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We investigate the isotropic two-legS5
1
2 ladder with general bilinear and biquadratic exchange interactions

between spins on neighboring rungs, and determine the Hamiltonians that have a matrix-product wave function
as an exact ground state. We demonstrate that a smooth change of parameters leads one from theS5

1
2 dimer

and Majumdar-Ghosh chains to theS51 chain with biquadratic exchange, which proves that these model
systems are in the same phase. The family of Hamiltonians also includes a set of models of isotropicS5

1
2

chains with only bilinear nearest- and next-nearest-neighbor interactions. The ground state for these models
becomes unstable at a line of first-order phase transitions to the ferromagnetic state.@S0163-1829~97!50342-0#

Low-dimensional quantum antiferromagnets have at-
tracted a large amount of both theoretical and experimental
interest in recent years. Theoretically, the results of calcula-
tions for model systems in one dimension~1D! clearly show
the difference between systems with a gapless spectrum of
excitations and power-law decay of spin correlations and
gapped systems with exponentially decaying correlation
functions. The main representatives of these two classes are,
respectively, theS5 1

2 chain with isotropic nearest-neighbor
~NN! exchange interaction1 and the isotropicS51 ~Haldane!
chain.2 Gapped elementary excitation spectra are also found
in more complicated low-dimensionalS5 1

2 systems such as
chains with sufficiently strong additional next-nearest-
neighbor ~NNN! exchange or with alternating exchange
~with noninteracting dimers as the simplest limit! and also
isotropic spin ladders with an even number of legs.3

Many of these models are realized to a high degree of
accuracy in simple compounds, as demonstrated by the fol-
lowing examples: KCuF3 ~1D isotropic S5 1

2

antiferromagnet4!, CaCuGe2O6 ~weakly interacting dimers5!,
(VO2)P2O7 ~Ref. 6! and SrCu2O3 ~Ref. 7! ~two-leg spin lad-
der!, and Ni(C2H8N2)2NO2ClO4 ~commonly called NENP,
1D S51 antiferromagnet8!. Although the precise spin
Hamiltonians of these substances are not known, the study of
the simple theoretical models mentioned above has contrib-
uted in an essential way to the understanding of the behavior
of the real materials and these are believed to be in the same
phase as the simple models.

In recent years arguments and numerical evidence have
been presented stating that the various models with a gapped
excitation spectrum, in particular theS5 1

2 dimer chain, the
gapped nearest- and next-nearest-neighbor exchange chain,
the two-leggedS5 1

2 spin ladder, and theS51 ~Haldane!
chain are all in the same phase.9–14 In this paper we present
the following proof for this conjecture: We describe a class
of Hamiltonians with exactly known nondegenerate ground

states and show that it is possible, by a continuous change of
parameters within this class, to connect smoothly the Hamil-
tonians of the 1D dimer chain, the Majumdar-Ghosh chain, a
generalized spin ladder~which includes biquadratic interac-
tions!, and theS51 antiferromagnetic chain with additional
biquadratic exchange. Given the relevance of these model
systems with exactly known ground states for the traditional
model systems and for the real quasi-1D compounds, this
proves the existence of a single phase for the gapped low-
dimensional spin systems above. As a ‘‘byproduct’’ of this
investigation, we also present a set of models of frustrated
S5 1

2 spin chains~including only bilinear NN and NNN in-
teractions! whose ground states can be found exactly.

Our approach starts from the observation13 that the ex-
actly known ground states of the Shastry-SutherlandS5 1

2

chain15

H5(
n

„11~21!nd…Sn•Sn111
1

2
~12d!Sn•Sn12 , ~1!

which includes the Majumdar-Ghosh (d50) ~Ref. 16! and
dimer (d51) limits as special cases, and theS51 chain
with biquadratic exchange,

H5(
n

Sn•Sn112b~Sn•Sn11!2 ~2!

at b52 1
3 @the Affleck, Kennedy, Lieb, and Tasaki~AKLT !

model,17 which is believed to be in the same phase as the
Haldane chain withb50)] have very similar structures:
both ground states can be written as matrix-product~MP!
wave functions,

uc0&5)
i

gi , gi5S bus& i1aut0& i 2A2aut11& i

A2aut21& i bus& i2aut0& i
D .

