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Evidence for an enhanced magnetoresistance accompanying a continuous phase transition
in semiconducting La, Mg 3MnO4
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The field- and temperature-dependent ac susceptibility of Mg-substituted Lajrd@®ides unequivocal
evidence for the presence of critical fluctuations associated with a continuous paramagnetic-to-ferromagnetic
transition at which all three static critical exponents are estimated independently. Furthermore, this system does
not undergo a metal-insulator transition n&ar, exhibiting a monotonic increase in resistivity with decreasing
temperature in available fields. Nevertheless, this system displays a near colossal magnetoresistance that peaks
nearT., indicating a probable magnetic origin for this effect but of rather different character from that found
in other perovskited.S0163-18207)50144-5

The substitutional replacement of trivalent lanthanum ionghe size of the substituted cation, the order of the associated
by divalent alkaline earths in LaMnihas profound effects paramagnetic-to-ferromagnetic phase transition, and the
on the Mott insulating antiferromagnetic state of the parentmagnitude of the attendant magnetoresistance.
compound, producing ferromagnetic ordering and a metal- The sample of LggMg, 3dMnO; (nomina) was prepared
liclike conductivity in many instances. A general explanationby the standard ceramic method. Stoichiometric amounts of
of such effects was provided initially by a double exchangelLa,O5 (ultrapurg, MnO, (type FM), and MgO(99%) were
mechanism linked to the presence of both®¥irand Mrf* mixed for eight hours by ball milling in acetone. The dried
ions, this inhomogeneous mixed valence state being inducgabwder was then preheated for eight hours at 800 °C, pellet-
by the doping process.Recently, however, additional ized as a diskdiameter 8 mm, thickness 1.5 mrand sin-
mechanisms have been invoked to explain aspects of thered for 24 h at 1200 °C. A bar of dimensiofts<1.5%0.8)
unusual transport and magnetic properties of these systemmm?, suitable for transport and magnetic measurements, was
These additional mechanisms involve lattice distortions aseut from this disk. X-ray powder diffraction data were col-
sociated with ionic size variations resulting from doping, andlected using Cu I radiation. Rietveld analysis confirmed
arising specifically from either staticoherent Jahn-Teller the presence of a single phase with orthorhombic structure
distortions or fluctuating local Jahn-Teller displacements(Pbnm anda=5.5361) A, b=5.5121) A, andc=7.8011)
leading to charge orderirfgFurthermore, the colossal mag- A. The average Mn-O-Mn bond angle was estimated at 156°,
netoresistancécmr) found in “optimally” doped (i.e., 33%  so that previous conclusioch® regarding the suppression of
lanthanum replacementanganese perovskites has been asthe temperature of the metal-insulator transition with de-
sociated in recent theoriéwith a first-order paramagnetic- creasing bond angléor averageA site/lanthanide radius
to-ferromagnetic transition, the origin of which is believed tojr ) is confirmed; here, however, this suppression is associ-
play a central role in understanding the magnetoresistive praated with a reduced ionic radius of the substituted divalent
cess. Available experimental evidence suggests, howevegation and is more marked in the sense that a metal-insulator
that the order of this transition depends on the specific doptransition is not seen in available fields above the liquid-
ant used™’ helium range. Thus the gener@nd necessajytrend of an

Here we present unequivocal evidence for the presence dficreasing magnetoresistance as the metal-insulator transi-
critical fluctuations accompanying a continuous magnetidion temperature falfsis not seen here.
phase transition, along with the first estimate for the three Figure 1 shows the ac susceptibilipyH,T) (measured at
associated critical exponents evaluated independently. In a&4 kHz in a driving field of 30 mOe rms in a previously
dition, while several reports have appeared in which the efdescribed susceptométein various static biasing fieldd,, .
fects of changes in lanthanide ion doping near the optimaln zero field x(0,T) increases rapidly as the ferromagnetic
level are discusseti® the system investigated here— ordering temperatur&, is approached from above, pedlas
Lag Mg 3qMnOz—uses little-studied Mg as divalentcat-  the Hopkinson maximupnjust belowT., and then declines
ion. Whereas other systefn§ display a paramagnetic-to- monotonically with decreasing temperature down to 1.5 K;
ferromagnetic transition while remaining in an insulating/the latter indicates the absence of a sec¢utiferromag-
semiconducting state on cooling in zero field, they do exhibiinetic) transition in this systentabove 1.5 K. All the data
field-induced metallic characteristics. The present system ishown in the figure were acquired on warming following
unusual in that it does not show indications of an insulatingzero-field cooling; no measurable difference was found be-
to-metallic phase change below room temperature in availtween warming and cooling in zero field, as reported recently
able fields. Neverthless, it displays a substantial magnetorder a Sr-doped specimérisee the comments below regard-
sistance that peaks near the magnetic ordering temperatutiag the transport dajaThe application of static biasing fields
These results provide further interesting correlations betweeaf increasing strength results in the progressive suppression
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FIG. 1. The temperature dependence of the ac susceptibility 200 400 600 800 1000
x(H,T) (in emuf-Oe¢) in various fixed biasing field¢in Oe, as
labeled. The dashed line represents the cross-over line defined by H; (Oe)

the locus of critical peak amplitudes and temperatures. The inset - . .
shows the zero-field susceptibility along with the response in low FIG. 2. (@) The critical peak amplitudg(H, Tr,) (in emug-Oe

biasing fields, which suppress the principal maximum in both am-and corrected for background and demagnetizing effeuts (b)

. " . the (reduced critical peak temperaturgT,,—T.)/T., plotted
plitude and temperature to reveal the secondaryical) maxima. against the internal fielth; (in Oe), on a double logarithmic scale.

