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Metamagnetism in the two-dimensional Hubbard model with easy axis
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Although the Hubbard model is widely investigated, there are surprisingly few attempts to study the behav-
ior of such a model in an external magnetic field. Using the projector quantum Monte Carlo technique, we
show that the Hubbard model with an easy axis exhibits metamagnetic behavior if an external field is turned
on. For the case of intermediate correlations stretdjtiwe observe a smooth transition from an antiferro-
magnetic regime to a paramagnetic phase. While the staggered magnetization will decrease linearly up to a
critical field B, uniform magnetization develops only for fields higher tfgan [S0163-18207)50840-X]

I. INTRODUCTION phase diagram and found several phase transitions of first
and second order. It is an open question whether these phases
The Hubbard model is one of the simplest models ofstill exist in the more realistic case df=2 or 3.
strongly correlated electrodsThe magnetic properties of ~ Here, we consider the two-dimensional Hubbard model
this model have been extensively studied for many y&drs. On a square lattice in an external magnetic figldoupled to
But only in a few instances has the influence of an externalhe spins of the electrons via a Zeeman term. The Hamil-
magnetic field being coupled to the electrons beerfonianH is given by
investigated®~’ A very popular approach is the Peierls sub-
stitution, i.e., a hopping amplitude of the electrpns that. de- sz tijCiT Ciot EE nigni_a_z weB,s?, (1)
pends on the vector potential of the external field. This is i] 7 275 i
used, e.g., to study the superconducting properties of a Hub- . L
bard ring:?or torus t)r/weadedpby a magnetgi]cpﬁugwould also Wh_ere_t” denotes nearest-n_elghborzhoppnﬁg, 1S the mag-
be appropriate to calculate Hall coefficients in such systemd!€tic field parallel to the axis, andsj==,on;, is the spin
A different approach is to include a Zeeman term in theln Z d|rept|on. While thg Hgmﬂtor_uan |t§elf is isotropic, an
Hamiltonian, i.e., to couple the external magnetic field di-8aSy axis along the direction will be introduced by the
rectly to the spins of the electroRgThis case is well suited Simulational procedure as will be discussed later on.
for calculating static properties, such as magnetization.
For many years it has been well known that in alloys with Il. METHOD
a layered structure the magnetization shows a specific behav-
ior. If the planes are themselves ferromagnetically ordere%
but the coupling between them is antiferromagnetic, one ob- detailed discussion. the reader is referred to Ref. 10
serves that in an external field the total magnetization firsf The key idea of thé PQMC algorithm is to projec.t ou.t the
slowly increases linearly, then suddenly strongly rises before

saturation takes pladeThis was first observed by Becquerel grou nd-s;[ate wave funCF'?lw& offa Iat_tlce ferrt;uon Hlam|l-
and van den Handel, who coined  the termtonlanH rom a given trial wave functiof®+) by applying

“metamagnetism.® the operator exp{ gH) on |®) according to

Especially since metamagnetic behavior was found in A | Wl
heavy fermion compounds, the term metamagnetism has lim © ™) =|¥o) M _ 2
been used whenever the magnetic susceptibilit¢B) has a g (D€ 2PH D) [(Wo| D)l
maximum at a critical fieldB,., i.e., the magnetizatioll (B) . . »
has a point of inflexion at that field value, even if no phase! '€ €xpectation values of physical quantitesre then ob-

Here we briefly review the projector quantum Monte
arlo (PQMC) method for fermions in the ground state. For

transition occurs. tained from
It is widely believed that antiferromagnetic correlations “BH A o BH
. : ; : : : - (DleFrAe PR D)
play a crucial role in metamagnetic behavior. Since antifer- (A= lim (3)
romagnetic correlations are inherent in the Hubbard model, it g (Dl 2P Dy)
would be very interesting to study whether the Hubbard
model shows metamagnetic behavior or not. Applying the Trotter-Suzuki decomposititin? and the

Recently Held, Ulmke, and Volhardinvestigated an an- discrete Hubbard-Stratonovich transformatito the pro-
isotropic Hubbard model in a magnetic field coupled via ajection operator, the effect of the projection operator on the
Zeeman interaction term. Using the grand canonical quanturitial state can be rewritten symbolically as a sum
Monte Carlo approach, they calculateddr a magnetic over the Hubbard-Stratonovich spingo}, e PH|dq)
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=31F({o})|®7). The expectation value of a physical quan-  The (zero-field Hubbard model is invariant under &)

tity A is then obtained from spin rotation symmetry. Since the zero-field Hamiltonian
commutes with,, the eigenstates @&, are a natural choice
for a basis of states. At half-filling, the ground state is a state