~3!
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The ground state of the Shastry-Sutherland chain is obtained
settinga5b5 1

2, whereus& i and u tW& i are the singlet, respec-
tively, triplet formed by two spinsS5 1

2 on adjacent sitesn
andn11 @n even ford.0 in Eq. ~1!#. The ground state of
the AKLT chain is obtained by settinga51/A3, b50, and
identifying the remaining triplet with the three states of the
spin S51 at site i . The matrix elements of the MP wave
function uc0& are related to boundary effects for open bound-
ary conditions whereas for periodic boundary conditions the
trace should be taken.17 Matrix-product ~or finitely corre-
lated! wave functions were first introduced by Fanneset al.18

a decade ago and have since then found widespread applica-
tions in exact and variational calculations.19–23 These wave
functions are characterized by finite~and typically rather
short! correlation lengths and are therefore tailored to deal
with gapped systems.

It should be emphasized that our MP ansatz for the ladder
~3!, in contrast to that used in Ref. 22, respects rotational
symmetry of the Hamiltonian~4!, i.e., the wave function
uc0& under periodic boundary conditions is a global
singlet.13,24The ansatz used by Su22 has a ‘‘built-in’’ broken
rotational symmetry and thus can access only states of a
ferromagnetic type.

We generalize the models of Eqs.~1! and ~2! by consid-
ering the following spin ladder Hamiltonian~see Fig. 1!:
Ĥ5( i ĥi ,i 11, where

ĥi ,i 115C01~J0/2!S1,i•S2,i1~J08/2!S1,i 11•S2,i 11

1J1S1,i•S1,i 111J18S2,i•S2,i 111J2S1,i•S2,i 11

1J28S2,i•S1,i 111K~S1,i•S1,i 11!~S2,i•S2,i 11!

1K8~S1,i•S2,i 11!~S2,i•S1,i 11!

1K9~S1,i•S2,i !~S1,i 11•S2,i 11!. ~4!

This is the general isotropicS5 1
2 Hamiltonian with ex-

change interactions restricted to neighboring rungs of the
ladder. For periodic boundary conditions,1

2 (J01J08) is the
coupling on the rungs. In addition there are four pair ex-
change couplings on the legs and on the diagonals and three
biquadratic terms. Together with the constantC0 we have a
total of ten parameters. One combination of these is irrel-
evant since it sets the energy scale. It is essential to include
the diagonal interactions as first introduced by White14 in

order to obtain the various limits of interest. These limits
include the isotropic spin ladder and also theS51 chain
when strongly ferromagnetic exchange on the rungs
(J0→2`) is considered to formS51 units with an effec-
tive pair interactionJe f f and effective biquadratic interaction
Ke f f ,

Je f f5~J11J181J21J28!/41~K1K8!/8,

Ke f f5~K1K8!/4. ~5!

Our procedure in the following is based on the ideas pre-
sented in Ref. 20 and generalizes the work for theS51
chain with biquadratic exchange:17 We start from the MP
wave function~3!, consideringus& andutm& as the states of a
single rung, and require that the parameters in the Hamil-
tonian ~4! and the free parameteru5b/a in uc0& satisfy the
following conditions:~i! uc0& is annihilated byĤ, i.e.,

ĥi ,i 11gigi 1150 ; ~6!

~ii ! all other states ofĤ have the energyE.0. Thenuc0& is
the ground state ofĤ, with the energy density2C0 per rung.

To proceed we write the local Hamiltonianĥ in the alter-
native formulation21 using projectors on states with fixed an-
gular momentum of the four spin plaquette (i ,i 11) of the
ladder:

ĥ5l2(
M

uC2,M&^C2,Mu1 (
k,l 51,2

l0
~k,l !uC0,0

~k!&^C0,0
~ l ! u

1 (
k,l 51,2,3

l1
~k,l !(

M
uC1,M

~k! &^C1,M
~ l ! u. ~7!

