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The calculation of the effective charges and dielectric constants of common III-V and II-VI semiconductors
is revised. The expectation value of the position operator on thesp3s* tight-binding basis set is expressed in
terms of a semiconductor-class-related constant, which is found to be related to the covalency of the com-
pounds. Within this approach, the computed dielectric properties are in very good agreement with experiment.
@S0163-1829~97!52744-5#

The macroscopic electric polarization of an insulating
crystal was defined until recently as the dipole of the elec-
tronic charge density in one unit cell. However, as has been
shown in Ref. 1, such a quantity is ill defined unless the
periodic charge density can be decomposed in terms of neu-
tral, localized contributions. The key ingredient in the devel-
opment of the modern theory of polarization2 has been to
relate these neutral charge distributions with the contribu-
tions arising from the Wannier functions describing the
ground state of the insulating crystal. The electronic contri-
bution to the macroscopic polarization is indeed related to
the dipole of the Wannier functions. In its usual first-
principles implementation, this dipole can be expressed in a
more convenient way in terms of a geometrical phase asso-
ciated to the periodic parts of the occupied Bloch wave func-
tions. In this way, derivatives of the macroscopic polariza-
tion, such as Born effective charges and piezoelectricity, can
be computed by finite differences. This new approach has
provided a more efficient and elegant way to compute, for
instance, piezoelectric constants2 than traditional linear re-
sponse theory.3 The calculation of macroscopic polarization-
related properties in terms of the Wannier functions has so
far only been performed for the Born effective charges of
GaAs.4 This is due to the computationally expensive deter-
mination of Wannier functions within the usualab initio
approaches.4 Hence, from a computational point of view, an
accurate description of the dielectric properties of simple cu-
bic semiconductors, using simplified model Hamiltonians,
presents a strong interest.

The empirical tight-binding model~ETB! ~Ref. 5! is a
very computationally convenient technique for investigating
dielectric properties. Using bonding and antibonding orbitals
as a basis set, Harrison5 has shown that many of the dielec-
tric properties of solids can be described within the ETB
model, thereby introducing very few parameters in the model
Hamiltonian. These parameters are generally fitted to some
selected band properties that are extracted from experiment
or ab initio calculations. However, it has been argued by
some authors6 that ETB models have to include in their fit-

ting procedure of the Hamiltonian matrix elements quantities
that are sensitive to the electronic wave functions, such as
the effective charges. In order to demonstrate this statement
they have used ansp3 basis set, as modified by Harrison, to
include the Louie peripheral states.10 Essentially, this proce-
dure consists in including the effects of an exciteds state as
a perturbation to the other interactions in view of correcting
some conduction band features of common semiconductors
while retaining the analytical character of the model. With
this basis set they have found that the calculated effective
charges have an enormous error~more than 10%) with re-
spect to the experimental ones.

At variance with Ref. 6, we will demonstrate in this paper
that there is no need to fit the ETB Hamiltonian matrix ele-
ments to the effective charges, since they can be simply re-
lated to some selected energies in the Brillouin Zone~BZ!. In
particular, a considerable improvement in the accuracy of the
computed effective charges can be obtained within thesp3s*
basis set,7 since it describes to a better extent than the Har-
rison basis the conduction bandsand the principal deforma-
tion potentials. Moreover, we will introduce a
semiconductor-class-relatedconstant which, when fitted to a
prototypical compound of each class~e.g., GaAs for III-V
and ZnTe for II-VI materials!, considerably improves the
theoretical agreement with experiment. This constant will be
related to the covalency of the compounds and used to cal-
culate their dielectric constants.

