RAPID COMMUNICATIONS

PHYSICAL REVIEW B VOLUME 56, NUMBER 18 1 NOVEMBER 1997-1I

Models with exact ground states connecting smoothly th&=3 dimer and S=1 Haldane phases
of one-dimensional spin chains

A. K. Kolezhuk*
Institute of Magnetism, National Academy of Sciences and Ministry of Education of Ukraine, 252142 Kiev, Ukraine
and Institut fu Theoretische Physik, Universttélannover, D-30167 Hannover, Germany

H.-J. Mikeskd
Institut fur Theoretische Physik, Universttitdannover, D-30167 Hannover, Germany
and Department of Earth and Space Science, University of Osaka, Toyonaka, Osaka 560, Japan
(Received 18 August 1997

We investigate the isotropic two-leg- % ladder with general bilinear and biquadratic exchange interactions
between spins on neighboring rungs, and determine the Hamiltonians that have a matrix-product wave function
as an exact ground state. We demonstrate that a smooth change of parameters leads onéSfm}‘rdhfner
and Majumdar-Ghosh chains to ti$e=1 chain with biquadratic exchange, which proves that these model
systems are in the same phase. The family of Hamiltonians also includes a set of models of i&trépic
chains with only bilinear nearest- and next-nearest-neighbor interactions. The ground state for these models
becomes unstable at a line of first-order phase transitions to the ferromagnetifS04&8-18207)50342-0

Low-dimensional quantum antiferromagnets have atstates and show that it is possible, by a continuous change of
tracted a large amount of both theoretical and experimentglarameters within this class, to connect smoothly the Hamil-
interest in recent years. Theoretically, the results of calculatonians of the 1D dimer chain, the Majumdar-Ghosh chain, a
tions for model systems in one dimensidD) clearly show generallzed spin Iaddegwhlch mclud_es blquadratlc mfte_rac-
the difference between systems with a gapless spectrum &Pns), and theS=1 antiferromagnetic chain with additional
excitations and power-law decay of spin correlations and’iquadratic exchange. Given the relevance of these model
gapped systems with exponentially decaying correlatiorfyStems with exactly known ground states for the tradltlonal
functions. The main representatives of these two classes arf@0del systems and for the real quasi-1D compounds, this
respectively, theS=1 chain with isotropic nearest-neighbor groves the Iex's,tence of a sg]gle phase“ftc))r thedga;,)’pefd rIIC,)W'
(NN) exchange interactidrand the isotropiS=1 (Haldane ) |mert1IS|otr.1a spin s?/stems a ?ve. Ats a]} ygr(I) uc];:tf 0 tt tlsd
chain? Gapped elementary excitation spectra are also foun vels Igation, We also present a set of models of frustrate
. . . . 1 =5 spin chainsg(including only bilinear NN and NNN in-
in more complicated low-dimension&k= 5 systems such as ;

: : - Lz teraction$ whose ground states can be found exactly.
chains with sufficiently strong additional next-nearest-

neighbor (NNN) exchange or with alternating exchange actﬁ/uLnaz)r\)/srzog(r:guﬁfjarsazssmog T:] eogiigsif?&?; etn;q-g)l(
(with noninteracting dimers as the simplest liménd also chain® 2
isotropic spin ladders with an even number of 1&gs.

Many of these models are realized to a high degree of 1
accuracy in simple compounds, as demonstrated by the fol- H=2 A+(—D)"6S, St 5(1— 89Sy S (D
lowing examples: KCufF (1D isotropic S=3 "

antiferromagné), CaCuGgO, (weakly interacting dimef$,  \ynich includes the Majumdar-Ghosts€0) (Ref. 1§ and
(VO)P;0; (Ref. § and SrCyO; (Ref. 7) (two-leg spin lad-  gimer (5=1) limits as special cases, and t8e1 chain
den), and Ni(GHgN,),NO,CIO, (commonly called NENP, \yith piquadratic exchange,

1D S=1 antiferromagnédj. Although the precise spin

Hamiltonians of these substances are not known, the study of

the simple theoretical models mentioned above has contrib- H=E Sh Shr1—B(Sh Shi1)? (2)
uted in an essential way to the understanding of the behavior n

of the real materials and these are believed to be in the sa _ 1 :
ohase as the simple models. Mt = o3 [the AfflecK, Kennedy, I_lleb, and TasathKLT)
model; " which is believed to be in the same phase as the

