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Phonon-drag thermopower of a ballistic quantum wire
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The phonon-drag thermopow&?f of a quasi-one-dimensional ballistic quantum wire is calculated by using
the Onsager relation to rela® to the phonon-drag contribution @/AV, whereQ is the heat flux produced
by a small voltage differenc&V across the wire. A general formula is derived 8rand numerical results are
presented for when two electronic subbands are involved. The dependeBgmifthe wire width exhibits
peaks similar to those shown by the diffusion thermopogkrlt is found, however, that th&° maxima are
up to 50—100 times larger than the corresponding onesSfavhen T=1-10 K. The dominance o8’ is
apparent for all the values of the wire width and temperatures investig&eii63-182@07)51040-X]

We calculate the phonon-drag thermopovgérof a bal-  malism are given by Butch&rand by Sivan and Imr}?
listic one-dimensional electron g&€EDEG). Previous authors They relate the charge and heat fluxes in the wire to the
have shown that the phonon-drag contribution to ballisticchemical potential and temperature changes in the reservoirs.
resistance is smalland others discuss acoustoelectric cur- The electronic system is embedded in a bath of 3D
rents and conductivity produced by injecting phononphonons. Above 0.5 K the phonon population is large
pulses’® Kozub and RudificonsiderS? in a quantum point enough to create enough electron-phonon scattering events to
contact and they find a very different quantization pictureyield a measurable phonon-drag contribution to the ther-
than the one we predict here. The reason for this i'tha mopower. We consider temperaturés<10 K, and ignore
behavior ofS? is dominated by the electron-phonon interac- optical phonons and the effect of the interfaces on the acous-
tion in the wide, tapering regions leading to the narrow gapgic phonons. The reservoirs have the same temperdating
in the middle of the contact, while here we consider a longthe chemical potential in one of them is raised&y so that
1DEG, and the behavior @& is dominated by the electron- a voltage difference\V=—Au/|e| exists across the wire.
phonon interactionnside the 1DEG. Consequently, the electrons move towards the reservoir with
The electronic structure we examine is a quasi-1DEGhe lower chemical potential and impart some of their mo-
confined in a ballistic quantum wiQW) of width W. To  mentum to the phonons through the electron-phonon interac-
model this structure, we consider a ballistic two-dimensionation. Hence, a phonon heat fll@ is produced in the di-
electron gag2DEG) which is confined laterally by two par- rection. In standard notation we write
allel, straight, hard potential walls separated by a distadce
The wire is fed with electrons from reservoirs attached to the Q=—-M9%pulle|. (1)
ends. We use a Cartesian coordinate systemzwith Oxy

in the plane of the 2DEG an@x parallel to the axis of the \ye calculateQ and use Eq(1) to obtainM9. Then Onsag-
wire. The hard wall potential in the direction splits each 2D g relationM%= — L9T (Ref. 13 [whereL 9 is related taS?
subband into several 1D subban@hannels We assume by the equa{tior89=—L9/G (Ref. 11] yields

that only the ground 2D subband is occupied. Then, the en-
ergy eigenvalues and electron wave functions for the

1D constriction in the effective-mass approximation SI=MIUTG. )

are given by E_=E_,+(#%k*2m*) and W ,(r)

= (1/L,)? expkx) 1(2) 6,(y). Here, E,=h?a?m?/2m*W? The calculation ofQ for a ballistic 1DEG, which we out-

is the lowest energy of each 1D subbamd=(1,2,3,...),k line here, follows a similar pattern to that described in more
is the electron wave number associated with the electron madetail for a 2DEG in the quantum Hall regini&'® In equi-
tion along thex direction, m* is the effective massr librium a global chemical potentigh=Er and temperature

=(x,y,z), andL, is the length of the quantum wire. The T characterize both reservoirs. Then, the occupation prob-
wave functionse,(z) and é,(y) describe the electron con- ability of the incident waves in channel «
finement in thez andy direction: ¢,(2) is given by the Fang is given by the Fermi-Dirac function fo(E.)
and Howard functionwhile 6,(y) is a sine function. In the ={exg(Ex—Eg)/ksT]+1} 112 Phonons have the Bose-
case considered here the sum of all the transmission prolizinstein  distribution: No(qs)=[exp@'uoqslkBT)—1]*l
abilities increases by unity each time a new channel propawhere Ziw, is the energy of a phonon with wave vector
gates. g=(dx,dy,d;) in modes. When the chemical potential in
In these structures electrons exhibit strongly quantized bethe left-hand reservoir is raised by a small amodpt> 0,
havior which is seen experimentally in the conductaice more electrons are injected into the BQW from the left while
(Ref. 6 and diffusion thermopowe®®.”® Electron transport the number of electrons injected from the right remains the
in the quantum ballistic regime is described by the Landauersame. Hence the electron distribution function can be linear-
Buttiker (L-B) approach:'° Generalizations of the L-B for- ized as follows"*
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fo(Eaw) +f1(Ean), k>0 27y(gs)
f(E)= N.(gs)=— A I'(Bk',ak
(Eak) fo(Ea), k<0, ) 1(0s) kgt H Q%O BKZQ (BK',ak)