— . . . The solid line in(a) represents an overall fit and yields an average
of the principal maximuntin both amplitude and tempera- value of 6=4.4. The dashed line is a fit to the lower-field data

ture), thus facilitating the observation of secondagyitical 1 —400 Oe; in(b) the solid line is a fit to points 115 and yields a
maxima. The latter, reproduced in the main body of Fig. 1giope of 0.567)+0.07, consistent with thed3Heisenberg model
decrease in amplitude and shift to higher temperalif@s  value for the crossover exponent of 0.571.

H, increases; such behavior is a unique, characteristic signa-

ture of critical fluctuations accompanying a second-ordeboth the power-law dependence of H@) and an average
(paramagnetic-to-ferromagnetticnagnetic phase transition. value for the exponené~4.4 (an estimate that is indepen-
The variation withH, evident in Fig. 1 has been extensively dent of the choice fofl,). Closer inspection of the latter

reported previously in a variety of metallic systefrsnd is  figure reveals that the lower-field data80<H,<400 O@
consistent with both the predictions of the usual static

scaling-law equation of state and various model calculations
and can be understood on the basis of the fluctuation-
dissipation theorerft® The dependence of the peak ampli-

tude x(H,T,,) and the reduced peak temperattyel =(T,, .
—T.)/T.] on field have been used previously to extract es- Lo
timates for the critical exponents in a variety of syst&fs i o 1
using the scaling relations ot

Y (T)
N
1

X(H, T HY .Y

wasse®®

and

t HY(y+8) 2)
The iterative procedure by which a first estimate 1Tqris
chosen, and subsequently refined, has been discussed in de-
tail previously and here yieldsT,=88.0+0.5 K; thus only t
the final results are summarized in Figs. 2 and 3.

In Fig. 2(a) the critical peak amplitude¢(H,T,,) (cor-
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FIG. 3. The temperature dependence of the effective zero-field
susceptibility exponent *, plotted against the reduced temperature
rected for background and demagnetizing eff§dtsplotted [=(T—T,)/T,]. (®) represent the effective Kouvel-Fisher expo-
against the internal fielt; (Ref. 8 on a double logarithmic  nent found fort=0.1, while data for= <0.1 are obtained using Eq.
scale. The solid line drawn in this figure is consistent with(4) (see text
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FIG. 4. The zero-field resistivity(0,T) (in Q cm) as a function -100 -50 0 50 100 150
qf temperaturg(ln K) on a semllogarlt.hmlc scale. Thg resistivity Applied Field (kOe)
rises sharply in the vicinity off. but displays no semiconductor-

metal transition, rather continues to rise rapidly to below 70 K. The . e .

lower curve represents the temperature dependence of the resistivi"wﬂF lccrsn) |5n ]:irer:gsﬂj;)dt'g%pzfe;;;ii'f;g'm ?rgczgéiiﬁgdfoﬁcl)gllgj by

in a field of 8.4 T; no field induced metallic phase is observed. . ) o L .
decreasing field and a field reversal. The magnetoresistive behavior
is not only hysteretic but also fails to return to its virgin state when

are consistent with the d3Heisenberg mod#l value of

) ¢ the field is returned to zero. The inset shows the temperature de-
6=4.8 (the dashed line as a corollary, effectivés* values  pendence of the fractional magnetoresistiviiy(0) — p(H))/p(H) (in
that decrease with increasing field which have been reportet at 8.4 7, in the vicinity of T..

in a variety of disordered metallic systef$!! and attrib-

uted to the presence of a distribution of exchange couplingent with the 8-Heisenberg model value for the crossover
strengths are also found in the present data, as in fields aboegponent ¢+ 8) ! of 0.571. The temperature dependence
400 Oe a significantly reduced value &f (3.9) is obtained. of the effective zero-field susceptibility exponent is summa-
Here, such a variance might be a consequence of the substized in Fig. 3 using a combination of the Kouvel-Fisher
tutional process, which produces both antiferromagnetic  exponent®

between MA" ions in the undoped systérand ferromag-

netic (Mn®"-Mn*") double exchange; indeed the?(appear— y*(T)=dIn(x(0;t))/dIn(t) (€
ance of spin-glass-like features in some perovskis . . ;

mands such a variancébut with somewhat different in the ranget=0.1, and the relationship

