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Derivative relation for thermopower in the quantum Hall regime
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Recently, Tiekeet al.[Phys. Rev. Lett78, 4621(1997] have observed the relatic),= «B(dS,,/dB) for
the components of the thermopower tensor in the quantum Hall regime, whisra constant an@ is the
magnetic field. Simon and HalperiPhys. Rev. Lett73, 3278 (1994] have suggested that an analogous
relation observed for the resistivity tensBg,= «B(dR,,/dB) can be explained with a model of classical
transport in an inhomogeneous medium where the local Hall resistivity is a function of position and the local
dissipative resistivity is a small constant. In the present paper, we show that this thermopower relation can be
explained with a similar mode[S0163-18207)52532-X]

I. INTRODUCTION Il. REVIEW OF RESISTIVITY PROBLEM

We begin by reviewing the derivation of the derivative
relation for resistivity[Eq. (1)] that was proposed in Ref. 2.
fh that work it is assumed that there is a local resistivity

tensor p(r) whose off diagonal componentpxy(F)
= —pyx() is some arbitrary functiorf of the local filling
Ry=a,B —=2 (1)  fraction »(r),

For a wide range of conditions, high mobility quantum
Hall systems have been observed to display a derivativ
relation?

=), 3
whereR,, andR,, are the diagonal and off diagonal compo- Pxy1)=1((r) ®

nents of the measured resistivity ten§orB is the magnetic with

field, and «, is a sample-dependeniand weakly - -
temperature-dependentonstant. In Ref. 2 an explanation v(r)=n(r) /B, @

for this relation was proposed baseq on a classical angly_s!s Mhere n(f) is the local density ands,=hcle is the flux
transport properties of a system with a local Hall reS|st|V|tyquamum_ The density is assumed to have some average
pxy(r) that is a function of position and a local longitudinal value (n) and some root-mean-square fluctuatiém, such
resistivity p,x which is a small constant. It was found that if that the filling fraction also has some average vdlug and

the correlations in the disorder @i (r) exist on several some root-mean-square fluctuation given by

length scaled then the derivative law can be reasonably ex-

plained.(A detailed review of Ref. 2 will be given in Sec. II, (v)=(N)¢o/B; bv=5n ¢o/B. (5)

below) , 4 (Throughout in this papet, ) is a spatial average, antlis a

In a recent letter, Tieket al.” have observed an analo- 4ot.mean-square fluctuation around this avenagée will
gous derivative relation for the thermopower given by assume that the local fluctuations in density are smooth and

much smaller than the average density. Thys,also has an
dSy average valugp,,) and a fluctuationsp,,<(py,) given by
Sy=asB 457 2
<ny>:f(<v>); 5ny:5v|f,(<v>)|- (6)

whereS,, andS,, are the diagongl and off-diagonal parts of To complete the model, we must also include a mecha-
the thermopower tensd and as is a constant found to be pism for dissipation. We will consider a model discussed in
approximately equal te, . (The thermopower is defined via Ref. 2 which assumes that the local dissipative resistivity
E=SVT under conditions where no current is allowed to Pxx= Pyy IS @ small constant. The major resiHyg. (1)] turns
flow into or out of the sample witk the electric field and™  out to be relatively independent of the precise model of dis-
the temperatupe In Ref. 4, it was conjectured that similar Sipation so long as the local dissipation is very small. For
physics may be at work in thermopower as may be at workhis resistive model, one must assume {hgt< dpyy -

in resistivity. The purpose of this paper is to demonstrate that In order to solve the transport problem we must satisfy
the derivative relation for thermopowgEq. (2)] can be de- current conservation, Maxwell's equation, and Ohm’s law:
rived in a similar manner to the derivative relation for resis- R

tivity [Eq. (1)]. V.i=0, (7)
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) If disorder exists on several length scales, however, the
exponentw can be much smallér To see this we consider
I a system where there is Gaussian correlated disorder on two