For a diatomic crystal, the Born effective chargeZab
!

measures the linear macroscopic polarizationP induced by a
relative displacementu of the two sublattices

eZab
! 5V

]Pa

]ub U
u50

, ~1!

whereV is the unit-cell volume anda,b refer to the differ-
ent components along the Cartesian axes. Since in the case of
cubic crystalsZab

! is diagonal, this quantity can be obtained
by the difference in macroscopic polarization between two
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states of the crystal under the hypothesis that the solid re-
mains an insulator. Assuming a relative displacementu
along thez direction, the differencePe(u)2Pe(u50) in
electronic polarization can be evaluated in terms of
the phasesw (u)(k,k8), which are defined as the phases
of the determinant of the generalized overlap matrices
Snm

(u)(k,k8)5^xn
(u)(k)uxm

(u)(k8)&, where n,m are indexes of
the occupied bands anduxn

(u)(k)& are the periodic parts of the
Bloch wave functions obtained by diagonalization of the cor-
responding Hamiltonian. The electronic part of the polariza-
tion Pe(u) indeed takes the following form:

Pe~u!52
e

~2p!3EA
dk'f~u!~k'!, ~2!

with

f~u!~k'!5E
0

uGu
dki

]

]ki8
w~u!~k,k8!U

k85k

, ~3!

whereA is the base of a prism that has the same volume as
the BZ andG52p/aẑ. The one-dimensional integral con-
nects ak' point in the basal plane with the corresponding
k'1G on the opposite surface of the prism. In practice, the
Bloch wave functions are computed on a uniform
mesh and satisfy the periodic gauge condition, i.e.,
uxn

(u)(k1G)&5e2 iG•ruxn
(u)(k)&. If we discretize the one-

dimensional integral withJ points, and use a finite difference
formula to evaluate the derivative, the expression~3! for the
Berry phasef (u)(k') can be approximated as

f~u!~k'!5Im log)
j 51

J21

detSnm
~u!~k j ,k j 11!

[(
j 51

J21

w~u!~k j ,k j 11!, ~4!

wherek j5k'1( j 21/J21) G, j 51, . . . ,J21.
In the empirical tight-binding scheme, the Hamiltonian is

represented in terms of an orthogonal basis set of atomiclike
orbitals, characterized by site and symmetry indexes. Re-
stricting the matrix elements of the Hamiltonian to first
neighbors ensures that the model is simple enough, while
retaining a good reproduction of the valence-band and the
lower conduction-band dispersions~even of indirect-gap ma-
terials!. Following the work of Chadi,8 the spin-orbit inter-
action only affects the on-site matrix elements of the Hamil-
tonian. The strain has been included in the modification of
both the bond angles and the transfer matrix elements.9 This
constitutes the most widely used formulation of the ETB
model and has given many reliable results on different quan-
tities.

Since the displacement of a sublattice corresponds to the
creation of a frozen optical phonon in the crystal, the ETB
parameters have to describe not only the valence bands but
also the conduction bands to a good extent. In order to re-
produce at best the deformation potentials of the compounds,
we choose from the literature the parameters of Ref. 9 for the
III-V compounds, and those of Refs. 12 and 13 for the II-VI

compounds, which have been explicitly fitted to the hydro-
statica and uniaxialb deformation potentials.

We are now faced with a fundamental problem in the
determination of the effective charges within the ETB ap-
proach: the evaluation of the matrix elements ofSnm

(u)(k,k8)
requires the knowledge of the representation of the position
operator on the ETB basis. Indeed, the diagonalization of the
ETB Hamiltonian provides the necessary Bloch functions
from which the corresponding periodic parts are obtained by
multiplying by the correct phase factor. The first naturalan-
satzis to assume that the position operator is diagonal in the
basis set with expectation values equal to the positions of the
atoms@we will call this the diagonal approximation~DA!#.
This ansatzwould correspond to the rather unphysical as-
sumption of locating all the charge of the cation and anion
hybrids at the center of the atoms.6 In other words, any dis-
placement of the hybrid charge along the bonds is neglected.

For each compound, we consider its ideal zinc-blende
structure at the experimental lattice constanta0 and a dis-
torted one obtained by displacing a sublattice alongẑ with
u5uẑ,u50.0001a0/4. The calculation of the effective
chargesZ! has been performed using a 16316 discretization
of the basal plane andJ5160 points for the one-dimensional
integration. The values of the Born effective chargesZ! cal-
culated within the DA approximation are reported in Table I.
For comparison, we report also the values obtained by the
authors of Ref. 6. For convenience, we have chosen the ori-
gin of the Cartesian coordinates at the center of the anion-
cation bond. Since the ETB basis set is centered on cation
and anion sites, different convergence rates for theZ! calcu-
lated by displacing one of the two sublattices have been ob-
tained~for J5160 the acoustic sum rule is valid within a few
percent11!. The reported values of the effective charges cor-
respond, therefore, to the average value of theZ! obtained in

