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We present a theoretical study of the magnetic phase diagram of the frustrated coupled ladder structure
realized recently in several materials. This system displays a nondegenerate spin-gap state in the dimer limit
and an infinitely degenerate spin-gap state in the regime of weakly coupled zigzag chains. Between these we
demonstrate the existence of gapless, magnetically ordered regions whose order is antiferromagnetic close to
the honeycomb lattice limit, and incommensurate along the chains when all three magnetic interactions com-
pete.@S0163-1829~97!50634-5#

Spurred by developments in the field of high-temperature
superconductivity, rapid progress is now being made in the
preparation of materials with similar attributes, and there is
potential for fascinating new physics. These are inorganic,
low-dimensional quantum magnets, where the relative
strengths of the magnetic interactions, which in most cases
give antiferromagnetic coupling between ions with spinS5
1
2, result in systems such as chains and ladders, which are
effectively one-dimensional~1D!, or 2D coupled ladders and
depleted planes. One structure of particular interest is the
frustrated coupled ladder, shown in Fig. 1. This conforma-
tion is realized in the cases of the prototypical ‘‘ladder’’
compound1 SrCu2O3, where the frustrating interactionJ1 is
ferromagnetic~FM! and small, and in the depleted planar
compounds CaV2O5 ~Ref. 2! and MgV2O5.

3 In each of the
latter systems, all three interactions are thought to be of simi-
lar strength, but the physical properties of the materials differ
dramatically.

The phase diagram obtained on alteration of the param-
etersJ1, J2 , andJ28 is particularly rich. The two-chain ladder
obtained atJ150 has a singlet ground state of resonating
dimers with a gap to all spin excitations, while the zigzag
chain at J2850 shows for J2.J2c a doubly degenerate
ground state of alternating dimers which also has a gap.
What appears between these limits remains poorly under-
stood, and is one subject of the current analysis, but we may
gain an initial indication from the honeycomb lattice ob-
tained whenJ250, where the gappedJ28 dimer phase is re-
placed by a magnetically ordered state at a critical value of
increasingJ1. We investigate the system using a variety of
analytical and numerical methods, proceeding~a! from the
limit of ladder rung dimers,~b! from that of weakly coupled
zigzag chains, and~c! by considering the ordered phases
which are found to occur between these limits.

(a) Dimer limit. In the limit of largeJ28 , the system has a
nondegenerate ground state, whose wave function is a prod-
uct of rung dimer singlets, with an energy gap to spin exci-
tations. This state is well suited to examination by the bond-
operator technique,4 which is based on transforming the four

spin states on each rung to one singlet and three triplets. The
gap between these gives the stability of dimer order. The
method has also been shown5 to be applicable to spin ladders
~vanishingJ1) for values ofJ2 up toJ28 , and can be expected
to have similar validity in the case of the anisotropic honey-
comb lattice~vanishingJ2).

Following the treatment of Ref. 6 for a unit cell contain-
ing two dimers, and retaining in the spin-gap regime terms
only to quadratic order in the triplet spin excitationst ia

† , we
obtain a system of threefold degenerate magnons with en-
ergy spectrum

vk
65~ 1

4 J282m!A11dak
6, ~1!

whered52J28 s̄2/( 1
4 J282m),

ak
65lcoskz6l8cos1

2 kxcos1
2 kz ; ~2!

s̄ denotes the magnitude of the singlet condensate,m is the
global chemical potential, and we definel5J2 /J28 and
l85J1 /J28 . Solution of the mean-field equations atT50
gives the most important property characterizing the nonde-
generate ground state, the spin gap

D5~ 1
4 J282m!A12d f~l,l8!. ~3!

FIG. 1. Schematic representation of the frustrated coupled ladder sys-
tem.
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For J1.4J2, f 5l82l5ak,min
2 at the commensurate

wave vector kM5(0,0), while for J2. 1
4 J1 one has

f 5l1l82/8l occurring at an incommensurate
kM5„0,2cos21(l8/4l)…. In the spin-gap regime, the maxi-
mum of the static structure factorS(k) coincides with the
minimum of the gap, and can be shown to move to incom-
mensurate wave vectors with increasingJ2 beyond1

4 J1. The
boundaries of the spin-gap phase are found where theD→0,
and are shown in Fig. 2. WhenJ1.4J2, from kM one may
deduce a FM arrangement of rung spin pairs (u↑↓&), which
corresponds to antiferromagnetic~AF! order along theJ1

chains. ForJ2. 1
4 J1, kM describes spiral order along the

chains with exactly the pitch known from the classical solu-
tion for the J1-J2 chain. The phase boundaries in Fig. 2
appear well outside the regime of validity of the bond-
operator technique, which overestimates the stability of the
dimer state. However, they remain qualitatively correct, par-
ticularly in showing the instability of the dimer liquid to the
different ordered phases, and furthermore provide a useful
indication of where to apply alternative approaches.

