5RJ^ jW1&

5g RJ jW T , ~25!

with the components ofRJ given by Eqs.~12! and ~13!.
We now calculate the actual physical electric field, by

rewriting Eq.~18! as

EW 5EW 11EW 2 , ~26!

with

EW 25rJ2 jW T , ~27!

rJ25rJ T2grJ . ~28!
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Note that drxy
2 50 so rJ2 is a constant tensor andrxx

2

!gdrxy .
Now sincejW T andrJ2 are both uniform in space, Eq.~27!

yields aEW 2 which is simply a constant. We can then write
the macroscopic average of the physical electric field as

^EW &5RJ T jW T , ~29!

RJ T5~gRJ1rJ2!. ~30!

For the diagonal component ofRJ T, we note that sincerxx
2

!gdrxy , we haverxx
2 !gRxx and we can neglectrxx

2 to
write

Rxx
T 5gRxx5Crgdrxy

5Crdrxy
T 5CrdnugB8 ~^n&!u. ~31!

For the off diagonal component ofRJ T, on the other hand, we
have

Rxy
T 5gRxy1^rxy

T 2grxy&

5^rxy
T &5gB~^n&! . ~32!

This result could also have been obtained by examining Eq.
~18! and noting that̂ jW& is fixed to be zero.

We now convertRJ T back to a thermopowerSJ. Using the
macroscopic version of Eq.~19! we obtain

Syx5Rxx
T 5Crdrxy

T 5Crdsxx5CrdnugB8 ~^n&!u , ~33!

Sxx5Rxy
T 5^rxy

T &5^sxx&5gB~^n&! , ~34!

which are the analogous results to Eqs.~12! and ~13!. Note
that, just asRxx in the resistivity problem is independent of
the small value of the localrxx and is determined by the
spatial fluctuations inrxy(rW), Syx is independent of the small
value of the localsxy and is a reflection of local fluctuations
in sxx(rW). By differentiating Eq.~34! with respect to the fill-
ing fraction and comparing with Eq.~33! we obtain

Syx52asn
dSxx

dn U
B

, ~35!

with as5a r5Crdn/n.
If sxx5g(n,B) were just a function ofn this would com-

plete our derivation. However, in general, this is not the case.
Thus, we write

B
dSxx

dB
52n

dSxx

dn U
B

1B
dSxx

dB U
n

, ~36!

and we now must assume thatSxx @or more specifically
g(n,B)] varies strongly withn at fixed B but only slowly
with B at fixedn. This is actually quite a reasonable expec-
tation for any microscopic calculation,8 sinceSxx oscillates
quite strongly withn. With this assumption, we can neglect
the second term on the right of Eq.~36! to obtain the desired
result

Syx5asB
dSxx

dB
. ~37!

One should note that this derivation leads to the resultas
5a r which is indeed observed experimentally.4

V. SUMMARY

In this work we use a model in which the local density
determines the local Hall resistivityrxy(rW) as well as the
local diagonal thermopowersxx(rW). The local dissipative re-
sistivity rxx as well as the off diagonal thermopowersyx are
assumed to be small constants such thatrxx!drxy and syx
!dsxx . We also must assume thatsxx is a strong function of
n at fixed B but a weak function ofB at fixed n. Finally,
assuming that the disorder has long-range correlations, or
exists on several different length scales such that the expo-
nentv is close to zero, we are able to derive the derivative
relation for thermopower@Eq. ~2!#, in close analogy with the
derivation of the corresponding law for resistivity@Eq. ~1!#.
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