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To understand the energy relaxation of electrons interacting with both longitudinal-optical~LO! and
longitudinal-acoustic~LA ! phonons in a semiconductor quantum dot, the electron density-of-statesD(E) is
calculated using the Green’s-function method taking into account interactions of all orders and self-consistent
level broadening. TheD(E) calculated for a GaAs dot exhibits sharp peaks~width & 0.1 meV! at T577 K,
indicating the absence of fast relaxation in the usual sense. For level separation near, but not necessarily too
close to, the LO-phonon energy, the peaks are equally narrow but split by the coherent mixing of electron
levels~Rabi splitting!. The LA phonons are much too weak to destroy this coherence. In the time domain, the
electron undergoes rapid (, ps! Rabi flopping between levels.@S0163-1829~97!51432-9#

Investigation into the physics of semiconductor quantum
dots has received considerable impetus from the prediction
that the use of quantum dots would produce semiconductor
lasers with high efficiency due to their discrete density of
states.1 Recently, however, Benistyet al.2 expressed suspi-
cion on this view. Their argument, based on an earlier cal-
culation of acoustic phonon-induced relaxation rate of
electrons,3 can be summarized as follows: In the process of
light emission, electrons and holes initially trapped into the
excited states of the active region~a well, dot, etc.!, relax in
cascade to the band bottoms, emitting phonons, and finally
recombine to produce light. Thus, the energy relaxation of
the carriers is an important process that governs light-
emission efficiency. In a quantum dot, longitudinal-optical
~LO! phonon emission, which is the dominant relaxation
path in higher-dimensional systems~wires and wells!, is for-
bidden due to the very discrete nature of the density of states,
unless the level separation exactly matches the zone-center
LO-phonon energy\vLO . Deformation potential interaction
with the longitudinal-acoustic~LA ! phonons, which is al-
ready weak in the bulk, weakens further as the dot size is
reduced due to decreasing form factor.2 Thus the electrons
are compelled to remain at excited levels. Hole relaxation is
expected to be much faster due to the smaller level separa-
tion, and, therefore, we end up with electrons at excited lev-
els and holes at the ground levels. Orthogonality prevents
radiative recombination between an excited-level electron
and a ground-level hole, resulting in poor emission effi-
ciency, i.e., phonon bottleneck.4,5

The above argument is based on several simplifying as-
sumptions and needs more careful treatment. It is important
to note at this point that an electron in a dot couples only
with long-wavelength phonons. In the effective-mass ap-
proximation, the electron-phonon~e-p! matrix element, for
electron scattering from dot leveli to j with absorption ofa
phonon (a5 LO or LA! of wave vectorq, can be written as
Mqi j

(a)5bq
(a)^ i ueiq–ru j &, where bq

(a) is the usual matrix ele-
ment between plane-wave states6 ~momentum transfer5\q),
and u i & and u j & are the envelope functions for levelsi and j .
Since these envelope functions typically have wavelengths
on the order of the dot size, the form factor^ i ueiq–ru j & is

negligibly small unless q,2p/(dot size). So the LO
phonons may be considered monochromatic, and the LA
phonons of energy below a cutoffEco, which is inversely
proportional to the dot size, are important.~Even for a small
dot of 100 Å,Eco&1 meV.! In short, we have here an inter-
esting, nontrivial situation in which a discrete electron sys-
tem interacts with~a! quasimonochromatic LO phonons
~strong interaction! and~b! dispersive LA phonons with low-
energy cutoff~weak interaction!. The LO phonons tend to
couple coherently with the electron, but the LA phonons
would destroy this coherence. It is also obvious that
multiple-phonon interactions are essential in this interplay
between the LO and LA phonons.