E=p]. (9 well separated length scaleg!’, which are both much less

These must be supplemented with the boundary conditioi‘!1an the S|ze.0f_the_ system._L_JS|,ng the above argument we
that a fixed total current runs through the system, or equiva-Ind that the dissipative resistivigy,, on a scale much larger

) " _than! but much less thah’ would bep,, ~ p¥ 5p,,) 9"
lently, that the spatial average of the currépit has a speci- " : : o T Yo
fied value. Substituting Eq9) into Eq. (8) and using Eq(7). Now usingp,, as a microscopic resistivity and repeating the

argument for the disorder on length scdle yields Ry,

VXE=0,

we obtain the fundamental equatfon ,
q ~(pL) ¥ Bpy 10/13~p3£(169(5pxy) 1601169 51 an exponent of
- e w=(3/13).
Voxy ] =pxx(VX])=0. (10 Throughout this paper, we will assume that disorder exists

on several length scales so that the exporerst very small.

tTh's eqéjz;tlon d(i:‘ermlngesi.ﬁe cn;rtr;]ant pathf th1r_crx]ugh the fyg’rhe experimental observation of the derivative relation Eq.
€m and hence the resistivity of the sample. 1here are oy, ¢q, resistivity will be taken as one piece of evidence for

important things to note about this equation. To begin with jigqrger on several length scales. Further evidence is given
the solution to this equation is clearly independent of the, ref. 3]

average value of the Hall resistivity,,) and can therefore We now show that a sufficiently small exponentesults

only depend on its fluctuations. Since the current profile dem the derivative relation shown in E¢l). Considering the
termines the dissipation, on dimensional grounds, in the limitase ofw=0, we have

of small p,,, the macroscopic dissipative resistivify,,
must scale as Ryx=C: 0pxy

=C, 80|t ((v))]. (12
Note that the macroscopic dissipative resistivity here de-
with C, a dimensionless constant. We will find below that pends entirely on the fluctuations in the microscqpig. On
the exponentv depends on the details of the disorder in thethe other hand, the macroscopic Hall resistivity is just
sample, but is typically small, and can often be quite close to R — _¢ 13
zero. We will show below that a sufficiently small valuewf xy= (Pxy) = T((¥)) (13
will allow us to derive the derivative relation for resistivity Differentiation of this equation with respect to the magnetic
[Eq.(1)]. The important physical result in EL1) is that the ~ field (using dv/dB=—v/B) leads to Egq.(1) with a
macroscopically measured dissipative resistivity can depene C,dn/(n). In general, we do not know the value Gf,
very strongly on the fluctuations in local, and can be but assuming it to be order unity yields on the order of a
relatively independent of the microscopic dissipative resisfew percent, which is in agreement with experimental obser-
tivity pyy- vation.

The second thing to note about EJ.0) is that for p,, If the exponentw is only slightly different from zero, then
=0, the current paths must flow perpendicular to the gradithe resistivity law Eq(1) will be observed to hold to a rea-
ent of p,, or along an equpy, contour. A nonzerg,y, in  Sonably good approximation. tb were substantially differ-
Eq. 10 can be viewed as a diffusion constant for the currengnt from zero, one would have to know the precise depen-
distribution® and for sufficiently smalp,, the current cannot dence of p,, on the magnetic field to make any further
diffuse very far away from these contours. Thus, in the limitStatements.
of smallp,,, in order for current to flow over distances large
compared to the correlation length of the inhomogeneities  !Il- MAPPING THERMOPOWER TO RESISTIVITY

(which is assumed to be small compared to the sampl¢, size | the case of thermopower, we will once again look for

it must follow contours o,y that percolate across a macro- he effects of inhomogeneities in the local transport proper-

shcopic 5pohrtion th the syst:am. We know f'r|c|)r8 percolaticl)nties on the measured response of the sample. Thus, we con-
theory?® that such a percolating contour wi e extremely gijer o ocdl thermopower tensos(f) such that
convoluted. Thus, for smap,,, the current path is anoma-

