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Relatively little is known about the epitaxial growth of alloys that are thermodynamically unstable. An
analysis here suggests that spinodal decomposition can take place by formation of step bunches with alternat-
ing composition. This provides a possible mechanism for the spontaneous formation of superlattices during
molecular beam epitaxy alloy growth. Kinetic effects reduce the degree of decomposition, relative to equilib-
rium. At sufficiently high growth rates, decomposition is completely suppressed.@S0163-1829~97!50132-9#

Most alloys are thermodynamically stable only in a lim-
ited range of composition and temperature. Outside this
range, they tend to decompose into two alloy phases of stable
composition. Such spinodal decomposition has been exten-
sively studied, and is well understood for the case of decom-
position by bulk diffusion.1

However, the situation becomes more complex for epitax-
ial alloy growth. When bulk diffusion is negligible, surface
diffusion still provides a possible decomposition mechanism.
Many semiconductor alloys may be thermodynamically un-
stable at typical growth temperatures, although the phase dia-
grams are not accurately known; and spinodal decomposition
has been invoked to account for a variety of interesting ob-
servations. Yet such suggestions are invariably speculative
—little is understood at present about spinodal decomposi-
tion by surface diffusion during epitaxial growth. There have
been a few model numerical simulations;2 but analytic treat-
ments to date have focused on one-dimensional solids,3 or on
highly simplified continuum treatments of vapor-phase
growth.4 Spinodal decomposition during step-flow growth,
the growth mode most relevant to semiconductor technology,
has apparently never been treated except for dimensional
arguments.5

Here I consider step-flow growth of a thermodynamically
unstable alloy. A full treatment of the growth dynamics
would be exceedingly difficult, for reasons outlined below.
But I suggest that, even without such a treatment, one can
expect spinodal decomposition to involve formation of step
bunches with alternating composition. The bunch size is con-
trolled by a competition between thermodynamics and kinet-
ics. Growth by flow of such bunches suggests one possible
~albeit speculative! explanation for the remarkable phenom-
enon of spontaneous superlattice formation,6 as discussed be-
low.

For step-bunch flow, one can calculate the degree of alloy
decomposition. At low growth rate, the deposited material
decomposes and attaches to the respective bunches at nearly
the thermodynamically stable compositions. However, for a
given bunch size, the degree of decomposition decreases
with increasing growth rate, going to zero at a critical rate.
Thus it should be possible to grow uniform alloys at tem-
peratures where they are thermodynamically unstable.

Consider growth on a vicinal surface, i.e., one oriented at
a small angle to the atomic planes. This misorientation cre-
ates a staircase of atomic-height steps. Step-flow growth oc-

curs when all deposited material diffuses to a step and at-
taches there. I assume that these steps are straight, and that
the system is uniform in the direction parallel to the steps.
~Thus the possibility of alloy decomposition along a given
step is excluded here.! Also, in alloys whose constituents
have different atomic sizes, decomposition necessarily cre-
ates strain. Here I neglect this effect, treating the alloy de-
composition as due simply to a preference for like neighbors.

With these assumptions, decomposition can only occur by
having steps of different composition, which provide pre-
ferred sinks for the respective constituents. Some possible
configurations are shown in Fig. 1. For anA-B alloy, the
most obvious possibility is to have alternatingA-rich and
B-rich steps. This is shown in Fig. 1~a!. However, such a
situation is not realistic for most systems. It leads to inter-

FIG. 1. Schematic illustration of possible growth configurations
when decomposition occurs.A-rich andB-rich steps~and the cor-
responding material they leave behind as they flow! are indicated by
light or heavy crosshatching.
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leaving of the two phases in layers only one unit cell thick,
so the interface energy becomes important. In fact, for typi-
cal cubic lattices there are at least as manyA-B bonds in this
structure as in a random alloy.

