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We investigate binding energies of semicore states in prototype semiconductors by quasiparticle calcula-
tions. Band-structure calculations within the local-density approximation and standardGW quasiparticle cal-
culations underestimate these energies systematically. Employing an extendedGW approach we obtain very
good agreement of calculated quasiparticle energies of semicore states in Si, Ge, and cubic CdS with experi-
mental data. This is achieved by renormalizing the quasiparticle peaks in the spectrum and including plasmon-
induced satellite structure in the Green’s function.@S0163-1829~97!50936-2#

Quasiparticle band-structure calculations based on the
GW approximation (GWA) of the self-energy operator as
suggested by Hedin and Lundqvist1,2 have become the ‘‘state
of the art’’ in electronic structure calculations for semicon-
ductors. The most simple variant of this approach has been
applied very successfully3–7 to calculate valence and conduc-
tion bands of elemental and III-V semiconductors with an
accuracy of about 0.1 eV, as compared to experiment. The
same accuracy has recently been obtained for valence and
conduction bands of the II-VI compound CdS which was
studied including the Cd 4d semicore states.8 The binding
energy of the latter, however, was found to be about 1 eV too
small. This deviation between the standardGW results for
semicore states and experiment is thus an order of magnitude
larger than that for extended valence- and conduction-band
states. Within standardGWA we find a systematic un-
derbinding of, e.g., Ge 3d and Si 2p semicore levels, as well
~see below!. Motivated by these unusual deviations we have
addressed the question of whether a self-consistent evalua-
tion of the self-energy can help to overcome these shortcom-
ings and can lead to semicore binding energies with the same
accuracy as is now routinely achieved in standardGW cal-
culations for valence and conduction bands. So far, little
work has been done in this field due to the large numerical
effort involved for strongly localized states. Bechstedt has
calculated self-energies of semicore states within a simplified
GW scheme.9 More recently, Aryasetiawan and Gunnarsson
have developed an approach for applyingGWA to all-
electron calculations for bulk crystals, yielding binding ener-
gies of semicore states which are considerably closer to ex-
periment than respective local-density approximation~LDA !
results.10 Yet, the calculated semicored energies still deviate
from experiment by about 1 eV. Self-consistent self-energy
calculations have recently been performed by de Groot and
co-workers11 and by Ummelset al.12 for valence and con-
duction bands in semiconducting systems, as well as by von
Barth and Holm13 and by Shirley14 for the homogeneous
electron gas.

In this paper, we report on improvedGW calculations for
semicore states, i.e., for electronic states of the highest com-
pletely occupied electronic shell. In particular, we investigate
the importance of self-consistency in the evaluation of the
self-energy and the influence of the energetic structure of the
Green’s function. It turns out that the binding energies of the

studied semicore states result in very good agreement with
experimental data when more realistic Green’s functions are
employed instead of the most simple one resulting from
LDA input data, alone.

In our calculations we employ basis sets of localized
Gaussian orbitals both within LDA andGWA for the repre-
sentation of the wave functions and all two-point functions.
This allows for a very efficient description of localized
states, as discussed in detail in Ref. 15. The inner-core states
are eliminated by using norm-conservingab initio pseudopo-
tentials that are constructed according to the prescription of
Hamann.16 The localized semicore states that we are inter-
ested in are explicitly included in the valence shell. It is
important to note that the other semicore states of the same
shell are treated as valence states, as well, to correctly de-
scribe their exchange-correlation interaction with the consid-
ered semicore states.8

In the GW approximation1,2 the self-energy operator is
given by

S5 iGW. ~1!

But it is an open question whichG and whichW should be
employed. In principle, the space and energy dependence of
all operators, e.g., of the Green’s function or the polarizabil-
ity, entering the self-energy, have to be calculated fully self-
consistently withinGWA. This very demanding procedure,
however, is usually not carried out. Instead, it is now the
common procedure to construct the self-energy operator non-
self-consistently by employing the results of a preceding
LDA calculation and to determinequasiparticle corrections
to the LDA energies resulting in the quasiparticle~QP! band
structure. We characterize this approach by the self-energy
S0[ iGLDAWLDA. One of the motivations for this approach
is the excellent band-structure results it yields.3–8 In the case
of semicore levels it turns out, however, that this non-self-
consistent evaluation ofS is not sufficient. A fully self-
consistent evaluation of the self-energy would be very desir-
able, therefore, when semicore QP binding energies are to be
calculated. Since such calculations are far beyond current
days computational possibilities we have, instead, investi-
gated well-defined first steps towards a more appropriate
evaluation of the self-energy.
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We begin our discussion by addressing the underlying
LDA results. We have calculated the binding energies of Cd
4d, Ge 3d, and Si 2p states in cubic bulk CdS, in Ge, and in
Si, respectively. These states are characterized by increasing
binding energies and the mean value of their radii are 1.29,
0.74, and 0.54 a.u., respectively. They thus cover a suffi-
ciently large range of localization allowing for a systematic
discussion of localization-induced trends. For the three states
we obtain LDA binding energies which deviate by as much
as about 2, 5, and 10 eV from experiment~see first column
of Table I!. To some extent, this systematic underestimation
of binding energies within LDA is related to unphysical self-
interactions inherent in that approximation.22,23