TABLE I. Effective charges calculated in the ETB approach for
different III-V and II-VI compounds compared to the experimental
values~Ref. 16!. DA refers to the calculation within the diagonal
approximation of the position operator while BV labels those ob-
tained by Bennetto and Vanderbilt~Ref. 6! with the same approxi-
mation but with a different basis set.lc5Ciac , whereac is the
covalency of the bond defined by Harrison~Ref. 5! and Ci is the
class-dependent constant fitted to bring into agreement theZ! val-
ues of GaAs and ZnTe with experiment~indicated by a star!. DA
2lc refers to the value ofZ! obtained with the inclusion of thelc

constant in the diagonal ansatz.

DA BV lc Ci ac DA2lc Expt.

GaAs 2.08 1.73 0.96 1.091 0.88 2.16 2.16*
GaSb 1.85 1.41 0.97 1.091 0.89 1.94 2.15
GaP 2.04 1.88 0.94 1.091 0.86 2.23 2.04

III-V AlSb 1.78 1.48 0.97 1.091 0.89 1.88 1.93
InAs 2.22 2.11 0.91 1.091 0.83 2.52 2.53
InSb 2.13 1.86 0.93 1.091 0.85 2.35 2.42
InP 2.20 2.26 0.88 1.091 0.81 2.59 2.55

ZnTe 1.96 2.05 0.99 1.478 0.67 2.00 2.00*
II-VI ZnSe 2.07 1.86 0.98 1.478 0.66 2.13 2.03

ZnS 1.93 1.89 0.98 1.478 0.66 2.01 2.15
CdTe 2.21 1.92 0.92 1.478 0.62 2.47 2.35

RAPID COMMUNICATIONS

56 R12 699SEMICONDUCTOR EFFECTIVE CHARGES AND . . .



the two cases with the same sampling of the BZ. This first
improvement with respect to the Harrison basis is immedi-
ately evident.

In order to improve the results obtained with the diagonal
approximationansatz, we could try to include some off-
diagonal terms, i.e., some on-site matrix elements betweens
andp orbitals obtained by, e.g.,ab initio calculations. How-
ever, a worsening of the results has been proven to follow.6

Instead, we choose to remain in the ETB framework and
proceed in a different way: we keep the diagonal approxima-
tion but assume that the hybrid charge is somewhat displaced
along the bonds, as the physics of the problem suggests. The
expectation value of the position operator is then multiplied
by a constantlc that measures the displacement of the hy-
brid charge from the atomic positions~which would include
all kinds of off-diagonal interactions among orbitals14!. It is
worth noticing that a similar constant has been introduced,
within the bond-orbital model, by Harrison5 in order to im-
prove the agreement of the theoretical predictions with re-
spect to the experimental results for a large variety of physi-
cal properties. However, to our knowledge, no simple
relation of this other constant to general features of the com-
pounds has been stated. Since the hybrid basis can be ex-
pressed in terms of thesp3s* basis set, it is easy to show that
both constants are related proportionally with a factor of
A3.15

For the sake of simplicity, we choose the same constant
for each atomiclike orbital centered on the anion and cation
sites. Moreover, since the response of each type of material
to a sublattice displacement must have an equivalent charac-
ter within each class, depending on the atomic charges of the
elementsand on the covalent character of each compound,
we do assume thatlc depends on the covalencyac of the
compounds defined by Harrison5 by a class-dependent con-
stantCi according to

lc5Ciac i 5III 2V, II 2VI,••• , ~5!

