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The two-phonon decay of self-localized solitons in a one-dimensional monatomic anharmonic lattice caused
by cubic anharmonicity is considered. It is shown that the decay takes place with emission of phonon bursts.
The average rate of emission of phonons is of the order of the vibrational quantum per vibrational period. The
characteristic relaxation time is determined by the quantum anharmonicity parameter; this time may vary from
a few ~quantum lattices, large anharmonicity! to thousands~ordinary lattices, small anharmonicity! of vibra-
tional periods.@S0163-1829~97!50526-1#

The dynamics of strong nonlinear excitations in polymers
and quasi-one-dimensional biomolecular chains is an active
research field. Theoretical studies of anharmonic perfect lat-
tices have shown the existence of localized vibrations~self-
localized solitons, SLS’s! with frequencies above the phonon
band or in the gap of the phonon spectrum~see Refs. 1–10
and references therein!. SLS’s are solitonlike excitations in
discrete lattices, and are thus closely related to ordinary soli-
tons. The existence of stationary and moving SLS’s was de-
rived in the frame of classical mechanics. Until now there
was little discussion about the influence of quantum~and
thermal! fluctuations on stability of the SLS. An exception is
the paper of Ovchinnikov1 who argues that the decay of the
SLS caused by these fluctuations diminishes with the in-
crease of the mode amplitude. This statement, however, is
based on a perturbational consideration which cannot be ap-
plied to the description of the evolution of vibrations with a
strong amplitude.

Recently we showed11–13that the perturbational treatment
of the effect of quantum and thermal fluctuations on a local
mode associated with a defect atom in a lattice fails for the
case when the amplitude of the vibration is large. In fact, the
two-phonon damping of the local mode, caused by cubic
anharmonicity, behaves dramatically with the change of the
amplitude: at definite ‘‘critical’’ amplitudes relaxation jumps
take place being accompanied by a generation of phonon
bursts. This effect indicates that the quantum and thermal
fluctuations may dominate in the dynamics of strong vibra-
tions with the energy of the mode being within a specific
range. The strong field of the local vibration causes the trans-
formation of phonon operators and the increase of the num-
ber of phonons in time.11,12 This mechanism of phonon gen-
eration by a local vibration is analogous to the mechanism of
black hole radiation.14–16

In this paper we extend the theory11–13 to the SLS in a
monatomic one-dimensional lattice~chain! with cubic and
hard quartic anharmonicity. This case is of special interest
since the monatomic chain with both anharmonicities is the
simplest model for the investigation of the quantum relax-
ation of SLS in a perfect lattice. Hard quartic anharmonicity
is a prerequisite of the existence of the SLS, while the cubic
anharmonicity stands for the two-phonon decay of the SLS.
We note that SLS’s in this model are stable in the classical
limit, since all harmonics of the mode are out of resonance

with lattice phonons.3 The odd SLS is examined and an ana-
lytical nonperturbative solution of the problem and results of
numerical calculations are presented.

The potential energy operator in a monatomic one-
dimensional lattice, which includes linear, and the first two
nonlinear terms, and takes into account the nearest-neighbor
interaction, has the following form:

V̂5(
n

(
r 52

4
Kr

r
~Ûn112Ûn!r , ~1!

whereÛr is the operator of the longitudinal displacement of
the nth atom from its equilibrium position,Kr are harmonic
~r 52! and anharmonic~cubic: r 53, quartic:r 54! springs.
The operatorsÛn satisfy the following equations of motion:
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K̄r5Kr /M , M is the mass of an atom. We suppose that an
SLS with the frequencyv l,2vD is excited at the timet
50 at the sitesn50 and its neighbors~vD is the maximum

harmonic frequency,vD52AK̄2!. Anharmonic interactions
are supposed to be weak, satisfying the conditiona0

(0)!A0,
wherea0

(0);A\/(2vDM ) is the amplitude of zero-point vi-
brations,A0;AK2 /K4 is the amplitude of the self-localized
vibration ~for physical reasons the value ofA0 should not
exceed the value of the lattice constantd, i.e.,K4.K2 /d2; it
is well fulfilled in realistic models!. The conditiona0

(0)!A0

means that the characteristic energy of the SLS, being of the
order ofK2

2/K4 is much larger than the characteristic vibra-
tional quantum\vD :

K5 ~K2
2/K4!/\vD 5 K2

3/2M1/2/2\K4 @1 . ~3!