Application of the standardGWA, i.e., employingS0,
yields considerably improved binding energies but they still
deviate from experiment by about 1, 2, and 5 eV for Cd, Ge,
and Si, respectively~see second column of Table I!. From
our results we conclude that this systematic underestimation
of semicore binding energies is partly caused by employing
LDA results, in particular, for constructing the first factor
GLDA of the self-energy operator. Since the QP amplitudes
and energies as obtained fromGWA may differ from the
original LDA results, this single-iteration scheme forS0 is
not self-consistent. For delocalized valence and conduction
states, however, this approximation appears well justified.
Their QP shifts are relatively modest and the first iteration
for S(E) turns out to be already in very good agreement
with the final self-consistent operator.3 QP shifts of localized
semicore states, on the contrary, turn out to be considerably
larger than those of delocalized states. This is due to the fact
that the coupling of individual states of a semicore shell by
plasmons, which is the basic correlation effect, is much
stronger than the plasmon-induced coupling of a particular
valence or conduction state to all other valence or conduction
states. It cannot be expected, therefore, that a non-self-
consistentS0(E) can be used with good accuracy for the
calculation of semicore states. Instead, the resulting QP en-
ergies must be used to self-consistently evaluate the Green’s
function when constructing the self-energy operator. We la-
bel the respective Green’s function byGQP. For the second
factor ofS, i.e., for the screened Coulomb interactionW, we
restrict ourselves throughout this paper to employing the
random-phase approximation~RPA! expressionWLDA based
on LDA results without taking the modified Green’s function
GQP into account in the evaluation of the dielectric matrix.

Investigations of the screening properties in Si by Tenelsen
and Bechstedt24 indicate that this is in very good agreement
with a self-consistently calculatedW including vertex correc-
tions. Furthermore, we assume throughout this paper that the
wave functionsun& are given by the LDA wave functions.
We characterize this type of self-consistent approach byS
5 iGQPWLDA. The QP binding energies resulting from this
approximation are compiled in the third column of Table I.
Updating of the QP spectra in the construction of the self-
energy operator results in an increase of all calculated bind-
ing energies being largest for the most localized Si 2p and
smallest for the least localized Cd 4d state. The resulting
binding energies are, however, still about 1, 1.5, and 2 eV
smaller than the experimental values for Cd, Ge, and Si,
respectively.

For the first three approaches discussed so far~LDA,
GWA using GLDA, GWA using GQP!, the deviations from
experiment and the energycorrectionsfrom one approach to
the next are smallest for the Cd 4d and largest for the Si 2p
state, respectively. This behavior is closely related to the
increasing localization and binding energy of these states.

Finally, we investigate the influence of the energetic
structure of the Green’s function on the self-energy. The
Green’s functions employed so far were formed by simple
poles related to effectively independent particles. Their spec-
tral function consists of sharp, normalized single-particle
peaks. For an interacting electronic system, however, this
simple pole structure is no longer valid. The QP poles be-
come renormalized and additional satellite features arise at
energies below and above the QP energy of each particular
state.2,9,25,26This modification of the Green’s function affects
the self-energy operator and the QP energies for semicore
states, in particular. We investigate this influence by the fol-
lowing procedure. First we calculate the complete energy
dependence ofSn(E)5^nuS(E)un& for all statesn by em-
ploying the conventional single-pole Green’s functionGQP.
From this self-energy, we calculate the spectral function and
construct a new Green’s functionGQPS explicitly including
the renormalized QP poles and the satellites. For each state
n, it is given by27

Gn
QPS~E![^nuGQPS~E!un&5

1

E2En
QP2^nuS~E!un&

. ~2!

TABLE I. Calculated QP binding energies~in eV! of the semicore states Cd 4d in cubic CdS, Ge 3d in Ge, and Si 2p in Si ~see text!.
The zero of the energy scale is given by the respective valence-band maximum. The experimental data are weighted averages of spin-orbit
split levels.

