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The phonon-drag thermopowerSg of a quasi-one-dimensional ballistic quantum wire is calculated by using
the Onsager relation to relateSg to the phonon-drag contribution toQ/DV, whereQ is the heat flux produced
by a small voltage differenceDV across the wire. A general formula is derived forSg and numerical results are
presented for when two electronic subbands are involved. The dependence ofSg on the wire width exhibits
peaks similar to those shown by the diffusion thermopowerSd. It is found, however, that theSg maxima are
up to 50–100 times larger than the corresponding ones forSd when T51 – 10 K. The dominance ofSg is
apparent for all the values of the wire width and temperatures investigated.@S0163-1829~97!51040-X#

We calculate the phonon-drag thermopowerSg of a bal-
listic one-dimensional electron gas~1DEG!. Previous authors
have shown that the phonon-drag contribution to ballistic
resistance is small1 and others discuss acoustoelectric cur-
rents and conductivity produced by injecting phonon
pulses.2,3 Kozub and Rudin4 considerSg in a quantum point
contact and they find a very different quantization picture
than the one we predict here. The reason for this is that4 the
behavior ofSg is dominated by the electron-phonon interac-
tion in the wide, tapering regions leading to the narrow gap
in the middle of the contact, while here we consider a long
1DEG, and the behavior ofSg is dominated by the electron-
phonon interactioninside the 1DEG.

The electronic structure we examine is a quasi-1DEG
confined in a ballistic quantum wire~BQW! of width W. To
model this structure, we consider a ballistic two-dimensional
electron gas~2DEG! which is confined laterally by two par-
allel, straight, hard potential walls separated by a distanceW.
The wire is fed with electrons from reservoirs attached to the
ends. We use a Cartesian coordinate systemOxyzwith Oxy
in the plane of the 2DEG andOx parallel to the axis of the
wire. The hard wall potential in they direction splits each 2D
subband into several 1D subbands~channels!. We assume
that only the ground 2D subband is occupied. Then, the en-
ergy eigenvalues and electron wave functions for the
1D constriction in the effective-mass approximation
are given by Eak5Ea1(\2k2/2m!) and Cak(r )
5(1/Lx)

1/2 exp(ikx)f1(z)ua(y). Here, Ea5\2a2p2/2m!W2

is the lowest energy of each 1D subband (a51,2,3, . . . ), k
is the electron wave number associated with the electron mo-
tion along the x direction, m! is the effective mass,r
5(x,y,z), and Lx is the length of the quantum wire. The
wave functionsf1(z) andua(y) describe the electron con-
finement in thez andy direction:f1(z) is given by the Fang
and Howard function5 while ua(y) is a sine function. In the
case considered here the sum of all the transmission prob-
abilities increases by unity each time a new channel propa-
gates.

In these structures electrons exhibit strongly quantized be-
havior which is seen experimentally in the conductanceG
~Ref. 6! and diffusion thermopowerSd.7,8 Electron transport
in the quantum ballistic regime is described by the Landauer-
Büttiker ~L-B! approach.9,10 Generalizations of the L-B for-

malism are given by Butcher11 and by Sivan and Imry.12

They relate the charge and heat fluxes in the wire to the
chemical potential and temperature changes in the reservoirs.

The electronic system is embedded in a bath of 3D
phonons. Above 0.5 K the phonon population is large
enough to create enough electron-phonon scattering events to
yield a measurable phonon-drag contribution to the ther-
mopower. We consider temperaturesT<10 K, and ignore
optical phonons and the effect of the interfaces on the acous-
tic phonons. The reservoirs have the same temperatureT but
the chemical potential in one of them is raised byDm so that
a voltage differenceDV52Dm/ueu exists across the wire.
Consequently, the electrons move towards the reservoir with
the lower chemical potential and impart some of their mo-
mentum to the phonons through the electron-phonon interac-
tion. Hence, a phonon heat fluxQ is produced in thex di-
rection. In standard notation we write11,12

Q52MgDm/ueu. ~1!

