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Theory of directed localization in one dimension
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We present an analytical solution of the delocalization transition that is induced by an imaginary vector
potential in a disordered chaj. Hatano and D. R. Nelson, Phys. Rev. L&, 570(1996]. We compute the
relation between the real and imaginary parts of the energy in the thermodynamic limit, as well as finite-size
effects. The results are in good agreement with numerical simulations for weak digaredrich the mean
free path is large compared to the wavelengtB80163-18207)51032-0

In a recent papefHatano and Nelson have demonstratedreal parameteh, corresponding to the imaginary vector po-
the existence of a mobility edge in a disordered ring with arntential. The chain of length is closed into a ring, and the
imaginary vector potential. A non-Hermitian Hamiltonian problem is to determine the eigenvalueof H. If ¢ is an
containing an imaginary vector potential arises from theeigenvalue of¥H, then alsos* is one — becaus@{ is real.
study of the pinning of vortices by columnar defects in aReale corresponds to localized states, while compiesor-
superconducting cylindérTheir discovery of a delocaliza- responds to extended stafes.
tion transition in one- and two-dimensional systems has gen- To solve this problem, we reformulate it in terms of the
erated considerable interést, since all states are localized 2x 2 transfer matrixvl,(¢) of the chain, which relates wave
by disorder in one and two dimensions if the vector potentiabmplitudes at both endsThe energy is an eigenvalue of{
is real. Localization in this specific kind of non-Hermitian if and only if M,,(g) has an eigenvalue of 1. The use of the
quantum mechanics is referred to as “directedtransfer matrix is advantageous, because the effect of the

localization,”® because the imaginary vector potential breaksmaginary vector potential is just to multipM with a scalar,

the symmetry between left-moving and right-moving par-

ticles, without breaking time-reversal symmetry. Mp(e)=e""Mq(e). 2
The analytical results of Ref. 1 consist of expressions for

the mobility edge and for the stretched-exponential relaxThe energy spectrum is therefore determined by

ation of delocalized states, and a solution of the one-

dimensional problem with a single impurity. Here we go def1—e"My(e)]=0. (©)]

further, by solving the many-impurity case in one dimension._ o

Most of the technical results which we will need were de-Time-reversal symmetry implies dép=1. Hence the deter-

rived previously in connection with the problem of localiza- Minantal Eq.(3) is equivalent to'

tion in the presence of an imaginasgalar potential. Physi-

cally, these two problems are entirely different: an imaginary trMo(&)=2cosHL. 4

vector potential singles out a direction in space, while a . .

imaginary scalar potential singles out a direction in time. Ar\Ne §eek the_solutlon in the “muﬁoo.'

negative imaginary part of the scalar potential corresponds to S'Pce Mo is the tran'sfer matrix in the absence of t.he

absorption and a positive imaginary part to amplification Imaginary vector potential(=0), we can use the results in

One might surmise that amplification could causeadelocaIJEhe literature on _ localization in conventional one-

ization transition, but in fact all states remain localized ind|men5|onal systemghaving an Hermitian Hamiltoniari

one dimension in the presence of an imaginary scala he fqur matr|>.< elemerlts oW, are given in terms (.)f the
potential®’ reflection amplitudes, r’ and the transmission amplitude

Following Ref. 1 we consider a disordered chain with theby

single-particle Hamiltonian
gep (Mo)y= — (10)detS,  (M)=r'1t,

W
H= =52 ("] 0 +eelcg) + 2 Viee. (Mo)g=—r1/t,  (Mg)z=1, ()

(1) where deB=rr’ —t2 is the determinant of the scattering ma-
trix. (There is only a single transmission amplitude because
of time-reversal symmetry, so that transmission from left to
right is equivalent to transmission from right to leffhe
transmission probabilityr =|t|2 decays exponentially in the
largeL limit, with decay length¢:

The operator‘:n:;r andc; are creation and annihilation opera-
tors, a is the lattice constant, and the hopping parameter.
The random potentiaV/; is chosen independently for each
site, from a distribution with zero mean and varianée For
weak disorderimean free path much larger than the wave-
length, higher moments of the distribution of; are not limL-tnT=¢"1 ®)
relevant. The Hamiltonian is non-Hermitian because of the L—o )
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The energy dependence éfis known for weak disorder,
such that|k|¢>1, where the complex wave numbkris
related toe by the dispersion relation

g=—wcoka.