:g;;stlay long so the macroscopic resistivity is anomalously E=Ef+§€T. (14)
As we increasg,, two things happen. On the one hand, We will write s,,(r)=s,,(r) as a functiong of the local

the dissipation per unit length increases, but on the othéfilling fraction, and of the magnetic fielB,

hand the current can diffuse somewhat from the equi- - -

contours, cutting off corners of the long tortuous path, de- Sxx()=9(w(r),B)

creasing the length of the current path, and thus acting to _ -

decrease the dissipation. These competing effects keep the =09e(v(r)). (15

macroscopic dissipative resistivitR,, relatively indepen- Note that, unlike for resistivity, we do not in general assume

dent of the microscopic dissipative resistivity,, thus keep-  thats,y is a function ofv only (this will be discussed further

ing the exponents small. For Gaussian correlated disorder below). In microscopic derivatiorfsof the thermopower ten-

on a single length scadlé®it is found thatw=3/13.(For a  sor S, appropriate for the samples studied in Ref. 4, it is

similar model with viscous dissipatidh,one finds w  found that the diagonal componesy, is large compared to

=3/19.) the off diagonal componerst, which is small or zero. Thus,

Rux= Cr(ﬁpxy)liwp;)x: (11
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we assumes,,= —s,, is a small constantwhich may be Vol iToVp. . — Vx[)=0, 20
zerg. Specifically, we will assume tha,< 5s,,. As in the Pry’ Pxy 1 =Pl V1) ) ( Q)
case of the resistivity problem, the prec?se behaviosgf similar to Eq. (10). Recall here that b0t|7>xTy(r)=Sxx(r)
will not affect the outcome of the analysis so long as it re-— go(»(r)) andpxy(F)= f(v(F)) are determined by the local

msirt‘; vem STr?”('n addition, O(‘j” re_sulttsdd(lnj nc;:]def)err:d ON filling fraction. Thus, their gradients are proportional {s&e
whether the thermopower is dominated by the “phonon-g, " 15 "and (19 ¥p. = y¥p,, where

drag” or “diffusion” contributions?)
We would like to make the thermopower problem look

more like the resistivity problem above. To do so, we define y= 9e((»)) _ (22)
a fictitious current which “flows” along the isothermal lines f'((v))
- imi T_ -
[T=2x VT, (16) S|m|lar!y, we havedp,,= ydpxy. Note that here_, as else
where in this work, we have assumed tié&t/(n) is small
with z the unit vector normal to the plane. Since enough so that we need only expand quantities linearly
) o around the average density.
V-[T=VXVT We can now define a new current,
=0, (17 =i (22

we have| T, a conserved current analogous to the chargén terms of which the fundamental E(RO) can be rewritten

current | in the resistivity problem. In terms of this new as(recalling thatj T is a constant
current, Eq.(14) is written as

) Vo 1" =pudVXj")=0, (23
2_oP oTFT
E=pitp ", (18 \vhich is precisely the same as E@0). This must be supple-
where mented by the boundary condition that
r FO=M+win=n"
ST(F) = Pxx Pxy(T) We thus see that currept travels across the system in
p _ pr(F) PxTx the same inhomogeneous percolative manner as the electrical
Y . current in the resistivity problem wherg*® flows only
Syx Syx() through very narrow channels and is zdar very smal)
= s () s (19 throughout most of the volume of the system. Note that here
T Oxx yX S

j " is made up of two pieces—a uniform pieEé which is

with p,,<8pyy - nonzero, and an electrical piegethat is highly inhomoge-
Thus, s, is mapped to a dissipative resistivity, which  neous but has a zero average and carries no net current. The

is assumed to be a small constant, andis mapped to a two pieces are arranged to precisely cancel throughout most

Hall resistivity pXTy which is a function of the local filling f the system and only leave a nonzero contributioﬁ*to’n

fraction. This mapping then suggests that the thermopoweiarrow channels.