whereac has been defined asac5V2 /AV2
21V3

2.5 The terms
V2 andV3 correspond to the covalent and polar energies per
bond, respectively. Thus,ac is a measure of the deviation of
the covalent character of the bond. The constantCi has been
fitted, for each class of semiconductors, to bring into agree-
ment theZ! values of GaAs and ZnTe with experiment. We
point out that we could have used the ionicitya i ,5 or the
covalency corrected by the inclusion of the peripherals*
state,10 in the definition oflc , but this would only change
the value ofCi for each class and neither the physics nor the
trends of the results. The values ofZ!, with including thelc
constant in the diagonalansatzof the position operator, are
reported in Table I. The agreement with the experimental
values is considerably increased. In general, the errors are
less than 5%. The only deviation to these results is theZ!

values of GaSb, GaP, and ZnS~whose errors are less than
10%). This discrepancy can be attributed to a less accurate
description of the conduction bands and/or the deformation
potentials. Moreover, we must report that, since the experi-
mental deformation potentials are affected by a considerable
error @in some cases more than 20%~Ref. 9!#, the scaling
parameters of the transfer matrix elements are thus affected,
to some extent, by the same error. We note that the effective

charge of GaP fits exactly with experiment even withlc51.
This result is probably fortuitous since, as discussed above,
the DA approximation does not correspond to the real phys-
ics of the problem.

Finally, the overall agreement of our results forZ! with
respect to the experimental values is more evident in Fig. 1.
A better agreement~evidently with differentCi for each
class! would have been possible with the inclusion of the
variation of the on-site elements due to the lowering of the
symmetry by crystal-field effects.9

In order to have more confidence in theansatzwe intro-
duced, we now calculate the dielectric susceptibility of the
compounds considered using the values of thelc constants
determined above. According to the approximate perturba-
tive scheme of Ref. 5, the linear dielectric susceptibilityx
can be recast for a uniform static electric field applied in the
z direction to a covalent periodic solid as~in Ry atomic
units!

x5
4

V(
k

(
n,n8

@u~nk!2u~n8k!#
u^nkuzun8k&u2

~enk2en8k!
, ~6!

FIG. 2. Dielectric constantse` calculated in the ETB approach
with the diagonal approximation of the position operator and thelc

parameters discussed in the text, compared to the experimental
values.5

FIG. 1. Effective charges calculated in the ETB approach with
the diagonal approximation of the position operator and thelc pa-
rameters discussed in the text, compared to the experimental values
of Ref. 16. The stars refer to the compounds whoseZ! has been
fitted to experiment. The circles, squares correspond to III-V and
II-VI compounds, respectively.

RAPID COMMUNICATIONS

R12 700 56MASSIMILIANO DI VENTRA AND PABLO FERNÁNDEZ



whereV is the volume of the unit cell,unk& andenk are the
eigenstates and eigenvalues of the crystal Hamiltonian, and
u(nk) is the electronic occupation number. In order to evalu-
ate Eq.~6!, we develop theunk& basis functions in the ETB
basis and use thelc constants introduced above. The high-
frequency dielectric constante` can then be calculated ac-
cording to the relatione`5114px. We used more than
3000k points in the irreducible wedge of the BZ to attain a
convergence of less than 1% together with thelc constants
of Table I to calculatee` .17 In Fig. 2, we compare the the-
oretical results with the experimental values. In this case, the
agreement is generally better than for theZ!, since the elec-
tronic dielectric susceptibility does not require a fit to the
deformation potentials. Since the principal contribution tox
originates from the transitions to the nearly parallel bands at
energies corresponding to the L6

c and L4,5
c conduction states,5

the good agreement we found is an indirect test of the quality
of the sp3s* basis set in describing the essential conduction
band features.

In conclusion, our results indicate that~i! the fitting pro-
cedure of the ETB parameters must preserve the
conduction—as well as valence—bands essential features
~and this is a requirement every ETB model must satisfy!,
~ii ! the deformation potentials must be well reproduced by
the scaling parameters of the transfer matrix elements of the
ETB Hamiltonian ~possibly by the variation of the on-site
elements!, and finally,~iii ! for the quantities that are sensi-
tive to the electronic wave functions, such as the piezoelec-
tric constants, the expectation values of the operators on the
wave functions can be fitted in such a way that some class-
dependent constants allow a determination of the general
trends of these quantities. TheCi constants we introduced
above are an example of this procedure, and can be reason-
ably used in the calculation of the linear and nonlinear opti-
cal properties of semiconducting materials.
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