LDA GWA Exp.

GLDA GQP GQPS

Cd 4d 27.2 28.1 28.2 29.1 29.2,a 29.5b

Ge 3d 224.6 227.7 228.2 230.0 229.5,c 229.7d

Si 2p 289.4 294.8 297.9 2100.4 299.0,c 2100.0d

aRef. 17.
bRefs. 18 and 19.
cRef. 20.
dRef. 21.
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Employing the new Green’s functionGQPS, we once again
calculate the self-energy operator and evaluate the resulting
self-energy for the QP semicore states. For the iteration we
need the energy dependence ofS(E) for all statesn. This
might, in principle, be obtained by evaluatingS(E) for all
energies along the real energy axis. Such a procedure is,
however, very demanding due to the multiple-pole structure
of S along the real axis. Therefore, we employ instead a
model of the self-energy of a given staten as suggested by
Rojaset al.:25

^nuS~E!un&5an1(
j 51

p bn
j

E2En
j . ~3!

Here we take only two poles, i.e.,p52, into account. For the
determination of the respective 2p11 parameters, the self-
energy of staten must be calculated explicitly for 2p11
energiesE. We choose these in the complex energy plane
starting from the real QP energyEn

QP and increasing the
imaginary part of E5En

QP1 l i DE, l 50,1, . . . ,2p, in 2p
steps withDE50.8 Ry.

As a typical example, we show in Fig. 1 the resulting
self-energy of the Ge 3d state for energies along the real
axis. Near the QP energy,S(E) is characterized by a de-
creasing real part. This results in a renormalization of the QP
peak in the spectral function by the renormalization factor
Zn51/@12]^nuS(E)un&/]E#. The imaginary part of the
self-energy is almost zero in this region leading to a very
small broadening of the QP peak. At energies far below the

QP energy,S shows a pole and an additional satellite struc-
ture is found in the spectral function of the state, which is
induced by plasmons that are mainly responsible for the cor-
relation among the electrons, as briefly mentioned above.
Within the simple model~3!, satellites in the spectrum of the
Ge 3d state are only present below but not above the respec-
tive QP energy.28

To simplify the following GW calculations, we map the
Green’s functionGn

QPS(E) of each staten onto an analytical
pole form with one QP pole and a small number of satellites,

Gn
QPS~E!5Zn

QP 1

E2En
QP1(

i
Zn

sat,i 1

E2En
sat,i , ~4!

whereZn
sat,i andEn

sat,i may be complex. For most of the states
n, consideration of one satellite pole in Eq.~4! turns out to
be sufficient. Due to particle conservation, the complete
weight, i.e., the sum of all renormalization factorsZn in Eq.
~4!, adds up to one. The most important effect of the new
Green’s functionGn

QPS is that some weight is shifted from
the QP pole to the satellites which occur at lower energies in
the case of semicore states. With this new Green’s function
we calculate a newS. The rearrangement of spectral weight
in Gn

QPS leads to a reduction of the correlation part ofS by
about 20%. Since the correlation energy of a semicore state
is positive, its QP band-structure energy is thus lowered, i.e.,
its binding energy increases. In our calculations we observe a
respective increase in the binding energies by 0.9 eV for the
Cd 4d, 1.8 eV for the Ge 3d, and 2.5 eV for the Si 2p state.
The QP binding energies resulting withGn

QPS are in very
good agreement with experiment~see Table I!. The remain-
ing deviations are of the order of 1% in all three cases. This
suggests that the quantitative accuracy ofGWA calculations
for semicore statescan strongly be improved by updating the
QP spectrum and by including satellites in the Green’s func-
tion. Our approach, certainly, is far from being a fully self-
consistent evaluation of the self-energy; but it constitutes an
important and well-defined first step towards a better treat-
ment of semicore states.31

In this paper we have presented investigations of QP
semicore binding energies using differentGW self-energy
operators of increasing complexity with an increasing degree
of self-consistency. For localized semicore states it has
turned out that the QP energies need to be included in the
construction ofS thus requiring a self-consistent scheme.
Furthermore, the energy dependence ofSn(E) of each state
leads to a renormalization of the QP weight and to the oc-
currence of additional satellite structures in the spectral func-
tion. We have found that these important structural features
of the Green’s function can be taken into account by a fairly
simple model yielding a significant increase of the quasipar-
ticle binding energies of semicore states leading to gratifying
agreement with experimental data.
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