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Quasiparticle calculations of semicore states in Si, Ge, and CdS
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We investigate binding energies of semicore states in prototype semiconductors by quasiparticle calcula-
tions. Band-structure calculations within the local-density approximation and sta@Gd&rduasiparticle cal-
culations underestimate these energies systematically. Employing an ext@Mdegproach we obtain very
good agreement of calculated quasiparticle energies of semicore states in Si, Ge, and cubic CdS with experi-
mental data. This is achieved by renormalizing the quasiparticle peaks in the spectrum and including plasmon-
induced satellite structure in the Green'’s functif®0163-18207)50936-7

Quasiparticle band-structure calculations based on thstudied semicore states result in very good agreement with
GW approximation GWA) of the self-energy operator as experimental data when more realistic Green’s functions are
suggested by Hedin and Lundqg#iéhave become the “state employed instead of the most simple one resulting from
of the art” in electronic structure calculations for semicon-LDA input data, alone.
ductors. The most simple variant of this approach has been In our calculations we employ basis sets of localized
applied very successfuly’ to calculate valence and conduc- Gaussian orbitals both within LDA an@WA for the repre-
tion bands of elemental and IlI-V semiconductors with ansentation of the wave functions and all two-point functions.
accuracy of about 0.1 eV, as compared to experiment. Thhis allows for a very efficient description of localized
same accuracy has recently been obtained for valence amsthtes, as discussed in detail in Ref. 15. The inner-core states
conduction bands of the 1I-VI compound CdS which wasare eliminated by using norm-conservial initio pseudopo-
studied including the Cd @ semicore statésThe binding tentials that are constructed according to the prescription of
energy of the latter, however, was found to be about 1 eV toddamannt® The localized semicore states that we are inter-
small. This deviation between the stand&dV results for ested in are explicitly included in the valence shell. It is
semicore states and experiment is thus an order of magnitudeaportant to note that the other semicore states of the same
larger than that for extended valence- and conduction-banghell are treated as valence states, as well, to correctly de-
states. Within standarGG WA we find a systematic un- scribe their exchange-correlation interaction with the consid-
derbinding of, e.g., Ge®and Si 2 semicore levels, as well ered semicore statés.

(see below. Motivated by these unusual deviations we have In the GW approximatioft? the self-energy operator is
addressed the question of whether a self-consistent evalugiven by
tion of the self-energy can help to overcome these shortcom-

ings and can lead to semicore binding energies with the same
accuracy as is now routinely achieved in standa\V cal-

culations for valence and conduction bands. So far, little

work has been done in this field due to the large numericaBut it is an open question whicG and whichW should be
effort involved for strongly localized states. Bechstedt hasemployed. In principle, the space and energy dependence of
calculated self-energies of semicore states within a simplifiedll operators, e.g., of the Green'’s function or the polarizabil-
GW schemé. More recently, Aryasetiawan and Gunnarssonity, entering the self-energy, have to be calculated fully self-
have developed an approach for applyi®NVA to all-  consistently withinGWA. This very demanding procedure,
electron calculations for bulk crystals, yielding binding ener-however, is usually not carried out. Instead, it is now the
gies of semicore states which are considerably closer to excommon procedure to construct the self-energy operator non-
periment than respective local-density approximatioDA ) self-consistently by employing the results of a preceding
resultst® Yet, the calculated semicotkenergies still deviate LDA calculation and to determinguasiparticle corrections
from experiment by about 1 eV. Self-consistent self-energyto the LDA energies resulting in the quasiparti¢@P) band
calculations have recently been performed by de Groot andtructure. We characterize this approach by the self-energy
co-workers! and by Ummelset al!? for valence and con- X°=iG'PAWLPA, One of the motivations for this approach
duction bands in semiconducting systems, as well as by vois the excellent band-structure results it yield$In the case
Barth and Holn}®> and by Shirley* for the homogeneous of semicore levels it turns out, however, that this non-self-
electron gas. consistent evaluation of is not sufficient. A fully self-

In this paper, we report on improveésW calculations for ~ consistent evaluation of the self-energy would be very desir-
semicore states, i.e., for electronic states of the highest conable, therefore, when semicore QP binding energies are to be
pletely occupied electronic shell. In particular, we investigatecalculated. Since such calculations are far beyond current
the importance of self-consistency in the evaluation of thedays computational possibilities we have, instead, investi-
self-energy and the influence of the energetic structure of thgated well-defined first steps towards a more appropriate
Green’s function. It turns out that the binding energies of theevaluation of the self-energy.

S =iGW. (1)
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TABLE I. Calculated QP binding energiém eV) of the semicore states Cdi4n cubic CdS, Ge 8 in Ge, and Si D in Si (see text
The zero of the energy scale is given by the respective valence-band maximum. The experimental data are weighted averages of spin-orbit

split levels.

LDA GWA Exp.

