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Stepwise quantum decay of self-localized solitons
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The two-phonon decay of self-localized solitons in a one-dimensional monatomic anharmonic lattice caused
by cubic anharmonicity is considered. It is shown that the decay takes place with emission of phonon bursts.
The average rate of emission of phonons is of the order of the vibrational quantum per vibrational period. The
characteristic relaxation time is determined by the quantum anharmonicity parameter; this time may vary from
a few (quantum lattices, large anharmonigitp thousandgordinary lattices, small anharmonicjtef vibra-
tional periods{S0163-182607)50526-1

The dynamics of strong nonlinear excitations in polymerswith lattice phonons.The odd SLS is examined and an ana-
and quasi-one-dimensional biomolecular chains is an activlytical nonperturbative solution of the problem and results of
research field. Theoretical studies of anharmonic perfect lathumerical calculations are presented.
tices have shown the existence of localized vibratitsesf- The potential energy operator in a monatomic one-
localized solitons, SLS)swith frequencies above the phonon dimensional lattice, which includes linear, and the first two
band or in the gap of the phonon spectr(see Refs. 1-10 _nonlinegr terms, and take; into account the nearest-neighbor
and references ther@inSLS’s are solitonlike excitations in interaction, has the following form:
discrete lattices, and are thus closely related to ordinary soli- 4
tons. The existence of stationary and moving SLS’s was de- ~ Kr . ~ oy
rived in the frame of classical mechanics. Until now there VZE E T(Un+l_un) ' @)
was little discussion about the influence of quant(end
therma) fluctuations on stability of the SLS. An exception is where(, is the operator of the longitudinal displacement of

the paper of Ovchinnikdvwho argues that the decay of the ihe nth atom from its equilibrium positiori, are harmonic
SLS caused by these fluctuations diminishes with the iNTr = 2) and anharmoni¢cubic: r =3, quartic:r =4) springs.
crease of the mode amplitude. This statement, however, i h tord) tisfv the followi i £ motion:
based on a perturbational consideration which cannot be ag— & operators), satisfy the following equations of motion:
plied to the description of the evolution of vibrations with a 20 4
strong amplitude. n_ — A i1 N -1

Recently we showed *3that the perturbational treatment W_,Zz Kil(Uns2=Un)" = (Un=Un-1)"71. ()
of the effect of quantum and thermal fluctuations on a local
mode associated with a defect atom in a lattice fails for thGK_r:Kr/M, M is the mass of an atom. We suppose that an
case when the amplitude of the vibration is large. In fact, thes|.S with the frequencyw,<2wp is excited at the time
two-phonon damping of the local mode, caused by cubic=0 at the site;i=0 and its neighboréwp is the maximum

anha.rmonicity, bghaves 'Qramaticall'y with the chgnge of th%armonic frequencywp=2vK,). Anharmonic interactions
amplitude: at definite “critical” amplitudes relaxation jumps are supposed to be weak, satisfying the condita'.g]rkA
[} < 01

take place being accompanied by a generation of phonoh 0) . - oo
bursts. This effect indicates that the quantum and thermal'heréao”~vi/(2wpM) is the amplitude of zero-point vi-

fluctuations may dominate in the dynamics of strong vibrarations,Ao~K5/K, is the amplitude of the self-localized
tions with the energy of the mode being within a specificvibration (for physical reasons the value 8§ should not
range. The strong field of the local vibration causes the trans@xceed the value of the lattice constelnt.e.,K,>K,/d?; it
formation of phonon operators and the increase of the nums well fulfilled in realistic models The conditional” <A,

ber of phonons in timé"'2 This mechanism of phonon gen- means that the characteristic energy of the SLS, being of the
eration by a local vibration is analogous to the mechanism obrder of K5/K, is much larger than the characteristic vibra-

black hole radiatior}*~1¢ tional quantum wp :
In this paper we extend the thedty*®to the SLS in a
monatomic one-dimensional lattigehain with cubic and K= (K3/Ky)lhop = KIMY21K,>1 . 3

hard quartic anharmonicity. This case is of special interest

since the monatomic chain with both anharmonicities is theéNote that the reversed dimensionless paramiéter charac-
simplest model for the investigation of the quantum relax-terizes the degree of the quantum anharmonicity of the lat-
ation of SLS in a perfect lattice. Hard quartic anharmonicitytice: it increases as the anharmonic téfpincreases and as