Note that the reversed dimensionless parameterK21 charac-
terizes the degree of the quantum anharmonicity of the lat-
tice: it increases as the anharmonic termK4 increases and as
the mass of the atomsM decreases. In quantum crystals He
and Ne this parameter is of the order of 1, while in ordinary
crystals~characterized by the small amplitude of zero-point
vibrations as compared to the lattice constant! it can reach
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many hundreds. In the problem under investigationK plays
an essential role determining the time scale of the energy
relaxation~see below!.

In order to take account of the SLS decay we introduce
the operatorsÛn in the form

Ûn5un~ t !1jn1q̂n , ~4!

where the ‘‘classical’’ displacementsun are supposed to be
nearly periodic functions:un(t).An(t)cosvlt, An(t) and
jn(t) are, slowly changing with time, amplitudes and shifts
satisfying the equations

2v l
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where we keep just the cosvt term neglecting;cos3vlt,
cos5vlt, . . . 3–5 and introduce the new variables
Ān5An2An21, j̄ n5jn2jn21. Variations of theAn andjn
in time, due to quantum fluctuations, are described by means
of time-dependent operatorsq̂n(t), which satisfy the equa-
tions

d2q̂n/dt2 5Wn11~ t !~ q̂n112q̂n!2Wn~ t !~ q̂n2q̂n21! .
~7!

Here Wn(t)5K̄21kn12wncosvlt, where kn52K̄3 j̄ n

13K̄4( Ān
2/21 j̄ n

2) and wn5K̄3Ān13K̄4Ān j̄ n determine
the change of springs caused by the SLS. The terms
;K3(q̂n2q̂n21)2, K4Ān(q̂n2q̂n21)2, K4 j̄ n(q̂n2q̂n21)2,
andK4(q̂n2q̂n21)3 are supposed to be small and they were
neglected. It is important to take these terms into account
whenv l.2vD , i.e., when the two-phonon decay under con-
sideration is forbidden by the energy conservation law.

The phonon Hamiltonian is defined asĤph(t)5T̂(t)

1Ŵ(t), whereT̂5 1
2(nq̇̂n

2 andŴ5Ŵ01Ŵ11Ŵt are the op-

erators of kinetic and potential energy,Ŵ05K2/2(n(q̂n

2q̂n21)2, Ŵ151/2(nkn(q̂n2q̂n21)2, Ŵt5cosvlt(nwn(q̂n

2q̂n21)
2; \51. Ŵ1 describes the stationary perturbation of

the phonon subsystem by the SLS, whileŴt takes account of
the oscillatory time dependence of the springs induced by the
SLS. The time dependence ofĤ(t) causes the phonon emis-
sion by the SLS~phonons are generated by pairs11,12!.

Introducing properly chosen configurational coordinates
X̂i5(nSinq̂n and Q̂m5(nsmnq̂n , one can diagonalizeŴ1

and Ŵt : Ŵ15 1
2( ih i X̂i

2 , Ŵt5cosvlt(mvmQ̂m
2 . Both Ŵ1 and

Ŵt have one zero eigenvalue; all otherh i are positive, while
vm are sign alternating, being symmetric with respect to the
sign change. The mode with zero eigenvalue is totally sym-
metric and therefore does not enter intoq̂n2q̂n21.

The Hamiltonian Ĥph is diagonalized by introducing
time-dependent operators as follows. First the time-
independent HamiltonianĤ5Ĥph

(0)1Ŵ0 is diagonalized by

applying the standard methods of local dynamics18,19~Ĥph
(0) is

the Hamiltonian of the chain in harmonic approximation!.
Then the HamiltonianĤph(t) is diagonalized by the method
presented in Refs. 11, 12, and 20. The time-dependent pho-
non Hamiltonian in the diagonal representation allows one to
find the energy of phononsEph(t) and the rate of phonon
generation. The latter is equal to11,12

dEph~ t !/dt 52 dEl~ t !/dt 5I ~ t ! . ~8!

Here El.(n(v l
2M An

2/21( rKr jn
r /r ) is the energy of the

SLS,

I 5
pv l

8 E
vD2v l

vD
dv Tr$P~v!P~v l2v!%@112n~v!#

~9!

denotes the intensity of the emission of phonons, the tem-
perature factor is included by the multiplier@112n(v)#

P~v!5
2

p
v Im@G~v!#$I 2vG~v2v l !vG~v!%21,

~10!