law [Eq. (2)] might be derived analogously to the resistivity  Extending the analogy with the resistivity problem, we

law [Eq. (1)]. define a local “electric” field

IV. THERMOPOWER LAW Ef=pi", (24)

In the case of thermopower for a quantum Hall sample, itn terms of the local electrical resistivity tensor. One can then
is essential to realize that the lattice surrounding the twocalculateE™ precisely as described in Sec. Il afsb long as
dimensional electron gas carries heat much more readily thawe assume disorder on several length sgales obtain a
the electrongsince the number of electrons in the layer is macroscopic average & that satisfies
quite small. The lattice surrounding the two-dimensional

electron gas is assumed to be homogeneous so that when a <|§+>:§< f+>
thermal gradient is applied to the samp¥l is completely .
uniform. (Note that this assumes good thermal equilibration =yR]", (25

between the lattice and the electrgrBhus we should think . o
= . - : . with the components dR given by Eqs.(12) and(13).

of VT (or equivalentlyj °) as being applied externally to the —\ye nhow calculate the actual physical electric field, by

sample and as being a fixed quantity which is spatially uni'rewriting Eq.(18) as

form. This is very different from the above electrical case '

where only the average valug) is fixed and the actual E=E*+E", (26)
current distribution is quite inhomogeneous. Here, we mus\tNith

also demand that no net electrical current travels in the sys-

tem ((J)=0). By substituting Eq(18) into Maxwell's equa- E-=pj", 27

tion [Eq. (8)] and using current conservati¢ggs. (7) and
(17)] we obtain the fundamental equation P =p —vyp. (29
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Note that 5p,,=0 so p_is a constant tensor and,,  with ag=a,=C,én/n.
<7ydpyy- If s,x=9g(v,B) were just a function of’ this would com-
Now sincej T andp ™~ are both uniform in space, E(R7) plete our derivation. However, in general, this is not the case.

yields aE~ which is simply a constant. We can then write Thus, we write

the macroscopic average of the physical electric field as

dSw  dSy  _dS,
(E)=RTfT, (29 %48 V4| "PaBl| (36
§T=(7§+ ;‘). (30 and we now must assume th&, [or more specifically

) - . B g(v,B)] varies strongly withy at fixed B but only slowly
For the diagonal component & ', we note that sinc@,x  with B at fixed ». This is actually quite a reasonable expec-
<7ydpxy, We havep,,<yR,, and we can neglech,, 10  tation for any microscopic calculatidhsince S, oscillates

write quite strongly withy. With this assumption, we can neglect
T the second term on the right of E@6) to obtain the desired
Rux= YRxx=C; Yﬁpxy result
:Crb‘pxI/: Cov|gs((v))]. (31
. B @7
For the off diagonal component &7, on the other hand, we Syx= s dB -
have
T T One should note that this derivation leads to the reaylt
Ryy= YRay (xy™ 7Pxy) = a, which is indeed observed experimentdily.
=Py =09s(()) . (32
. . L. V. SUMMARY
This result could also have been obtained by examining Eq.
(18) and noting tha(f) is fixed to be zero. In this work we use a model in which the local density
macroscopic version of E419) we obtain local diagonal thermopowes,,(r). The local dissipative re-

- - , sistivity p,x as well as the off diagonal thermopowsy, are
Syx=Rx= Cr 0pxy=C 85=C 6v|gs((»))| . (33)  assumed to be small constants such gt 5p,, ands,,
T T < 8s,,. We also must assume thgy, is a strong function of
Six= Ry = (pxy) = (Sxx) = 98((¥)) , (39 at fixed B but a weak function oB at fixed v. Finally,
which are the analogous results to E€2) and (13). Note asguming that the _disorder has long-range correlations, or
that, just asR,, in the resistivity problem is independent of exists on several different length scales such that the expo-

the small value of the locap,, and is determined by the nentw is close to zero, we are able to derive the derivative

tial fluctuations i (F Xxi indeendent of the small relation for thermopowelEg. (2)], in close analogy with the
spatial fluctuations iy .)’ Syx IS dependent ortne small -y iy ation of the corresponding law for resistiv(tgq. (1)].
value of the locak,, and is a reflection of local fluctuations

in s,,(r). By differentiating Eq.(34) with respect to the fill-

ing fraction and comparing with E433) we obtain ACKNOWLEDGMENTS
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