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Charge-density-wave and superconductivityd-wave gaps in the Hubbard model
for underdoped high-T . cuprates
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We present a general theory of coexisting charge-density-@@b&V) and superconductivitd-wave gaps
for the two-dimensional2D) Hubbard model. This motivates the description of the normal state of the
underdoped cuprates by the previous fluctuation-exchange equations with a phenomenologicdivzive/
gap. The resulting neutron-scattering intensity, spin-lattice relaxation rie hagnetic susceptibility, resis-
tivity, and photoemission intensity are in qualitative agreement with the data on underdop€ld, lcigprates.
TheT,. decreases and the crossover temperdfyréor 1/T, T increases with increasing amplitude of the CDW
gap.[S0163-1827)51342-7

A normal-state pseudogap has been inferred from Goo=(iwnZ1— €1—&1)ID, Gio=¢c/D ;
neutron-scattering, nuclear magnetic resonand®MR),?
heat capacity, and resistivit} data on underdoped
YBa,Cu;0;_ s and YBaCu,Og. Angle-resolved photoemis-
sion (ARPES measurements  on underdoped
Bi,Sr,CaCyOg., 5 (Bi 2212 indicate the presence of a gap
with d,2_,2-wave symmetry abové&_ in the charge excita-
tion spectrum. Recently it has been shéwhat both the
normal-state and superconducting NMR Knight-shift data of
several underdoped highs cuprates can be described in (1=(k,iwp),2=(k+Q,iwy)). (4)
terms of a BCS-like pseudogap withwave symmetry. The
resulting phase diagram has a strong similarity to that of

competing charge-density-wave and superconductivity gaps/1€re Zi is the effective mass functiorg; the bare tight-

We follow here the idea of competing charge-density-Pinding bandg; the energy shift function, and. the CDW
wave (CDW) and superconductivitySC) gaps which are order parameter proportional {@y  ,Cx ). The subscript
caused by the same interactibrhe attractive electron- 1 refers to the main band with variables={k,i w,), and the
phonon interaction yielding-wave pairing is replaced by the subscript 2 refers to the “shadow” band with variables
repulsive interaction due to exchange of nearly antiferromag2=(k+Q,iw,) and Q=(,w). The interaction has the
netic spin fluctuations, which leads to CDW and SC gapsandom-phase approximatigRPA) form, P.=(3/2)U?%x,
having d,2_,2-wave symmetry. The aim is to describe awhereys=xo(1—Uxo) ! is the dynamical spin susceptibil-
number of different physical quantities in the normal state ofity. The irreducible susceptibilityy, is calculated self-
the underdoped cuprates by the calculated physical quantitiegnsistently from the quasiparticle spectral functions
for a two-dimensional2D) Hubbard model in the regime _ |mG;; /= by taking into account the renormalization by
where the CDW ga_pﬁthe pseudogapis different from Zero  the self-energie& ; (see Ref. &
and the SC gap is zero. We formulate the fluctuation- \ya consider here a tight-binding barg=e(k) whose
exchange approximation for the 2D Hubbard m8delthis Fermi line approximates those of the Y-Ba-Cu-O and Bi

CDW regime. In the fluctuation-exchange approximation the2212 compounds. Then the “hot spots” where the Fermi

exchange of spin-fluctuations is treated according to th N P i
strong-coupling theory of superconductivity in a self-(ﬁnes'E(I()Jrg(k)_0 ande(k +Q)+£{(k+Q)=0 in the first

consistent and conserving manner. This yields the followinc\;(j_uadrant of the Brillouin zone cross each other lie in the

equations for the quasiparticle self-energis in terms of icinity of the pointsk=(,0) andk=(0,m). One recog-

the Green’s function&;; and the spin-fluctuation interaction nizes from Egs. (D—(4) that at 'the hot ~ spots
P, (ex+é,=—€,— &1, Z,=2;) these equations reduce to the

fluctuation-exchange equations for the superconducting
regimé where the SC gap functioss is replaced by the
Eij(k)=2 Py(k—k")Gjj(k") [k=(k,iw,)]; (1) CDW gap functiong.
K’ In analogy to Ref. 7 we have developed also the general
theory of coexisting CDW and S@-wave gaps due to spin-
Sii=ion(1=2Z)+&, (i=12; Z15=¢¢; (2 fluctuation pairing interaction. In order to save space we
present here only the gap equation for the superconducting
(SO gap in the weak-coupling BCS formi\( is the SC gap
Gii=(iwpZo—€2—&5)ID, (3) andA. is the CDW gap

D=(iwnZ1— €1~ &) (iwnZo— €2— £2) — B2
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Ag(k)=—2 Py(k—k)A((K)F([1-2f(E})]/2E],
k/

+[1—2f(E")JI2E" + (e}~ €})
X[(€1=€5)?+4A7])" 12
X{[1—2f(E")]I2E —[1—2f(E")]/I2E" });
(5)
Ei={3(e1te)*x3[(e1—€)?+4A21"42+ A2,

e1=€(K), €e=€e(k+Q), Ag=Ayk), A=A(Kk).