GLbA G®P GQPS

cd4d -7.2 -8.1 -8.2 -9.1 -9.22 —9.8
Ge A —24.6 -27.7 —28.2 —-30.0 —29.5¢ —29.7
Si 2p -89.4 -94.38 -97.9 —100.4 —99.0¢ —100.¢
%Ref. 17.
bRefs. 18 and 19.
°Ref. 20.
dRef. 21.

We begin our discussion by addressing the underlyingnvestigations of the screening properties in Si by Tenelsen
LDA results. We have calculated the binding energies of Cdand Bechstedt indicate that this is in very good agreement
4d, Ge 3, and Si D states in cubic bulk CdS, in Ge, and in with a self-consistently calculated including vertex correc-

Si, respectively. These states are characterized by increasifigns. Furthermore, we assume throughout this paper that the
binding energies and the mean value of their radii are 1.29vave functions|n) are given by the LDA wave functions.
0.74, and 0.54 a.u., respectively. They thus cover a suffiye characterize this type of self-consistent approact® by
ciently large range of localization allowing for a systematic — jgQRNLPA The QP binding energies resulting from this
discussipn of Iocglization—indu.ced tre_nds. qu the three Stateépproximation are compiled in the third column of Table I.
we obtain LDA binding energies which deviate by as muchypqating of the QP spectra in the construction of the self-
as about 2, 5, and 10 eV from experlmeégee first CO“,"mn. energy operator results in an increase of all calculated bind-
of T_abl_e ). To some extent, th'? systematic undere_stlmanor]ng energies being largest for the most localized Bighd

of binding energies within LDA is related to unphysical self- smallest for the least localized Ccti4state. The resulting

interactions inherent in that approximatir. binding energies are, however, still about 1, 1.5, and 2 eV

. Appllcau_on of the standach_WA, 1.€., employmgz . smaller than the experimental values for Cd, Ge, and Si,
yields considerably improved binding energies but they St'”respectively

gfné\élast? frrgsf“:;f)‘zrl'g‘:gt ggc?aa?juz:il’ 2m r?r:)?‘ i aeg{;olr:g?ﬁ Ge. " For the first three approaches discussed so(E&VA,
i, respectiv u GWA using G'PA, GWA using G®), the deviations from

our results we conclude that this systematic underestimatio(gxperirnent and the energgprrectionsfrom one approach to
of semicore binding energies is partly caused by employlnqhe next are smallest for the Cdi4nd largest for the Si2

LDA results, in particular, for constructing the first factor state, respectively. This behavior is closely related to the

LDA 3 ; ;
G d of th? self enktjatrgy %p?rsé?vr\./ASmce tg.?jf Ql? amﬁlr']tUde?ncreasing localization and binding energy of these states.
and energies as obtained may-ditier from the Finally, we investigate the influence of the energetic

original LDA .results, this smglg—neratmn scheme BF is ._structure of the Green’'s function on the self-energy. The
not self-consistent. For delocalized valence and conductlop;.'reen,S functions employed so far were formed by simple

states, however, this approximation appears well JUStIfI6dpoles related to effectively independent particles. Their spec-

;I'helzr EP tSh'ftS artetrelgtlvelly ”&Od?St and the(;‘lrst |terat|ort1tra| function consists of sharp, normalized single-particle
or 2(E) turns out to be already in very good agreemen peaks. For an interacting electronic system, however, this

with 'the f|nr;1| felf-corli|stent;)pera:%QP ST'ItSt?f Iocah.zded b imple pole structure is no longer valid. The QP poles be-
semicore states, on the contrary, trm out 1o be ConsIteraby, .o yenormalized and additional satellite features arise at

larger than those of delocalized states. This is due to the fa%%ergies below and above the QP energy of each particular
that the coupling of individual states of a semicore shell bystate?'g'zs'ZGThis modification of the Green’s function affects

plasmons, which is the basic correlation effect, is mucqhe self-energy operator and the QP energies for semicore

stronger than the plasmon—lnduced coupling of a partlcu]agtates, in particular. We investigate this influence by the fol-
valence or conduction state to all other valence or conductio wing procedure. First we calculate the complete energy

states. It cannot be expected, therefore, that a non-sel
. 5 . ! ependence ok, (E)=(n|X(E)|n) for all statesn by em-
consistent>"(E) can be used with good accuracy for ther?__loying the conventional single-pole Green’s functiGf’.

caIguIann of semicore states. ”?Stead’ the resulting QP e rom this self-energy, we calculate the spectral function and
ergies must be used to self-consistently evaluate the Green

function when constructing the self-energy operator, We p construct a new Green’s functic®®s explicitly including
; , . ' the renormalized QP poles and the satellites. For each state
bel the respective Green’s function BFF. For the second n, it is given by’
factor of 3, i.e., for the screened Coulomb interactMf we ' 9
restrict ourselves throughout this paper to employing the
random-phase approximatidRPA) expressionV-°* based
on LDA results without taking the modified Green'’s function QP = QP =
G into account in the evaglluation of the dielectric matrix. G E)=(|GIE)In) E-Ey —(n|2(E)|n)’ 5