In a previous paper,7 we performed a second-order pertur-
bation calculation of the relaxation rate and concluded that
two-phonon processes LO6LA ( 1 and 2 denote phonon
emission and absorption, respectively! give rise to rapid
(,10 ps! relaxation if the level separation is within a few
meV of \vLO , significantly alleviating the stringent energy
matching required by the one-phonon~LO emission! pro-
cess. The electron levels were assumed to have vanishing
width: The inclusion of broadening requires a self-consistent
theory and was not pursued. Furthermore, coherence effects
were neglected altogether. The present paper investigates the
effects of both the coherence and multiple-phonon interac-
tions ~which were neglected in Refs. 2 and 3! taking into
account self-consistent level broadening. Since a direct cal-
culation of the time evolution requires a heavy numerical
calculation, we take an alternative route and calculate first
the electron density-of-statesD(E). The D(E) obtained is
subsequently used to discuss electron relaxation.8

Let us consider an electron in GaAs confined by an
isotropic and parabolic potential.~We assume parabolic
confinement merely to facilitate the evaluation of matrix
elements. The results are quite general and not necessarily
limited parabolic dots.9! The electronic spectrum is there-
fore of the harmonic oscillator formEnx ,ny ,nz

5D(nx1ny

1nz13/2), wherenx ,ny ,nz50,1,2..., andD is the level
separation. Hereafter, for simplicity, we use a single indexn
to represent (nx ,ny ,nz) and write En instead of
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Enx ,ny ,nz
. Electron-electron and electron-hole interactions

are neglected. As for the phonons, we take into account the
LA and LO modes, which interact with electrons via defor-
mation potential and Fro¨hlich interactions, respectively. We
assume bulk GaAs phonons.10 Only long-wavelength
phonons being important, the LO mode is taken to be disper-
sionless and the LA modes are assumed to have linear dis-
persion. We calculateD(E) by the Green’s-function
method11 with the e-p interactions taken into account to all
orders by the ladder approximation. This leads to the follow-
ing Dyson equation for the retarded self-energy of the elec-
tron:

S i~E!5
V

2p4(l
E

2`

`

dsDl ~s!(
a

E
0

`

q2dqRqil
~a!

3S Nq
~a!

E1\vq
~a!2s1 i01

1
Nq

~a!11

E2\vq
~a!2s1 i01D ,

~1!

where V is the system volume,i and l electron-level in-
dexes,Rqil

(a) 5*dVquMqi l
(a) u2 (*dVq denotes integration over

the solid angle ofq), a the phonon branch index (a5 LA or
LO!, vq

(a) the frequency of the phonon with wave vectorq
(5vLO for LO andcq for LA, c being the sound velocity!,
phonon distribution functionNq

(a)51/@exp(\vq
(a)/kT)21#,

and the density of states~spectral function! D l (E) for level
l is given by

D l ~E!522Im@E2El 2S l ~E!#21. ~2!

The e-p matrix elementMqi j
(a)5bq

(a)^ i ueiq•ru j & is calculated
using bq

(LA) 5AA\q/2rcV and bq
(LO)5M /qAV,6 where A

is the acoustic deformation potential56.8 eV, density
r55.36 g/cm3, and c55.153105 cm/s. The Fro¨hlich
coupling constant M was obtained from M
5A2pe2\vLO(1/«`21/«0) with \vLO535.9 meV, «`

510.9, and«0512.9.
In deriving Eq.~1!, the phonon system is assumed to be

always in thermal equilibrium with temperatureT, and an
average is taken over the canonical ensemble of phonon
baths. Thus the equation describesD(E) averaged over a
collection of dots, each being connected to a separate phonon
bath. Also, the nondiagonal elements of the self-energy as to
level index are found to be negligible and therefore ne-
glected.

The coupled Eqs.~1! and~2! are solved numerically in an
iterative manner. Because the LO phonons are monochro-
matic, we retained the full energy dependence ofS i(E). The
numerical calculation is facilitated by noting that the integral
over s in Eq. ~1! is a convolution integral of the form
*dsD(s)C(E2s), which can be computed by using the
Fourier convolution theorem. We first solve for the imagi-
nary part ofS i(E) from Eq.~1! by Fourier transforming each
of the two factors in thes integral and then inverse trans-
forming their product. Next, the real part ofS i(E) was ob-
tained by the Kramers-Kro¨nig transformation~also a convo-
lution integral!, which can be computed in a similar way.
The S i(E) thus obtained is used in Eq.~2! to get Di(E),

which, in turn, is used in Eq.~1! to get an improvedS i(E).
This process is iterated until convergence is achieved.

