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We demonstrate how resonant pair scattering of correlated electrons aboveTc can give rise to pseudogap
behavior. This resonance in the scatteringT matrix appears for superconducting interactions of intermediate
strength, within the framework of a simple fermionic model. It is associated with a splitting of the single peak
in the spectral function into a pair of peaks separated by an energy gap. Our physical picture is contrasted with
that derived from otherT-matrix schemes, with superconducting fluctuation effects, and with preformed pair
~boson-fermion! models. Implications for photoemission and tunneling experiments in the cuprates are dis-
cussed.@S0163-1829~97!50742-9#

In recent years, pseudogap behavior of the underdoped
cuprates has been observed in thermodynamic,1 magnetic,2

and angle-resolved photoemission spectroscopy~ARPES!
data.3 Of these three, ARPES experiments, which have es-
tablished the presence of a Luttinger volume Fermi surface,
place, perhaps, the most important constraints on any
pseudogap scenario: they indicate that the pseudogap appears
directly in the spectral function and its magnitude and
symmetry3 seem to evolve smoothly into that of the super-
conducting state. Furthermore, the minimum gap points in
the pseudogap regime retrace the normal state Fermi
surface.4

A variety of theoretical scenarios have been proposed for
the origin of the pseudogap. Quantum Monte Carlo simula-
tion studies have been carried out on both positive and nega-
tive U Hubbard models.5 Alternative schemes relate the
pseudogap to either magnetic pairing of spins,6 resonating-
valence bond~RVB! like pairing of chargeless spinons,7 or
precursor superconductivity effects.8 The present paper ad-
dresses this last scenario, in part because of constraints from
ARPES data and in part because the cuprates are short co-
herence length, quasi-two- dimensional superconductors,
with anomalously low plasma frequencies.8,9 They are, there-
fore, expected to exhibit important deviations from an
abrupt, BCS-like transition.

In our physical picture, we associate an important compo-
nent of the cuprate pseudogap withresonantscattering be-
tween electrons of opposite spin and small total momentum.
This resonance arises in the presence of intermediate cou-
pling and a sizable Fermi surface. A depression in the den-
sity of states occurs because states near this Fermi surface
are unavailable for electrons in the Fermi sea to scatter into;
such states are otherwise occupied by relatively long-lived
~metastable! electron pairs. The related suppression in the
spectral weight differs from that derived from conventional
low-frequency and long-wavelength fluctuation effects.10 In
the present case it is the strength of the attractive interaction,
rather than the critical slowing down~in proximity to Tc),
which leads to the long-lived pair states. It should be noted
that our resonant scattering approach is to be distinguished
from previous precursor superconductivity models associated
with either preformed pairs11 or dynamic phase fluctuations.8

Our starting point is a scheme which connects the strong
coupling, short coherence length description of superconduc-

tivity formulated by Leggett, Nozie`res and Schmitt-Rink,
and Randeria and co-workers12 with a well-established
T-matrix formalism designed to treat normal state fluctuation
effects in conventional superconductors.10 We consider a ge-
neric model Hamiltonian
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ekcks
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1 (
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wherecks
† creates a particle in the momentum statek with

spin s, andek5k2/2m2m ~we take\5kB51). HereVk,k8
5gwkwk8 , wk5(11k2/k0

2)21/2, where for definiteness we
takek05kF ; g,0 is the coupling strength. While we con-
sider thes-wave symmetry case,d-wave symmetry can be
readily introduced viawk→(coskx2cosky). In the scheme of
Nozières and Schmitt-Rink the transition temperatureTc
must be obtained in combination with the chemical potential
m, by use of the Thouless criterion,Tq50

21 (V50)50 ~see
below!, and the usual equation for particle number. When the
parameterg is varied, the appropriate coupled equations lead
to an interpolation scheme which contains the BCS limit for
small g/gc , wherem'EF , and that of Bose-Einstein con-
densation in strong coupling, wherem becomes negative.
Here gc524p/mk0 is the value at which a bound state of
the isolated pair first appears.In order to capture the physics
of the short coherence length regime, we chose g to be of the
order g/gc'1.13

In this paper, we provide a physical picture which associ-
ates this intermediate coupling regime with the onset of pair
resonant scattering. Moreover, we extend the formulation of
Ref. 12 so as to provide a basis for computing the spectral
function and density of states and to simultaneously incorpo-
rate appropriate conservation laws.14 To this end, we calcu-
late the single-particle self-energySk(v), and theT matrix
as shown diagrammatically in Fig. 1.15 Analytically, the self-
energy corresponds to

Sk~ i z l !5
1

b (
q,Vn

wk2q/2
2 Tq~ iVn!Gq2k

~0! ~ iVn2 i z l ! , ~2!
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and theT matrix, which may be written in the Dyson form
shown in Fig. 1~c!, is given by

Tq~ iVn!5F1

g
1

1

b (
p,z l

wp
2Gp1q/2~ i z l !Gp2q/2

~0! ~ iVn2 i z l !G21

.