Here uCJ,M
(k) & are the multiplets which can be formed from

the four spinsS5 1
2 of one plaquette: one quintuplet, three

triplets, and two singlets; the ten parameterslJ
(k,l )5lJ

( l ,k) are
linearly related to the ten parameters in the Hamiltonian of
Eq. ~4!. The multipletsuCJ,M

(k) & are given in terms of the
singletsus& and tripletsut& on rungsi andi 11; the plaquette
singlets are a linear combination ofuss& and u(tt)J50&, the
plaquette triplets are linear combinations ofuts&, ust&, and
u(tt)J51&, and the plaquette quintuplet isu(tt)J52&. It is eas-
ily verified that only one singlet and one triplet occur in
gigi 11, namely

~31u4!21/2~u2uss&2A3utt&J50)[uC0
~1!& , ~8!

~11u2!21/2H u

A2
~ uts&1ust&!2utt&J51J [uC1

~1!& . ~9!

A convenient choice for the remaining multiplets is

uC0
~2!&5~31u4!21/2~A3uss&1u2utt&J50),

uC1
~2!&5~1/A2!~ uts&2ust&),

uC1
~3!&5~11u2!21/2$~1/A2!~ uts&1ust&)1uutt&J51%,

uC2&5utt&J52 . ~10!

Conditions~i! result in five equations, corresponding to

FIG. 1. Generalized spin-1
2 ladder with all possible isotropic

exchange interactions between nearest-neighbor rungs. Ovals show
spin pairs whose states are involved in the elementary matrixgi

defined by Eq.~3!. Couplings are described in the text; see Eq.~4!.
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l0
~1,1!5l0

~1,2!5l1
~1,1!5l1

~1,2!5l1
~1,3!50. ~11!

Thus, in order to lead to MP ground states, the Hamiltonian
has to project on the spaceuC0

(2)&, uC1
(2)&, uC1

(3)&, uC2& and
condition ~ii ! results in the inequalities

l0
~2!.0, l̃1

~a!.0, l2.0, ~12!

where l̃1
(a) (a51,2) are the two eigenvalues of the matrix

l1
( i , j ) , (i , j 52,3). The inequalities~12! guarantee that the

ground state is nondegenerate@apart from the fact that Eq.
~3! describes four ground states with different behaviors at
the boundaries of open ladders#, since it can be shown by
induction with respect to the ladder length that the plaquette
states@Eqs. ~8! and ~9!# do not allow any zero energy state
different from the MP ground state.

For an explicit discussion of the results we use a some-
what simplified Hamiltonian with less freedom than in the
general case. First, we setJ05J08 , and from one of the con-
ditions ~i! we find that this necessarily meansJ15J18 ~which
respects the ladder symmetry! andl1

(2,3)50; thus the eigen-

valuesl̃1
(a) are identical to thel1

(2,2) andl1
(3,3) . Further we

setK2K85K950 ~these combinations are found irrelevant
in a more detailed treatment which will be published sepa-
rately!. Then we are left with the six coefficientsC0, J0, J1,
J2, J28 , K and the conditions~i! take the following form:

2J12J22J28 1 u2~4C0/32J01K/2!50,

2~2J11J21J28!24C02J027K/21u2~J21J2822J1!50,

~13!

2~J282J2!1u~4C02J012J12J22J282K/2!50,

2J11J21J2813K/224C02J012u~J22J28!50.

The general solution of these four linear equations contains
two arbitrary constants, when the parameteru5b/a of the
MP wave function is fixed. We absorb one of the two con-
stants in the energy scale, denote the remaining one byx and
define

u25F

to obtain the following family of Hamiltonians with exact
MP eigenstates:

C053@912x23~11x!F13xF2#/32 ,

J053@22x2~11x!F1xF2#/4 ,

2J11J21J285@1529~11x!F17xF2#/4 ,

2J12J22J2852xF ,

2J222J285F1/2@3~11x!/22xF# ,

K53~F21!~xF21!/4 . ~14!

With these definitions the conditions of Eq.~12! become

l05x@31F2~x!#/4.0,

l̃1
~1!5@3~11x!12xF~x!#/8.0,

l̃1
~2!5@11F~x!#@3~11x!22xF~x!#/8.0,

l25@1818xF2~x!29~11x!F~x!#/8.0. ~15!

The eigenvaluesl0 and l̃1
(1) are positive forx.0, F.0.