(b) Frustrated chain limit. For largeJ1 or J2, the system
consists of weakly coupled chains, whose properties are well
known from the Bethe Ansatz solution. However, how these
are affected by the weak couplings, which may or may not
be frustrating, is an extremely subtle issue to which we shall
return below. Here we consider the limit of smallJ28 , where
the problem is that of theJ1-J2 chain. This is a classic ex-
ample of frustration in 1D, and we review briefly its proper-
ties ~see Ref. 7, and Refs. 12–18 therein!. At the Majumdar-

Ghosh~MG! point J25 1
2 J1, there is an exact dimer wave

function solution8 with a twofold degenerate ground state
and gapped excitation spectrum.9 The wave function is com-
posed of frozen singlets on alternatingJ1 bonds, and has two
possible realizations differing by a translation of one unit
along the chain. The gap decreases exponentially with
J22J2c ~Ref. 10! on approach to the conformal point
J2c /J150.2412, below which the frustrated chain retains the
gapless spectrum of the nearest-neighbor spin chain. For

J2. 1
2 J1 the gap increases to a maximum at

0.6,J2 /J1,0.7, then tends towards an exponential decay
with 2J2 /J1 for large J2. The static spin-spin correlation

function S(k) ~Ref. 11! has a maximum atk5p for

J2< 1
2 J1, and forJ2. 1

2 J1 is maximal betweenk5 1
2 p andp,

indicating predominant spiral correlations.
We examine the lifting of degeneracy and the closing of

the singlet-triplet gapD by an adapted perturbational ap-
proach, which due to the degenerate nature of the ground
state is in a strict sense variational. The Hamiltonian is writ-
ten asH5H01H8, where

H05J1(
i

Ŝi ,l•Ŝi 11,l1J2(
i

Ŝi ,l•Ŝi 12,l , ~4!

H85J28 (
i ,l even

Ŝi ,l•Ŝi ,l 111J28 (
i ,l odd

Ŝi ,l•Ŝi ,l 11 , ~5!

and inH8 both i and l take either even or odd values only.
We construct the variational wave function

uC j&5uS&0^ ••• ^ uS& j 21^ uT& j ^ uS& j 11•••, ~6!

in which uS& i5huS0&1h8uSp& is a linear combination of the
two degenerate ground states on thei th chain.
uT& j5(a(jk,auTk,a&1jk1p,auTk1p,a&), where uTk,a& is the
eigenstate with momentumk of the isolated zigzag chain,
denotes a triplet excitation of thej th chain. In the thermody-
namic limit these form a continuum above the gap, and their
delocalization byH8 gives a kinetic energy gain which re-
ducesD.

In the regimeJ2, 1
2 J1 where the spin correlations are

predominantly antiferromagnetic, the lowest-lying triplet ex-
citations appear atk50 andk5p. Hereh or h850, and the
‘‘gap equation’’ for J28 takes the simplified form

1

J28
5max(

a
H u^Tp,auŜp

z uS0&u2

ea2eS2D
,

u^T0,auŜp
z uSp&u2

ea2eS2D
J , ~7!

whereeS and ea are the ground and excited state energies,
and may be evaluated in terms of the spin-spin correlation
function

Im Sq
zz~v,k!5(

a
u^Tk1q,auŜk

zuSq&u2d~v2vk1q!, ~8!

in which vk1q5ek1q,a2eS . These expressions are calcu-
lated using a La´nczos algorithm for chain lengths up to
N522 sites. SettingD50 yields the valueJ2c8 where the
ordered phases appear.J2c8 scales with the unperturbed gap

magnitudeD0, and vanishes atJ25J2c . For J2. 1
2 J1, the

situation is more complicated because the lowest triplet ex-
citations appear at intermediate momenta, corresponding to
predominant incommensurate spin correlations.11 There is no
decoupling as above, necessitating solution of the fullJ28
equation and calculation of the energy by minimizing with
respect toh andh8. D→0 for a value ofJ28 whose depen-
dence onD0 varies because of the incommensuration, as
shown in the inset of Fig. 3. That gap closure occurs at a
wave vector away fromp we take as an indication of spiral
magnetic order. The method of solution is most accurate
where the gap of the dimerized phase is large, and we display
in Fig. 3 the phase diagram for the parameter regime