We calculateQ and use Eq.~1! to obtainMg. Then Onsag-
er’s relation,Mg52LgT ~Ref. 13! @whereLg is related toSg

by the equationSg52Lg/G ~Ref. 11!# yields

Sg5Mg/TG. ~2!

The calculation ofQ for a ballistic 1DEG, which we out-
line here, follows a similar pattern to that described in more
detail for a 2DEG in the quantum Hall regime.14,15 In equi-
librium a global chemical potentialm5EF and temperature
T characterize both reservoirs. Then, the occupation prob-
ability of the incident waves in channel a
is given by the Fermi-Dirac function f 0(Eak)
5$exp@(Eak2EF)/kBT#11%21.11,12 Phonons have the Bose-
Einstein distribution: N0(qs)5@exp(\vqs /kBT)21#21

where \vqs is the energy of a phonon with wave vector
q5(qx ,qy ,qz) in modes. When the chemical potential in
the left-hand reservoir is raised by a small amountDm.0,
more electrons are injected into the BQW from the left while
the number of electrons injected from the right remains the
same. Hence the electron distribution function can be linear-
ized as follows:11
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f ~Eak!5H f 0~Eak!1 f 1~Eak!, k.0

f 0~Eak!, k,0,
~3!

where f 1(Eak) is given by

f 1~Eak!52Dm] f 0~Eak!/]Eak . ~4!

Eq. ~3! shows that electrons acquire a net flux from the
left to the right. The phonon heat flux produced in thex
direction is

Q5
Lx

21V

~2p!3(s
E dq\vqsvpxN1~qs!, ~5!

whereV is the volume of the sample andvpx is thex com-
ponent of the phonon group velocity. For isotropic phonons
vpx5vsqx /q, wherevs is the sound velocity andq the mag-
nitude of the phonon wave vectorq. Finally,
N1(qs)5N(qs)2N0(qs) is the first-order perturbation of
the equilibrium phonon distribution functionN0(qs), where
N(qs) is the nonequilibrium phonon distribution function.

The phonon mean free pathl p(qs) is limited by lattice
imperfections and crystal boundaries. We describe this scat-
tering by a relaxation timetp(qs) and use the steady-state
Boltzmann’s equation for phonons whenDT50 to write14,15

N1~qs!

tp~qs!
52 (

ak,bk8
$ f ~Ebk8!@12 f ~Eak!#Pqs

e ~bk8,ak!

2 f ~Eak!@12 f ~Ebk8!#Pqs
a ~ak,bk8!%, ~6!

where the right-hand side of Eq.~6! is the rate of change of
N(qs) due to electron-phonon scattering.Pqs

a(e)(ak,bk8) are
the transition rates at which an electron in stateak is pro-
moted to a statebk8 by absorbing~emitting! one phononqs.
The factor 2 allows for the spin degeneracy.

The electron distribution functions appearing in Eq.~6!
can be written in the linear form~3!. Moreover, the transition
ratesPqs

a(e) can be linearized:Pqs
a(e)5Pqs

a0(e0)
1Pqs

a1(e1) , where

Pqs
a0(e0) corresponds to equilibrium and is proportional to

N0(qs) and @N0(qs)11#, respectively, while the perturba-
tions Pqs

a1(e1) are both proportional toN1(qs). Using the de-
tailed balance relation15,16 and assuming weak electron-
phonon coupling, we find that

N1~qs!5
2tp~qs!

kBT (
ak,bk8

G~bk8,ak!H f 1~Eak!

] f 0~Eak!/]Eak

2
f 1~Ebk8!

] f 0~Ebk8!/]Ebk8
J , ~7!

where G(bk8,ak)5 f 0(Eak)@12 f 0(Ebk8)#Pqs
a0(ak,bk8) is

the average equilibrium rate of absorption of phononsqs due
to the electron transitionsak→bk8. The perturbationf 1 of
the electron distribution function for the electrons injected
from the left reservoir is given by Eq.~4!, while for the
electrons injected from the right,f 1 is zero. We see by in-
spection that onlyk and k8 of opposite sign contribute to
N1(qs). Hence, Eq.~7! is written as

N1~qs!52
2tp~qs!

kBT
DmH (

ak.0
(

bk8,0

G~bk8,ak!

