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We generalize density-functional perturbation theory for lattice dynamics to Vanderbilt's ultrasoft pseudo-
potential scheme. This formulation accounts for the nonorthogonality of the orbitals, the augmentation of the
electron density, and the dependence of the generalized orthogonality constraint on the atomic positions. Both
insulating and metallic systems are considered. Application of the theory to the vibrations of small molecules
(CO, CG, CH,4, and HO) and to the phonon dispersion of the noble met&ls, Ag, Au shows overall
agreement with experimeritS0163-182807)51742-5

Density-functional perturbation theoDFPT) has suc- ionic positions. The full electron density is recovered by add-
cessfully been applied to first-principles calculations ofing to the square modulus of the orbitals an augmentation
linear? and nonlinear respon$eproperties of materials, charge localized in the core regions. Despite these technical
leading to a deeper understanding of the interplay betweegomplications, this approach has proved to be extremely suc-
electronic and dynamical properties. In particular, it has becessful in treating large-scale electronic structure problems.
come possible to calculate phonons at arbitrary wavelghgthUsing first-principles molecular dynamics, several systems
dielectric and piezoelectric tenscr§om effective charges, Containing first-row elements and transition metals, such as
electron-phonon interactiofisipfrared and Raman spectfa, liquid COPP?T:,L water,” or disordered SiQ strgcturesl, _
and several other experimentally measurable quantities. have been investigated. Furthermore, applications to solids

In the early applications to solid€ DFPT was formu- hz_ave shown that the valence-electron propgrtles obtained
lated for norm-conserving pseudopotentié®®’s and plane with thfeultrasoft PP approach agree closely with all-electron
wave (PW) basis sets. The theory turns out to be conceptul€Sults.’ _ _ .
ally simple in this basis since the same set of PW's describes In this paper we generalize DFPT for lattice dynamics to
both the unperturbed and the perturbed system. The onif€ ultrasoft PP scheme. The theory accounts for the nonor-
drawback of PW's is the rapid increase of the basis size witithogonality of the orbitals, the augmentation of the electron
the range of localization of the electronic orbitals. This putsdensity, and the dependence of the generalized orthogonality
limitations on the type of atoms which can be afforded inconstraint on the atomic positions. In fact, in the case of
large size systems. The most critical cases are the first-rolttice dynamics, the perturbation displaces the augmentation
transition metals and the first-row elements containing 3 charges and modifies the orthogonality constraint. We dem-
and 2p valence electrons, respectively. Also, atoms wherenstrate the effect|venes§ of_our approach in treating _Iocal-
semicore states need to be included among the valence eld&€d 2p electrons by applying it to the study of the vibrations
trons might be difficult to describe with PW's. of several molecules. Furthermore, we use the present for-

There are several electronic structure schemes which defulation, generalized to metallic systems, to obtain the pho-
efficiently with localized electrons. Among these, all- NON spectra of noble metal€u, Ag, Au). _ _
electron methods provide a full description of the electronic !N the ultrasoft scheme the total energy of an insulating
states. DFPT has been successfully applied within thesgystem containing N electrons is Eof ¢]1=E[ ]
approaché®’ to several challenging systems, such as perov+ F[p(r)]+U,, where(in a.u)
skite material$? and high-temperature superconductdrs. )

However, in order to address systems of larger size, it re- = 2
mains of interest to treat localized electrons within a PP Ew‘]__EEi (ilV |¢i>+2i (il Vi)
scheme.