(6)

One notices again that at the hot spots with-e,=0 the
quasiparticle energieg.. in Eq. (6) take on the BCS form
with a total squared gap energy equal Ad(k)+A2(k).
Since the repulsive spin-fluctuation interactiéh(k—Kk’)
has a large peak &t—k'=Q’=(— m,7), the CDW gagsee
Egs.(1)—(4) for ¢.] as well as the SC gasee Eqgs(5) and
(6) for Ag] both haved,2_,2-wave symmetry. The form of
E.. at the hot spots witle; + €,=0 in Eq.(6) may justify the
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FIG. 1. The spin-lattice relaxation rate divided By 1/T,T,
versusT, for amplitudes of the CDW gaf =0 (dashed lingand
E4=0.05, 0.075, 0.t.(solid lines from top to bottom The param-
eters areJ(Q)=U=3.& (t is the next-nearest-neighbor hopping
energy, n=0.91 for the Y-Ba-Cu-O-like band. The lower ends of
the curves refer td .= 0.023, 0.022, 0.021, and 0.G1@rom top to
bottom).

expression f0f3the quasiparticle energy which has been usednctions of the dynamical spin susceptibility and the quasi-
by Loramet al.” and Williamset al.” to fit the heat capacity particles we can calculate a large number of physical quan-
and Knight-shift data in both the normal and superconducttities for which the expressions are given elsewHeFérst

ing states in the underdoped cuprates.
Instead of solving the full set of Eg&l)—(4) for the CDW
state (the “normal’state with respect to the SC stptwe

we consider the NMR and neutron-scattering intensity which
are calculated from the spectral density of the dynamical spin
susceptibility, Imys(q, ). This function has a broad peak as

approximate here these equations by the simpler form which function ofq which is centered &b, and it exhibits a peak

they acquire at the hot spots widy+ ¢,=—€;,—&;. This

as a function ofw at the antiparamagnon energy. The

seems to be a reasonable approximation because the hgbpe of this function aty=0 first increases with decreasing
spots yield the dominant contribution to the right-hand sider down a crossover temperature called, and then it de-

of Eg. (1): first, the denominatoD of G;;(k') becomes
small, and second, the interactiBg(k— k") for scattering of

creases with further decreaseTofAt the same time the peak
atws~E4 narrows and increases with decreasingn Fig. 1

quasiparticles from one hot spot to the other becomes largge have plotted the nuclear spin-lattice relaxation rate di-

becausek—k’ is of the order ofQ’=(—, ). This treat-

vided by T, 1/T,T, versusT. One recognizes that this quan-

ment of the CDW is somewhat similar to the work by Rice ity first increases with decreasiriy then acquires a maxi-
and Scotf although in our case the hot spots do not coincidepum at about the crossover temperatitg, and then it
with the saddle points. Furthermore we assume that thgecreases rapidly astends toT.. This behavior is plausible

CDW gapd¢. has the simple form of a BC&wave gap like
that introduced in Ref. 6:

¢’c(k)EAc(k):Eg( cosky — COﬂ(y) . (7)

Then Egs.(1)—(4) for 3, take on the form of the previous
fluctuation-exchange equatiénshere the SC gagh, occur-
ring in the quasiparticle spectral functioAg, As, andA; is
replaced by, given in Eq.(7). The T for superconductiv-
ity is given by \4(T;)=1 where the eigenvaluesy(T) are
determined now by the linearized gap equation ¢qrcon-

from the behavior of Ings(Q,w) because T/;T is essen-
tially given by the slope of this function ai=0. The occur-
rence of a maximum of T4 T (see Fig. 1is in agreement
with the NMR data in the underdoped regifin the over-
doped regime of the cupratesTinr increases monotonically
with decreasingr.

