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Spin and orbital excitation spectrum in the Kugel-Khomskii model
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We discuss spin and orbital ordering in the twofold orbital degenerate superexchange model in three dimen-
sions relevant to perovskite transition metal oxides. We focus on the particular point on the classical phase
diagram where orbital degeneracy is lifted by quantum effects exclusively. Dispersion and damping of the spin
and orbital excitations are calculated at this point taking into account their mutual interaction. Interaction
corrections to the mean-field order parameters are found to be small. We conclude that quasi-one-dimensional
Neel spin order accompanied by the unifody,2_,2-type orbital ordering is stable against quantum fluctua-
tions.[S0163-182(07)50646-1

It is well known that the orbitalquasjdegeneracy of @  degeneracy strongly affect the spin sector when guantum
states in transition metal oxides plays an important role irfluctuations around the Néstate are included, and drive the
their magnetic and lattice properties. An orbital orderingsystem into a disordered spin-liquid state even in three
driven by exchange interactions and/or by Jahn-Teller effeatlimensions. Our results presented below do not support this
occurs at low temperature resulting in a rich variety of mag-interesting scenario. We have investigated spin and orbital
netic structuregfor a review see, e.g., Ref).10n the other orderings, and their excitations in the model defined by Egs.
hand, little is known on dynamical aspects of the coupling(1) and(2). Our main findings aréi) |z)-type orbital order-
between spin and orbital degrees of freedom in these sysag favoring quasi-one-dimensional spin order is the most
tems, i.e., ona) what the spectrum is of low-energy orbital promising candidate for the ground stafi€) Orbital excita-
excitations,(b) how orbital excitations are coupled to the tions have a gap generated by quantum effects. This gap
spin sector, andc) how this coupling affects magnetic order controls well the fluctuations around the mean-field solution.
parameter and spin waves. In the present paper we addre@s) Spin-orbit coupling does indeed act to decrease the stag-
these questions by considering the superexchange modgéred moment, but this effect is not enough to destroy the
with twofold orbital degeneracy, which corresponds todfe long-range order in a cubic lattice.

Mott-Hubbard insulator on a cubic lattice. To begin with, we use the conditidfy; ;,7{*=0 following

To be specific, we consider the following Hamiltonian from Eq. (2), and represent Eq1) in a more transparent

derived by Kugel and Khomskli,and studied recently by way:

Feineret al.;?
t? L H=-3+> JI(§S+ 1), ©)
H=52 [4S5S) (7= (- 3) i b
(ij)
Ji=gro070 (794 1
+ (7 %)(Tja-i- L], 1) Jo=arir=2(7'+ 1)+ 1. (4)
In Eq. (1) we follow notations used in Ref. 2:is the hop- The first term in Eq(3) represents the classical &lesn-

ping betweereg(?,zz—rz) orbitals along the axis, S, is the ~ €rgy (in units of t?/U), which we drop hereafter. From the

spin-1/2 operator. Operators' act in the orbital subspace above Hamiltonian the key feature of the Kugel-Khomskii
with basic vectors &) (2) corresponding to the model is evident: The exchange “constant” has in fact an

e, 7)) andey (3212 |2 opitalsates, respec. [1°M1 cheralor stuctre accountr for he ot dynan
tively. The structure ofr{" depends on the index which y P gly dep

- : . . . . tation of orbitals. It follows from Eqs(3) and (4) that the
;gggg'iséhe orientation of the boti) relative to the cubic strength of the intersite orbital couplingnence the energy

gain due to the orbital orderings proportional to the devia-
@) tion of spins from the Nel state, i.e., to the value of
<§i§j+ 7). This acts to reduce the effective dimensionality
whereo” and o™ are Pauli matrices. ) of the spin system: Orbitals are arranged in such a way that
It is rather easy to see that the classicaeN&tate[i.e.,  makes the exchange coupling strongly nonuniform thus en-
<§i§j>=—1/4 in Eq.(1)] is infinitely degenerate: orbitals at hancing spin fluctuations as much as possible. In low-
each site may be rotated independently. Feiteal? have  dimensional models, a similar consideration suggests that the
suggested that local orbital fluctuations associated with thisrbital ordering may lead to the spin-liquid st&t€he z-type

=i (-ofx\3a)), =30,
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TABLE I. Néel order parametefS?) and some other expecta-
tion values(see text for notationscalculated in the self-consistent
mean-field approximation{=0), and corrected by including fluc-
tuation effects Y+ 0).