~Much interest centers on compound semiconductor al-
loys such as In12xGaxAs and ZnSe12xTex , where only one
fcc sublattice of the zinc-blende structure is alloyed. In such
a case, references to anA-B alloy should be understood to
refer only to the alloyed sublattice.!

A more favorable situation is shown in Fig. 1~b!. In this
case there are severalA-rich steps, followed by several
B-rich ones. If the number of steps per period is large, then
the system decomposes into thick layers of alternating com-
position, with relatively little interface area per unit volume.
Such a situation can lower the free energy of the system
nearly to its equilibrium value.

However, to understand the growth, it is not enough to
consider the thermodynamics. One must also address the ki-
netics, at least qualitatively. This is simpler if we restrict
ourselves to the nearly immiscible limit for now. Then there
are two kinds of steps, of almost pureA andB composition,
respectively. We also assume thatA atoms are in local equi-
librium with A-rich steps~and B with B); and thatA (B)
steps pose no diffusion barrier toB (A) adatoms, but rather
are effectively ‘‘transparent’’ to them.7 Then either typen of
step obeys the equation of motion
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Heren denotesA or B; xn,m is the position of themth step of
type n ~i.e., there is a separate seriesm51,2,3 . . . for each
n); Fn is the incidentn flux; Dn is the adatom diffusion
constant; andhnm is the n adatom density in equilibrium
with stepnm. Eq. ~1! is obtained by integrating the diffusion
equation for h(x), with boundary conditions
hn(xnm)5hnm .9,10

The adatom densities at the steps have the form

hnm5e~mn2En!/kT, ~2!

where En is the adatom formation energy, andm is the
chemical potential. Assuming a nearest-neighbor interaction,
the chemical potential forA atoms at anA-rich step has its
bulk valuem̄n , unless the preceding step wasB rich. In that
case anA atom at this step has someB-atom neighbors in
the layer below, raising the chemical potential by an amount
dmn , and increasing the equilibrium adatom density at the
step by a factoredmn /kT. The velocity~1! can then be written
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Here h̄ n5e(m̄n2En)/kT is the adatom density for the corre-
sponding pure material;bnm5edmn /kT21 for a step follow-
ing an unlike step, and 0 otherwise; and the subscriptn has
been suppressed for simplicity.

Now consider a repeating sequence ofN A-rich and
N B-rich steps with equal spacingL, as in Fig. 1~b!. We can
view this as successive ‘‘trains’’ ofA and B steps. Substi-
tuting the corresponding values forb and x into Eq. ~3!, a
step inside a train will have velocityvm5FL, but the leading
and trailing steps will have velocities

v ~first!5
F

2
~21N!L2bh̄D

~21N!

~11N!L
, ~4!

v ~last!5
F

2
~21N!L1bh̄D

1

~11N!L
. ~5!

~The second step is also slightly accelerated, but this does
not affect the conclusions here.! Note thatv ~last!.FL, i.e.,
the trailing step tends to move faster than interior steps. If
v ~first!,FL then the lead step moves more slowly than inte-
rior steps. Thus, as illustrated in Figs. 1~c! and 1~d!, we will
have bunching together of theA-rich steps, and separate
bunching ofB-rich steps, when

F,bh̄D
2~N12!

~N21N!L2
. ~6!

To fully understand when step bunches form, and how
large they grow, one would need to address a difficult issue.
I have assumed that a given step is eitherA rich or B rich at
the outset, and remains so. However, in order for the statis-
tical properties of the system to become independent of the
precise initial conditions after sufficient time, it must be pos-
sible for anA-rich step to switch toB-rich, and vice versa.
Such switching must play an important role if steps are
ejected from one bunch and captured by the next. The de-
tailed dynamics of the switching process is beyond the scope
of this paper.

Nevertheless, for the restricted case of alternatingA and
B trains ofN steps each, we now have an explicit criterion
for stable bunching, Eq.~6!. For a given temperature and
flux, there is a critical bunch sizeNc bounding the range
(N21N)/(N12),2bh̄D/FL2. Bunches of sizeNc or
smaller are stable, while bunches larger thanNc are unstable.