Gmm8(v)52 i *0
`dteivt2et^@Q̂m(t),Q̂m8(0)#& is the dynami-

cal Green’s function,Q̂m(t)5eiĤ tQme2 iĤ t. Use of the diag-
onal representation of the operatorŴ1 allows one to easily
express the Green’s functionGmm8 via the one-site Green’s
function of the perfect lattice21 G0

(0)(v)5 i /(vAvD
2 2v2) as

follows:

Gmm85(
i i 8

smism8 i 8Ḡii 8~v!;

Ḡii 85~@ I 2G~0!h#21Ḡ~0!! i i 8, ~11!

where Ḡii 8
(0)

5G0
(0)(nn8SniSn8 i 8cosk(n2n8), smi

5(nSmnSin , h i i 85h id i i 8 , cosk5122v2/vD
2 , v2,vD

2 .
In the limit of smallvm one can neglect the term;v2 in

the denominator of formula~10!. This limit coincides with
the corresponding formula of the perturbation theory.17 For
realisticK3 and the considered values ofv l between 1.3vD
and 2vD the term mentioned is not small. At somev l
5vk , Re@P(v)#5Re@P(v l2v)# and Im@P(v)# turn to in-
finity and the perturbation theory fails. Near suchvk , I
;uv l2vku21;ut2tku21/2, i.e., a sharp burst of phonons is
generated causing a relaxation jump (tk corresponds to the
time moment whenv l5vk).

Note thatvm
2 is not a linear function of the energy of the

SLS. Therefore the relaxation of the SLS is always nonex-
ponential, including the case when perturbation theory is ap-
plied. In the latter caseEl(t);(t l2t)a, where a
;0.75 . . .0.83, andt l is the lifetime of the SLS which is
finite in this approximation.

As an example the quantum decay of an odd SLS is ex-
amined below. The properties of the SLS depend essentially
on the dimensionless parameterd5AK3

2/(K2K4). For real-
istic one-well pair potentials this parameter has a value of
between 1 andA32/9. For Ar-Ar and Kr-Kr, potentialsd
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51.37; for K-Br, potentiald51.31. For such values ofd the
odd SLS is well localized ifv l*1.3vD . In this case SLS is
localized on three central atoms:A15A21.2A0/2, uAnu
&0.05uA0u, n>2; jn52j2n.j, n>1, j050.3,4 This al-
lows one to take account of onlyA0, A15A21.A0/2 and
j̄ 152 j̄ 21.j. The parametersA0 and j of the classical
SLS problem in this approximation are determined by Eqs.
~5! ~n50! and ~6! ~n51!:

v l
253K̄216K̄3j1 81

16K̄4A0
219K̄4j

2, ~12!

05K̄2j1K̄3~A0
21j2!1K̄4j~ 27

8 A0
21j2! . ~13!

Introducing dimensionless amplitudea5AK̄4A0
2/K̄2 and

shift z5jAK̄4 /K̄2, one gets

a252 z~z21zd11!/~d1 27
8 z! , ~14!

wherez is determined by the real solutions of the equation

v l
25

3

4
1

81

64

z~5z21 43
9 zd1 32

27 d221!

d1 27
8 z

~15!

~here and below the unitsvD51 are used!. This is a cubic
equation forz which for consideredv l and d has only one
solution witha2.0. This solution determines the parameters
of the SLS in the classical limit.

In the approximation considered, the SLS causes changes
only in central and next to central springs:k05k1
5(16zd124z2127a2)/32, k2 5 k2153a2/32, w052w1

5 a(d13z)/8, w252w215ad/8. In this caseŴ1 andŴt
can be diagonalized analytically. The eigenvaluesh i andvm
and the components of the eigenvectors are the following:
h150,

h2,35~k21 3k0/2!6@~k22 3k0/2!21k2#1/2,

h4,55~k21 k0/2!6@~k22 k0/2!22k2#1/2,

v350, v1,2,4,556 1
2 @8w2

216w1
214w1w2

62~16w2
418w1

2w2
2116w2

3w1

19w1
4112w1

3w2!1/2#1/2

~11 corresponds tov1 , 21 to v2 , 12 to v4 , and22 to
v5!;

Skn5 S̃kn/A( n S̃kn
2 , S̃1n5 S̃k,151, S̃k2512hk /b,

S̃k352412hk /b, S̃k4512hk /b, S̃k551, k52,3,

S̃k350, S̃k45211hk /b, S̃k5521, k54,5.

smn5 s̃mn/A( n s̃mn
2 , s̃ i152 (

n52

5

s̃ in ,

s̃ i2512v i~ai2w1 /w211!/w1 , s̃ i351, s̃ i4511ai ,

s̃ i5511v i /w2 , ai5v i~v i1w112w2!/~w1w2!.