wheref(E_) is given by _ 2 E I(BK’' ak)J (8)

f1(Eqw) = — Audfo(Eqr)! IE ok - (4) ak<0 pgxr>0

Eq. (3) shows that electrons acquire a net flux from the  Substituting Eq(8) into Eq.(5) and using Eqs(1) and(2)
left to the right. The phonon heat flux produced in the we obtain the following formula:

direction is

_ L,V 2lel 1

L'V 9= ——EJdﬁwv 7,(QS)
Q= s f A0 s N1 (0S), (5) (2m) kgT2 G5 ) (W alpxTl

whereV is the volume of the sample ang, is thex com- X[ > > fo(Eak)[l—fo(E,;kr)]ng(ak,,Bk’)
ponent of the phonon group velocity. For isotropic phonons k>0 g’ <o
vpx=0s0x/q, Wherev, is the sound velocity and the mag-
nitude of the phonqn wave vectorq. Finglly, — E z fo(Eak)[l—fo(EBkr)]ng(ak.ﬂk') ,
N1(gs) =N(gs) —Ny(gs) is the first-order perturbation of ak<0 gk’'>0

the equilibrium phonon distribution functioNy(qgs), where )
N(gs) is the nonequilibrium phonon distribution function.

_The phonon mean free path(qs) is limited by lattice \\here we have substituted the explicit form 1¢8k’, ak).
imperfections and crystal boundaries. We describe this scai,q conductance has the steplike 8rm

tering by a relaxation timery(gs) and use the steady-state 262
Boltzmann’s equation for phonons whAT =0 to write*1®* G= TEgilfo(Ea), whereN, is the number of occupied
N4(gs) 1D subbands. At low temperatures phonon boundary scatter-
=2 Y {f(Ep)[1—f(En)]Pgs(BK',ak) ing is dominant andr,(gs) can be assumed to be indepen-
(AS) dent ofgs.

It only remains for us to determine the transition rate

—f(E)[1—f(Ege)]P2(ak, Bk}, 6 .
(Bl 1= (E i) [Pagl k. Bk} © ng(ak,ﬁk’). By using the Golden Rule we have

where the right-hand side of E¢) is the rate of change of

N(gs) due to electron-phonon scatterirf{?(ak, Sk’) are 7Q2E%(qs)

the transition rates at which an electron in stateis pro- Pzg(ak,ﬂk')= Vo No(0)|Z14/?]Y o4l°
moted to a stat@k’ by absorbingemitting one phonorys. PV @as

The factor 2 allows for the spin degeneracy. X S(E g —Eqk—fiwgs) Sk k+q,- (10)

The electron distribution functions appearing in E6)

can be written in the linear forrf8). Moreover, the transition Here, p is the density of the bulk material and
a(e ; ; a(e) _ paoleo) ay(eq) ) . .
ratesPG(® can be linearizedPg{” = PL2 ™ + PeI™™ , where |Z112=|f 2(2)expla,2)d4? is the g,-conservation factor

Pzg(e") corresponds to equilibrium and is proportional to when only the ground 2D subband is populated. An analyti-
No(gs) and[No(gs)+1], respectively, while the perturba- cal expression for|Z,,|2 is given in Ref. 15. T?e
tions P21(®) are both proportional th;(gs). Using the de- Gy-conservation  factor is  defined  as [Y,g|

: y 45,16 ; =|I%e,(y)expla,y)0xy)dyl>. Finally, Z3(qgs) is the “ef-
tailed balance relatidi'® and assuming weak electron- 0 0a(y)exp(ayy) Os(y)ay”. Y, =°(4

phonon coupling, we find that fective” acoustic potential describing the electron-phonon
coupling. We confine our attention to GaAs/Bla, _,As
27.(qs) £1(E,p) structures. GaAs has a spherical conduction band and is po-
N;(gs)= - 2 F(ﬁk’,ak){—“ lar: 22(qgs) accounts for both deformation potential coupling
kgT ak, Bk’ Ifo(Eaid/ IE ak and piezoelectric coupling. For the longitudinal acoustic
branch and for each of the transverse branches we dbtain
f1(Egc) ] (7 EAd)=Ej+[(emy?A/q?] and EX(qt)=(eh)?A /d?

dfo(E g ) IE gier ’ respectively. Heré2 4 is the deformation potential constant
associated with pure dilatiofi,h,, is the piezoelectric con-
where T'(Bk’,ak) =fo(E)[1— fo(Eﬁk,)]ng(ak,Bk’) is  stant, andA,, A, are the anisotropy factors given by Price.
the average equilibrium rate of absorption of phongsislue The evaluation of the sums ovkr k', andq follows the
to the electron transitionak— Bk’. The perturbatiorf, of  pattern described in Ref. 18. The explicit formulaS$fand
the electron distribution function for the electrons injectedresults for one subband will be reported elsewhere. Here we
from the left reservoir is given by Eq4), while for the concentrate on the more interesting case when two subbands
electrons injected from the right; is zero. We see by in- are occupied. The values of the parameters used are standard
spection that onlyk andk’ of opposite sign contribute to ones for GaAgRef. 15 andl,, is taken to be 3 mm for a.
N1(gs). Hence, Eq(7) is written as We calculateS? for temperatures 0.3 KT<10 K. The 2D
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FIG. 1. —$% as a function oW/ calculated from Eq(9) FIG. 2. Comparison of- S? and — S for a ballistic 1DEG. The

when two 1D subbands are occupigd) Results for 1 K(solid  sglid line is— S (Ref. § and the chain line is-0.01S? at(a) T=1
line), 2 K (chain ling, and 4 K(dots. (b) Results for 5 K(solid K and (b) T=10 K.

