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We discuss spin and orbital ordering in the twofold orbital degenerate superexchange model in three dimen-
sions relevant to perovskite transition metal oxides. We focus on the particular point on the classical phase
diagram where orbital degeneracy is lifted by quantum effects exclusively. Dispersion and damping of the spin
and orbital excitations are calculated at this point taking into account their mutual interaction. Interaction
corrections to the mean-field order parameters are found to be small. We conclude that quasi-one-dimensional
Néel spin order accompanied by the uniformd3z22r 2-type orbital ordering is stable against quantum fluctua-
tions. @S0163-1829~97!50646-1#

It is well known that the orbital~quasi!degeneracy of 3d
states in transition metal oxides plays an important role in
their magnetic and lattice properties. An orbital ordering
driven by exchange interactions and/or by Jahn-Teller effect
occurs at low temperature resulting in a rich variety of mag-
netic structures~for a review see, e.g., Ref. 1!. On the other
hand, little is known on dynamical aspects of the coupling
between spin and orbital degrees of freedom in these sys-
tems, i.e., on~a! what the spectrum is of low-energy orbital
excitations,~b! how orbital excitations are coupled to the
spin sector, and~c! how this coupling affects magnetic order
parameter and spin waves. In the present paper we address
these questions by considering the superexchange model
with twofold orbital degeneracy, which corresponds to thed9

Mott-Hubbard insulator on a cubic lattice.
To be specific, we consider the following Hamiltonian

derived by Kugel and Khomskii,1 and studied recently by
Feineret al.:2
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In Eq. ~1! we follow notations used in Ref. 2:t is the hop-
ping betweeneg(3z22r 2) orbitals along thec axis,SW i is the
spin-1/2 operator. Operatorst i

a act in the orbital subspace
with basic vectors (0

1), ( 1
0) corresponding to the

eg(x22y2);ux& andeg(3z22r 2);uz& orbital states, respec-
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axesa,b,c:
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wheresz andsx are Pauli matrices.
It is rather easy to see that the classical Ne´el state@i.e.,

^SW iSW j&521/4 in Eq.~1!# is infinitely degenerate: orbitals at
each site may be rotated independently. Feineret al.2 have
suggested that local orbital fluctuations associated with this

degeneracy strongly affect the spin sector when quantum
fluctuations around the Ne´el state are included, and drive the
system into a disordered spin-liquid state even in three
dimensions.3 Our results presented below do not support this
interesting scenario. We have investigated spin and orbital
orderings, and their excitations in the model defined by Eqs.
~1! and ~2!. Our main findings are~i! uz&-type orbital order-
ing favoring quasi-one-dimensional spin order is the most
promising candidate for the ground state.~ii ! Orbital excita-
tions have a gap generated by quantum effects. This gap
controls well the fluctuations around the mean-field solution.
~iii ! Spin-orbit coupling does indeed act to decrease the stag-
gered moment, but this effect is not enough to destroy the
long-range order in a cubic lattice.

To begin with, we use the condition(^ i , j &t i
a50 following

from Eq. ~2!, and represent Eq.~1! in a more transparent
way:
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The first term in Eq.~3! represents the classical Ne´el en-
ergy ~in units of t2/U), which we drop hereafter. From the
above Hamiltonian the key feature of the Kugel-Khomskii
model is evident: The exchange ‘‘constant’’ has in fact an
internal operator structure accounting for the orbital dynam-
ics, and its expectation value strongly depends on the orien-
tation of orbitals. It follows from Eqs.~3! and ~4! that the
strength of the intersite orbital coupling~hence the energy
gain due to the orbital ordering! is proportional to the devia-
tion of spins from the Ne´el state, i.e., to the value of

^SW iSW j1
1
4 &. This acts to reduce the effective dimensionality

of the spin system: Orbitals are arranged in such a way that
makes the exchange coupling strongly nonuniform thus en-
hancing spin fluctuations as much as possible. In low-
dimensional models, a similar consideration suggests that the
orbital ordering may lead to the spin-liquid state.4 Thez-type
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ordering of orbitals in the model~1! is suggested by this
picture. Indeed, the expectation value of exchange coupling
~4! betweenz orbitals isJc54 along thec axis, and it is only
small in the (ab) plane:J'51/4. Exchange energy is mainly
accumulated inc chains and can be approximated as

Jc^SW iSW j1
1
4 &c12J'^SW iSW j1

1
4 &'.20.65 per site ~using

^SW iSW j&c51/42 ln2 for one dimension5 ~1D! and assuming

^SW iSW j&';0). On the other hand,x-type ordering results in
the easy plane magnetic structure (Ja,b59/4,Jc50) with a
much smaller energy gain.20.38.

Our strategy is to study the Hamiltonian~3! within the
following scheme. ~i! We rewrite ~3! in the form
H5Hsp1Horb1Hint . Here the first two terms describe spin
and orbital sectors in the mean-field level:
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wheredA5A2^A&. The crucial importance is the stability
of the mean-field state against fluctuations generated by dy-
namical coupling between spin and orbital excitations. This
coupling is represented by

Hint5(
^ i , j &

d~ Ĵa
i j !d~SW iSW j !. ~7!