2 , (1[F({oehAF({a"})]Pr) with S,=0. Therefore, one usually constructs the trial wave

(A)= tedde’} _ (4)  function as a direct product of spin-up and spin-down wave
, functions with an equal and fixed number of electrons in

{U}E{U,} (®rlFeHF{o h]Pn) each spin direction. Hence, the PQMC scheme not only con-

serves the total number of electrons, but, moreover, it re-
To evaluate these sums, the Monte Carlo method istricts the simulation to states 8{=0.
used** utilizing In order to incorporate the external magnetic field, we
have to remove this constraint. Therefore, we have extended
lo({o} {o'DI=(PrIF{oHF{a' D[P  (B)  the PQMC algorithm to all eigenstates &,. This is
as the weight of a configuration of Hubbard-Stratonovich2chiéved by allowing the number of electrons with a certain
spins. Since in generab({o},{c"}) can be negative for spin to change while still keeping the total number of elec-

some spin configurationisr}, it can be difficult to evaluate trons fixed. Hence, we still work in the canonical ensemble

Eq. (4 ically. Thi lem i f heappropriate for the ground state. In the framework pf the
m?nfjs)-sr};nmgrrgt?leym 's problem is often referred to as t ePQMC method, our procedure corresponds to a manifold of

All guantum Monte Carlo simulations suffer from the so- trial wave functions, all differing in spir,, which are all

called “minus-sign” problem though it does not always oc- sampled by the Mont_g Carlo methqd. .

cur at half-filling. In the PQMC scheme, the minus-sign TO. be more specific, 'Iet us write a general F”al wave
problem can be avoided for the bare Hubbard model at halfunction as a sum over trial wave functions with fixggl
filling if one uses a spin-density way8DW) ground state as

the trial wave function. In our simulations, we found that an D)= a(S)|Pr(S). (6)
appropriately chosen SDW ground-state wave function re- S

duces the minus-sign problem in case of an additional exteNow, the expectation value of an operatdy which con-
nal magnetic field, too. serves the spin, reads

Y 2 (P(S)|a(SHF{oHAF{a' ) a(S)|P(S}))
oo’} (s,.8))

Y 2 A{PHS)a(SHF(ohF({o' ) a(S)|P(S)))
{ot{o'} {s,.8,}

(P1(S)IFHahAF{a'}|P1(S))

(A)

i) & (@r(S)IFAahF({o’DIOr(S)) @iohiohS) (7)
> > o(oh{o'}S)
{o} o'} 1S}
where the absolute value of
o({c}{o'},S)=[a(S)1XP(S)|F{eHF({o'DH|P(S,)) (8)

is now being used as the generalized weight of a configuraq), it is easily incorporated into the operator ex#H) and
tion. Application of the Monte Carlo method is now straight- the Hubbard-Stratonovich transformation stays unchanged.
forward. We want to stress that each point of the configura- The trial wave functions in our scheme are composed of
tion space is still characterized by a definite valu&pf The  direct products of Slater determinants of electrons of fixed
original scheme of5,=0 for a half-filled band corresponds spin directions,

to a choice of

[D1(S))=|DUS))@|PHS,)) . (10
1 forS,=0
a(S,)= > : (99  Hence no linear combinations of up and of down spins can
0 otherwise. occur as would be necessary to construct eigenstats af

S,. This introduces an easy axis along thexis into the
Since the Zeeman term is bilinear in the electronic operasimulation, constraining the spins to lie parallel to it. Since
tors and commutes with the other parts of the Hamiltoniarthe Hamiltonian conserves spin directions, the structure of
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B I B e have depicted the ground-state energy per Ejjeas mea-
sured for three different system sizes. With increasing mag-
netic field B, the energy is considerably reduced. For small
systems, we observe a linear decreask pivhile for larger
systems the slope slowly changes.