()

For realk, the decay length is the localization lengih,
given by°

£o=a(w/u)?sir’( Reka). (8)

(Sinceé, is of the order of the mean free path the condi-
tion of weak disorder requireg’ large compared to the
wavelength. For complexk, the decay length is shorter than
&o, regardless of the sign of knaccording t&’

El=¢,142| Imk. 9

We use these results to simplify E@). Upon taking the
logarithm of both sides of Ed4), dividing by L and taking
the limit L—o0, one finds

[h|—3& "= lim L~"In|1—dets], (10

where we have usdd ™ !Inf—L~1n|f| asL— o for any com-
plex function f(L). For complexk, the absolute value of
detS is either<1 (for Imk>0) or >1 (for Imk<0). As a
consequence, |b—detS| remains bounded fdr— , so that
the right-hand side of Eq10) vanishes. Substituting E¢Q),
we find that complex wave numbekssatisfy

| Imk|=|h|—3&;*.

Together with the expressiai8) for the localization length

11
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FIG. 1. (a) Data points: eigenvalues of the Hamiltonih, for
parameter valueha=0.1, u/w=0.3, and for five values of/a.
Dashed curves: analytical largelimit, given by Eq.(12). (Except
for the casd. =400, spectra are offset vertically and only eigen-
values with Inz=0 are shown).(b) Variance of the imaginary part

&o, this is a relation between the real and imaginary parts 0bf the eigenvalues as a function of the sample length, fos~R&

the wave number. Using the dispersion relat{@y and no-
ticing that the conditiorik|&>1 for weak disorder implies
| Imk|<| Rek|, we can transform Eq(11) into a relation
between the real and imaginary parts of the energy,

2

u
_ 7_ 2_
| Ime|=|h|ayw*—( Res) P (Re )t

12

The support of the density of states in the complex plané(\’here

consists of the closed curvé&?2) plus two line segments on
the real axis? extending from the band edgew to the

mobility edge*¢.. The real eigenvalues are identical to the

eigenvalues ah=0, up to exponentially small corrections.

The energy. is obtained by putting Im=0 in Eq.(12), or

equivalently be equatif¢, to 1/h|, hence
gc=(W2—u?/2|h|a)¥2

The delocalization
|h|>h.=3u?/w?a.

13

transition at e, exists for

In Fig. 1(a), the analytical theory is compared with a nu-

merical diagonalization of the Hamiltonidf). The numeri-
cal finitel results are consistent with the largedimit
(dashed curve To leading order in 1/, fluctuations of
Ime around the largé- limit (12) are governed by fluctua-
tions of the transmission probability. [Fluctuations of
L~1InT are of ordei. ~¥2, while the other fluctuating contri-
butions to Eq(4) are of order.".] The variance of I for
largeL is known®®

and for the same parameter values a&@nThe data points are the
numerical results for 1000 samples. The solid line is the analytical
result(15).

2L i
varlnT = §—+8L| Imk]| e*é"™K Ei(—4&| Imk]),
0
(14)
Ei is the exponential integral. Equating

| Imk|=|h|+ 3L~ 1InT, we find vaf Imk|=%L~2 varinT and
thus

2

——[1+2ve?” Ei(—2y)][W?—( Res)?]
2L§0 ,
(15

wherey=2|h|&,— 1. In Fig. 1b) we see that Eq15) agrees
well with the results of the numerical diagonalization. The
fluctuationsA Ime are correlated over a randeRes which

is large compared ta Ime itself, their ratioA Ime/A Res
decreasingcL %2 This explains why the complex eigenval-
ues for a specific sample appear to lie on a smooth dsee
Fig. 1(@]. This curve is sample specific and fluctuates
around the largé- limit (12).

In conclusion, we have presented an analytical theory for
the delocalization transition in a single-channel disordered
wire with an imaginary vector potential. We find good agree-
ment with numerical diagonalizations, both for the relation
between the real and imaginary parts of the energy in the

val Ime|=
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infinite-length limit and for the finite-size effects. In the ab-  Note addedRecently, we learned of a different analytical
sence of the imaginary vector potential, the transfer-matrixapproach to this problem by Jangkt al*

approach used in this paper has been very successful for the Discussions with K. B. Efetov and D. R. Nelson moti-
study of localization in disordered wires with more than onevated us to do this work. We have also benefited from dis-
scattering channel. We expect that such an extension of theussions with T. Sh. Misirpashaev. Support by the Dutch
theory is possible for non-Hermitian systems as well. Science Foundation NWO/FOM is gratefully acknowledged.

*On leave of absence from Budker Institute of Nuclear Physics!*Equation(4) is equivalent to
2

Novosibirsk, Russia. 0
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