)
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777777 9 Ry QP energy2. shows a pole and an additional satellite struc-
: ture is found in the spectral function of the state, which is
1 L \ - induced by plasmons that are mainly responsible for the cor-
Imd _ \ ) . ;
_____ - N L 0 Ry relation among the electrons, as briefly mentioned above.
Within the simple mode(3), satellites in the spectrum of the
. ReX - Ge 2 state are only present below but not above the respec-
Self | L5 R tive QP energy®
| ener y To simplify the following GW calculations, we map the
gy piity 0 :
——— — Green’s functlorG;g YE) of each state onto an analytical
Spectral pole form with one QP pole and a small number of satellites,

function y= 1
QP — 7QP satj
073 Gn S(E) Zn E—ESP+Z Zn

=y, (@)
E-E

wherezs andES®" may be complex. For most of the states
n, consideration of one satellite pole in BEd) turns out to
=l be sufficient. Due to particle conservation, the complete

4 9 0 5 weight, i.e., the sum of all renormalization factats in Eq.
- - (4), adds up to one. The most important effect of the new
E — ESP[Ry) Green’s functionG3 * is that some weight is shifted from

the QP pole to the satellites which occur at lower energies in
FIG. 1. Self-energy and spectral function of the G& Sate  the case of semicore states. With this new Green’s function
along the real-energy axis, as resulting from the meggl we calculate a ne\. The rearrangement of spectral weight
in G5 leads to a reduction of the correlation partby
Employing the new Green's functioB?™ we once again ahout 20%. Since the correlation energy of a semicore state
calculate the self-energy operator and evaluate the resulting positive, its QP band-structure energy is thus lowered, i.e.,
self-energy for the QP semicore states. For the iteration Ws hinding energy increases. In our calculations we observe a
need the energy dependenceX(fE) for all statesn. This  respective increase in the binding energies by 0.9 eV for the
might, in principle, be obtained by evaluatid@fE) for all  cd 4d, 1.8 eV for the Ge @, and 2.5 eV for the Si @ state.
energies along the real energy axis. Such a procedure ignpe QP binding energies resulting witBSPS are in very
however, very demanding due to the multiple—pole. StructUrgyood agreement with experimefsee Table)l The remain-
of X along the real axis. Therefore, we employ instead gnq deviations are of the order of 1% in all three cases. This
model of the self-energy of a given stateas suggested by s;ggests that the quantitative accuracysOA calculations
Rojaset al. for semicore statesan strongly be improved by updating the
o bi QP sgectrum and r?y inclqd:ng_sa;tellites inbthe Grefen’s fulr:c-
_ n tion. Our approach, certainly, is far from being a fully self-
(n[Z(E)[n)=a,+ ;1 E-E! @ consistent evaluation of the self-energy; but it constitutes an

_ _ important and well-defined first step towards a better treat-
Here we take only two poles, i.o=2, into account. For the  ment of semicore statés.

determination of the respectivepz 1 parameters, the self- In this paper we have presented investigations of QP
energy of staten must be calculated explicitly for @+1  gemjicore binding energies using differéBW self-energy
energiesE. We choose these in the complex energy planeperators of increasing complexity with an increasing degree
starting from the real QP energl;" and increasing the of self-consistency. For localized semicore states it has
imaginary part of E=EF+1iAE, 1=0,1,...,9, in 2p  turned out that the QP energies need to be included in the
steps withAE=0.8 Ry. construction of3, thus requiring a self-consistent scheme.

As a typical example, we show in Fig. 1 the resulting Furthermore, the energy dependence.qfE) of each state
self-energy of the Ge @ state for energies along the real leads to a renormalization of the QP weight and to the oc-
axis. Near the QP energ®, (E) is characterized by a de- currence of additional satellite structures in the spectral func-
creasing real part. This results in a renormalization of the QRion. We have found that these important structural features
peak in the spectral function by the renormalization factorof the Green'’s function can be taken into account by a fairly
Z,=1[1-4(n|X(E)|n)/9E]. The imaginary part of the simple model yielding a significant increase of the quasipar-
self-energy is almost zero in this region leading to a verticle binding energies of semicore states leading to gratifying
small broadening of the QP peak. At energies far below thegreement with experimental data.
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Green’s function also influences the energies of valence and
conduction bands, leading to increased gap enei@iess. 11

and 12. In our present QP calculations employi®&R"S we
obtain gap energies of 3.21 eV for CdS, 0.93 eV for Ge, and
1.49 eV for Si, respectively. In this context, Ummelsal. (Ref.

12) have also investigated the effect of vertex corrections on the
valence and conduction band structure beyond G\&A. It
turns out that these vertex corrections and the self-consistency
effects cancel each other to a large extent. Taking both correc-
tions into account, the authors eventually find gap energies very
close to those resulting from the standard, non-self-consistent
GW approachRef. 12. In the case of localized semicore states,
on the other hand, we have arrived at systematically improved
QP binding energies by only including self-consistency effects.
This could indicate that vertex corrections are less important for
localized semicore states.