Recently, an approach based on PW basis sets and ultra-
soft PP’s has been introduced to deal with localized F[P(T)]=f dr Vioe(r)p(r) +Epxd p(r)],
electrons'?!3 In this scheme, the orbitals are allowed to be
as soft as possible in the core regions so that their expansiamnd U, is the ion-ion interaction. In this expressidhy_ is
in PW’s converges rapidly, but are required to satisfy a genthe nonlocal PPY|,. the local PP, andE,, is the Hartree
eralized orthonormality constraint which depends on theand exchange-correlation energy. The sum ovens on the
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occupied stategup and down spins The explicit form of i i S

VL is given in Ref. 13. The charge density is a quadratic a1 VIS oD T\ o i) (4)
S S S

functional of the orbitalsp(r)==;(#i|K(r)|#) where the
operator K(r) is defined through augmentation functions and one obtains
which are localized on the atomic sites® The orbitals| ;)
satisfy the generalized orthogonality constra{nt|S| ;) ) S
=& where S is an overlap matrix which depends on the @ = .EJ i ﬁ_us
atomic positions. The orbitals are the solution of the gener-
alized Kohn-Sham equationdH|¢;)=¢€.S¢;) with H We note that in the normconserving scheme, the left-hand
=—1V2+V,g and VKs=\~/NL+V|oc+Vch- HerevNL in- side of EqQ.(4) vanishes sinc&=1 and the constraint4)
dicates the screened nonlocal potentisée Ref. 18 and  allows one to show that the contribution @, from the
Vi is the Hartree and exchange-correlation potential. ~ valence-states component|afy; /dus ) is zero. On the con-
The dynamical matrix at an arbitrary point of the Bril-  trary, in the ultrasoft case, E¢4) is used to evaluate such a
louin zone(BZ) is the Fourier transform of the interatomic component in terms of the unperturbed orbitals, as given in
force constantsb, . Within the adiabatic approximation, Ed.(5. _ _ o
we can identifyd, o, with the mixed second derivatives of _ The key ingredient to evaluate the dynamical matrix is
the total energy with respect to the displacementandu, ~ Pecl @%i/dus), which can be determined, within first-order
of the atoms at sites ands’. Following the lines of Ref. 4 Perturbation theory, by solving the linear system:
and taking the derivative of the Hellmann-Feynman forces, »
»:_P+

. (5

'/’j><'r/fj|¢s’,i>+H'C-

Ns S

we find that the electronic contribution s ¢ is composed (H—S)P,| =
S S

of four terms. The first onel)gls), , corresponds to the expec- dUs

tation value of the second derivative of the electron-ion po-

lgiy, (6

tential: where
— dNs JS IV pxe(r)
Py +V 39S —e—||Y)= -+fd3r ———K()|).
4)(315),:2 lﬂi ( NL Ioc) —€ lﬂi ’ 3US 'ﬁus |‘/’|> |¢’s,|> (9Us ( |¢|>
' i AUgdUgs AUgIUgs

(1) Equation(6) is a self-consistent linear system where the per-
_ turbing term depends on the variation of the charge density
where the second derivative &fy, is performed at fixed dp(r)/dus throughdVyy(r)/dus. dp(r)/dug is a functional

charge density. The second te 25? is of P¢| dgi /dus):
_ ap(r) 2
I _ Wil o+ .
(I)(SZS)/ZEI <_8UI Pg ¢s’,i>+H-C- , (2 dug 22 <‘9us P K(r)| i) +Agp(r). (7)
S

where PY=1-3;Sy)(i| is the projector on the The t_erm_Asp.(r), pecu_har to the ultrasoft scheme, has two

. o - contributions: Agp(r)= 6sp(r)+ 8sporin(r). The former
conduction-band subspace, H.c. indicates the hermitian con- = :
, = term Ssp(r)==i( ;| oK (r)/dug| ), accounts for the dis-
jugate,  |dg i) =[I(VNLF Vi) dUs — € (9S/dUs) ][44}, placement of the augmentation charge at fixed orbitals
and again the derivative &fy, is performed at fixed density. whereas the latter

In the normconserving PP scheme, the electronic contribu-
tion to @ is simply given by the sum ob{"), and®{?),, Ssportn(1) = —Zi (il S aus| g ) ;| K(r)[ ),
calculated forS=1 andK(r)=|r)(r|. . . .
In the ultrasoft PP scheme one must consider two addi2PPears because of the orthogonality constraint, similar to
r (4) . . .
tional contributions todg s, which have no corresponding e ®s¢ term in the interatomic force constants.