The eigenvaluesl̃1
(2) andl2 require a more detailed discus-

sion; it is easily seen that a sufficient~though not necessary!

condition forl2.0 is Je f f.0, and the condition onl̃1
(2) is

equivalent to the requirementu(J22J28).0. We useF5u2

instead ofu, keeping in mind that changing the signu→2u
amounts just to interchanging the ladder legs and thus does
not bring in any new physics; therefore from now on we
assume thatF1/2.0.

The following illustrative members of this family of
Hamiltonians are now easily obtained.

~i! Shastry-Sutherland model:

F51, x53d/~21d!, 0,d,1 . ~16!

Since the MP wave function withF51, i.e., a5b corre-
sponds to singlets on one type of diagonals,13 this also covers
~after a translation of one of the ladder legs! the casea50.
The eigenvaluel0 vanishes forx50, which is to be ex-
pected since in the Majumdar-Ghosh limit a second degen-
erate eigenstate exists~singlets on the alternative bonds!.

The solution~16! also applies for partially ferromagnetic
interactions, x.1, respectively, (12d)/(11d),0. Al-
though the effective interaction between units on the diago-
nals is ferromagnetic, the Shastry-Sutherland dimer state is
the ground state up tox59 ~corresponding tod523), since
all l ’s are positive. At the singular pointd523 the eigen-
valuel2 vanishes and the energy of the dimer ground state
coincides with the energy of the fully polarized ferromag-
netic configuration. Thus this is the point of the first-order
quantum phase transition from dimer to ferromagnetic phase.

~ii ! Generalized AKLT model, defined byF50 ~i.e.,
b50, so that only triplets on the rungs can occur!:

F50, x finite. ~17!

When choosing a convenient scale factor to renderJe f f51
this corresponds to the following Hamiltonian:

J054/322x/3, J15J25J2855/6,

K5K852/3, K950, C053/41x/3. ~18!

This is essentially the Hamiltonian of Ref. 17, but without
requiring explicitly the coupling of two spinsS5 1

2 into a
triplet, a result that could be easily obtained directly. The
AKLT model in a strict sense is obtained forx→1` and
xF(x)→0.

~iii ! For xF(x)51 another class of Hamiltonianswithout
biquadratic termsis obtained; the conditionl2.0 leads to

the restrictionx> 1
9 . A nontrivial casex5 1

9, when only one
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diagonal exchange interaction is present, is equivalent to a
chain with NN and NNN exchange:

C057/12, J05J0852/3, J15J185J28521,

J25K5K85K950. ~19!

This is anS5 1
2 chain with alternating ferro- and antiferro-

magnetic exchange and ferromagnetic NNN interactions, a
frustrated Heisenberg chain. As in~i!, the eigenvaluel2 van-
ishes and the energy of the fully polarized ferromagnetic
state coincides with that of the MP ground state~3!. Thus we
have obtained two exact points on the line where the chain
with NN and NNN interactions13 undergoes a first-order
quantum phase transition to the ferromagnetic state.

~iv! A family of models with exact MP ground states con-
necting the Majumdar-Ghosh and the AKLT limits is ob-
tained from, e.g.,

F~x!51/~11x!2. ~20!

Since the Majumdar-Ghosh and dimer chains have identical
ground states, Eq.~20! explicitly demonstrates the possibility
of transforming the Hamiltonian of the dimerS5 1

2 chain
continuously to the Hamiltonian of the AKLT chain without

any singularity~or quantum phase transition! in the ground
state.

In summary, we have provided an explicit proof that the
gappedS5 1

2 models listed in the introduction belong to the
same phase as the AKLT model for theS51 chain. Since
the latter model is accepted as the simplest representative of
gapped isotropicS51 ~Haldane! chains~although its equiva-
lence with the bilinearS51 chain has not been formally
proven so far! our result implies that dimer, Majumdar-
Ghosh, and Haldane chains are in the same phase. In addi-
tion we have obtained the exact ground state for a new set of
frustratedS5 1

2 chains with alternating ferro- and antiferro-
magnetic NN and ferromagnetic NNN exchange. The ground
state of these new models becomes unstable at a line of first-
order phase transitions to the ferromagnetic state.
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