We have included the lowest four electronic levels, i.e.,
the ground level (0,0,0) and the first excited levels
(1,0,0),(0,1,0),(0,0,1) which are degenerate. Figure 1
showsDi(E) calculated atT577 K for different values of
D}(dot size)22. The dashed line and the solid line denote
D (0,0,0)(E) andD (1,0,0)(E)5D (0,1,0)(E)5D (0,0,1)(E), respec-
tively. ~The e-p interactions preserve the degeneracy.! The
energyE is measured relative to the unperturbed ground-
level energy. Excepting the case ofD'\vLO536 meV,
D(E) resembles the noninteracting density of states: The
main effects of the interactions are broadening and self-
energy shift. LO sidebands, seen, for example, at'35 meV
for D550 meV, are generally weak. The peaks are invari-
ably very sharp with the full width at half maximum on the
order of 0.1 meV; it is slightly larger for the lower level, and
increases gradually asD increases. The sharpness of the
peaks indicates long electron lifetime. It is to be noted in Fig.
1 that the upper-level density of states splits whenD'\vLO
without broadening.

Before going into the discussion of this splitting, a word
is in order about the level width. One may be tempted to
ascribe the width to lifetime broadening due to LA-phonon
emission. This is not correct. We found that the broadening
is caused by the LO phonons alone. The contribution of the
LA phonons is orders-of-magnitude smaller. As is clear from
the derivation of Eq.~1!, D(E) calculated here is an
ensemble-averaged quantity. The dispersionless LO modes
can be considered as a collection of local Einstein oscillators
located at various distances from the dot: distant~nearby!
oscillators cause a small~large! self-energy shift, and en-
semble averaging over the oscillators results in broadening.
The LO phonons interact so strongly with the electron that
they overshadow the small lifetime broadening by the LA
modes.

FIG. 1. Calculated density of states at 77 K for different level
separationsD. The dashed and solid lines denoteD (0,0,0)(E) and
D (1,0,0)(E)5D (0,1,0)(E)5D (0,0,1)(E), respectively. Rabi splitting is
indicated by asterisks.
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The splitting ofD(E) when D'\vLO is caused by the
mixing ~anticrossing! by the e-p interactions of the main
~zero-phonon! upper-level peak and an LO sideband of the
ground level, and known as polaron splitting in magnetodo-
nor spectra.12 It is also a phonon analog of the Rabi splitting
familiar in the interaction of monochromatic light with an
atom.13 The absence of any additional broadening near reso-
nance indicates the absence of additional energy relaxation
contrary to the perturbation calculation,4,7 which predicted
rapid relaxation through LO6LA processes near resonance.
The different conclusions derive from the neglect of coherent
e-p interactions in the perturbative calculation. Ignoring the
broadening, the magnitude of the Rabi splitting on exact
resonance is equal to13

ERabi5A(
q

Mq
2/V~N~LO!11!. ~3!

(Mq here denotesMq
LO taken between the pertinent levels.!

SinceN(LO)!1 below room temperature,ERabi is nearly in-
dependent of temperature.

In the time domain, the electron undergoes coherent flop-
ping between the two levels~Rabi oscillation! with period
2p/ERabi.

14 This is illustrated in Fig. 2, both on resonance
~detuning 50) and off resonance~detuning 54 meV!,
which shows the time evolution of the probabilityP2(t) that
an electron, placed initially at the upper level att50, is
found in the same level. This calculation is done in the
simple two-level approximation taking into account the
(0,0,0) and the (1,0,0) levels. The LA modes are neglected
and the levels are assumed to be infinitely sharp. Thus the
ground-level occupationPg is simply Pg512P2. For zero
detuning (D5\vLO), one has full flopping between 0 and 1.
The time tflop required for the electron to transfer to the
lower level (5 half the flopping period! is less than 1 ps.
Although this transition is not relaxation in the usual sense of
being incoherent and irreversible, it may still be termed as
‘‘generalized relaxation’’ with relaxation timetflop , since
radiative recombination from the ground level is possible
whenPgÞ0.