s,s’
counterparts in the normconserving schemée’s), is the in-

The generalization of the above formalism to metallic sys-
teraction between the change of the augmentation char tSmS can be done along the same lines as in Ref. 17. The
Ay p(r) due to the atomic displacemeny [see Eq(7) be- gpresence of the occupation factors modifies the definition of
low] and the change of 4, due to the displacement [see

the valence-states subspace and the tefigas,,(r) and

Eq. (13) in Ref. 4]: (I)Sg, must be modified accordinglyispon(r) becomes
© =2 [ g | DrelD) Sepor(1) == 2 [0e16,+ B¢ ,0;,] dfi‘a—s b
<I>S'S,—§ d=r a—uSAs,p(rH—H.c. . (3) sPo 5 A0 JY5 aug| ¥
XK )

Finally, (I)SQ, is analogous t@bg’zs), but with the projector
on the conduction-states subspace replaced by that on tiéere the occupation factor ; are defined as in Ref. 17.
valence-state subspace. Since the perturbation formalisfhe sum extends over all states but, in practice, it is limited
provides explicitly only P d¢;/dus), the valence-state by the occupation factors to a small energy range beyond the
component must be derived from the constraint imposed byrermi surface. A similar modification applies to the expres-

) o - (4)
the orthogonality condition: sion for g, .
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TABLE |. Calculated equilibrium intermolecular distance and vibrational frequencies of the four molecules studied in this work. The
angle o of the H,O molecule at equilibrium isx=1059104.59[103.99. Accurate LDA values from recent computatiotRef. 28 are
reported in parentheses. Experimental values are reported in square b(Refe2f). No anharmonic correction is included. All frequencies

; -1
are in cm .

d (a.u) w1 w; w3
CO(C..,) 2.130(2.132 [2.132 3, 2180(2157) [2143 — —
CO, (D.,) 2.207(2.198 [2.197 3, 1355(1336 [1333 3., 2439(2374 [2349| IT, 641 (648 [667]
H,0 (Cy,) 1.848(1.833 [1.813 A, 3632(3698[3657] A, 1527 (1534 [1595] B, 3751(3812 [3756]
CH, (Ty) 2.084(2.074 [2.053 A; 2916(2954 [2917 E 1469(1473 [1534 T, 1241 (12441306

T, 3046 (3082[3019 — _

We now apply the above approach to a few examples. Alpersions of these metals can be fitted with force-constant
calculations are performed within the local-density approxi-models?’ However, force constants obtained in this way for
mation (LDA) for the exchange and correlation energy. the bulk cannot be transferred to other bonding configura-

As a first test, we consider the four molecules CO,,CO tions, for example, to surfaces or clusters. To this end, first-
H,0, and CH in order to check the ability of the method to principles approaches are particularly suited, but the neces-
describe localized R electrons and short C—0O, C—H, and sity of treatings andd electrons on an equal footing makes
O—H bonds. These bonds are easily studied with methods difficult to apply fully ab initio calculations to these met-
based on localized orbitals, but recently there has been als. The most critical case for a PW approach is copper be-
increasing interest to describe them with PW'’s since they areause the maximum of thed3wave function occurs at only
important for catalytic reactions on metallic surfat®&or 0.6 a.u. from the nucleus. In a study of copper dimers, Bal-
short bonds the choice of the core radius of the ultrasoft Pione and Galfi* showed that a kinetic energy cutoff of 306
is critical because it is important to minimize the error due toRy was necessary to obtain converged results for a normcon-
the overlap of the augmentation chard®sn Table I, we serving PP. More recently, several smooth PP’s have been
give the equilibrium bond lengths and vibrational frequen-generated for copper, which allows one to use energy cutoffs
cies calculated with the present approach. We used a supa@anging from 50 Ry(Ref. 22 to 72 Ry?3 Within the ultrasoft
cell geometry with a cubic unit cell of 25 a.u. and periodic
boundary conditions. A kinetic energy cutoff of 25 Ry for
the wave functions and of 200 Ry for the charge density fars
were used. These cutoffs ensure a convergence error less 300
than 1% for the vibrational frequencies. As an additional test g 200! 3
of our linear-response method, we verified that the calculated ©,
vibrational frequency of CO coincides with that obtained 100t
from the total energy vs internuclear distance cuwihin 2 3
cm™1). Comparisons with the experimen{@revious LDA T X W X K T L
values indicate that the bond lengths have an average error of
1% (0.4%), while the frequencies have an average error of
2.5% (1.2%. We note however that the experimental fre-
guencies contain anharmonic effects which are not included
in our calculation. When using experimental values corrected
for anharmonic effect® the average error increases to 5%.