is a prerequisite of the existence of the SLS, while the cubi¢the mass of the atomg decreases. In quantum crystals He
anharmonicity stands for the two-phonon decay of the SLSand Ne this parameter is of the order of 1, while in ordinary
We note that SLS’s in this model are stable in the classicatrystals(characterized by the small amplitude of zero-point
limit, since all harmonics of the mode are out of resonancevibrations as compared to the lattice constantan reach
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many hundreds. In the problem under investigafioplays The Hamiltonian |3|ph is diagonalized by introducing
an essential role determining the time scale of the energfime-dependent operators as follows. First the time-

relaxation(see below. independent Hamiltoniai = H(})+ W, is diagonalized by

In order to take account of the SLS decay we mtroduce applying the standard methods of local dynaﬁﬁég(H(o) is
the operatordJ , in the form the Hamiltonian of the chain in harmonic approxma)ton

N A Then the Hamiltoniamd ,(t) is diagonalized by the method
Un=Un() + &t G, @ presented in Refs. 11,p12, and 20. The time-dependent pho-
where the “classical” displacements, are supposed to be non Hamiltonian in the diagonal representation allows one to
nearly periodic functionsu,(t)=A,(t)coswt, A,(t) and find the energy of phononEph(t) and the rate of phonon
&q(1) are, slowly changing with time, amplitudes and shifts generation. The latter is equal‘td?
satisfying the equations

dEpn(t)/dt=—dE(t)/dt=I(t) . (8
2N KA A K (A . £ . _
~ 07 A= Ka(Ans 1= An) + 2Ka(Ans1€nr1— Anén) Here E,=2,(0’M A%/2+3 K, £/r) is the energy of the
A3 . X SLS,
n+ n ~
+3K, 4 — A1 Z‘Ang)r ©) 7w (oD
IZ? do Tr{P(w)P(w;— w)}[1+2n(w)]
Y Y DTl
_ Ar A 9
0=Ko(&ns1~ &n) T Ka| —5— +E§+1—7”—?n) —_ -
denotes the intensity of the emission of phonons, the tem-
— erature factor is included by the multipliet + 2n(w
8AZ, En —,  3AZE, P y PlEL+2n(w)]
e T 11T

2
P(w)=—v IM[G(w)[{l —vG(0—w)vG(w)} 1,
where we keep just the ces term neglecting~ cos3ut, m (10)
cosot, ... and introduce the new variables ' R R
A=A, An 1 En=En—£q_ 1. Variations of theA, andg,  Gmm (@) =—iJ5dte " ([Qu(t),Qm(0)]) is the dynami-
in tlme due to quantum fluctuations, are described by meansal Green’s functionQ,(t) =e'"'Q,,e""'. Use of the diag-
of time-dependent operatorg(t), which satisfy the equa- onal representation of the operat; allows one to easily

tions express the Green’s functida,,,y via the one-site Green’s

. . . .. function of the perfect latti G{)(w) =i/(w w3 — »?) as

dzqn/dtz:Wn+l(t)(Qn+l_qn)_Wn(t)(Qn_qnfl) . follows:
(7) _

Here W, (t)=K,+k,+2w,cosmt, where k,=2Ksé&, Gmm/:%‘ TmiTmir Gii (@);
+3K4(K§/2+E§) and w,=K3zA,+3K,A ¢, determine Gor= (11 -G 1 1G© 11
the change of springs caused by the SLS. The terms Gii=([ 7] i’ 1D
~Ka(dn— qn 1) K4A(dn—an- 1) Ksén(dn—0an- 1) where Gfﬂ)_G(o)Enn’SnSn i7Cosk(n—n’), Omi

andK 4(0,—0,,_1)° are supposed to be small and they were==,S,,.Sn, 7= 78+, COx=1— szle, 2<sz.

neglected. It is important to take these terms into account In the limit of smallv,,, one can neglect the termuv? in
whenw,>2wp, i.e., when the two-phonon decay under con-the denominator of formul&10). This limit coincides with
sideration is forbidden by the energy conservation law. the corresponding formula of the perturbation theBrzor

The phonon Hamiltonian is defined a%,)h(t)z'?(t) realisticK; and the considered values of between 1.3