For finite detuning, the flopping is partial, i.e.,Pg never
reaches unity~dash-dotted line in Fig. 2!: The ‘‘relaxation
time’’ tflop , which we continue to define as half the flopping
period, decreases as detuning increases. Light-emission effi-
ciency h, however, also decreases. If we define relative
light-emission efficiencyh rel as the ratio ofh to the ‘‘ideal’’
h obtained if the electron relaxed infinitely rapidly~in the
usual incoherent manner! to the lower level @i.e.,
Pg(t.0)51]. h rel5Pg, where Pg is the time-averaged
ground-level occupation. Thus, for zero detuning,h rel5Pg

51/2, and for detuning of 4 meV~Fig. 3!, h rel5Pg
'120.8250.18. Figure 3 presentsh rel as a function of de-
tuning, indicating that althoughh rel decreases with detuning,
the decrease is rather slow.

Figure 4 comparesD(E) for D5\vLO at T577 and 300
K. In spite of the broadening, the Rabi splitting is still visible
at room temperature. The peaks at 300 K are strongly non-
Lorentzian, reflecting the monochromaticity of the LO
phonons.

Although real LO phonons are affected by confinement,

FIG. 2. Time evolution of the upper-level occupationP2(t) at
77 K for detuningD2\vLO50 ~solid line! and 4 meV ~dash-
dotted line! in the two-level approximation. The LA phonons are
ignored, and the levels are assumed to be infinitely sharp.

FIG. 3. Rabi flopping timetflop and relative emission efficiency
h rel at 77 K as a function ofD.

FIG. 4. Total density of states,D tot5( iDi(E) for D5\vLO

calculated atT577 K ~solid curve! and 300 K~dash-dotted curve!
with the upper-level degeneracy included@i.e., i 5(000), (100),
(010), (001)#. For comparison, the result at 300 Kwithout degen-
eracy@ i 5(000), (100)# is plotted by the dashed curve.
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the bulk mode approximation used here works very well for
calculating the overall scattering rate.10 A more rigorous
treatment leads, for example, to Rabi splitting, Eq.~3!, with
theq summation replaced by summation over the LO modes
~confined, unconfined, and interface! if the slight energy dif-
ference~dispersion! between these modes is neglected.15 The
results are nearly equal due to a sum rule,16 justifying the
simple bulk approximation.

Figure 2 was obtained for the case of vanishing widths of
electrons and phonons. Nonvanishing widths~i.e., finite
phase relaxation time! would change the sinusoidal oscilla-
tion into a damped oscillation (Pg→1/2 ast→`). In par-
ticular, if the phase relaxation time is shorter thantflop ~or,
equivalently, if their widths are larger thanERabi), the Rabi
flopping is destroyed. Such rapid relaxation is unlikely for
phonons at least at temperatures of order 10 K, since the
polaron splitting is routinely observed in magnetodonors.12

Phase relaxation time of an electron would be more subtle
because it is sensitive to electron-electron and electron-hole
interactions neglected in the present calculation: In particu-
lar, under optical excitation, a large number of electrons and
holes exist in and out of the dots and might destroy the e-p
coherence.17 Then we would have the usual~incoherent! re-
laxation instead of the Rabi flopping. In this case, the pertur-

bative treatment,7 with proper inclusion of the broadening
due to phase relaxation, should be valid.

In summary, if the dot level separation is near, but not
necessarily too close to,\vLO , fairly efficient light emission
at the ground level is possible through coherent Rabi flop-
ping induced by the electron-LO phonon interaction. This
pertains to the situation in which energy broadening~inverse
of the phase relaxation time! in the electron/phonon system
arising from mechanisms other than the electron-phonon in-
teraction, is much smaller than the Rabi splitting. If, on the
other hand, the broadening is larger than the Rabi splitting,
the Rabi flopping is overtaken by the conventional~irrevers-
ible! relaxation, and the perturbative calculation of Ref. 7,
with broadening taken into account, should be valid.

The Rabi splitting has been routinely observed in the ab-
sorption spectrum of magnetodonors.12 This indicates that
we should be able to observe the Rabi splitting in dots as
well, as long as the disturbing effect of free electrons or
holes is negligible. Such observation will provide clear evi-
dence for ‘‘coherent relaxation.’’

One of the authors~T. I.! is indebted to Professor Tsuneya
Ando for illuminating discussions and to Ms. Rosalee P.
Mañano for assistance.
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