As a second example, we consider the phonon dispersions
of noble metals which, in addition te electrons, have a
filled outerd shell which strongly influences chemical and
structural properties. It is well known that the phonon dis-

Cu

(SN TN %9

*
*
(3 rYIII B 4

TABLE Il. Calculated lattice constant, bulk modulus, frequency
of the longitudinal acoustic mode at thé point of the Brillouin
zone and its derivative with respect to the lattice constant of the
noble metals. The experimental data are given in parentheses for
comparisonRef. 27).

3
X —1
a (au) B (kba) ol (cml U [CM
98 |\ a.U. r X W XK r L
Cu 6.72(6.8) 1659(1380 263 (245 —256
Ag 7.56(7.69 1350(1020 188(171) —199 FIG. 1. Calculated phonon dispersions for fcc copper, silver,
Au  7.66(7.67 1823(1720 154 (155 -172 and gold(solid lineg, compared with inelastic neutron-scattering

data from Ref. 27qsolid diamonds
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scheme, the energy cutoff can be reduced to 20 Ry for th&al values differ from experiment by 7%u) and 9%(Ag).
wave functions and 160 Ry for the charge density with aThese differences should be correlated with the errors of the
convergence error less than 1% on the frequencies. BZ inteheoretical prediction of the lattice constant and bulk modu-
gration has been performed with 408 speé&igloints in the  lus. To illustrate the sensitivity of the phonon spectrum to the
irreducible wedge with a smearing parameier0.02 Ry}’ structural parameters, we also give in Table Il the derivative
The dynamical matrices were computed on>&&4 grid in  of the frequency of the longitudinal acoustic mode at Xhe

g space. A Fourier interpolation technique provided the dy-point with respect to the lattice constant. These derivatives
namical matrices at the other points of the BZ. correspond to Gmeisen parameters of 2.18 for copper and

In Table I, we report the fcc lattice constants and bulk2.67 for silver, in good agreement with the experimental BZ
moduli of the three metals obtained from a fit with the Mur- average of 1.97 and of 2.46, respectivély.
naghan equation for the total energy as a function of volume. In conclusion we have extended DFPT for lattice dynam-
The equilibrium lattice constants of copper and silver are 1.3cs to Vanderbilt's ultrasoft PP scheme. Our formulation
and 1.7% smaller than their experimental values, while th@pens the way for studies of the lattice dynamics of solids
bulk moduli are 20 and 30% higher. For gold we obtainedwith large unit cells and containing localized electrons. Work
the lowest errors: less than 0.5 and 6% for the lattice constang currently in progress to apply the present approach to
and the bulk modulus, respectively. Our calculated structuragmall molecules adsorbed on metallic surfaes.
parameters agree well with recent results obtained with all-
electron technique¥.

The calculated spectra are shown in Fig. 1, where they are We thank Stefano Baroni, Stefano de Gironcoli, Paolo
compared with inelastic neutron-scattering data. OverallGiannozzi, and Kurt Stokbro for many useful discussions
good agreement is found between theory and experimenand for providing the codes on which the linear-response
For gold, the agreement is excellent all over the BZ. Forapproach with the Vanderbilt PP has been implemented. This
copper and silver, the largest errors appear in the longitudiwork has been supported by the Swiss National Science

nal acoustic branch at thé point. At this point, the theoret-
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