In recent years arguments and numerical evidence havl-el(fldane chain with3=0)] have very similar structures:

bee.n presented stating that.the various mpdels Wit.h a 9apPgfhn ground states can be written as matrix-prodiutP)
excitation spectrum, in particular tfe=3 dimer chain, the wave functions

gapped nearest- and next-nearest-neighbor exchange chain,
the two-leggedS=3 spin ladder, and th&=1 (Haldang . o
chain are all in the same pha%é? In this paper we present lwo=11 g, = bls)i+alto) V2alt. 1) _
the following proof for this conjecture: We describe a class i ' \/§a|t_1>i b|s)i—alto);

of Hamiltonians with exactly known nondegenerate ground 3
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order to obtain the various limits of interest. These limits

S, . S, . include the isotropic spin ladder and also t8e 1 chain

21 2,i+1 .
_______________________________________ when strongly ferromagnetic exchange on the rungs
A (Jo— — =) is considered to forns=1 units with an effec-

tive pair interaction]. ;s and effective biquadratic interaction

Kett,
______________________________________ Jet=(J1+ 1+ I+ 3)/4+(K+K')/8,

1,1 S1,1+1 Keff:(K+K,)/4 (5)

FIG. 1. Generalized spi-ladder with all possible isotropic Our procedure in the fO“OW'”,g is based on the ideas pre-
exchange interactions between nearest-neighbor rungs. Ovals sh&ﬁnf[ed ',n R('af. 20 and generalizes the work for Sel
spin pairs whose states are involved in the elementary mgtrix Chain with biquadratic exc_:hang}é:We start from the MP
defined by Eq(3). Couplings are described in the text; see @y. ~ Wave function(3), considerings) and|t,) as the states of a
single rung, and require that the parameters in the Hamil-
The ground state of the Shastry-Sutherland chain is obtaind@nian (4) and the free parameter=b/a in |4) satisfy the

settinga=b=1, where|s), and|f>i are the singlet, respec- following conditions:(i) | i) is annihilated byH, i.e.,
tively, triplet formed by two spin$= 3 on adjacent sites -

andn+1 [n even for5>0 in Eq.(1)]. The ground state of Mii+10i9i+1=0 ©6)

the AKLT chain is obtained by setting=1/\3, b=0, and i) all other states ofi have the energf>0. Then|yq) is
identifying the remaining triplet with the three states of thethe ground state dfi, with the energy density- C, per rung.

spin S=1 at sitei. The matrix elements of the MP wave . o
function|y,) are related to boundary effects for open bound- _1© Proceed we write the local Hamiltonidnin the alter-

. . l . - . .
ary conditions whereas for periodic boundary conditions thd'ave formulatiof” using projectors on states with fixed an-
trace should be takeH. Matrix-product (or finitely corre- ~ 9ular momentum of the four spin plaquetteif-1) of the

lated wave functions were first introduced by Faneesl 18  ladder:

a decade ago and have since then found widespread applica-

tions in exact and variational calculatiols* These wave A=No2 [P (Wonl+ X NFV (W)

functions are characterized by finitand typically rather M kl=12

shory correlation lengths and are therefore tailored to deal

with gapped systems. + AkD NAGAVE IONE 7
It should be emphasized that our MP ansatz for the ladder k,I=El,2,3 ! EM: | 1)V 2 0

(3), in contrast to that used in Ref. 22, respects rotation (K) . .
symmetry of the Hamiltoniar(4), i.e., the wave function ai—|ere|\IfJ’M> are the multiplets which can be formed from

|o) under periodic boundary conditions is a global t€ four spinsS=; of one plaquette: one qlf)imu%lek;" three
singlet!®24The ansatz used by $thas a “built-in” broken  triPlets, and two singlets; the ten paramet)eﬁ’& =\y are
rotational symmetry and thus can access only states of lipearly related to the ten parameters in the Hamiltonian of
ferromagnetic type. Eq. (4). The multiplets|¥{9,) are given in terms of the

