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We present an analytical solution of the delocalization transition that is induced by an imaginary vector
potential in a disordered chain@N. Hatano and D. R. Nelson, Phys. Rev. Lett.77, 570~1996!#. We compute the
relation between the real and imaginary parts of the energy in the thermodynamic limit, as well as finite-size
effects. The results are in good agreement with numerical simulations for weak disorder~in which the mean
free path is large compared to the wavelength!. @S0163-1829~97!51032-0#

In a recent paper,1 Hatano and Nelson have demonstrated
the existence of a mobility edge in a disordered ring with an
imaginary vector potential. A non-Hermitian Hamiltonian
containing an imaginary vector potential arises from the
study of the pinning of vortices by columnar defects in a
superconducting cylinder.2 Their discovery of a delocaliza-
tion transition in one- and two-dimensional systems has gen-
erated considerable interest,3–5 since all states are localized
by disorder in one and two dimensions if the vector potential
is real. Localization in this specific kind of non-Hermitian
quantum mechanics is referred to as ‘‘directed
localization,’’3 because the imaginary vector potential breaks
the symmetry between left-moving and right-moving par-
ticles, without breaking time-reversal symmetry.

The analytical results of Ref. 1 consist of expressions for
the mobility edge and for the stretched-exponential relax-
ation of delocalized states, and a solution of the one-
dimensional problem with a single impurity. Here we go
further, by solving the many-impurity case in one dimension.
Most of the technical results which we will need were de-
rived previously in connection with the problem of localiza-
tion in the presence of an imaginaryscalar potential. Physi-
cally, these two problems are entirely different: an imaginary
vector potential singles out a direction in space, while an
imaginary scalar potential singles out a direction in time. A
negative imaginary part of the scalar potential corresponds to
absorption and a positive imaginary part to amplification.
One might surmise that amplification could cause a delocal-
ization transition, but in fact all states remain localized in
one dimension in the presence of an imaginary scalar
potential.6,7

Following Ref. 1 we consider a disordered chain with the
single-particle Hamiltonian
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The operatorscj
† andcj are creation and annihilation opera-

tors, a is the lattice constant, andw the hopping parameter.
The random potentialVj is chosen independently for each
site, from a distribution with zero mean and varianceu2. For
weak disorder~mean free path much larger than the wave-
length!, higher moments of the distribution ofVj are not
relevant. The Hamiltonian is non-Hermitian because of the

real parameterh, corresponding to the imaginary vector po-
tential. The chain of lengthL is closed into a ring, and the
problem is to determine the eigenvalues« of H. If « is an
eigenvalue ofH, then also«* is one — becauseH is real.
Real« corresponds to localized states, while complex« cor-
responds to extended states.1

To solve this problem, we reformulate it in terms of the
232 transfer matrixMh(«) of the chain, which relates wave
amplitudes at both ends.8 The energy« is an eigenvalue ofH
if and only if Mh(«) has an eigenvalue of 1. The use of the
transfer matrix is advantageous, because the effect of the
imaginary vector potential is just to multiplyM with a scalar,

Mh~«!5ehLM0~«!. ~2!

The energy spectrum is therefore determined by

det@12ehLM0~«!#50. ~3!

Time-reversal symmetry implies detM051. Hence the deter-
minantal Eq.~3! is equivalent to11

trM0~«!52coshhL. ~4!

We seek the solution in the limitL→`.
Since M0 is the transfer matrix in the absence of the

imaginary vector potential (h50), we can use the results in
the literature on localization in conventional one-
dimensional systems~having an Hermitian Hamiltonian!.9

The four matrix elements ofM0 are given in terms of the
reflection amplitudesr , r 8 and the transmission amplitudet
by

~M0!1152~1/t !detS, ~M0!125r 8/t,

~M0!2152r /t, ~M0!2251/t, ~5!

where detS5rr 82t2 is the determinant of the scattering ma-
trix. ~There is only a single transmission amplitude because
of time-reversal symmetry, so that transmission from left to
right is equivalent to transmission from right to left.! The
transmission probabilityT5utu2 decays exponentially in the
large-L limit, with decay lengthj:

2 lim
L→`

L21lnT5j21. ~6!
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The energy dependence ofj is known for weak disorder,
such thatukuj@1, where the complex wave numberk is
related to« by the dispersion relation

«52wcoska. ~7!

For real k, the decay length is the localization lengthj0,
given by10

j05a~w/u!2sin2~ Reka!. ~8!