(89 (3 (SS). (SS).  Enmr Eo
V=0 0226 0.052 -0417 —0.122 —0.609 —0.609
V#0 0191 0.072 -0421 —0.103 —0.564 —0.690

ordering of orbitals in the moddll) is suggested by this

picture. Indeed, the expectation value of exchange coupling

(4) betweere orbitals isJ.=4 along thec axis, and it is only
small in the @b) plane:J, =1/4. Exchange energy is mainly

accumulated inc chains and can be approximated as

J(SS+ 5)c+23,(SS+ §),=—0.65 per site (using
(SiS;)c=1/4—In2 for one dimensioh (1D) and assuming

(SS;).~0). On the other handk-type ordering results in
the easy plane magnetic structuid, (=9/4J.=0) with a
much smaller energy gais —0.38.

Our strategy is to study the HamiltonidB) within the
following scheme. (i) We rewrite (3) in the form
H=Hg,+Hop+ Hin: . Here the first two terms describe spin
and orbital sectors in the mean-field level:

Hsp=<2> (INHSS+ 1), (5)
1)

Horb:<2> (SSj+ 5)y8(3)), (6)
i

where SA=A—(A). The crucial importance is the stability
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FIG. 1. Dispersionw, and dampingy, of the spin and orbital
waves along the directioh — M (m,7,0)—R(,m,7)—1 in the
Brillouin zone, calculated including fluctuation effe¢tolid lines,
and in the mean-field approximatidiashed lines Thin (thick)

lines correspond to the spiorbital) excitation.y, for orbital waves
is almost indistinguishable from the zero line.

k=k, ks, and y,= %(coskx+cod<y). We calculate all ex-
pectation values within linear spiforbital) wave theory,
with only one exception, the interchain spin correlator which
we approximate aéS;S;), =(S)(S)) +(S"S/).°
Self-consistent mean-field calculations show that the or-
bital pseudospin is almost saturat@gde mixture of|x) state
is about 1% only. Coupling between chaink is weak(see
Table )) but sufficient to produce quite large magnon disper-
sion in the @b) plane(see thin dashed lines in Figs. 1 and
2). Orbital excitations are gapfull, since the orbital ordering
is not associated with the breaking of any continuous sym-

of the mean-field state against fluctuations generated by dynetry. Of a similar spirit, a mean-field picture was recently
namical coupling between spin and orbital excitations. Thisdiscussed by Ishiharat al.” in the context of their spin-

coupling is represented by

Hmt=<2> 831 8(SS). 7
1)

(iil) We assume the antiferromagnetic spin order and unifor
Z- or x-type ordering of orbitals. Then we employ spior-

bital) wave representation f& (o;) operators(iii) We cal-

culate spin-orbit interaction corrections to the eXC|tat|0né§Dk) wave excitations reads as

spectrum and to the order parameters. Since latter quantiti
enter in coupling constants in Eq$) and(6), all steps have
to be done in the self-consistent way.

Considerz orbital order which results in a highly aniso-

tropic quasi-1D magnetic structure. We discuss first mean-

field results, which follow from Eqs(5) and (6). Spin and
orbital wave energies are given hylszlx/l—yzlk, and

wo=Jo\ 1+ 2y, respectively. Herd,;=(J;+2J,), and
)

Jo=(1-0o{—oj+a{0o})c,

— 1 z 1 z 1 VAN 4 3 X X

The orbital stiffness is controlled by,=—8(x.— 3 k),
with k,=(S;S;+%),. Momentum dependencies af, (in-
dex n=12) are determined by the functions
Y= (3cC08+23, w1y, yau=— 3[k/(4—K)]yc, Where

orbital model for manganites. Quantitatively, we find that the

orbital gap is smaller than the spin-wave bandwidth. The
softness of the orbital excitations is related to the fact that the
orbital degeneracy in the modél) can be lifted only due to

puantum effects in the spin sector.