~ii ! We assume the antiferromagnetic spin order and uniform
z- or x-type ordering of orbitals. Then we employ spin~or-
bital! wave representation forSW i (sW i) operators.~iii ! We cal-
culate spin-orbit interaction corrections to the excitation
spectrum and to the order parameters. Since latter quantities
enter in coupling constants in Eqs.~5! and~6!, all steps have
to be done in the self-consistent way.

Considerz orbital order which results in a highly aniso-
tropic quasi-1D magnetic structure. We discuss first mean-
field results, which follow from Eqs.~5! and ~6!. Spin and
orbital wave energies are given byv1k5J1A12g1k

2 , and
v2k5J2A112g2k, respectively. HereJ15(Jc12J'), and
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The orbital stiffness is controlled byJ2528(kc2 1
4 k'),

with ka5^SW iSW j1
1
4 &a . Momentum dependencies ofvnk ~in-

dex n51,2) are determined by the functions

g1k5(Jccoskz12J'gk)/J1, g2k52 3
2 @k/(42k)#gk , where

k5k' /kc , and gk5 1
2 (coskx1cosky). We calculate all ex-

pectation values within linear spin~orbital! wave theory,
with only one exception, the interchain spin correlator which
we approximate aŝSW iSW j&'5^SW i

z&^SW j
z&1^Si

1Sj
2&.6

Self-consistent mean-field calculations show that the or-
bital pseudospin is almost saturated~the mixture ofux& state
is about 1% only!. Coupling between chainsJ' is weak~see
Table I! but sufficient to produce quite large magnon disper-
sion in the (ab) plane~see thin dashed lines in Figs. 1 and
2!. Orbital excitations are gapfull, since the orbital ordering
is not associated with the breaking of any continuous sym-
metry. Of a similar spirit, a mean-field picture was recently
discussed by Ishiharaet al.7 in the context of their spin-
orbital model for manganites. Quantitatively, we find that the
orbital gap is smaller than the spin-wave bandwidth. The
softness of the orbital excitations is related to the fact that the
orbital degeneracy in the model~1! can be lifted only due to
quantum effects in the spin sector.

Now, what happens when we switch on the coupling be-
tween spin and orbital excitations? The latter is represented
by Hint @Eq. ~7!#, which in terms of spin (bk) and orbital
(wk) wave excitations reads as

TABLE I. Néel order parameter̂Sz& and some other expecta-
tion values~see text for notations! calculated in the self-consistent
mean-field approximation (V50), and corrected by including fluc-
tuation effects (VÞ0).

^Sz& ^J'&/^Jc& ^SW iSW j&c ^SW iSW j&'
Em f E0

V50 0.226 0.052 20.417 20.122 20.609 20.609
VÞ0 0.191 0.072 20.421 20.103 20.564 20.690

FIG. 1. Dispersionvk and dampinggk of the spin and orbital
waves along the directionG→M (p,p,0)→R(p,p,p)→G in the
Brillouin zone, calculated including fluctuation effects~solid lines!,
and in the mean-field approximation~dashed lines!. Thin ~thick!
lines correspond to the spin~orbital! excitation.gk for orbital waves
is almost indistinguishable from the zero line.

FIG. 2. The same as Fig. 1 but along the
G→X(p,0,0)→N(p,0,p)→G direction.
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where the lowest-order~three magnon! terms only are kept.
HereV5A3/2, andq5k2p. The matrix elements are

f k,p5~u2q1v2q!@hqMk,p1~hk1hp!Nk,p#, ~10!

gk,p5~u2q1v2q!@hqNk,p1~hk1hp!Mk,p#,

Mk,p5~u1ku1p1v1kv1p!, Nk,p5~u1kv1p1v1ku1p!,

with hk5(coskx2cosky)/2. The Bogoliubov transformation
coefficients in the spin subspace are given by
u1k5$(s11)/2%1/2, v1k52$(s21)/2%1/2sgng1k , and
s5(12g1k

2 )21/2. The factor (u2k1v2k)5(112g2k)
21/4 in

Eq. ~10! is due to Bogoliubov transformation in the orbital
sector.

Physically, the interaction~9! accounts for the process
when spin exchange is accompanied by the simultaneous or-
bital transitionuz&↔ux&, thus enhancing thex orbital com-
ponent in the ground state. Spin-orbital coupling leads to the
conventional 232 matrix bosonic Green’s function in both
subspaces, with diagonal (G) and nondiagonal (F) compo-
nents given by

Gv,k5@~ iv2Av,k!1~vk1Sv,k!#/ Det, ~11!

Fv,k52Sv,k
~a! / Det,

Det5~ iv2Av,k!
2

2~vk1Sv,k2Sv,k
~a! !~vk1Sv,k

1Sv,k
~a! !.

HereAv,k andSv,k represent the antisymmetric and symmet-
ric ~with respect to the Matsubara frequencyiv) components
of the diagonal self-energySv,k

(n) , respectively, whileSv,k
(a) is

a nondiagonal element of the self-energy matrix. It is implied
that all quantities in Eq.~11! carry the subspace indexn as
well, andn51 ~2! stands for spin~orbital! waves. We cal-
culate self-energies from the lowest-order diagrams shown in
Fig. 3.

