PHYSICAL REVIEW B

CONDENSED MATTER

THIRD SERIES, VOLUME 56, NUMBER 20

15 NOVEMBER 1997-II

RAPID COMMUNICATIONS

Rapid Communications are intended for the accelerated publication of important new results and are therefore given priority treatment both in the editorial office and in production. A Rapid Communication in **Physical Review B** may be no longer than four printed pages and must be accompanied by an abstract. Page proofs are sent to authors.

Large thermoelectric power in NaCo₂O₄ single crystals

I. Terasaki*

Superconductivity Research Laboratory, International Superconductivity Technology Center, 1-10-13 Shinonome, Koto-ku, Tokyo 135, Japan

Y. Sasago and K. Uchinokura

Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan (Paceived 18 July 1007)

(Received 18 July 1997)

We measured and analyzed the transport properties of single-crystal NaCo₂O₄, which is a metallic transition-metal oxide consisting of a two-dimensional triangle lattice of Co. Reflecting the crystal structure, the resistivity is highly anisotropic between in- and out-of-plane directions, and the in-plane resistivity is as low as 200 $\mu\Omega$ cm at 300 K. Most strikingly, the in-plane thermoelectric power of NaCo₂O₄ is about 100 μ V/K at 300 K, which is nearly ten times larger than that of typical metals. The large thermoelectric power and the low resistivity suggest that NaCo₂O₄ is a potential thermoelectric material. [S0163-1829(97)52144-8]

The discovery of high-temperature superconductors (HTSC's) (Ref. 1) encouraged scientists to hunt for unknown materials that are scientifically interesting and/or technologically important. In fact, new materials and new phenomena were discovered one after another in the past decade.² We have been investigating a new material as a reference for HTSC's, and have paid attention to NaCo₂O₄. NaCo₂O₄ belongs to a bronze-type compound expressed as $A_x BO_2$ $(0.5 \le x \le 1)$, which was first identified by Jansen and Hoppe.³ An important similarity to HTSC's is that $NaCo_2O_4$ is a layered transition-metal oxide as is schematically shown in Fig. 1(a), where Na (50% occupied) and CoO₂ are alternately stacked along the c axis. Thus the physical properties are expected to be highly two dimensional (2D). However, the CoO_2 layer is different in structure from the CuO_2 layer of HTSC's; the former is a 2D triangle lattice shown in Fig. 1(b), and the latter is a 2D square lattice. Recently Tanaka, Nakamura, and Iida⁴ have shown that polycrystalline $NaCo_2O_4$ is a good metal down to 12 K, whereas it shows Curie-Weiss-like susceptibility instead of the Pauli paramagnetism. According to their results, NaCo₂O₄ can be regarded as a doped 2D triangle spin lattice, which is worth comparing with the CuO_2 layer.

We have studied the transport properties of single-crystal $NaCo_2O_4$, and have found, most unexpectedly, that it exhib-

its one order of magnitude larger thermoelectric power (100 μ /K at 300 K) than HTSC's, while it has as low resistivity (200 μ Ωcm at 300 K) as HTSC's. These parameters show that NaCo₂O₄ is a promising candidate for thermoelectric material.^{5–7} Furthermore it has as low mobility as metals (13 cm²/V s at 300 K), which is strikingly against the common sense that dirty conductors are not suitable for thermoelectric materials.⁵ According to this result, thermoelectric materials can be discovered in the opposite direction of the previous guiding principle that good thermoelectric materials will be

FIG. 1. A schematic picture of the crystal structure of $NaCo_2O_4$. (a) The layered structure; (b) the CoO_2 layer.

© 1997 The American Physical Society

R12 686

FIG. 2. (a) In-plane (ρ_a) and out-of-plane (ρ_c) resistivity of NaCo₂O₄ single crystals. (b) In-plane thermoelectric power (*S*) of NaCo₂O₄ single crystal. The inset shows the in-plane Hall coefficient (R_H) of NaCo₂O₄ single crystal.

found in narrow-gap semiconductors with high mobility.