A 21y A2 YRy 4 ~ _and 2wp the term mentioned is not small. At somg
+W(t), whereT= 3% ,q;, andW=W;,+ W+ W, are the op — o, REP(0)]=Re P(w— )] and Inf P(w)] turn to in-

erators of kinetic and potential energWo==Ka/2Zn(dn  finity and the perturbation theory fails. Near suf, |
—Qn-1)2, Wy=1/25 Ky(Qn—0n-1)%, Wi=COSOtEWo(@y  ~|w;—w,| 1~[t—t 22 i.e., a sharp burst of phonons is
—g,_1)% A=1. W, describes the stationary perturbation of generated causing a relaxation jump ¢orresponds to the
the phonon subsystem by the SLS, whilgtakes account of ~timeé moment Whe""l @y).

the oscillatory time dependence of the springs induced by the Note thatv?, is not a linear function of the energy of the

SLS. The time dependence Ith) causes the phonon emis- SLS. Therefore the relaxation of the SLS is always nonex-
sion.by the SLSphonons are generated by pé’frgz) ponential, including the case when perturbation theory is ap-

Introducing properly chosen configurational coordinatesoned' In_the Iatter_ case_E,(_t)~(t|—t)“, where_ @
5 - A A . o ~0.75...0.83, andt, is the lifetime of the SLS which is
Xi=ZnSinGn and Qm=ZnSmrQn, one can diagonaliz&V,  fiiie i this approximation.

and W, : W, =33 X7, W= cosutS,pnQf,. Both W; and As an example the quantum decay of an odd SLS is ex-
W, have one zero eigenvalue; all othgrare positive, while  amined below. The properties of the SLS depend essentially
vm are sign alternating, being symmetric with respect to theon the dimensionless parametgs+ \/K32/(K2K4). For real-
sign change. The mode with zero eigenvalue is totally symistic one-well pair potentials this parameter has a value of
metric and therefore does not enter itp—q,,_ ;. between 1 and/32/9. For Ar-Ar and Kr-Kr, potentialss
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=1.37; for K-Br, potentials=1.31. For such values df the Energy of the SLS equals

odd SLS is well localized ifv;=1.3wp . In this case SLS is

localized on three central atom&;=A_;=—Ay/2, |A,| E=fopKe,; &=3w’a’+z%(3+2/3+2%/4); (16)

<0.09A|, n=2; é&,=—£_,=¢, n=1, £=03* This al-

lows one to take account of onlk,, A;=A_;=Ay/2 and one sees that paramet€rdetermines the quantum scale of
&,=— & ;=& The parameterd, and ¢ of the classical the SLS energy. Note that the intensity of phonon emission
SLS problem in this approximation are determined by Eqsdoes not depend of€ [the unit of I in Eq. (9) is fiwp].

(5) (n=0) and(6) (n=1): Consequently, parametér determines the time scale of en-
ergy relaxation.
o] =3K,+6Kgé+ %K_4A§+9K_4§2, (12 We .perfor.med calculations_of.the frequency dependence
of the intensity of phonon emission by the SLS and of the
O:K_2§+K_3(A§+ 62)+K_4§(28—7 A§+ &) . (13) time dependence of the intensity of phonon emission and the

SLS energy(at the temperatur&=0). The calculation pro-

Introducing dimensionless amplituda=\K,A%K, and cedure was the following. First we fixed the initial SLS fre-

A 02 — 2

shift z=¢ K /K. one gets quency (usually atw;=1.98wp) and calculatedz, a*, E,,
alh2 9 G(w), |I. The second step was to take a lower valuavpf

and respectively calculate new values of parameters. We re-

a’=—2Z+25+ DI(5+ §2), (14) peated this procedure until the frequency of the SLS got a
wherez is determined by the real solutions of the equation value of 1.3. The time step was calculated using the relation
At=— AE| /l .
2 3 81z52°+%8z6+%£5-1) In Fig. 1 the dependence of the intensity of phonon emis-
©i=7%%a (15  sion on the value oy, is shown. Indeed, the intensityhas

27
ot 52 peaks~|w,— w,| "1 at critical frequencies (this was con-
(here and below the unite,=1 are usel This is a cubic firmed numerically. This means that the SLS is unstable in
equation forz which for considered», and 5 has only one the vicinity of w. The time dependences of the intensity of
solution witha?>0. This solution determines the parametersPhonon emission and of the mode eneEgyare given in Fig.
of the SLS in the classical limit. 2.