2 (
ak,0

(
bk8.0

G~bk8,ak!J . ~8!

Substituting Eq.~8! into Eq.~5! and using Eqs.~1! and~2!
we obtain the following formula:

Sg5
Lx

21V

~2p!3

2ueu

kBT2

1

G(
s
E dq\vqsvpxtp~qs!

3H (
ak.0

(
bk8,0

f 0~Eak!@12 f 0~Ebk8!#Pqs
a0~ak,bk8!

2 (
ak,0

(
bk8.0

f 0~Eak!@12 f 0~Ebk8!#Pqs
a0~ak,bk8!J ,

~9!

where we have substituted the explicit form forG(bk8,ak).
The conductance has the steplike form8

G5
2e2

h
(a51

Nc f 0(Ea), whereNc is the number of occupied

1D subbands. At low temperatures phonon boundary scatter-
ing is dominant andtp(qs) can be assumed to be indepen-
dent ofqs.

It only remains for us to determine the transition rate
Pqs

a0(ak,bk8). By using the Golden Rule we have

Pqs
a0~ak,bk8!5

pq2J2~qs!

rVvqs
N0~qs!uZ11u2uYabu2

3d~Ebk82Eak2\vqs!dk8,k1qx
. ~10!

Here, r is the density of the bulk material and
uZ11u25u*f1

2(z)exp(iqzz)dzu2 is the qz-conservation factor
when only the ground 2D subband is populated. An analyti-
cal expression for uZ11u2 is given in Ref. 15. The
qy-conservation factor is defined as uYabu2

5u*0
Wua(y)exp(iqyy)ub(y)dyu2. Finally, J2(qs) is the ‘‘ef-

fective’’ acoustic potential describing the electron-phonon
coupling. We confine our attention to GaAs/AlxGa12xAs
structures. GaAs has a spherical conduction band and is po-
lar: J2(qs) accounts for both deformation potential coupling
and piezoelectric coupling. For the longitudinal acoustic
branch and for each of the transverse branches we obtain15

J2(ql )5Jd
21@(eh14)

2Al /q2# and J2(qt)5(eh14)
2At /q2,

respectively. HereJd is the deformation potential constant
associated with pure dilation,16 h14 is the piezoelectric con-
stant, andAl , At are the anisotropy factors given by Price.17

The evaluation of the sums overk, k8, andq follows the
pattern described in Ref. 18. The explicit formula ofSg and
results for one subband will be reported elsewhere. Here we
concentrate on the more interesting case when two subbands
are occupied. The values of the parameters used are standard
ones for GaAs~Ref. 15! andl p is taken to be 3 mm for allT.
We calculateSg for temperatures 0.3 K<T<10 K. The 2D
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electron density is fixed atNe54.0731015 m22, which gives
a Fermi levelEF514.56 meV and a Fermi wave number
kF50.16 nm21.

In Fig. 1~a! we plot 2Sg againstkFW/p for T51 K
~solid line!, T52 K ~chain line!, andT54 K ~dots!. In Fig.
1~b! the solid line, the dots, and the broken and chain lines
correspond toT55, 6, 8, and 10 K, respectively. The bot-
toms of the first and second subband crossEF at kFW/p51
~where W519.63 nm! and kFW/p52 ~where W539.27
nm!, respectively. As E1 approachesEF , 2Sg rises
abruptly, especially at low temperatures because of the van-
ishing values ofG for E1>EF .8 At kFW/p;2 a peak oc-
curs due to the contribution of the second subband. In con-
trast to the diffusion case8 the height of the peak depends on
temperature, anddecreasesfrom ;14 mV/K at T51 K to
;6 mV/K at T510 K. To understand this, we should men-
tion that theqy-conservation factorsuY11u2 anduY22u2 are by
definition functions ofqyW ~Ref. 18! and consequently,
since qy;kBT/\vs , they depend onT. Now, for fixed
W539.27 nm these factors are decreasing functions ofqy
~and consequently ofT), for all the temperatures of interest
to us, and they dominate the temperature dependence of
Sg.18