The dependence of this bunch sizeNc on growth rate and
diffusion constant is shown in Fig. 2. Note that bunches of
N52 are stable for any fluxF, since from Eqs.~5! and ~4!
v ~last!.v ~first!. Thus in this regime of nearly complete decom-
position, increasing flux can never eliminate step pairing.

FIG. 2. Maximum stable bunch sizeNc vs dimensionless growth
rate FL2/bB. Step pairs~bunches withN52) are stable at any
growth rate.

RAPID COMMUNICATIONS

56 R4395SPINODAL DECOMPOSITION DURING STEP-FLOW GROWTH



As discussed above, larger step bunches result in fewer
A-B neighbors, and so lower free energy. Thus there is a
competition between thermodynamics, which favors large
bunches, and kinetics, which renders too-large bunches un-
stable. I speculate that during growth, the system reaches a
steady state with bunches of size;Nc .

If this speculation is correct, it provides a mechanism for
the spontaneous formation of superlattices. As illustrated in
Fig. 1, as the step bunches flow the newly added material is
segregated intoA-rich andB-rich layers, whose thickness is
fixed by the bunch size. Thus, continuous deposition of a
uniform alloy results in growth of a superlattice. This may
explain the remarkable observation of such spontaneous su-
perlattice formation by Ahrenkielet al.,6 or provide an alter-
nate mechanism for such formation. A related scenario has
also been suggested by Baraba´si.5 Related behavior has been
previously,8 but with a length scale which would seem to
preclude the explanation suggested here.

This entire analysis assumes irreversible deposition of
material onto the surface. If evaporation from the surface is
also significant, then the effects described here occur only if
the step density is sufficiently high~so that diffusion between
steps dominates over evaporation!. This might explain why
spontaneous superlattice formation seems to disappear at low
step density.

Up to this point I have considered only the case of nearly
complete segregation, showing that spinodal decomposition
naturally leads to bunching of same-component steps. The
bunch size, and hence the period of the resulting composition
modulation, is limited by the growth kinetics.

Let us now consider the actual degree of segregation, and
the effect of growth kinetics on the decomposition process.
To render this question tractable, I assume that the system
consists of alternatingN-step bunches ofA-rich andB-rich
steps, as suggested by the analysis above. Moreover, I as-
sume that each bunch moves as a whole, so one can neglect
the internal dynamics, and describe the bunch by a single
chemical potential for each constituent. This is taken to be
the bulk chemical potential for that composition, a good ap-
proximation whenN@1. Note that theA-rich ~or B-rich!
bunches are no longer assumed to be nearly pureA ~or B);
they each act as sinks for bothA andB atoms.

Adapting Eq.~1!, we can write an equation of motion for
the bunches:

vnm5FnL1DnS hn,m112hnm

~11a!NL
2

hnm2hn,m21

~12a!NL D
5FnL1

2Dn

NL~12a2!
~hn,m112hnm!. ~7!

Here L is the average step spacing, soNL is the average
bunch spacing; and I have assumed a two-bunch period, so
bunchesm11 andm21 are equivalent. The two inequiva-
lent terraces between bunches have sizes (16a)NL. @The
possible range ofa is illustrated in Fig. 1~c! and 1~d!.# Note
the change in notation—each bunch now has a unique index
m, whereas before there were separate indexesm for
eachn.

At this point we need an explicit model for the alloy ther-
modynamics. The simplest applicable model is ‘‘regular so-
lution theory,’’ with free energy

f 54Hcnc2n1kT~cnlncn1c2nlnc2n!, ~8!

wherecn is the fraction of speciesn in the alloy, andH is a
measure of the energy cost of unlike neighbors. Here2n
denotes the constituent other thann, so c2n512cn . This
model free energy would be exact for a random alloy whose
energy of mixing is given simply by the number ofA-B
neighbors, and including only the configurational contribu-
tion to the entropy.

