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We generalize density-functional perturbation theory for lattice dynamics to Vanderbilt’s ultrasoft pseudo-
potential scheme. This formulation accounts for the nonorthogonality of the orbitals, the augmentation of the
electron density, and the dependence of the generalized orthogonality constraint on the atomic positions. Both
insulating and metallic systems are considered. Application of the theory to the vibrations of small molecules
~CO, CO2 , CH4 , and H2O! and to the phonon dispersion of the noble metals~Cu, Ag, Au! shows overall
agreement with experiment.@S0163-1829~97!51742-5#

Density-functional perturbation theory~DFPT! has suc-
cessfully been applied to first-principles calculations of
linear1,2 and nonlinear response3 properties of materials,
leading to a deeper understanding of the interplay between
electronic and dynamical properties. In particular, it has be-
come possible to calculate phonons at arbitrary wavelength,4

dielectric and piezoelectric tensors,5 Born effective charges,
electron-phonon interactions,6 infrared and Raman spectra,7

and several other experimentally measurable quantities.
In the early applications to solids,1,2 DFPT was formu-

lated for norm-conserving pseudopotentials~PP’s! and plane
wave ~PW! basis sets. The theory turns out to be conceptu-
ally simple in this basis since the same set of PW’s describes
both the unperturbed and the perturbed system. The only
drawback of PW’s is the rapid increase of the basis size with
the range of localization of the electronic orbitals. This puts
limitations on the type of atoms which can be afforded in
large size systems. The most critical cases are the first-row
transition metals and the first-row elements containing 3d
and 2p valence electrons, respectively. Also, atoms where
semicore states need to be included among the valence elec-
trons might be difficult to describe with PW’s.

There are several electronic structure schemes which deal
efficiently with localized electrons. Among these, all-
electron methods provide a full description of the electronic
states. DFPT has been successfully applied within these
approaches8,9 to several challenging systems, such as perov-
skite materials,10 and high-temperature superconductors.11

However, in order to address systems of larger size, it re-
mains of interest to treat localized electrons within a PP
scheme.

Recently, an approach based on PW basis sets and ultra-
soft PP’s has been introduced to deal with localized
electrons.12,13 In this scheme, the orbitals are allowed to be
as soft as possible in the core regions so that their expansion
in PW’s converges rapidly, but are required to satisfy a gen-
eralized orthonormality constraint which depends on the

ionic positions. The full electron density is recovered by add-
ing to the square modulus of the orbitals an augmentation
charge localized in the core regions. Despite these technical
complications, this approach has proved to be extremely suc-
cessful in treating large-scale electronic structure problems.
Using first-principles molecular dynamics, several systems
containing first-row elements and transition metals, such as
liquid copper,13 water,14 or disordered SiO2 structures,15

have been investigated. Furthermore, applications to solids
have shown that the valence-electron properties obtained
with the ultrasoft PP approach agree closely with all-electron
results.16

In this paper we generalize DFPT for lattice dynamics to
the ultrasoft PP scheme. The theory accounts for the nonor-
thogonality of the orbitals, the augmentation of the electron
density, and the dependence of the generalized orthogonality
constraint on the atomic positions. In fact, in the case of
lattice dynamics, the perturbation displaces the augmentation
charges and modifies the orthogonality constraint. We dem-
onstrate the effectiveness of our approach in treating local-
ized 2p electrons by applying it to the study of the vibrations
of several molecules. Furthermore, we use the present for-
mulation, generalized to metallic systems, to obtain the pho-
non spectra of noble metals~Cu, Ag, Au!.

In the ultrasoft scheme the total energy of an insulating
system containing N electrons is Etot@c i #5 Ē@c i #
1F@r(r )#1UII where~in a.u.!