In the approximation considered, the SLS causes changes In all cases the lowest considered frequenrgy- 1.3wp
only in central and next to central springk,=k, corresponds to a small energy as compared to the initial en-
=(1625+ 2422+ 27a%)132, k,=k_;=3a%/32, wo=—Ww; ergy for w;=2wp . Consequently, the main part of the en-
= a(5+32)/8, Wo=—w_,;=ad/8. In this casal, andW, ergy of the SLS vyith initial frequencyw,~2wp is lost dur-
can be diagonalized analytically. The eigenvalgesndo ing the time considerefhote that an extrapolation d(t)

and the components of the eigenvectors are the l‘ollowmg0 largert also gives the finite lifetime of SUSDepending
on the value ofs and on the initial energy, this time can be

=0,
n either longer or shorter than that given by the perturbation
72.5= (Kot 3Ko/2) £ [ (Ko — 3ko/2)%+k,]Y2, theory. The relaxation law is essentially nonexponential:
sharp bursts of phonons are generated at critical values of
7a5= (Kot Ko/2) = [ (ky— ko/2)%—k,]Y2, time t, when o, approachesoy, causing relaxation jumps.
1)3:0, V1245 %[ W2+6Wi+4W1W2 30 ~ :

+2(16w3+ 8wiws+ 16Waw, 25 ] /\ —— 5=038

+ow? + 12wdw,) 112112 ] \ — T 8=137

1 1 20 / \ --------- 5=20

(++ corresponds to,, —+ tov,, +— tov,, and—— to

b ] 3
0oy T eoF
= Sul V 2 Sins §1n:§k,1: 1, Se=1-nlB,

Se=—4+27/B, Su=1-nlB, Se=1, k=23,

§k3:o' §k4:_1+7/k//3, §|(5:—:|., k=4,5.

gmn/ \/Engrznn! Si1= 2 Sin (’OL/(’OD

_ ~ _ FIG. 1. Frequency dependence of the intensity of emission of
Sip=1-vi(@—wi/wy+1)/wy, S;3=1, sju=1+a;, phonons by the odd SLS. The peaks correspond to the regions
_ where the SLS is unstable with respect to quantum fluctuatiéns;

Si5:1+Ui/W2, ai:Ui(Ui+Wl+2W2)/(W1W2). :\/K3/K2K4.
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FIG. 2. Time dependence of the SLS enefgy(thick dashed W/0
line) and intensity of phonon emission by the SLSthick solid D
line); decay of the SLS energy calculated with the perturbation
theory(thin solid line. Sharp peaks in tht) dependence describe
emission of phonon bursts by the SLE,=¢K3¥K, K
=K3/(K4fiwp). | is measured in units ofwj . In conclusion, we examined the quantum relaxation of the

odd SLS in a one-dimensional anharmonic monatomic lat-
The time dependence of the intensity near t, is tice, caused bylthe zero-point fluptuations of the phonons and
I~|t—t/~¥2 The peaks mentioned are caused by the poleg\";‘vef an anﬁlytltr:]al f?onper'turbatwe solution of the pro?lem.
in the integrand function Eq(9): they correspond to the e found that the fluctuations can cause generation of very
emission of quasimonochromatic phonons and give shars’harp-bur-StS of quasimonochromatic phonons and very fast,
; s . BtepW|se jumps of the SLS energy. The rate of energy loss is
lines in the_speptrum of generated.phpnd@m) (the inte- on average of the order of the phonon quantiimy per
grand function 2|n(9) summed over timein Fig. 3. _ period of vibrations 2/wy . The full relaxation time is de-

In the cases®<3/4 there may exiétlarge-size SLS with termined by the quantum anharmonicity parameterin
w close to wp. The energy of such an SLE,  cpains with potentials corresponding to the quantum crystals,
~812(w—1)K3/[K4(3—46%)] exceeds the unitiwp)  this time is of the order of a period of vibrations, whiie in
only if 5% approaches 3/4 from below. The problem of quan-lattices with potentials of ordinary crystals it may reach thou-
tum decay of this large-size SLS is analogous to that of solisands of periods.
tons in continuous media and it will be considered else- We acknowledge support by Estonian Science Foundation
where. Grant No. 2274.

FIG. 3. Spectrum of generated phonal{®) (in a.u).
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