Taking pure bulkA andB as our references, the chemical
potentials are then

mn54Hc2n
2 1kT lncn ~9!

and the adatom densities at the bunches are

hnm5exp@~mnm2En!/kT#

5cnmh̄ nexp@4Hc2nm
2 /kT#. ~10!

Here En is the adatom formation energy, and
h̄ n5 exp(2En /kT) is the equilibrium adatom density for the
corresponding pure material. Note thatc is the composition
of the crystal, and not of the adatoms. Substituting Eq.~10!
into Eq. ~7!,

vnm5FnL1
2h̄ n Dn

NL~12a2!
~cn,m11e4hc2n,m11

2
2cnme4hc2n,m

2
!,

~11!

whereh5H/kT.
From Eq. ~8!, the alloy is thermodynamically stable

against spinodal decomposition above a critical temperature
Tc52H/k. Thus in all equations hereh may be referred to
measurable properties viah5Tc/2T.

The composition at each step iscnm5vnm /vm . If we fur-
ther restrict ourselves to a 50:50 alloy with the two bunches
moving at equal velocity~as for Dn5D2n etc.!, then
vm5FL andcn,m1c2n,m5cn,m1cn,m1151. Then Eq.~11!
becomes

d5F21@~12d!eh~11d!2
2~11d!eh~12d!2

#, ~12!

where d52cnm21 is the degree of decomposition of the
50:50 alloy, up to 1 for complete decomposition; and
F5FNL2(12a2)/2h̄D is the dimensionless growth rate, a
measure of the degree to which kinetic factors are important.

Figure 3 shows the decompositiond as a function ofF
for several values ofT/Tc51/2h. In the limit F→0, the
growth is so slow relative to the diffusion that the system is
in equilibrium. Then Eq.~12! reduces to the bulk equilibrium
condition

h5
1

4d
ln

~11d!

~12d!
, ~13!

with d50 for h<1/2.
As F increases, as for higher growth rate or lower step

density, the decomposition is increasingly suppressed by the
growth kinetics, as shown in Fig. 3. For a given thermody-
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namic driving forceh, there is a critical value ofF at which
d→0 and there is no decomposition. This valueFc is given
by

Fc5~4h22!eh. ~14!

This analysis assumed thatN@1. For finiteN, interface
effects further reduce the decomposition. The chemical po-
tential at the leading step~9! becomes

mn54Hc2n
2 12H f ~124c2n

2 !1kT lncn ,

wheref is the fraction of out-of-plane bonds in the bulk, and
using cn,m115c2n,m . For the bunch,mn may be approxi-
mated by the average over its steps, since short-range step
interactions will shiftmn for individual steps without chang-
ing the average. Then Eq.~14! becomes

Fc5@4h~122 f N21!22#eh. ~15!

The analysis here raises as many questions as it answers,
because of the lack of a full dynamical treatment. Do the
bunches move intact, or are steps exchanged between
bunches, perhaps changing their composition as they cross
the terraces? And what factors determine the relative spacing
a of the two bunches?

Nevertheless, the present work provides some much-
needed insight into how spinodal decomposition may mani-
fest itself during step-flow growth. In particular, there is
clearly a competition between thermodynamics and kinetics.
Even when the alloy is thermodynamically unstable, the
growth kinetics can completely suppress decomposition.
When decomposition does occur, it involves step bunches of
alternating composition; and the bunch size, like the degree
of decomposition, is controlled by the thermodynamics-
kinetics competition.

Discussions with Andrew Zangwill are gratefully ac-
knowledged.
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FIG. 3. Degree of decompositiond vs dimensionless growth
rate F, for indicated values of the dimensionless temperature
T/Tc5kT/2H, in the large-N limit. ~For T<Tc there is no decom-
position even in equilibrium.!
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