Single crystals of NaCo₂O₄ were prepared by a NaClflux technique. A mixture of high-purity powders (Na₂CO₃:Co₃O₄:NaCl=1:1:5~6) was ground in an Al₂O₃ crucible, heated at 1050 °C for 5 h, and slowly cooled down to 850 °C by 2.5–5 °C/h. The grown crystals were then washed in water to remove the NaCl flux. The crystals were thin along the *c* axis with a typical dimension of $1.5 \times 1.5 \times 0.02$ mm.³

Resistivity was measured with a dc current I of 1-5 mA in a four-probe configuration along the in-plane direction $(I \perp c)$, and in a ring configuration along the out-of-plane direction $(I \parallel c)$. Thermoelectric power was measured only along the in-plane direction, where one edge of the sample was pasted on a sapphire plate with the other pasted on a sheet heater. Temperature (T) was monitored by two diode thermometers attached on the edges. The contribution of copper leads was carefully subtracted.

Figure 2(a) shows the in-plane (ρ_a) and out-of-plane (ρ_c) resistivities of NaCo₂O₄ crystals. The resistivity is anisotropic in magnitude, and in the *T* dependence as well. The ratio of the resistivities ρ_c/ρ_a is around 200 at 4.2 K, which is comparable to the values for La_{2-x}Sr_xCuO₄ (Ref. 8) and Sr₂RuO₄ (Ref. 9). The electronic states can be thus regarded as quasi-2D, as was expected from the layered structure. The *T* dependence of ρ_a is consistent with Ref. 4, and the magnitude is as low as ρ_a of typical HTSC's. It should be emphasized that ρ_c shows a crossover near 200 K from metallic to semiconducting behavior with increasing *T*. This is similar to ρ_c of Sr₂RuO₄,¹⁰ where the semiconducting ρ_c at high *T* is understood as incoherent hopping owing to $\ell_c \leq c' [\ell_c$ is the *c*-axis mean free path, and *c'* is the interlayer spacing shown in Fig. 1(a)].

Figure 2(b) shows the in-plane thermoelectric power (S) of NaCo₂O₄. The magnitude of S is 100 μ V/K at 300 K, which is about ten times larger than a typical S of metals and HTSC's.¹¹ Furthermore, the sign of S is opposite to the sign of the Hall coefficient shown in the inset of Fig. 2(b),¹² im-

TABLE I. Various physical parameters for NaCo₂O₄ and Bi₂Te₃ (Ref. 6) at 300 K. ρ , *S*, and μ are resistivity, thermoelectric power, and mobility, respectively. Note that ρ and *S* of NaCo₂O₄ are the in-plane data.

Parameters	Unit	NaCo ₂ O ₄	Bi ₂ Te ₃
ρ	$m\Omega \ cm$	0.2	1
S	μ V/K	100	200
S^2/ ho	μ W/K ² cm	50	40
μ	cm ² /V s	13	150

plying that S cannot be explained by a simple free-electron picture.¹³ The large S accompanied by low ρ_a suggests that NaCo₂O₄ is applicable to thermoelectric devices.

A thermoelectric device is a device that converts heat into electric energy through the thermoelectric power of solids.⁵ It also converts electric energy into heat through the Peltier effect.¹⁴ Since there is no theoretical upper limit of |S|, it can be, in principle, as efficient as any other energy-conversion systems. In addition, the lifetime of the device can be as long as the lifetime of the material from which the device is made. More importantly, the device is environmentally friendly in the sense that it produces essentially no waste matter. For a thermoelectric application, large |S| and low ρ are required. Usually |S| and ρ are larger for smaller carrier density (n), and the output power takes a maximum at an optimal density n_0 (~10¹⁹ cm⁻³), which corresponds to *n* for doped semiconductors.⁵ In the fixed n_0 , only the way to get low ρ is to find a material with high mobility (μ) . Consequently semiconductors with n_0 and high μ (10²-10³ cm²/V s) have been applied to thermoelectric devices.^{5–7}

