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An efficient interpolative approach is presented for relativistic calculations of polarized x-ray-absorption
spectra~XAS! including spin and spin-orbit interactions. The method is based on a spinor-relativistic Dirac-
Fock treatment of atomic densities and dipole matrix elements, and a nonrelativistic treatment of propagation
using high-order multiple scattering theory. This approach is implemented in an automated codeFEFF7which
gives quantitative agreement with experiment for x-ray magnetic circular dichroism of Gd and Fe, and for
polarized XAS of Cd, including bothl →l 61 dipole transitions.@S0163-1829~97!51028-9#

The problem of x-ray-absorption spectroscopy~XAS! in-
volves two steps, first the production of a photoelectron typi-
cally from a deep core level, and second the propagation and
scattering of that electron by other atoms in a material. A
relativistic approach including spin-orbit~SO! interaction is
often needed for an accurate description of the first step, i.e.,
for dipole matrix elements and core excitation energies,
which depend on the structure of the inner core of atoms and
on photon polarization. The second step is essentially non-
relativistic in nature, even for photoelectrons of moderate
kinetic energy~;1000 eV!. This part is described by x-ray-
absorption fine structure~XAFS! which is now well
understood.1 In this work we take advantage of this separa-
tion to simplify the treatment of relativistic spin-dependent
XAS calculations. For example, there is now considerable
interest in spin-dependent spectroscopies, such as x-ray mag-
netic circular dichroism~XMCD!, for probing the properties
of magnetic materials.2 It has been argued that a relativistic
treatment of XMCD is essential atl 50 edges~e.g., K,
L1!.

3 Although it is straightforward to generalize nonrelativ-
istic theory for either spin or SO interaction alone, a fully
relativistic theory for magnetic systems involves coupled
equations,4 which greatly increases the computational effort
and complexity of the problem. To overcome this difficulty
we suggest an interpolative approach which avoids solving
coupled equations without significant loss of accuracy, and
hence is a considerable computational advantage. At the
same time, the approach provides a natural spinor-relativistic
formalism which illuminates the relativistic physics involved
and overcomes several limitations of current theoretical
methods for XAS calculations while extending their capabili-
ties. As shown below, the approach gives the first quantita-
tive treatment ofl 50 XMCD spectra, whereas previous
calculations5,6 overestimate the XMCD signal. The method
has been implemented in an automated high-order multiple-
scattering~MS! XAS codeFEFF7, which is a generalization
of the FEFF6code1 and hence makes such relativistic calcu-
lations in arbitrary clusters widely accessible. The new code
has a number of other improvements including the inclusion
of both l →l 61 dipole transitions, and an improved treat-
ment of excitation energies, potentials, and other atomic

properties based on a spinor-relativistic single-configuration
Dirac-Fock atom code7 with fractional ionization capabili-
ties.

The key features of our approach are:~1! a fully relativ-
istic treatment of atomic properties and dipole matrix ele-
ments via the Dirac equation, which is solved forj5l
61/2 orbitals in spin-up and -down potentials;~2! interpola-
tion between the above four solutions of the Dirac equation
via Clebsch-Gordan~CG! coefficients;~3! a nonrelativistic
treatment of propagation based on the high order MS expan-
sion; ~4! semirelativistict matrices~i.e., j average to cancel
SO interaction8!; and~5! spin-dependent free propagator and
t matrices based on overlapped atom potentials.9 This ap-
proach thus builds in both spin and SO effects in a natural
way, without the need for relativistic perturbation theory.5

Within this approach the expression for XAS is directly
analogous to the nonrelativistic spin-independent form, apart
from additional spin indices. Thus the method provides a
generalization, which is also applicable to general calcula-
tions of XAS including polarization dependence. Several il-
lustrative applications are presented. First the theory is ap-
plied to XMCD calculations for the GdL1 and FeK edge.
These calculations provide a severe test of our approach,
since the calculated XMCD signal must vanish if either the
spin or SO interaction in the final state is neglected. Second,
the theory is applied to polarization-dependent XAS of hcp
Cd. Further details will be given elsewhere.10

The relativistic expression for the absorption coefficient
of x rays with energy\v and polarizationê, that produce
photoelectrons with energyE, is given in a Green’s-function
formalism within the dipole approximation and the golden
rule by

s~v!52
4pc

v
Im (

I ,Js,J8s8
^I ude* uRJs&GJs,J8s8^RJ8s8udeuI &.