Energy of the SLS equals

El.\vDK« l ; « l53v l
2a21z2~ 1

2 1 z/3 1 z2/4!; ~16!

one sees that parameterK determines the quantum scale of
the SLS energy. Note that the intensity of phonon emission
does not depend onK @the unit of I in Eq. ~9! is \vD

2 #.
Consequently, parameterK determines the time scale of en-
ergy relaxation.

We performed calculations of the frequency dependence
of the intensity of phonon emission by the SLS and of the
time dependence of the intensity of phonon emission and the
SLS energy~at the temperatureT50!. The calculation pro-
cedure was the following. First we fixed the initial SLS fre-
quency ~usually atv l51.98vD! and calculatedz, a2, El ,
G(v), I . The second step was to take a lower value ofv l
and respectively calculate new values of parameters. We re-
peated this procedure until the frequency of the SLS got a
value of 1.3. The time step was calculated using the relation
Dt52DEl /I .

In Fig. 1 the dependence of the intensity of phonon emis-
sion on the value ofv l is shown. Indeed, the intensityI has
peaks;uv l2vku21 at critical frequenciesvk ~this was con-
firmed numerically!. This means that the SLS is unstable in
the vicinity of vk . The time dependences of the intensity of
phonon emission and of the mode energyEl are given in Fig.
2.

In all cases the lowest considered frequencyv l51.3vD
corresponds to a small energy as compared to the initial en-
ergy for v l'2vD . Consequently, the main part of the en-
ergy of the SLS with initial frequencyv l;2vD is lost dur-
ing the time considered@note that an extrapolation ofEl(t)
to largert also gives the finite lifetime of SLS#. Depending
on the value ofd and on the initial energy, this time can be
either longer or shorter than that given by the perturbation
theory. The relaxation law is essentially nonexponential:
sharp bursts of phonons are generated at critical values of
time tk when v l approachesvk , causing relaxation jumps.

FIG. 1. Frequency dependence of the intensity of emission of
phonons by the odd SLS. The peaks correspond to the regions
where the SLS is unstable with respect to quantum fluctuations;d
5AK3

2/K2K4.
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The time dependence of the intensityI near tk is
I;ut2tku21/2. The peaks mentioned are caused by the poles
in the integrand function Eq.~9!; they correspond to the
emission of quasimonochromatic phonons and give sharp
lines in the spectrum of generated phononsJ(v) ~the inte-
grand function in~9! summed over time! in Fig. 3.

In the cased2,3/4 there may exist2 large-size SLS with
v l close to vD . The energy of such an SLSEl

;8A2(v l21)K2
2/@K4(324d2!# exceeds the unit~\vD!

only if d2 approaches 3/4 from below. The problem of quan-
tum decay of this large-size SLS is analogous to that of soli-
tons in continuous media and it will be considered else-
where.

In conclusion, we examined the quantum relaxation of the
odd SLS in a one-dimensional anharmonic monatomic lat-
tice, caused by the zero-point fluctuations of the phonons and
gave an analytical nonperturbative solution of the problem.
We found that the fluctuations can cause generation of very
sharp bursts of quasimonochromatic phonons and very fast,
stepwise jumps of the SLS energy. The rate of energy loss is
on average of the order of the phonon quantum\vD per
period of vibrations 2p/vD . The full relaxation time is de-
termined by the quantum anharmonicity parameterK; in
chains with potentials corresponding to the quantum crystals,
this time is of the order of a period of vibrations, while in
lattices with potentials of ordinary crystals it may reach thou-
sands of periods.
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FIG. 2. Time dependence of the SLS energyEl ~thick dashed
line! and intensity of phonon emission by the SLSI ~thick solid
line!; decay of the SLS energy calculated with the perturbation
theory~thin solid line!. Sharp peaks in theI (t) dependence describe
emission of phonon bursts by the SLS.El5« lK2

2/K4, K
5K2

2/(K4\vD). I is measured in units of\vD
2 .

FIG. 3. Spectrum of generated phononsJ(v) ~in a.u.!.
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