line), 6 K (dotg, 8 K (broken ling, and 10 K(chain line.

o 6 o thermal conductivity data for the substrafeThe pro-
electron density is fixed 8,=4.07x 10** m~? which gives  nounced dominance & overS? shown by Fig. 2 illustrates
a Fermi |eVe|EF—14 56 meV and a Fermi wave number the importance of phonon drag in semiconducting materials.

ke=0.16 nm! In 2DEG’s S? has also been found to be much larger than the
In Fig. 1(a) we plot —S9 againstkgW/ 7 for T=1 K s when 2<T<65 K1°
(solid line), T=2 K (chain ling, andT=4 K (dots. In Fig. The peak structure of SY shown in Figs. 1 and 2 is the

1(b) the solid line, the dots, and the broken and chain linesnanifestation of a well-known singularity which is hidden in
correspond tdr=5, 6, 8, and 10 K, respectively. The bot- the right-hand side of Eq9) and is associated with the de-
toms of the first and second subband criegsatkeW/7=1  tails of the 3D phonon coupling to 1D electrons inside the
(where W=19.63 nm and keW/7=2 (where W=39.27  wire. To bring it out in a simple way we concentrate on one
nm), respectively. AsE; approachesEg, —S° rises phonon mode, leT—0, and neglect both intersubband scat-
abruptly, especially at low temperatures because of the vanering in Eq.(9) andfiwg in the & function in Eq.(10). Then,
ishing values ofG for E;=E¢.% At keW/77~2 a peak oc- by carrying out the sums ovér andk we obtain

curs due to the contribution of the second subband. In con-
trast to the diffusion cadehe height of the peak depends on
temperature, andecreasedrom ~14 mV/K atT=1 K to qf( ) 5 oy

~6 mV/K at T=10 K. To understand this, we should men-  S7*— 21 das| -+ K2~ KZ | 1Y aal "ANo() E%(q),

tion that theq,-conservation factorg;|* and| Y, are by “ (11)
definition functions ofq,W (Ref. 1§ and consequently,

since q,~kgT/Avs, they depend orl. Now, for fixed

W=39. 27 nm these factors are decreasing functiongyof Wwherek,=(2m*E «/7?)Y2 The news function which ap-
(and consequently of), for all the temperatures of mterest pears in Eq.(11) comes from the product of the electron
to us, and they dominate the temperature dependence ofcupation factors in E¢9). We see that it resonates when
st a,=2(kZ—k2)*2 i.e., whenqg, spans the electron dispersion

Finally, in Fig. 2 we compare the diffusion thermopower curve for subband at the Fermi level. In other words, we
~5% (Ref. 8 and — <9 at 1 K [Fig. 2@] and 10 K[Fig.  are concerned with a Kohn resonaft@&y inspection of Eq.
2(b)]. —S% is given by the solid line and the theoretical es- (11) we see that, fog,=q,=0, the integration ovegq, re-
timations of— S? have beemlivided by a factor of 10(chain  sults in a singularity of the formHz—E,) > which ex-
line). Both curves have a similar shape. The phonon-draglains the structure of the figures. At finitethe temperature
peak values akcW/m=2 are approximately two orders of smearing of the electron occupation factors prev&atsom
magnitude larger than the corresponding diffusive ones. diverging whenEg=E,, .

The only arbitrary parameters involved in the calculation In the present analysis we have ignored screening. For
of SY areN, andl,. However, the value o, used here is GaAs, the screening of the 2DEG coupling to 3D phonons
very close to what is measured expenmentally in a numbereducesS? by a factor of 0.3—0.5" Similar reductions are
of one-dimensional electron systefid.The value ofl, at  expected for a 1DEG. The incorporation of screening is not
low T is determined by the spatial dimensions of the subimportant at the moment because no experimental data for
strate and it is usually a few mfsee, for example, Ref. 19  the phonon-drag regime are available. The Delft gféugb-

At higher temperaturels, is expected to decrease withand  served quantum oscillations in the thermopower in quantum
its exact temperature dependence can be calculated fropoint contacts. They heated the electrons without heating the

Ne=2
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phonons by using current heating and did not expect anginceS? and S¢ exhibit a similar structure as functions of
phonon-drag component. However, we have shown that thieeW/, a calibration of the experimental data is needed to
— SY maxima are~50—100 times bigger than those efs?,  untangle the two contributions.

and so a small rise of the phonon temperature could yield a M. Tsaousidou is grateful to the University of Warwick
significant phonon-drag contribution to the thermopower.for financial support.
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