~3!

Here Gk
21( i z l)5Gk

(0)21( i z l)2Sk( i z l) and Gk
(0)( i z l)5( i z l

2ek)
21. Finally, the spectral function is defined asAk(v)

52p21Im@Gk( i z l→v1 i0)#; this leads to the density of
states,N(v)5(kAk(v).

The choice of diagrams to include in aT-matrix scheme
has been extensively discussed in the literature.15–17 Our
asymmetric choice@Fig. 1~a!#—in which theT matrix con-
tains one self-energy renormalized and one ‘‘bare’’
propagator—builds on the early work of Kadanoff and
Martin.16 When this diagrammatic scheme was applied to
conventional superconducting fluctuation effects it was
shown15 that the fluctuation gap aboveTc smoothly evolved
into the superconducting gap belowTc . Moreover, this ap-
proach is known15,16 to reproduce the conventional BCS
theory in the appropriate weak coupling limit. Direct connec-
tion can be made to the related theories of Marcelja18 and
Yamada and collaborators19 if the full line in the ‘‘box’’ ~the
pair fluctuation self-energy! of Fig. 1~c! is replaced by a
noninteracting line. Finally, it is straightforward to demon-
strate using the more general criteria introduced by Kadanoff
and Baym20 that this theory preserves all conservation laws.

It has been shown that the results of the full ‘‘mode-
coupling’’ scheme of Fig. 1~a! are qualitatively captured by
the lowest order conserving approximation of Fig. 1~b!;18

this approximation, nevertheless, goes beyond the original
work of Nozières and Schmitt-Rink. Unlike otherT-matrix
approaches, where higher-order self-consistency effects tend
to diminish leading order features,21 it is found18 that within
the present framework the inclusion of ‘‘mode-coupling’’
effects amplify these first-order~pseudogap! features. For
simplicity, we, therefore, focus on the lowest-order approxi-
mation. The discussion of feedback effects is deferred to a
future publication.

In our scenario the physical process which generates the
pseudogap is resonant pair scattering~above Tc), arising
from the condition that the real part of the inverseT matrix,
Re@Tq

21(V5Vq)#50, when the imaginary part,
Im@Tq

21(Vq)#, is sufficiently small. This resonant behavior
is manifested as a sharp peak in Im@Tq(V)#. This peak is in
turn reflected in the electronic self-energy and the spectral

function. The pair resonance condition is illustrated in the
insets of Fig. 2, where the behavior of Re@Tq50

21 (V)#, as a
function of frequency, is contrasted for weak (g/gc,1) @Fig.
2~a!# and intermediate (g/gc'1) @Fig. 2~b!# couplings. Each
series of curves corresponds to varying temperature. The
dashed lines indicate the form of Im@Tq

21(V)# at Tc in each
of the two cases. The critical valuegc establishes the ap-
proximate dividing point between resonant and nonresonant
scattering. As can be seen, there is a finite frequency zero
crossing of Re@Tq

21(V)# for T.Tc , corresponding to reso-
nant scattering, in the stronger coupling limit. The resonance
energy increases as a function of temperatureT andq until it
disappears at a crossover wave vectorq* or temperatureT* .

The associated spectral functionsAk(v) for each of the
two cases considered in the insets are numerically computed
from the self-energy using Eq.~2! and plotted for the case
k5kF in the main portion of Fig. 2 as a function ofv, for
varyingT. ~Throughout, the unit of energy isEF .) Although
the numerical integrations involved are computationally in-
tensive, the integrated spectral weight is unity to several sig-
nificant digits for each spectral curve presented. In the stron-
ger coupling limit and at sufficiently lowT @Fig. 2~b!#, the
two-peaked structure characteristic of a pseudogap appears
and becomes more pronounced with largerg/gc . In the more
weakly coupled limit (g/gc50.6), the single-peak behavior
characteristic of a normal Fermi liquid is recovered, as
shown in Fig. 2~a!. In general, the two-peaked structure cor-
relates with the presence of a resonance in theT matrix. For
g slightly greater thangc , the two maxima are resolvable up
to T* of the order of severalTc .

FIG. 1. Diagrams for coupledS, T, in full scheme~a! and
lowest-order conserving scheme~b! used here.~c! represents a re-
writing of T in ~a!.