Finally, in Fig. 2 we compare the diffusion thermopower
2Sd ~Ref. 8! and 2Sg at 1 K @Fig. 2~a!# and 10 K @Fig.
2~b!#. 2Sd is given by the solid line and the theoretical es-
timations of2Sg have beendivided by a factor of 100~chain
line!. Both curves have a similar shape. The phonon-drag
peak values atkFW/p52 are approximately two orders of
magnitude larger than the corresponding diffusive ones.

The only arbitrary parameters involved in the calculation
of Sg areNe and l p . However, the value ofNe used here is
very close to what is measured experimentally in a number
of one-dimensional electron systems.6–8 The value ofl p at
low T is determined by the spatial dimensions of the sub-
strate and it is usually a few mm@see, for example, Ref. 19#.
At higher temperaturesl p is expected to decrease withT and
its exact temperature dependence can be calculated from

thermal conductivity data for the substrate.19 The pro-
nounced dominance ofSg overSd shown by Fig. 2 illustrates
the importance of phonon drag in semiconducting materials.
In 2DEG’sSg has also been found to be much larger than the
Sd when 2,T,65 K.19

The peak structure of2Sg shown in Figs. 1 and 2 is the
manifestation of a well-known singularity which is hidden in
the right-hand side of Eq.~9! and is associated with the de-
tails of the 3D phonon coupling to 1D electrons inside the
wire. To bring it out in a simple way we concentrate on one
phonon mode, letT→0, and neglect both intersubband scat-
tering in Eq.~9! and\vq in thed function in Eq.~10!. Then,
by carrying out the sums overk8 andk we obtain

Sg}2 (
a51

Nc52 E dqdS qx
2

4
1ka

22kF
2 D uYaau2qN0~q!J2~q!,

~11!

whereka5(2m!Ea /\2)1/2. The newd function which ap-
pears in Eq.~11! comes from the product of the electron
occupation factors in Eq.~9!. We see that it resonates when
qx52(kF

22ka
2)1/2, i.e., whenqx spans the electron dispersion

curve for subbanda at the Fermi level. In other words, we
are concerned with a Kohn resonance.20 By inspection of Eq.
~11! we see that, forqy5qz50, the integration overqx re-
sults in a singularity of the form (EF2Ea)21/2 which ex-
plains the structure of the figures. At finiteT the temperature
smearing of the electron occupation factors preventsSg from
diverging whenEF5Ea .

In the present analysis we have ignored screening. For
GaAs, the screening of the 2DEG coupling to 3D phonons
reducesSg by a factor of 0.3–0.5.21 Similar reductions are
expected for a 1DEG. The incorporation of screening is not
important at the moment because no experimental data for
the phonon-drag regime are available. The Delft group7,8 ob-
served quantum oscillations in the thermopower in quantum
point contacts. They heated the electrons without heating the

FIG. 1. 2Sg as a function ofkFW/p calculated from Eq.~9!
when two 1D subbands are occupied.~a! Results for 1 K~solid
line!, 2 K ~chain line!, and 4 K ~dots!. ~b! Results for 5 K~solid
line!, 6 K ~dots!, 8 K ~broken line!, and 10 K~chain line!.

FIG. 2. Comparison of2Sg and2Sd for a ballistic 1DEG. The
solid line is2Sd ~Ref. 8! and the chain line is20.01Sg at ~a! T51
K and ~b! T510 K.
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phonons by using current heating and did not expect any
phonon-drag component. However, we have shown that the
2Sg maxima are;50– 100 times bigger than those of2Sd,
and so a small rise of the phonon temperature could yield a
significant phonon-drag contribution to the thermopower.

SinceSg and Sd exhibit a similar structure as functions of
kFW/p, a calibration of the experimental data is needed to
untangle the two contributions.

M. Tsaousidou is grateful to the University of Warwick
for financial support.
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