~1!

Here,Rjs are the radial wave functions obtained by solving
the Dirac equation for orbitalj with the final-state potential
in the presence of a screened core hole for spins at energy
E5\v1EI , andde5aW • ê is the polarization-dependent di-
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pole coupling of a photon with polarizationê, and I repre-
sents the initial states. The capital letter for the angular mo-
mentum represents the total momentum and itsz-axis
projection, e.g.,J5( j ,mj !, S5(1/2,s!. As is conventional in
MS theory, the Green’s-functionGJs,J8s8 defined below is
represented in an angular momentum basis and can be sepa-
rated into central and scattering parts,GJs,J8s85GJs

c dJs,J8s8
1ei (d js1d j 8s8)GJs,J8s8

sc . Equation~1! is the central approxima-
tion in our simultaneous treatment of spin and SO interaction
since we do not solve coupled equations. Instead our ap-
proach uses interpolation provided by CG coefficients be-
tween the four cases,j5l 6(1/2) and spin-up and -down
potentials,

GJs,J8s8
sc

~E!5^JuLS&GLs,L8s8
sc

~E!^L8S8uJ8&. ~2!

The propagatorGLs,L8s8
sc can be calculated using high-

order MS theory,1 i.e., GLs,L8s8
sc (E)5GLs,L1s

0 (2rW is)

3tL1s,L2s8
i GL2s8,L8s8

0 (rW is8)1•••, where rW is5ks(RW i2RW i21).

Here i refers to thei th atom in the scattering path,i50
corresponds to the absorbing atom,RW i are coordinates of the
atom i , and ks is the wave number relative to the spin-
dependent muffin potential.

The next approximation of our approach is to calculate
the free propagatorsGLs,L1s

0 nonrelativistically and to use

semirelativistic scatteringt matrices.9 This approximation is
plausible, since the scattering of electrons with moderate ki-
netic energy~EXAFS! is dominated by the region where SO
is small. This is the reason why SO for the final state can be
treated perturbatively. Our calculations ofd js are based on
Loucks’ Eqs. 4–87.11 Relativistic effects in EXAFS have
been discussed by Tyson.12 However, the effect of SO and
relativity on dipole matrix elements can be more important
since the deep core region depends on the initial-state wave
function.

We have proved that the procedure of Eqs.~1! and ~2!,
like the coupled equation approach, is correct up to second
order in perturbation theory; however, the proof is too
lengthy for the present paper.10 Here we just observe that Eq.
~1! becomes exact if one neglects the spin or SO interaction
separately. Thus one expects that it has a perturbation expan-
sion around these two limits. In other words, this approach
can fail only if both SO and spin dependence are large. For
real systems this situation can never happen, since the SO
interaction in the final state is large only forl 51 states of
large Z materials like actinides. However, their magnetic
properties are dominated byf electrons and their exchange
interaction with finalp electrons is expected to be small.
This argument is justifieda posterioriby the good agreement
of our calculations with experiment for GdL1 XMCD. Thus
the relativistic expression for XAS in Eq.~1! is completely
analogous to that in nonrelativistic theory except for addi-
tional spin indices, i.e., the replacementJs→Ls in each
term. Hence it is straightforward to extend any relativistic
spin-independent code to include both spin and relativity in
this way. Moreover, the relativistic effects on free propagator
matrix elements come mostly from the relativistic dispersion
relationk2/2'E1E2/2c2 ~in atomic units! and is extremely
small sincec'137 and we are interested in photoelectron

energiesE<50 Hartrees. Most of the remaining relativistic
corrections can be accounted for by using the same interpo-
lative approach to include spin-flip processes or SO interac-
tion for the t matrices. This interpolation is given by

tLs,L8s85 (
j5l 21/2

l 11/2

^LSuJ&
t js1t js8

2
^JuL8S8&. ~3!