A significant feature in NaCo₂O₄ is that it has lower μ than doped semiconductors. Here we will show a rough estimate of μ at 300 K using the Boltzmann theory of metals and the effective-mass approximation, where n is T independent and $\mu \propto \ell \propto 1/\rho$. First let us evaluate the in-plane mean free path ℓ_a . As mentioned above, the maximum of ρ_c (12 m Ω cm) indicates $\ell_c \sim c' = 5.4$ Å, and we get $\ell_c \sim 16$ Å at 4.2 K ($\rho_c \sim 4 \ m\Omega$ cm). Then using $\ell_a / \ell_c \sim v_a^F / v_c^F \sim \sqrt{\rho_c / \rho_a}$ (where v_i^F is the Fermi velocity along the *i* direction), we get $\ell_a \sim 16 \times \sqrt{200} \sim 230$ Å at 4.2 K. The next step is to obtain $k_a^F \ell_a$ from the equation of $k_a^F \ell_a = hc'/e^2 \rho_a$, where k_a^F , h, and e is the in-plane Fermi wave number, the Planck constant, and unit charge, respectively. Note that we assume the 2D conduction along the *a* axis.¹⁵ By substituting $\rho_a=20$ $\mu\Omega$ cm, we get $k_a^F \ell_a \sim 70$ at 4.2 K. Finally μ is calculated as $\mu \sim 2\pi e \ell_a / h k_a^F \sim 120 \text{ cm}^2/\text{Vs}$ at 4.2 K, and μ at 300 K is estimated to be 13 cm²/V s ($\rho_a \sim 180 \ \mu\Omega$ cm). This result quantitatively agrees with measured Hall coefficient $(|R_H| \sim 2 \times 10^{-3} \text{ cm}^3/\text{C} \text{ at } 4.2 \text{ K})$. The obtained μ is much lower than μ of semiconductors, and in this context we regard NaCo₂O₄ as a dirty conductor.

In Table I, various parameters of NaCo₂O₄ are compared with those of Bi₂Te₃,⁶ a typical thermoelectric material. Although *S* is smaller in NaCo₂O₄ than in Bi₂Te₃, ρ is also lower to make the power factor (S^2/ρ) comparable. A remarkable difference is that μ is one order of magnitude lower in the former than in the latter, indicating that a dirty conductor can be as efficient as other thermoelectric materi-

R12 687

als. The low μ with the low ρ means that NaCo₂O₄ has much larger *n* than Bi₂Te₃, and that *S* is not simply determined by *n*. If so, *S* and ρ can be changed independently, which may break through the limitation derived from the conventional theories.

Finally we point out two future issues. (i) The origin of the large |S| is an open question. A possible scenario is that S arises from spin fluctuation, as is similar to heavy fermions and/or valence-fluctuation systems.¹⁷ The T dependence of ρ_a and S is, at least qualitatively, consistent with the theories of 2D metals with spin fluctuation by Moriya, Takahashi, and Ueda¹⁸ and by Miyake and Narikiyo.¹⁹ (ii) In addition to large |S| and low ρ , low thermal conductivity (κ) is required for a real thermoelectric application.²⁰ We did not measure κ in the present study, and thus it should be further examined whether NaCo₂O₄ is really better for application. Actually a new thermoelectric material IrSb₃ shows larger S^2/ρ than Bi₂Te₃,¹⁶ but shows less $S^2/\rho\kappa$ because of its high thermal conductivity.⁷ In a preliminary study,²¹ however, polycrystalline NaCo₂O₄ shows as low κ (~15 mW/cm K at 300 K) as Bi₂Te₃ and, hopefully, it will be qualified as a new thermoelectric material.