We generalize the models of Eq4) and (2) by consid- ~ Singlets|s) and tripletst) on rungsi andi+ 1; the plaquette
ering the following spin ladder Hamiltoniatsee Fig. 1  singlets are a linear combination (xfs) and|(tt);-o), the
A=3h .., where plaquette triplets are linear combinations |td), |st), and

’ |(tt);=1), and the plaquette quintuplet|i&t);_,). It is eas-
A= Cot (Jg/2)Sui- Soi+ (352)Sui+1- Spisa g;i/givlerylflr?;mtgst only one singlet and one triplet occur in

+31S1S1j+11 3195 Sj+11 3251 - S 41

(3+uh) VAU s —\3Jtt),_)=|TF)y,  (®
+35S5;-Spi+ 1+ K(Syi- S1i+1) (S Sj+1)
+K'(SyjS5i+1)(Shi Sty 1) (1+u?)~12 %(ltswlsm—lttm =[vi")y . (9)

+K"(S1j-$)(S1j+1-Sj+1)- (4)

This is the general isotropiS=3 Hamiltonian with ex-
change interactions restricted to neighboring rungs of the
ladder. For periodic boundary conditions(Jo+J}) is the 2\ _
coupling on the rungs. In addition there are four pair ex- W)= (1N2)(|ts)—|st)),
change couplings on the legs and on the diagonals and three (3 _ o —1y2

biquadratic terms. Together with the const@jtwe have a W)= (1+u?) " YH(12)([ts) +|st)) +ultt);_q},
total of ten parameters. One combination of these is irrel- W)= it (10)
evant since it sets the energy scale. It is essential to include 2)= [tz

the diagonal interactions as first introduced by WHMitim  Conditions(i) result in five equations, corresponding to

A convenient choice for the remaining multiplets is

[Py =(3+u*) " YA3|s9) +utt);_o),
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NEY=AGE2 =AY =N =N =0, (1D No=xX[3+F2(x)]/4>0,

Thus, in order to lead to MP ground states, the Hamiltonian ~1)_
has to project on the spat¥?), |w{?), | ¥, |¥,) and A =[3(1+X)+2xF(x)]/8>0,
condition (ii) results in the inequalities _
_ NP =[1+F(x)][3(1+x)—2xF(x)]/8>0,

AP>0, X\¥>0, A,>0, (12)
~ A,=[18+8xF?(x)—9(1+x)F(x)]/8>0. 1
whereX{” («=1,2) are the two eigenvalues of the matrix 2=l () =9(+0F(X)] a3
A\, (i,j=2.3). The inequalitief12) guarantee that the The eigenvalues., and X{¥ are positive forx>0, F>0.

ground state is nondegenerdtpart from the fact that Eq. ; =(2) : : ; )
(3) describes four ground states with different behaviors aT.he eigenvalues ;°” and\, require a more detailed discus

the boundaries of open laddérsince it can be shown by S|on;.iF Is easily segn that a sufficiefthough ,n,Ot negezss.a)ry

induction with respect to the ladder length that the plaguett&ondition fork;>0 is Jet>0, and the condition on{? is

states[Egs. (8) and (9)] do not allow any zero energy state €duivalent to the requirementJ,—J;)>0. We useF =u?

different from the MP ground state. instead ofu, keeping in mind that changing the sigr>—u
For an explicit discussion of the results we use a someamounts just to interchanging the ladder legs and thus does

what simplified Hamiltonian with less freedom than in the hot bring in any new physics; therefore from now on we

general case. First, we s&=J;, and from one of the con- assume tha|F1.’2>0_. _ _ _

ditions (i) we find that this necessarily meahs=J; (which The following illustrative members of this family of

respects the ladder symmetgnd A {*¥=0; thus the eigen- Hamlltsohnla?s Zreﬂ:w\;v egsnyc(j)bﬁamed.

values\ (¥ are identical to the\.{*? and\{*®). Further we (i) Shastry-Sutherland model:

getK—K’= ”=_0 (these combination; are founq irrelevant F=1, x=358/(2+5), 0<é<1. (16)

in a more detailed treatment which will be published sepa-

rately). Then we are left with the six coefficien@, Jo, J1,  Since the MP wave function witff=1, i.e., a=b corre-