characteristic parametersA second point that should be Y(H t) ot (4
made regarding the data in Figs. 1 and 2 is that these critical ’ m

peaks cannot be resolved in fields belevit80 Oe, a field [a power law based on the assumption of the validity of the
over two orders of magnitude larger than that reported in th&Vidom equality, y=8(6—1) and a combination of Eqs1)
softest metallic alloys! Such behavior is not fully under- and (2)] in the range +<0 where Eq.(3) becomes
stood at present as “butterfly” loop measuremengéH,T)  unreliable®*

versusH, at fixed T] indicate coercive fields of only 3.4 Oe The asymptotic {— 0)value fory* (t) is again consistent

in this system at 77 K, these fields being responsible for thevith the 31-Heisenberg model prediction of=1.386.

retention of the significant technical/regular contributions to A temperature-dependent* (t)—specifically one that in-
x(H,T), which generally obscure emerging critical creases with increasing temperature abdye—is also a
behavio®!! Nevertheless, the low-field data in Fig(a2 characteristic of systems with a distribution of exchange cou-
[which provide the most appropriate comparisons with scalpling strength$:*® Indeed the early observatithof a rapid

ing law predictions, the latter being asymptdtic—0,t—0)  decrease in the spontaneous magnetization in Pb substituted
in naturg are, despite these complications, consistent withperovskitegwhich also raised the possibility of a first-order
the Heisenberg model value 6&4.8. magnetic transitionfitted with a large(averagg value of

Similar comments apply to the data in Figgbpand 3. B8*=0.57, and the distribution of8 value reported for

Figure 2b) reproduces a plot of théeduced critical peak  Lag ¢S 3dMnO3 (Ref. 7) support the presence of such a dis-
temperature against the internal fiélgl; the line drawn veri-  tribution. Specifically as discussed extensively for a variety
fies the power-law relationship between these two quantitiesf metallic systems where such distributions frequently
summarized by Eq(2), and the slope of this line is consis- exist!® effective exponents often vary with the range of re-
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duced temperature over which appropriate fits are attempted. The data in Fig. 5 reveal a further interesting feature dis-
Having discussed the experimental evidence identifying #layed by(among othersperovskite and multilayer systems,
second-order paramagnetic-to-ferromagnetic transition, weamely, an inability to return to a virgin state following field
present a brief summary of the transport properties. cycling; a probable cause is thas yej undetermined do-

Figure 4 displays the zero-field resistivip(0,T) mea- main structure in this system and its field and temperature
sured using a four probe technig(absolute values fos are ~ Variation. Such structure can be a cause of metastability and
uncertain to typically 10% arising principally from shape time dependent/relaxation behavior, a feature also occurring
factor uncertaintiés as a function of temperature for Nere:

70<T<120 K. Below 60 K p became too large to be In conclusion, the implications of the present results on
measured ex.ceeding 9q) cm in fields up to 8.4 T models of perovskite systems can be summerized as follows.

Thus we conclude that this system displays anWh|Ie the influence of lattice distortion generated Awsite

insulating/semiconducting response over the entire temper%rsbztr']t;tt'ﬁg gn thee ngg!‘;";sbfeg\r'\’mein ttrr]fa ?;i{tr?nchﬂb';c_
ture range examine@®0<T<300 K); in particular, there is tive band hasxyt?ee‘; strtlassed rel god§Fythe o rrtlent gata
no evidence for a metal/insulator transition at or beldw v previ u

While such a change in the conducting properties of thig;ndicate that reductions in<1 resulting from divalent cat-
system are absent, the magnetoresistance is, neverthele'§)§uﬁtjebr.sr:'ttu{'.02 f:; E{%?]u.%etﬁgel\;l‘nn:gr&?;g;?oﬁﬁﬁgts'.:he
substantial. Figure 5 reproduces the field induced change i i ' | uitiv tsh uction | X qucti in th pl\ell 9
the resistivity at 73.4 and 110 K, as the field is cycled omatrix: elementso -accompanying reductions in the vin-
+8.4 T. The largestfractiona) changes occur in the imme- O-Mn .bond aggle completely suppress the metal-.msulator
diate vicinity of T. despite the absence of an associatec}raﬁ.s'ﬁog ther " an;:ih the dou?le—texchfatmge tCOUp“g?iEJ
metal-insulator transition, as the inset in Fig. 5 shows. At 88(W Ich determines the magnetic transition temperalise

1A N also reduced. Furthermore, the changeb induced by this
gSg:)e(ggldtrllg?LEff(g —C 23—?%?5((3; g)ﬁ?e)e]élps(o)g,gopgo?gxs latter transition are essentially nonexistent, in contrast to the

parable to systems often classified as displaying coloss .talogued behavior for the majority of substituted perov-
magnetoresistance. It is thus clear that neither a first-ord es.
paramagnetic-to-ferromagnetic transition nor a metal- This research received funding from the Natural Sciences

insulator transition is a prerequisite for cmr effects. and Engineering Research Coun®ISERQ of Canada.
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