- ²For example, in 3*d* transition-metal oxides, M. Hase, I. Terasaki, and K. Uchinokura, Phys. Rev. Lett. **70**, 3651 (1993); M. Azuma *et al.*, *ibid*. **73**, 3463 (1994); Y. Tomioka *et al.*, *ibid*. **74**, 5108 (1995); M. Uehara *et al.*, J. Phys. Soc. Jpn. **65**, 2764 (1996).
- ³M. Von Jansen and R. Hoppe, Z. Anorg. Allg. Chem. **408**, 104 (1974).
- ⁴T. Tanaka, S. Nakamura, and S. Iida, Jpn. J. Appl. Phys. **33**, L581-L582 (1994).
- ⁵ For recent reviews on thermoelastic materials, see G. Mahan, B. Sales, and J. Sharp, Phys. Today, March 1997, p. 42; C. B. Vining, in *Proceedings of the XIIth International Conference on Thermoelectrics*, Yokohama, Japan, 1993, edited by K. Matsuura (Institute of Electrical Engineers of Japan, Tokyo, 1994), p. 126.
- ⁶T. Caillat et al., J. Phys. Chem. Solids 53, 1121 (1992).
- ⁷J. W. Sharp *et al.*, J. Appl. Phys. **78**, 1013 (1995).
- ⁸Y. Nakamura and S. Uchida, Phys. Rev. B 47, 8369 (1993).
- ⁹Y. Maeno *et al.*, Nature (London) **372**, 532 (1994).
- ¹⁰K. Yoshida et al., J. Low Temp. Phys. **105**, 1593 (1996).

In summary, we prepared single crystals of metallic layered transition-metal oxide NaCo₂O₄, and measured the anisotropic resistivities and thermoelectric power. We have found that the in-plane thermoelectric power is unusually large (100 μ V/K at 300 K), while the in-plane resistivity is quite low (200 μ Ω cm at 300 K). These results indicate that NaCo₂O₄ is a potential thermoelectric material, whose power factor is comparable to a typical thermoelectric material such as Bi₂Te₃. Most importantly, NaCo₂O₄ has relatively low mobility (13 cm²/Vs at 300 K), which is strikingly against the common sense that a low-mobility conductor cannot be a thermoelectric material. This implies that a new thermoelectric material may exist beyond the previous guiding principle.

We would like to thank H. Yakabe for fruitful discussions on thermoelectric materials, and I. Tsukada for stimulating discussions on NaCo₂O₄. We also appreciate T. Samukawa's collaboration at the early stage of this study. This work was partially supported by NEDO for R&D of Industrial Science and Technology Frontier Program.

- ¹¹S. D. Obertelli, J. R. Cooper, and J. L. Tallon, Phys. Rev. B 46, 14 928 (1992).
- ¹²The in-plane Hall coefficient was measured in sweeping magnetic field from -8 to 8 T. Here we would like only to show the negative sign. More detailed discussion, such as the *T* dependence, would be out of the scope of the present paper.
- ¹³ A similar situation is seen in Sr₂RuO₄, where the negative Hall coefficient and the positive thermoelectric power were observed at low temperatures. See N. Shirakawa *et al.*, J. Phys. Soc. Jpn. **64**, 1072 (1995); H. Yoshino *et al.*, *ibid.* **65**, 1548 (1996).
- ¹⁴H. J. Goldsmid, *Electronic Refrigeration* (Pion, London, 1986).
- ¹⁵N. P. Ong, Phys. Rev. B **43**, 193 (1991).
- ¹⁶T. Caillat, A. Borshchevsky, and J. P. Fleurial, in *Proceedings of the XIIth International Conference on Thermoelectrics*, Yokohama, Japan, 1993, edited by K. Matsuura (Institute of Electrical Engineers of Japan, Tokyo, 1994), p. 193.
- ¹⁷For example, C. S. Garde and J. Ray, Phys. Rev. B **51**, 2960 (1995).
- ¹⁸T. Moriya, Y. Takahashi, and K. Ueda, J. Phys. Soc. Jpn. **59**, 2905 (1990).
- ¹⁹K. Miyake and O. Narikiyo, J. Phys. Soc. Jpn. 63, 3821 (1994).
- ²⁰G. A. Slack, in *CRC Handbook of Thermoelectronics*, edited by D. M. Rowe (CRC Press, Boca Raton, FL, 1995), p. 407.
- ²¹H. Yakabe *et al.* (unpublished).

^{*}Present address: Department of Applied Physics, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169, Japan. Electronic address: terra@mn.waseda.ac.jp

¹J. G. Bednorz and K. A. Müller, Z. Phys. B **64**, 189 (1986).