Ē@c i #52
1

2(i
^c i u¹2uc i&1(

i
^c i uVNLuc i& ,

F@r~r !#5E d3r Vloc~r !r~r !1EHxc@r~r !# ,

andUII is the ion-ion interaction. In this expressionVNL is
the nonlocal PP,Vloc the local PP, andEHxc is the Hartree
and exchange-correlation energy. The sum overi runs on the
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occupied states~up and down spins!. The explicit form of
VNL is given in Ref. 13. The charge density is a quadratic
functional of the orbitals:r(r )5( i^c i uK(r )uc i& where the
operator K(r ) is defined through augmentation functions
which are localized on the atomic sitess.13 The orbitalsuc i&
satisfy the generalized orthogonality constraint^c i uSuc j&
5d i j where S is an overlap matrix which depends on the
atomic positions. The orbitals are the solution of the gener-
alized Kohn-Sham equationsHuc i&5e iSuc i& with H

52 1
2 ¹21VKS and VKS5ṼNL1Vloc1VHxc . Here ṼNL in-

dicates the screened nonlocal potential~see Ref. 13! and
VHxc is the Hartree and exchange-correlation potential.

The dynamical matrix at an arbitraryq point of the Bril-
louin zone~BZ! is the Fourier transform of the interatomic
force constantsFs,s8. Within the adiabatic approximation,
we can identifyFs,s8 with the mixed second derivatives of
the total energy with respect to the displacementsus andus8
of the atoms at sitess ands8. Following the lines of Ref. 4
and taking the derivative of the Hellmann-Feynman forces,
we find that the electronic contribution toFs,s8 is composed
of four terms. The first one,Fs,s8

(1) , corresponds to the expec-
tation value of the second derivative of the electron-ion po-
tential:

Fs,s8
~1!

5(
i

K c iUF ]2~ ṼNL1Vloc!

]us]us8

2e i

]2S

]us]us8
GUc i L ,

~1!

where the second derivative ofṼNL is performed at fixed
charge density. The second termFs,s8

(2) is

Fs,s8
~2!

5(
i

F K ]c i

]us
UPc

1Ufs8,i L 1H.c.G , ~2!

where Pc
1512( iSuc i&^c i u is the projector on the

conduction-band subspace, H.c. indicates the hermitian con-
jugate, ufs8,i&5@](ṼNL1Vloc)/]us82e i (]S/]us8)#uc i&,
and again the derivative ofṼNL is performed at fixed density.
In the normconserving PP scheme, the electronic contribu-
tion to Fs,s8 is simply given by the sum ofFs,s8

(1) andFs,s8
(2) ,

calculated forS51 andK(r )5ur &^r u.
In the ultrasoft PP scheme one must consider two addi-

tional contributions toFs,s8 which have no corresponding
counterparts in the normconserving scheme.Fs,s8

(3) is the in-
teraction between the change of the augmentation charge
Ds8r(r ) due to the atomic displacementus8 @see Eq.~7! be-
low# and the change ofVHxc due to the displacementus @see
Eq. ~13! in Ref. 4#:

Fs,s8
~3!

5
1

2E d3r F]VHxc~r !

]us
Ds8r~r !1H.c.G . ~3!

Finally, Fs,s8
(4) is analogous toFs,s8

(2) but with the projector
on the conduction-states subspace replaced by that on the
valence-state subspace. Since the perturbation formalism
provides explicitly only Pcu ]c i /]us &, the valence-state
component must be derived from the constraint imposed by
the orthogonality condition:

K ]c i

]us
USUc j L 1 K c iUSU ]c j

]us
L 52 K c iU ]S

]us
Uc j L , ~4!

and one obtains

Fs,s8
~4!

52F(
i , j

K c iU ]S

]us
Uc j L ^c j ufs8,i&1H.c.G . ~5!

We note that in the normconserving scheme, the left-hand
side of Eq.~4! vanishes sinceS51 and the constraint~4!
allows one to show that the contribution toFs,s8 from the
valence-states component ofu ]c i /]us & is zero. On the con-
trary, in the ultrasoft case, Eq.~4! is used to evaluate such a
component in terms of the unperturbed orbitals, as given in
Eq. ~5!.

The key ingredient to evaluate the dynamical matrix is
Pcu ]c i /]us &, which can be determined, within first-order
perturbation theory, by solving the linear system:

~H2e iS!PcU]c i

]us
L 52Pc

1F]VKS

]us
2e i

]S

]us
G uc i& , ~6!

where

F]VKS

]us
2e i

]S

]us
G uc i&5ufs,i&1E d3r

]VHxc~r !