J;, J;, K and the conditionsi) take the following form: sponds to singlets on one type of diagoridithis also covers
, 5 (after a translation of one of the ladder Igglse casea=0.
2J1—J3=J; + U(4C/3—Jp+K/2)=0, The eigenvalue\, vanishes forx=0, which is to be ex-

pected since in the Majumdar-Ghosh limit a second degen-
2(23;+3,+35) —4Co—Jo— TK/2+u?(J,+ 35— 231) =0, erate eigenstate existsinglets on the alternative bonds
(13) The solution(16) also applies for partially ferromagnetic
interactions, x>1, respectively, (*6)/(1+6)<0. Al-
though the effective interaction between units on the diago-
, . nals is ferromagnetic, the Shastry-Sutherland dimer state is
231+ 35+ 35+ 3K/2=4Co— Jo+ 2u(Jp—J;) =0. the ground state up to=9 (corresponding té@= —3), since
§II \'s are positive. At the singular poirt= — 3 the eigen-
value \, vanishes and the energy of the dimer ground state
coincides with the energy of the fully polarized ferromag-
netic configuration. Thus this is the point of the first-order
gquantum phase transition from dimer to ferromagnetic phase.

2(35—J,) +u(4Co—Jo+23;— J,— I~ K/2)=0,

The general solution of these four linear equations contain
two arbitrary constants, when the paramaterb/a of the
MP wave function is fixed. We absorb one of the two con-
stants in the energy scale, denote the remaining onednd

define
! (i) Generalized AKLT model, defined bfF=0 (i.e.,
uwl=F b=0, so that only triplets on the rungs can ogcur
to obtain the following family of Hamiltonians with exact F=0, x finite. (17

MP eigenstates:
When choosing a convenient scale factor to rentjgy=1
Co=3[9+2x—3(1+Xx)F + 3xF2]/32, this corresponds to the following Hamiltonian:

J0:4/3_2X/3, J]_:\]Z:Jé:S/G,
Jo=3[2—x—(1+x)F+xF?]/4,
K=K'=2/3, K"=0, Cy=3/4+x/3. (18)

231+ J,+35=[15—-9(1+Xx)F + 7xF?]/4 , o _ . .
This is essentially the Hamiltonian of Ref. 17, but without
23 —J.—J = —XxE requiring explicitly the coupling of two spin§=3 into a
1ov2 2 ’ triplet, a result that could be easily obtained directly. The
AKLT model in a strict sense is obtained far— +~ and
xF(x)—0.
(iii) For xF(x)=1 another class of Hamiltoniangithout
biguadratic termsis obtained; the conditioh,>0 leads to

With these definitions the conditions of E¢L2) become the restrictionx=35. A nontrivial casex=3, when only one

2J,—23,=FY3(1+x)/2—xF] ,

K=3(F—1)(xF—1)/4. (14)
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diagonal exchange interaction is present, is equivalent to any singularity(or quantum phase transitipm the ground
chain with NN and NNN exchange: state.

In summary, we have provided an explicit proof that the
gappedS= 3 models listed in the introduction belong to the
same phase as the AKLT model for tBe=1 chain. Since
the latter model is accepted as the simplest representative of
This is anS= 3 chain with alternating ferro- and antiferro- gapped isotropi&=1 (Haldang chains(although its equiva-
magnetic exchange and ferromagnetic NNN interactions, #nce with the bilinearS=1 chain has not been formally
frustrated Heisenberg chain. As(in, the eigenvalu@, van-  proven so far our result implies that dimer, Majumdar-
ishes and the energy of the fully polarized ferromagneticGhosh, and Haldane chains are in the same phase. In addi-
state coincides with that of the MP ground sté8e Thus we  tion we have obtained the exact ground state for a new set of
have obtained two exact points on the line where the chaifyystratedS=1 chains with alternating ferro- and antiferro-
with NN and NNN interactionS undergoes a first-order magnetic NN and ferromagnetic NNN exchange. The ground

qu?_nt)u;\nfphqlse ;ransditiclm tg)tghe feirf\)ﬂrgagneticdst?tf. state of these new models becomes unstable at a line of first-
Iv) A Tamily oF models with exac ground states con- . qar phase transitions to the ferromagnetic state.
necting the Majumdar-Ghosh and the AKLT limits is ob- P g
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