The temperature behavior of §yQ,w) is also in
agreement with the temperature dependence of the neutron-
scattering intensity at fixed small energw. This
neutron-scattering intensity first increases with decrea§ing

taining the kernelA; / ¢.. We remark that the gap equation up to a maximum at abodf, , and then it decreasésThis
for ¢ below T, contains the squared order parameterbehavior has been interpreted as a signature of the opening of

@2+ ¢?2 in the denominator oA /¢, . This equation corre-
sponds to the weak-coupling gap equation in Ex). for
El+ 6220.

a spin pseudogap in the spin excitation specttum.
In Fig. 1 we show 1T, T for three different values of the
amplitudeE, of the CDW gap in Eq(7): E;=0.1t, 0.07%,

We have solved the fluctuation-exchange equations witland 0.0%. One recognizes that for this sequencé&givalues

the CDW gap in Eq(7) for a bare tight-binding band(k)

the position of the maximum af, decreases from about

with first- and second-nearest-neighbor hopping, an effectivd, =0.0& to 0.045, and to 0.035 and that theT, (lower

on-site repulsion)(q) having a maximunJ=3.& atq=Q
(t is the nearest-neighbor hopping enertfyand a renormal-

ends of the curvegsincreases from abouf.=0.016 to
0.0206, and to 0.0223. F&y=0 the 1T, T increases mono-

ized band fillingn=0.91. From the results for the spectral tonically with decreasingr down to T.,=0.023. The de-
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FIG. 2. The static and uniform spin susceptibility 8
Xs(@=0,0=0) versusT for gap amplitudesEg=0, 0.05, 0.075, 7
and 0.1 (curves in this sequence from top to botjorfihe notation
is given in Fig. 1. 6
crease ofT, and the increase of, with increasing gap 3 >
amplitudeEg is in qualitative agreement with the phase dia-4 4
gram of the Knight shift, magnetic susceptibility, and resis-Z 3
tivity data in the underdoped regirfié Here we assume im-
plicitly that E, increases as the doping away from half 2
filling, x=1—n, decreases. 1
The static and uniform spin susceptibility is given by

(=

xs(d=0,0=0)=[1-3(q=0)x0] *x0o(d=0,0=0). In Fig.
2 we have plotted our results foy,(0,0) versusT for
Ey=0.1, 0.075, 0.06 andEy4=0. One sees that; decreases
with decreasind’, and that the overall reduction downTQ FIG. 4. Quasiparticle spectral functidd(k,) versusw for
increases with increasing gap amplituig in qualitative g _—0.1t, T=0.08, and differentk vectors near the gap antinode
agreement with the fits of the NMR Knight-shift d&talere () and nodeb). (a) k=(0.14,1), (0.16,1), (0.17,1), (0,19,1), and
it should be pointed out that in our strong-coupling calcula-(0,20,1) (in units of 7r) where the peaks below the Fermi energy
tion the CDW gap in Eq(7) is reduced by R2 and is w=0 decrease in this sequencekofiectors. The Fermi wave vec-
smeared out by the quasiparticle dampindmZ. The de-  torisk,=(0.18,1)r. (b) k=k(1,1)7 with k=0.38, 0.39, 0.41, and
crease ofy¢(0,0), or xo(0,0), for decreasing is plausible 0.42 where the peaks go from left to right for this sequencé& of
becauseyx(0,0) is approximately given by the BCS expres- vectors. The Fermi wave vector is abdyt=0.41(1,1)r. The pa-
sion xo=/".do N(w)[— df(w)/dw], where the density of rameter values are the same as in Figs. 1 and 3.

statesN(w) is shown in Fig. 3 forEg=0.1. One sees that |, Fig 4@) we show the quasiparticle spectral function
N(w) exhibits a typicald-wave gap wher®l(w) is linear in N(k,w) versusw for E;=0.1t andT=0.0% and for differ-
o for o<E,. For decrea§|ng', N(0) decreases rapidly and gntk vectors, i.e.k=(0.14,1), (0.16,1), (0.17,1), (0.19,1),
thereforey, decreases witff. and (0.20,1)(in units of 7), where the peaks below the
Fermi energyw=0 decrease in this sequencelofiectors.
0.4 The Fermi wave vector is given by =(0.18,1)r. One sees
that the right-hand side edge of the peak below the Fermi
energywm =0 stays always a finite amount of energlye gap
energy below the Fermi level and never crosses itlas
moves along the direction from (0,&)to (1,1)7 through the
Fermi line. This is in agreement with the ARPES data in the
normal state on underdoped Bi 222 Rlotice that the photo-
emission intensity is given bW(k,w)f(w) and that the
Fermi functionf (w) cuts out the peaks fas>0 in Fig. 4a).
Along the node of the CDW gap in E¢7) we find that the
quasiparticle peak of(k,w) moves through the Fermi en-
0.0 ‘ ‘ ‘ ergy =0 ask moves along the direction from (0,0) to
-0.2 -0.1 0.0 0.1 0.2 (7, ) through the Fermi lingsee peaks in Fig.(®) from
o/t left to right for the sequence of vectorsk=0.38(1,1),
0.39(1,1), 0.41(1,1), and 0.42(1,1), in unitsm}f. Compari-
FIG. 3. Density of stated(w) versusw for J(Q)=U=3.&, son with Fig. 4a) shows that the peaks along the node of the
n=0.91,E,=0.1t, and temperaturé6=0.1,0.09. . .,0.02 (curves  gap are much larger than the peaks near the antinode of the
in this sequence from top to bottgm gap.