]us
K~r !uc i& .

Equation~6! is a self-consistent linear system where the per-
turbing term depends on the variation of the charge density
]r(r )/]us through]VHxc(r )/]us . ]r(r )/]us is a functional
of Pcu ]c i /]us &:

]r~r !

]us
52(

i
K ]c i

]us
UPc

1K~r !Uc i L 1Dsr~r ! . ~7!

The termDsr(r ), peculiar to the ultrasoft scheme, has two
contributions: Dsr(r )5dsr(r )1dsrorth(r ). The former
term dsr(r )5( i^c i u ]K(r )/]us uc i&, accounts for the dis-
placement of the augmentation charge at fixed orbitals
whereas the latter

dsrorth~r !52( i , j^c i u ]S/]us uc j&^c j uK~r !uc i&,

appears because of the orthogonality constraint, similar to
the Fs,s8

(4) term in the interatomic force constants.
The generalization of the above formalism to metallic sys-

tems can be done along the same lines as in Ref. 17. The
presence of the occupation factors modifies the definition of
the valence-states subspace and the termsdsrorth(r ) and
Fs,s8

(4) must be modified accordingly.dsrorth(r ) becomes

dsrorth~r !52(
i , j

@uF,iu i , j1uF, ju j ,i #K c iU ]S

]us
Uc j L

3^c j uK~r !uc i& ,

where the occupation factorsuF,i are defined as in Ref. 17.
The sum extends over all states but, in practice, it is limited
by the occupation factors to a small energy range beyond the
Fermi surface. A similar modification applies to the expres-
sion for Fs,s8

(4) .
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We now apply the above approach to a few examples. All
calculations are performed within the local-density approxi-
mation ~LDA ! for the exchange and correlation energy.

As a first test, we consider the four molecules CO, CO2,
H2O, and CH4 in order to check the ability of the method to
describe localized 2p electrons and short C—O, C—H, and
O—H bonds. These bonds are easily studied with methods
based on localized orbitals, but recently there has been an
increasing interest to describe them with PW’s since they are
important for catalytic reactions on metallic surfaces.18 For
short bonds the choice of the core radius of the ultrasoft PP
is critical because it is important to minimize the error due to
the overlap of the augmentation charges.19 In Table I, we
give the equilibrium bond lengths and vibrational frequen-
cies calculated with the present approach. We used a super-
cell geometry with a cubic unit cell of 25 a.u. and periodic
boundary conditions. A kinetic energy cutoff of 25 Ry for
the wave functions and of 200 Ry for the charge density
were used. These cutoffs ensure a convergence error less
than 1% for the vibrational frequencies. As an additional test
of our linear-response method, we verified that the calculated
vibrational frequency of CO coincides with that obtained
from the total energy vs internuclear distance curve~within 2
cm21). Comparisons with the experimental~previous LDA!
values indicate that the bond lengths have an average error of
1% ~0.4%!, while the frequencies have an average error of
2.5% ~1.2%!. We note however that the experimental fre-
quencies contain anharmonic effects which are not included
in our calculation. When using experimental values corrected
for anharmonic effects,20 the average error increases to 5%.

As a second example, we consider the phonon dispersions
of noble metals which, in addition tos electrons, have a
filled outer d shell which strongly influences chemical and
structural properties. It is well known that the phonon dis-

persions of these metals can be fitted with force-constant
models.27 However, force constants obtained in this way for
the bulk cannot be transferred to other bonding configura-
tions, for example, to surfaces or clusters. To this end, first-
principles approaches are particularly suited, but the neces-
sity of treatings andd electrons on an equal footing makes
it difficult to apply fully ab initio calculations to these met-
als. The most critical case for a PW approach is copper be-
cause the maximum of the 3d wave function occurs at only
0.6 a.u. from the nucleus. In a study of copper dimers, Bal-
lone and Galli21 showed that a kinetic energy cutoff of 306
Ry was necessary to obtain converged results for a normcon-
serving PP. More recently, several smooth PP’s have been
generated for copper, which allows one to use energy cutoffs
ranging from 50 Ry~Ref. 22! to 72 Ry.23 Within the ultrasoft

FIG. 1. Calculated phonon dispersions for fcc copper, silver,
and gold~solid lines!, compared with inelastic neutron-scattering
data from Ref. 27~solid diamonds!.