FIG. 2. Ak(v) vs v for weak (g/gc50.6) in ~a! and intermedi-
ate (g/gc51.0) coupling in~b!. T/Tc varies from 1.0 to 1.1. Insets
plot Re@Tq50

21 (V)# ~solid lines, for sameT/Tc , as in main figure!,
and2Im@Tq50

21 (V)#21 ~dashed lines, atT5Tc).
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An intuitive understanding of the splitting of the spectral
peak into a pair of asymmetrically broadened peaks may be
gained by examining the imaginary part of the self-energy.
On the real frequency axis (i z l→v1 id), Im@Sk(v)# is
given by

Im@Sk~v!#52(
q

wk2q/2
2 Im@Tq~v1eq2k!#

3@ f ~eq2k!1n~v1eq2k!# , ~4!

where f (x),n(x)5(ebx61)21.22 For intermediate coupling
strengths, a resonance condition leads to a peak in
Im@Tq(V)# at small frequencies and momenta, which in turn
yields a maximum in2Im@Sk(v)# at v1ek'0 @see the
inset of Fig. 3~b!#. The frequency weight under this peak is
written as puDu2wk

2 , where uDu can be viewed as the
pseudogap energy. This peak in2Im@Sk(v)# implies—via
the Kramers-Kro¨nig relation—a corresponding resonance
structure in Re@Sk(v)# at the same frequencyv'2ek . In
this way Ak(v) acquires two peaks separated by 2uDuwk
with

uDu2'(
q
E

2`

1` dV

p
n~V!Im@Tq~V!# . ~5!

The asymmetric broadening22 of the two spectral peaks is a
generic feature of our results and is due to the interaction of
correlated pairs with the Fermi sea. This asymmetry, which
is contained in Eq.~4!, reflects that in Im@Tq(V)#, as a func-
tion of V. In Fig. 3 we plot the momentum dependence of

the spectral function slightly aboveTc for weak @Fig. 3~a!#
and intermediate@Fig. 3~b!# coupling, along with typical
self-energies shown in the insets. The former case shows the
single-peak structure which evolves withk in a fashion char-
acteristic of a finite temperature Fermi liquid.22 In the stron-
ger coupling limit@Fig. 3~b!# the spectral weight shifts from
the negative to the positive frequency peak as the momentum
vector k passes through the Fermi surface. Close to the
Fermi momentum the peaks disperse roughly asEk5

6Aek
21uDu2wk

2. This dispersion provides a predictive signa-
ture for future ARPES measurements, within the precursor
superconductivity scenario. Indeed, this behavior is reminis-
cent of the particle-hole mixing found in photoemission mea-
surements on the superconducting state.23,24

Finally, the density of statesN(v) is plotted in Fig. 4 as a
function of energy. This quantity may be directly related to
tunneling as well as to thermodynamic measurements in the
pseudogap regime. The asymmetry in the curves reflects, in
part, the asymmetry of the spectral functions seen in Figs. 2
and 3. For clarity the results are represented by subtracting
the ‘‘normal’’ state curve, obtained, for definiteness, in the
very weak coupling limit. Figure 4~a! indicates the coupling
constant dependence ofN(v) and Fig. 4~b! the correspond-
ing temperature dependence for fixedg. A depression in
N(v)—which increases withg—develops at smaller cou-
plings, and persists to higher temperatures, than do
pseudogap effects in the spectral function~see Fig. 3!.

In summary, we have demonstrated how resonant pair
scattering aboveTc gives rise to a splitting of the spectral
function Ak(v), as well as a density-of-states depression.
Experimental observation of the former is the more signifi-
cant manifestation of pseudogap behavior, providing strong

FIG. 3. Ak(v) vs v for ~a! weak (g50.8gc) and~b! intermedi-
ate (g51.2gc) coupling, fromk,kF ~bottom curve! to k.kF ~top
curve!. Note signatures in~b! of ‘‘particle-hole mixing.’’ In the
insets are plotted the corresponding Im@Sk(v)# and Re@Sk(v)# for
k5kF andT slightly aboveTc .

FIG. 4. N(v) vs v for g/gc50.8 to 1.1 andT5Tc ~a!, and for
T/Tc51.0 to 1.2, atg5gc , ~b!. The normal-state density of states
is subtracted off in both cases~see text!.
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constraints on theoretical models. Our precursor supercon-
ductivity scenario has predictive signatures: an asymmetry in
the widths of the two spectral peaks and ak-dependent dis-
persion of theT.Tc spectral function, qualitatively similar
to that of the BCS state. Adx22y2 symmetry of the normal
state gap will arise naturally in the present scenario, for a
d-wave superconducting instability. This would be accompa-
nied by a spectral peak broadening proportional to (coskx
2cosky)

2. The present picture should be differentiated from
preformed pair models: the correlated pairs of our picture
have significant spatial extent and fail to obey Bose statistics.
Furthermore, in contrast to the stripe picture of Emery and
Kivelson, the amplitude and phase of this paired state is
never established beyond the dimensions and lifetime of a
single pair. Quasi-two-dimensionality as well as reduced
electronic screening9 will enhance our pseudogap effects,

which should, then, become more pronounced as the insula-
tor is approached. Magnetic correlations may, also, ulti-
mately play a role in the extreme underdoped regime. Nev-
ertheless, short coherence lengths and quasi-2D features
suggest that precursor superconductivity is present to some
degree and must necessarily be calibrated in order to obtain a
full understanding of the cuprate pseudogap.
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