~Sincej0 is of the order of the mean free pathl , the condi-
tion of weak disorder requiresl large compared to the
wavelength.! For complexk, the decay length is shorter than
j0, regardless of the sign of Imk, according to6,7

j215j0
2112u Imku. ~9!

We use these results to simplify Eq.~4!. Upon taking the
logarithm of both sides of Eq.~4!, dividing by L and taking
the limit L→`, one finds

uhu2 1
2 j215 lim

L→`
L21lnu12detSu, ~10!

where we have usedL21lnf→L21lnufu asL→` for any com-
plex function f (L). For complexk, the absolute value of
detS is either,1 ~for Imk.0) or .1 ~for Imk,0). As a
consequence, lnu12detSu remains bounded forL→`, so that
the right-hand side of Eq.~10! vanishes. Substituting Eq.~9!,
we find that complex wave numbersk satisfy

u Imku5uhu2 1
2 j0

21 . ~11!

Together with the expression~8! for the localization length
j0, this is a relation between the real and imaginary parts of
the wave number. Using the dispersion relation~7!, and no-
ticing that the conditionukuj@1 for weak disorder implies
u Imku!u Reku, we can transform Eq.~11! into a relation
between the real and imaginary parts of the energy,

u Im«u5uhuaAw22~ Re«!22
u2

2Aw22~ Re«!2
. ~12!

The support of the density of states in the complex plane
consists of the closed curve~12! plus two line segments on
the real axis,12 extending from the band edge6w to the
mobility edge6«c . The real eigenvalues are identical to the
eigenvalues ath50, up to exponentially small corrections.
The energy«c is obtained by putting Im«50 in Eq.~12!, or
equivalently be equating1 2j0 to 1/uhu, hence

«c5~w22u2/2uhua!1/2. ~13!

The delocalization transition at «c exists for

uhu.hc5 1
2 u2/w2a.

In Fig. 1~a!, the analytical theory is compared with a nu-
merical diagonalization of the Hamiltonian~1!. The numeri-
cal finite-L results are consistent with the large-L limit
~dashed curve!. To leading order in 1/L, fluctuations of
Im« around the large-L limit ~12! are governed by fluctua-
tions of the transmission probabilityT. @Fluctuations of
L21lnT are of orderL21/2, while the other fluctuating contri-
butions to Eq.~4! are of orderL21.# The variance of lnT for
largeL is known,13

varlnT5
2L

j0
18Lu Imkue4j0uImku Ei~24j0u Imku!,

~14!

where Ei is the exponential integral. Equating

u Imku5uhu1 1
2 L21lnT, we find varu Imku5 1

4 L22 varlnT and
thus

varu Im«u5
a2

2Lj0
@112ge2g Ei~22g!#@w22~ Re«!2#,

~15!

whereg52uhuj021. In Fig. 1~b! we see that Eq.~15! agrees
well with the results of the numerical diagonalization. The
fluctuationsD Im« are correlated over a rangeD Re« which
is large compared toD Im« itself, their ratioD Im«/D Re«
decreasing}L21/2. This explains why the complex eigenval-
ues for a specific sample appear to lie on a smooth curve@see
Fig. 1~a!#. This curve is sample specific and fluctuates
around the large-L limit ~12!.

In conclusion, we have presented an analytical theory for
the delocalization transition in a single-channel disordered
wire with an imaginary vector potential. We find good agree-
ment with numerical diagonalizations, both for the relation
between the real and imaginary parts of the energy in the

FIG. 1. ~a! Data points: eigenvalues of the Hamiltonian~1!, for
parameter valuesha50.1, u/w50.3, and for five values ofL/a.
Dashed curves: analytical large-L limit, given by Eq.~12!. ~Except
for the caseL54000a, spectra are offset vertically and only eigen-
values with Im«>0 are shown.! ~b! Variance of the imaginary part
of the eigenvalues as a function of the sample length, for Re«'0
and for the same parameter values as in~a!. The data points are the
numerical results for 1000 samples. The solid line is the analytical
result ~15!.
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infinite-length limit and for the finite-size effects. In the ab-
sence of the imaginary vector potential, the transfer-matrix
approach used in this paper has been very successful for the
study of localization in disordered wires with more than one
scattering channel. We expect that such an extension of the
theory is possible for non-Hermitian systems as well.

Note added:Recently, we learned of a different analytical
approach to this problem by Janiket al.14
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