TABLE II. Calculated lattice constant, bulk modulus, frequency
of the longitudinal acoustic mode at theX point of the Brillouin
zone and its derivative with respect to the lattice constant of the
noble metals. The experimental data are given in parentheses for
comparison~Ref. 27!.

a0 ~a.u.! B0 ~kbar! vLA
X ~cm21!

]vLA
X

]a0
Scm21

a.u. D
Cu 6.72~6.81! 1659 ~1380! 263 ~245! 2256
Ag 7.56 ~7.69! 1350 ~1020! 188 ~171! 2199
Au 7.66 ~7.67! 1823 ~1720! 154 ~155! 2172

TABLE I. Calculated equilibrium intermolecular distance and vibrational frequencies of the four molecules studied in this work. The
anglea of the H2O molecule at equilibrium isa5105°~104.5°!@103.9°#. Accurate LDA values from recent computations~Ref. 28! are
reported in parentheses. Experimental values are reported in square brackets~Ref. 20!. No anharmonic correction is included. All frequencies
are in cm21.

d ~a.u.! v1 v2 v3

CO(C`v) 2.130~2.132! @2.132# S 2180 ~2151! @2143# — —
CO2 (D`v) 2.207~2.198! @2.197# Sg 1355 ~1336! @1333# Su 2439 ~2374! @2349# Pu 641 ~648! @667#
H2O (C2v) 1.848~1.833! @1.813# A1 3632 ~3698!@3657# A1 1527 ~1534! @1595# B2 3751 ~3812! @3756#
CH4 (Td) 2.084~2.074! @2.053# A1 2916 ~2954! @2917# E 1469 ~1473! @1534# T2 1241 ~1244!@1306#

T2 3046 ~3082!@3019# — —
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scheme, the energy cutoff can be reduced to 20 Ry for the
wave functions and 160 Ry for the charge density with a
convergence error less than 1% on the frequencies. BZ inte-
gration has been performed with 408 specialk points in the
irreducible wedge with a smearing parameters50.02 Ry.17

The dynamical matrices were computed on a 43434 grid in
q space. A Fourier interpolation technique provided the dy-
namical matrices at the other points of the BZ.4

In Table II, we report the fcc lattice constants and bulk
moduli of the three metals obtained from a fit with the Mur-
naghan equation for the total energy as a function of volume.
The equilibrium lattice constants of copper and silver are 1.3
and 1.7% smaller than their experimental values, while the
bulk moduli are 20 and 30% higher. For gold we obtained
the lowest errors: less than 0.5 and 6% for the lattice constant
and the bulk modulus, respectively. Our calculated structural
parameters agree well with recent results obtained with all-
electron techniques.24

The calculated spectra are shown in Fig. 1, where they are
compared with inelastic neutron-scattering data. Overall,
good agreement is found between theory and experiment.
For gold, the agreement is excellent all over the BZ. For
copper and silver, the largest errors appear in the longitudi-
nal acoustic branch at theX point. At this point, the theoret-

ical values differ from experiment by 7%~Cu! and 9%~Ag!.
These differences should be correlated with the errors of the
theoretical prediction of the lattice constant and bulk modu-
lus. To illustrate the sensitivity of the phonon spectrum to the
structural parameters, we also give in Table II the derivative
of the frequency of the longitudinal acoustic mode at theX
point with respect to the lattice constant. These derivatives
correspond to Gru¨neisen parameters of 2.18 for copper and
2.67 for silver, in good agreement with the experimental BZ
average of 1.97 and of 2.46, respectively.25

In conclusion we have extended DFPT for lattice dynam-
ics to Vanderbilt’s ultrasoft PP scheme. Our formulation
opens the way for studies of the lattice dynamics of solids
with large unit cells and containing localized electrons. Work
is currently in progress to apply the present approach to
small molecules adsorbed on metallic surfaces.26
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