Now, what happens when we switch on the coupling be-
tween spin and orbital excitations? The latter is represented
by Hi.: [Eq. (7)], which in terms of spin 8,) and orbital

2
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FIG. 2. The same as Fig. 1 but along the

I'—=X(7,0,0)—=N(m,0,m)—T direction.
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FIG. 3. Spin-orbit interaction corrections to the sgaand orbital excitationgb) and to the ground-state ener(gy. Lines(wavy lineg
represent spirforbital) waves.

Hin= =V {fipB B 9 Suk =S =VES (f gy p)i—2
in o p p w,k w,k % ( k,p gk,p) (w+i5)2—8ip
+3 9p(Be BLpt B-iBp)}(eq Hereey p=(wip+ wy), q=k—p, and
+o7 ),
#=a) (2= o=l (it 7). (13)
where the lowest-ordgthree magnonterms only are kept.
HereV=/3/2, andg=k—p. The matrix elements are (F0)k p= (7t 7p % 1) (XaiX1p) “ Xag.

fip=(Uqt Vo) [ PgMipt+ (it 7p) N p], (200 wherexy =[(1— y0)/(1+ yu) 1Y Xo=(1+27y,) Y2
In the orbital sector one finds that, (=0, and
gk,p:(u2q+02q)[nqu,p+(77k+ 77p)Mk,p:|v

gk,p

— =5 14
(w+i5)2—8ﬁ,p 19

_ _ 2
My p=(Upliptowip),  Nip=(Upv1ptvilsp), So k= Eﬁua,)k: 2V2§p: Ok+p.p

with 7= (cok,—cok)/2. The Bogoliubov transformation

coefficients in the spin subspace are given bywhere'gk =(w1p+ w11 p), andgZ, . can be found from
Ulk:{(5+21)/2 V2 vye=—{(s—1)/2 Y sgnyy, and  gq. (13).'?Ne recall that the “bare’e’penergie@nk in Egs.
s=(1—y3) Y2 The factor (i +va)=(1+2y2) ™ in  (11)—(14) are also affected by the interaction, due to the
Eq. (10) is due to Bogoliubov transformation in the orbital renormalization of parameteds, and .
sector. Results of self-consistent calculations by including inter-
Physically, the interactior{9) accounts for the process action corrections are presented in Table | and Figs. 1 and 2.
when spin exchange is accompanied by the simultaneous ofyynamical spin-orbit coupling results in the following) It
bital transition|z)«|x), thus enhancing th& orbital com-  enhances quantum fluctuations in both subspaces, thus re-
ponent in the ground state. Spin-orbital coupling leads to thejucing the staggered moment and increasing the weight of
conventional 2 2 matrix bosonic Green’s function in both the x orbital componentwhich is about 6% The latter ef-
subspaces, with diagonaG{ and nondiagonalK) compo-  fect is also reflected in a larger value of the ratid/J.. (ii)
nents given by Spin and orbital excitations are both softened, which is more
pronounced in thé&,=0 plane(and in equivalent ongssee