FIG. 2. Phase diagram of the coupled dimer system, shown in the plane
of J28/J1 andJ2 /J1, as deduced from the bond-operator method.
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0.4,J2 /J1<1. The nature of the magnetic order stabilized
by increasingJ28 corresponds to the wave vectorkM maxi-
mizing S(k).11

We may analyze the energy shift and splitting of the
ground state by applying second-order degenerate perturba-
tion theory. At this level one need only consider two coupled
chains, which have a fourfold degenerate ground state, and
the energy correction per site is a 434 matrix conveniently
calculated using the La´nczos algorithm. The correction is
found to be proportional to the unit matrix, so the degeneracy
is not lifted in the thermodynamic limit to second order. This
result suggests that the degeneracy of the ground state will
be reflected in the presence of low-lying singlet states in the
singlet-triplet gap for smallJ28 . We note that this behavior
contrasts with the lifting of degeneracy which occurs in a
system of gapped spin chains wherei and l may take all
values in Eq.~5!.

(c) Ordered phases. These may be treated by expanding
in fluctuations around a state with fixed moments, of periodi-
cally varying orientation, on each site. We present here re-
sults from the Schwinger boson and linear spin-wave meth-
ods. In the Schwinger boson transformation,12,13 ordered
solutions are described by a Bose condensation where^b&
Þ0 becomes a parameter in the system of mean-field equa-
tions, and the chemical potentialm is determined by the re-
quirement that the excitation spectrum is gapless~Goldstone
modes!. We find both long-range order of Ne´el type, where
all correlations are AF only, and spiral order where there are
one condensate and five bond-order parameters in the solu-
tion. The latter number arises because all linksJ1 are equiva-
lent, as are all linksJ2, i.e., no solutions can be found where
there is a symmetry breaking analogous to the dimerization
in the MG state, so in general only two order parameters are
required for each type;J28 links are AF only, requiring one.
Disordered solutions have no Bose condensation, a gapped
excitation spectrum and a six-parameter solution including
m. The phase diagram is shown in Fig. 4. It is gratifying to
find that the AF and spiral ordered phases appear in the ex-
pected locations, and that the phase boundaries are in quali-
tative agreement with those deduced from both the dimer and
zigzag chain limits. We note in particular the two features

that ~i! there is an upper boundary for the regime of spiral
order at sufficiently largeJ2 and ~ii ! there is a continuous
transition directly from AF- to spiral-ordered regimes.

Applying the linear spin-wave technique, again~Fig. 4!
we find regimes with both AF and spiral long-range order,
and again there is a definite upper limit inJ2 on the latter. In
this case there is no direct transition between the ordered
phases, which are always separated by a disordered region.
This can be shown in detail by studying the ground-state
energy and staggered magnetization. A similar contradiction
has been found previously13 in the square lattice with frus-
trating next-neighbor superexchange. For this feature we
have no way of distinguishing between the phase diagrams
of Fig. 4 on the basis of these studies alone, and leave as
open the possibility that the transition between ordered
phases may be continuous along a finite line in parameter
space. We may not exclude the existence of a phase which is
none of the four discussed hitherto, as an intermediate be-
tween both the two ordered phases and the two~degenerate
and nondegenerate! gapped phases.

All of the approximations applied have tended to overes-
timate the extent of the parent region, although the deduced
phase boundaries are in good qualitative agreement. The
quantitative aspects may be addressed by numerical tech-
niques. WhenJ2 is zero, the system is an anisotropic honey-
comb lattice, which has an unfrustrated ordered state for suit-
ably large J1 (J28Þ0), and a spin-gap phase otherwise.
Because the absence of frustration removes the sign problem,
the quantum critical point on this axis can be found essen-
tially exactly by large-system quantum Monte Carlo~QMC!
studies. The resultJ28/J151.74 ~Ref. 17! fixes the unknown
end of the phase boundary of the nondegenerate spin-gap
regime. Comparison with the bond-operator~1.15! and
Schwinger boson~2.65! results indicates the validity of each.
We have in addition performed exact diagonalization~ED!
studies on small systems, from which for the present pur-
poses it is possible to locate crossover regions between
phases by analyzing the quantum numbers of the ground
states. This work remains in progress, and the results will be
presented in detail elsewhere.