In spin subspace we find~at zero temperature!
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~ f k,p
2 2gk,p

2 !
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~v1 id!22«k,p
2

, ~12!
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2

.

Here«k,p5(v1p1v2q), q5k2p, and

~ f 22g2!k,p5@hq
22~hk1hp!2#x2q , ~13!

~ f 6g!k,p
2 5~hk1hp6hq!2~x1kx1p!61x2q ,

wherex1k5@(12g1k)/(11g1k)#1/2, x2k5(112g2k)
21/2.

In the orbital sector one finds thatAv,k50, and

Sv,k5Sv,k
~a! 52V2(

p
gk1p,p

2 «̃ k,p

~v1 id!22 «̃ k,p
2

, ~14!

where «̃ k,p5(v1p1v1,k1p), andgk1p,p
2 can be found from

Eq. ~13!. We recall that the ‘‘bare’’ energiesvnk in Eqs.
~11!–~14! are also affected by the interaction, due to the
renormalization of parametersJn andgnk .

Results of self-consistent calculations by including inter-
action corrections are presented in Table I and Figs. 1 and 2.
Dynamical spin-orbit coupling results in the following:~i! It
enhances quantum fluctuations in both subspaces, thus re-
ducing the staggered moment and increasing the weight of
the x orbital component~which is about 6%!. The latter ef-
fect is also reflected in a larger value of the ratioJ' /Jc . ~ii !
Spin and orbital excitations are both softened, which is more
pronounced in theky50 plane~and in equivalent ones!, see
Fig. 2. The orbital gap still remains well defined. A spin-
Peierls-like instability is absent, because of the vanishing
matrix elements in Eq.~9! for momenta alongz @note
h(0,0,qz)50], and because of the finite interchain coupling.
~iii ! Spin waves get a finite damping. Orbital waves are al-
most undamped since the density of spin states inside the
orbital gap is small.~iv! Joint spin-orbital fluctuations sig-
nificantly lower the ground-state energy~see Table I!. The
latter is given byE05Em f1^Hint&, where the interaction
correction to the mean-field result, calculated from the last
diagram in Fig. 3, is

^Hint&52V2(
k,p

gk,p
2 /~v1k1v1p1v2,k2p!. ~15!

The exchange energy gainE0520.69 per site is found,
which is close to our above estimation from physical consid-
erations. Summarizing, interaction effects do not qualita-
tively change predictions of the self-consistent mean-field
theory, which seems to work quite reasonably. This is an
important observation, giving some credit to the mean-field
ansatz in studying more complicated spin-orbital models. Of

FIG. 3. Spin-orbit interaction corrections to the spin~a! and orbital excitations~b! and to the ground-state energy~c!. Lines~wavy lines!
represent spin~orbital! waves.
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course, the latter fails when the orbital gap is softened close
to the phase boundaries between different orbitally ordered
states, and the dynamical spin-orbit coupling becomes of
crucial importance.

Consideringx-type ordering, we found it to be unstable
against fluctuations. It turns out that orbital excitations
around this mean-field state are gapless at theG point,
v2q;q. In addition, the spin-orbit interaction vertex remains
finite atq50, since the orbital pseudospin is not a conserved
quantity, and orbital waves cannot be considered as Gold-
stone modes. All these lead to the divergencies in perturba-
tion theory indicating that anx-type ordered state is not an
appropriate one, as we already mentioned above. This result
is consistent with Ref. 2.

In summary, we have studied the spin-orbital coupling
problem in the specific model, where this coupling is particu-
larly important because of infinite degeneracy of the classical
Néel state in this model. The problem of the orbital frustra-
tion pointed out in Ref. 2 is actually removed by reducing
the effective dimensionality of the spin system. Quantum
spin fluctuations then generate an orbital excitation gap
through the spin-orbit coupling mechanism. Orbital degen-
eracy in the model~1! should manifest itself in a strong
reduction of the Ne´el temperature, by favoring soft quasi-1D
spin structure. This is consistent with a basic idea of Feiner
et al.2 that orbital degeneracy, in general, acts to enhance

quantum spin fluctuations. In contrast to Ref. 2 we find, how-
ever, that this effect is not strong enough to destroy the Ne´el
order. Melting of the long-range magnetic order by orbital
fluctuations suggested in Ref. 2 does not occur in a cubic
perovskite system, for a simple reason: A certain~model-
dependent! orbital ordering always results in the three-
dimensional~albeit very anisotropic! network of exchange
interactions among spins.Three-dimensionalityof the spin
sector and existence of theorbital gap are important factors
stabilizing the Ne´el order. We believe that the orbital gap is
a robust property of Mott-Hubbard insulators, which is re-
lated to the fact that the underlying symmetry in orbital sub-
space is only a discrete one. In a metallic state, doped holes
can drastically change the situation, by inducing low-energy
orbital fluctuations.8 A study of the orbital melting in the
Kugel-Khomskii model, driven by hole doping, deserves fur-
ther work.
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