Cox=[lllo—A, )t (e tS, 0]/ Det, (1D Fig 2 The orbital gap still remains well defined. A spin-
Peierls-like instability is absent, because of the vanishing
Fox=—22)/ Det, matrix elements in Eq(9) for momenta alongz [note
7(0,049,) =0], and because of the finite interchain coupling.
D<9t=(iw—Aw,k)2 (iii) Spin waves get a finite damping. Orbital waves are al-
most undamped since the density of spin states inside the
—(wyg+ Sw,k—Eij)(wkﬂL S, k orbital gap is small(iv) Joint spin-orbital fluctuations sig-
@ nificantly lower the ground-state energsee Table )l The
T2 00 latter is given byEy=E ¢+ (H;n), where the interaction

correction to the mean-field result, calculated from the last

HereA,_  andS, , represent the antisymmetric and symmet- "~ R .
K vk '8P y y diagram in Fig. 3, is

ric (with respect to the Matsubara frequenay) components
of the diagonal self-energy"), respectively, whiles?) is
a nondiagonal element of the self-energy matrix. It is implied Hind=—V2Y 02 (0t o1pt @or_p). (15
that all quantities in Eq(11) carry the subspace indexas {Hin) fp STk Bap T2z

well, andn=1 (2) stands for spir(orbital) waves. We cal-

culate self-energies from the lowest-order diagrams shown iAhe exchange energy gaif,=—0.69 per site is found,
Fig. 3. which is close to our above estimation from physical consid-

In spin subspace we fingt zero temperatuye erations. Summarizing, interaction effects do not qualita-
tively change predictions of the self-consistent mean-field
theory, which seems to work quite reasonably. This is an

, (12 important observation, giving some credit to the mean-field

A=V (Flp=Gkp) | : : dit 1o ¢
P (w+i0) —&j, ansatz in studying more complicated spin-orbital models. Of
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course, the latter fails when the orbital gap is softened closquantum spin fluctuations. In contrast to Ref. 2 we find, how-
to the phase boundaries between different orbitally orderedver, that this effect is not strong enough to destroy thel Ne
states, and the dynamical spin-orbit coupling becomes ofrder. Melting of the long-range magnetic order by orbital
crucial importance. fluctuations suggested in Ref. 2 does not occur in a cubic
Consideringx-type ordering, we found it to be unstable perovskite system, for a simple reason: A certéimdel-
against fluctuations. It turns out that orbital eXCitationSdepender)t orbital ordering a|Ways results in the three-
around this mean-field state are gapless at khepoint,  dimensional(albeit very anisotropicnetwork of exchange
w,q~ (. In addition, the spin-orbit interaction vertex remains jnteractions among sping.hree-dimensionalityf the spin

finite atq=0, since the orbital pseudospin is not a conservediactor and existence of thebital gap are important factors

quantity, and orbital waves cannot be considered as Goldsiapjizing the Nel order. We believe that the orbital gap is

stone modes. All these lead to the divergencies in perturbay ot property of Mott-Hubbard insulators, which is re-
tion theory indicating that an-type ordered state is not an lated to the fact that the underlying symmetry in orbital sub-

;pg;(r)glsiemocveizthaéev;/ezalready mentioned above. This res bace is only a discrete one. In a metallic state, doped holes
In summary. we h.avé studied the spin-orbital counling®®" drastically change the situation, by inducing low-energy
Y, P PNYyrbital fluctuationg A study of the orbital melting in the

problem in the specific model, where this coupling is particu—Kugel_Khomskii model, driven by hole doping, deserves fur-
larly important because of infinite degeneracy of the classicatlher work ' '

Neel state in this model. The problem of the orbital frustra-
tion pointed out in Ref. 2 is actually removed by reducing We would like to thank A. M. OlgsP. Horsch, and V.
the effective dimensionality of the spin system. QuantumZevin for stimulating discussions and useful comments. We
spin fluctuations then generate an orbital excitation gamre also grateful to K. Davies for a careful reading of the
through the spin-orbit coupling mechanism. Orbital degenimanuscript. Partial financial support by the Russian State
eracy in the model1) should manifest itself in a strong Program “High-Temperature Superconductivity,” Grant No.
reduction of the Nel temperature, by favoring soft quasi-1D 95065, and by the Russian Foundation for Fundamental Re-
spin structure. This is consistent with a basic idea of Feinesearch, Grant No. 96-02-17527, is acknowledged by one of
et al? that orbital degeneracy, in general, acts to enhances (V.O.)
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