FIG. 3. Phase diagram of the coupled zigzag chain system, as deduced
from the variational method. Solid symbols denote the commensurate solu-

tion (J2,
1
2J1) and empty symbols the incommensurate. FIG. 4. Phase boundaries of the ordered regions, deduced by the

Schwinger boson and linear spin-wave techniques.
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We conclude with a more schematic discussion of the
important limits of largeJ1 and largeJ2. WhenJ1 is large,
the system is one of weakly coupled chains with a small,
marginally relevant next-neighbor frustrationJ2. The action
of the interchain couplingJ28 has been discussed extensively
in recent literature for the anisotropic square lattice.14–16De-
spite the difference in behavior noted above for this geom-
etry whenJ2.J2c , we may, following Ref. 15, cast the in-
terchain interaction as an effective, staggered mean field and
deduce that any finiteJ28 leads to magnetic order while the
spectrum of the isolated chains remains gapless. Thus for
any frustrationJ2,J2c , the presence of aJ28 term can be
expected by this argument to induce AF order. It remains to
compute the value ofJ2c on a frustrated chain in the pres-
ence of the effective staggered field: if this quantity does not
track the phase boundary of the multiply degenerate MG-
type ground state, we are presented with the existence of an
intermediate phase in the region of the conformal point and
the known phase boundary. This may be the state of no mag-
netic order and no spin gap arising in the above
discussions,14,16 which, following the analysis of the ordered
states, may also be a candidate intermediate regime between
AF and spiral order.

At large J2 the problem is one of chains with competing
ladder and frustrated couplings. The ladder coupling is rel-
evant, and opens a gapD linear in J28/J2 to the nondegener-
ate state. The zigzag chain coupling opens an exponentially
small gap7 D;exp(2J2 /J1) to the multiply-degenerate state.
How each bond type affects the gapped state established by
the other is unknown, as both gaps may close, leaving some
intermediate phase, or there may be a crossover between the
gapped states. In the former case, our results provide a strong
indication against the possibility that the gapless phase is
ordered, but not that of a disordered, gapless phase in 2D
arising due to the competition of the couplings. In the latter
case, one may postulate a crossover where the singlet-triplet
gap changes smoothly, remaining finite while the low-lying
singlet states of the zigzag chain limit are simply split by
increasingJ28/J1, or may also undergo a level crossing with a
higher-lying singlet. Examination of ground-state quantum
numbers by ED will be particularly useful in resolving this
issue.

Figure 5 summarizes the preceding analyses and discus-
sion. The shaded regions represent those where open ques-
tions remain to be addressed. Returning to the materials

which have the frustrated coupled ladder structure, the origi-
nal ladder compound SrCu2O3 would appear close to the
isotropic point on the axisJ150, and is well described as a
liquid of resonating singlets residing primarily on the ladder
rungs. That the frustrating interaction is actually FM is of
little consequence here. CaV2O5 shows a large spin gap, in
qualitative agreement with expectation for a system withJ1

;J2;J2
8 ,18 as we have seen that the frustrating interaction

J1 must be significantly larger than the ladder terms in order
to remove the system from the nondegenerate gapped phase.
MgV2O5 is found to have a very small spin gap and a peak in
the static susceptibility at a temperature three times smaller
than that in the Ca analog, results which may indicate close
proximity to the phase boundary to spiral order. Finally, the
zigzag chain compounds SrCuO2 ~Ref. 1! and LiV2O5 ~Ref.
19! do not have exactly the structure considered here. How-
ever, both materials appear to fall in extreme limits ofJ2/J1,
and characterization of their ground states would neverthe-
less yield valuable information about the effects of weak
interchain coupling in the regimes discussed above.

In summary, the frustrated coupled ladder system repre-
sents well the wealth of interesting physics to be found in
low-dimensional quantum magnets, and provides a valuable
means of studying quantum phase transitions.

We are indebted to M. Troyer for the quoted QMC result,
and acknowledge also useful discussions with J. Bonvoisin,
P. Millet, and D. Poilblanc.
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