04 -03 -02 -01 00 01 02 03 04
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We have calculated also the resistivitywersusT for gap
amplitudesEy=0.1, 0.075, 0.0 and E4=0. It turns out
that p is nearly linear inT down to the lowest temperatures
and that the curves for increasilig are shifted downwards
and run almost parallel to that f&,=0. According to the
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mal state of the underdoped cuprates. The present theory can
describe also the decrease of the static susceptilyilityith
decreasingl (see Fig. 2 and the development of d&wave

gap in the density of stated(w) (see Fig. 3 and in the
photoemission intensiti(k,w) f(w) for k vectors near the

ARPES data on underdoped Bi 2212 the normal-state gagntinode of the gagsee Fig. 4.

increases nearly linearly with decreasifig Thus, one can
infer from these results that bends downwards for decreas-
ing T if the gapEy is switched on slowly for decreasing
However, the effect is too small in comparison to the ddta.
is likely that the current contribution involving two order-
parameter fluctuation propagatbrgields a stronger bending
downwards ofp below T, .

In summary, we have presented the general equations &

the fluctuation-exchange approximation for coexisting
charge-density-wavegCDW) and superconductivity(SC)

d-wave gaps which are induced by exchange of spin fluctu
tions in the 2D Hubbard model. At the “hot spots” where
the nesting conditiore(k) + e(k+Q)=0 is satisfied these
equations reduce to the previous fluctuation-exchang
equation with a squared gap energy equalAd+A2. We

have solved the latter equations with a phenomenologic

CDW d-wave gap in analogy to the pseudogap which has

been used to fit the heat capadiand Knight-shift data. Our
strong-coupling calculation yields the full momentum and
frequency dependence of the dynamical spin susceptibilit
and quasiparticle spectral function. For increadiygcorre-
sponding to decreasing dopintpe T, for superconductivity
decreases and the crossover temperafyrefor 1/T,T in-
creasegsee Fig. 1L We remark that this behavior of TyT

and the corresponding behavior of the neutron-scattering inf

tensity can be described also by the effect of order-paramet
fluctuations'* In the presence of a pseudoggpwe find that

the order-parameter fluctuations lead to a more rapid drop q

1T,T below T,, which is in better agreement with
experiment However, the order-parameter fluctuations fail

a_

In conclusion we can say the following. Our results for a
number of physical quantities are consistent with the exis-
tence of ad-wave pseudogap in the normal state of the un-
derdoped cuprates. Our strong-coupling calculations go far
beyond the BCS calculations of Loraet al2 and Williams
et al® because we have taken into account self-consistently
the effect of spin fluctuations on the quasiparticle self-
ergies, in particular, the quasiparticle dampisee Fig. 4.

We did not consider dynamic effects of the CDW here like
the ones discussed in Ref. 12, but as our results show, the
experimental features in the pseudogap state can be under-
stood consistently with a static CDW gap. The origin of the
pseudogap is still unknown. It seems possible that it is a

gDW gap because our Eq$l)—(4) for the fluctuation-

exchange approximation of the one-band Hubbard model re-

aquce at distinct pointsthe hot spots yielding the dominant

contributiong to the fluctuation-exchange equations for
d-wave superconductivity.One might wonder whether a
SDW instability could be more stable than a CDW. We

found earlier, that the fluctuation-exchange equations do not

ive rise to a SDW instability, but approach it
asymptotically? Also, Egs.(1)—(4) in this case do not reduce

to thed-wave superconducting equations at the hot spots. A

sign change of the CDW order parameter is crucial for this
roperty and might also be supported by certain phonon
modes:® Equationg1)—(4) have not been solved yet because

?ﬁey are much more complicated than thevave supercon-

ucting equations. It will be interesting to see whether or not
e T, for the d-wave CDW gap is higher than that for the

d-wave superconductivity gap.

to yield the other observed pseudogap properties in the nor- We acknowledge helpful discussions with D. Fay.
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