Notice that if one neglects SO interaction, the sum overj
leads to zero amplitude for spin-flip processes. Both
experimentally13 and theoretically14 this amplitude has been
shown to be small compared to spin-conserving scattering.
Therefore we do not use this interpolation for thet matrices
in the present calculations of XAS.

Relativistic and polarization-dependent calculations of
XAS spectra require a careful treatment of the dipole matrix
elements. Here we use the relativistic form of the multipole
matrix elements discussed by Grant,15

Mnkm
n8k8m8~ ê,qW !5^nkmuaW • êeiqW •rWun8k8m8&. ~4!

Here the quantum numberk5l when j5l 2(1/2) andk
52(l 11) when j5l 11/2. For convenience we take the
photon wave vectorqW ~uqW u5v/c! to be along thez axis, and
define right (e511) and left (e521) circular polariza-
tions asê6157( êx6 êy)/A2. Grant’s Eq. 6.30 for the dipole
approximation can then be rewritten in the form of Wigner-
Eckart theorem and 3j symbols,

Mnkm
n8k8m8~ êe ,uqW u!5~21! j2mS j 1 j 8

2m e m8
DRkk8, ~5!

where the reduced matrix elementRkk8 is

Rkk85 i E dr j 0~qr !@PkQk8Ckk8
~1!

1QkPk8Ckk8
~21!

#, ~6!

and Pk (Qk) is the upper~lower! component of the Dirac
spinor.15 It is straightforward to calculate allCkk8

(61) using

the appendixes of Messiah,16 and we obtain Ckk8
(s)

5@s(21)(D21)/(2k1s)# u(D1s)(2k1D)(2k1D)2

21u1/2, whereD5k82k561 or D50 if k52k8. These
are the only possible pairs ofkk8 in the dipole approxima-
tion. Thus it is easy to calculate the relativistic dipole matrix
elements using Eq.~6!. Hence the smooth central atom cross
section becomes

s0~v!5 ~8pck/3v! (
k8

uRkk8u
2. ~7!

Defining normalized reduced matrix elements byR̃kk8
5eid j 8Rkk8 /@Sk8uRkk8u

2/3#1/2, the equation for the fine
structurex5@s2s0#/s0 is

x5 (
k8k9

R̃kk8R̃kk9S j 1 j 8

m e m8
D S j 1 j 9

m e m9
D G̃J8,J9

sc . ~8!

This expression can be used to calculate polarization-
dependent XAS, including bothl →l 61 channels. These
expressions are straightforward to generalize for spin-
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dependent potentials with our interpolative approach. Just
one spin index must be added since spin is conserved in
dipole transitions.

An approximate expression for XMCD can be derived for
l 50 based on Eq.~1!, assuming that SO is important only
for the central atom. After substitution of all 3j symbols one
obtains

sc'
1
3 ~s3/2↑2s3/2↓2s1/2↑1s1/2↓!, ~9!

wheres js is calculated by solving the Dirac equation for the
final total angular momentumj53/2 or 1/2 and for spin-up
(↑) or -down (↓) potentials. Thus thel 50 XMCD signal is
roughly given by the second derivative of the nonmagnetic
absorptions. In the derivation of Eq.~9! it was important to
delete cross terms. Thus, since SO in the final state is a small
perturbation, we approximated the product of reduced matrix
elements asR̃k,1R̃k,22'

1
2 (R̃k,1

2 1R̃k,22
2 ), where spin indices

are suppressed. Equation~9! explicitly shows that the
XMCD vanishes if either spin or SO interaction in the final
state is neglected.

We now present two applications. First we apply Eq.~1!
to calculate XMCD atl 50 edges in magnetic materials.
The use ofj -independentt matrices corresponds to the ne-
glect of spin-flip processes. Therefore spin is conserved for
the photoelectron and our calculations naturally separate into
calculations for spin-up and -down alone. Here the spin-
dependent density was constructed from overlapped spin-
polarized neutral atom orbitals with appropriate occupation
numbers, e.g., we assume the excess spin-up density in Fe is
due to five 3d electrons.9 The spin-dependent potential was
then calculated using the the local spin-density prescription
of von Barth and Hedin17 together with the Hedin-Lundqvist
~HL! self-energy. The energy dependence of this difference
leads to a reduction of the XMCD signal at high energies
~EXAFS region!.9

Calculations of XMCD for the FeK edge, including the
atomic background contribution, are compared in Fig. 1~a! to

the experimental results of Dartygeet al.18 at 30 K and 0.5
T. Edge energies were fixed by comparing the XAFS and no
other adjustable parameters were used. Analogous calcula-
tions have been carried out by Brouderet al.5 and by Ebert
et al.6 However, our results agree better with experiment
both in EXAFS and in x-ray-absorption near-edge structure
~XANES!. We remark that none of these one-electron calcu-
lations reproduces the observed peak around 60 eV, which
has been attributed to multielectron excitations.19 Some ad-
ditional sharp features arise due to final states with two holes
that one-electron calculations do not include. Similar calcu-
lations of XMCD at theL1 edge of Gd@Fig. 1~b!# give good
agreement with the experimental data of Schu¨tz.20 These re-
sults verify that our interpolative approach to spin-dependent
XAS calculations works well.

As a second application we consider the polarization de-
pendence of hcp Cd. Polarization dependence is important
for monocrystals with symmetry lower than cubic and for
surface studies. The Cd XAS is compared withFEFF7simu-
lations in Fig. 2 for hcp in-plane polarization. It was argued
by Le Fèvre et al. that the neglect ofl →l 21 transitions
can lead to errors in distance determination as much as 0.1
Å.21 This is surprising, considering that the difference be-
tween calculations with and without thel →l 21 channel is
very small~see Fig. 2!. Le Fèvre et al. have extracted a re-
lated cross term contribution to Cd XAS {x2(a)
5@x l →l 61(a)2x l →l 11(a)#/(629cos2a)%, where a is
the angle between the polarization vector and the hexagonal
base plane of the Cd hcp structure.21 The theoretical extrac-
tion of x2 is straightforward and is practically angle indepen-
dent. It is compared to experimental data in the insert to Fig.
2. Sincex l →l 11 also has an angular dependence propor-
tional to ~223cos2a!, the experimental extraction ofx2 is
more subtle. However, both the observed amplitude and sign
agreement are reasonable considering the difficulty of this
experimental extraction; part of the amplitude discrepancy
may be due to the overestimation of loss by the plasmon-
pole HL self-energy used inFEFF.

FIG. 1. Upper panel: calculated~solid! Fe K
edge XMCD vs experimental data~dotted! of
Dartygeet al.; lower panel: calculated~solid! Gd
L1 XMCD with background subtraction vs ex-
perimental data~dotted! of Schütz et al. Both
theory and experiment are reduced by a factor of
1/3 for E,40 eV.
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Finally, various self-energy models can be tested within
our code. We have shown elsewhere22 that a partly nonlocal
self-energy, based on full nonlocal Fock exchange for core
states and HL self-energy for valence/conduction states,
gives better positions of peaks in XANES and slightly im-
proves EXAFS analysis of Cu metal. However, this self-
energy still overestimates losses in the XANES region and
improvements are desirable.

In conclusion, we have developed an efficient two-step
algorithm for relativistic calculations of XAS and XMCD in

arbitrary systems. The method yields the best agreement with
experiments to date for XMCD and provides a basis for
many further developments.10
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FIG. 2. hcp CdL3 EXAFS with polarization
vector in the hexagonal plane; calculation~solid!
vs experimental data~dotted!, and calculation
without l →l 21 channel~dashes!; inset: com-
parison of calculated~solid! cross term~x2! and
that experimentally extracted at 0°~long dashes!
and 80°~dashes!. The difference between 0° and
80° data is a measure of the experimental uncer-
tainty in x2 .
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