Clearly, there are finite-size effects for the energy. We
observe that our datd,(B,N) scale according to a i/ be-
havior. Extrapolating them tbl— oo, we derivedEgy(B) for
an infinitely large system, too. For fields B&0.2 . .. 0.8,
the ground-state enerdg,(B) can nicely be fitted with a
quadratic function, i.e.Eg(B)och. This quadratic behavior
can easily be understood: For free electrobs=0), it is
known that a Zeeman coupling of the electrons leads to a
(temperature-independenvan Vleck contribution to the
T static susceptibility. Therefore, the energy should show a

0.0 0.2 0.4 0.6 0.8 quadratic dependence on the magnetic field as confirmed in
B our simulations. This behavior, observed &+ 2t, could be
a sign that the antiferromagnetic correlations introduced by

FIG. 1. Ground-state energy versus external magnetic Bield ~ the Coulomb repulsiot, are broken up by the external field
The symbols correspond to a linear system size-o#(x), 6(0), B. So we expect some influence on the magnetization as will
8(¢), andoe(*). Lines are guides to the eye only. be discussed below.

In our simulation we computed the spin-spin correlation
the trial wave function also applies to the projected groundfunction
state wave function, Eq2). Consequently, the easy axis is 1
conserved throughout the simulation. S(q) = Nizj e|q-(Ri—Rj)<(niT_nil)(n”_n”)> . (11

-11

-1.2

-1.3

-1.4

IIl. NUMERICAL RESULTS AND DISCUSSION In order to extrapolate to the thermodynamic limit, we plot

We have performed simulations for square lattices up to &(9)/N Vs IN.*~*it should follow a straight line according

linear system size oE=8, i.e., N=L XL lattice sites. On
average, we useth=64-128 time slices for our Trotter- N2
Suzuki decomposition. The number of electrons was skt to Sla)=Nmg+S(a) , (12
and kept fixed throughout the whole simulation. As outlinedwhereS; is the connected structure factor amyg the mag-
above, however, the number of electrons with a given spimetization
direction may change during the course of the simulation so
that a net magnetization results. Typically, we run an initial 1 iR
warmup and following measurements for several thousands quﬁzi (i —niy) - (13
of Monte Carlo sweeps. This procedure was repeated about
10 times to get independent data from which the average anidrom the extrapolated valué—c, we obtain the square of
the error was computed. the magnetizatiom,. We have followed this procedure for

In order to compare our results to the work of Held,q=0 andg=Q= (s, ) to obtain the uniform and the stag-
Ulmke, and Vollhardt we us® =2 (in units oft). We made gered magnetization.
extensive studies using different projection paramegets Our results for the magnetizationg,(B) andmg(B) are
ensure proper convergence of the energy and the magnetizshown in Fig. 2. In zero field, the Hubbard model shows
tion, respectively, to the ground state. It can be observed thamntiferromagnetic order. With increasing external field, the
the energy converges togindependent value much faster staggered magnetization clearly decreases up to a critical
than the magnetization. However, it turned out that in mosfield B.~0.2% where it vanishes. At about the same field
cases a value oB=6 is sufficient to reach a final value. value, the uniform magnetization strongly rises. The inflex-
Furthermore, we checked that the error due to the Trotterion point is clearly seen in the uniform magnetization, thus a
Suzuki decomposition is smaller than the statistical error irmetamagnetic behavior takes place.
our data. This was achieved by varying the numbeof Since in our case the trial wave function is a generalized
time slices. Then the error due to the decomposition can bspin-density wave from which the true ground state is pro-
estimated from a scaling of the ground-state energy versugcted out, any nonzero staggered magnetization means that
1/m?. the system is still in an antiferromagnetic ground state. This

For the trial statd®+), we choose a spin-density wave is true up to the critical field, .
state. The external magnetic field is parallel to the quantiza- According to a theorem due to Mermin and Wagner, an
tion axis of the spins of the electrons and thus parallel to thésotropic two-dimensional system does not undergo a con-
easy axis. Applying such an external field to the system, théinuous transition at any finite temperature. However, long-
electrons can gain energy by orienting their spin in the ditange order at zero temperature is not excluded. Although
rection of the field. Therefore, one would expect a decreasthe simulation method cannot deal wilh=0 directly, the
in the ground-state energy with increasing field. In Fig. 1 wetrue ground state is approached for sufficiently high projec-
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Y If one compares our results with those of Held, Ulmke,
- . and Vollhardf there are remarkable differences. For low
- 8 temperatures, they found at low external fields a constant,
T finite staggered magnetization and vanishing uniform mag-
02— ] netization. At a critical field oﬁcwo.lz, a first-order phase
L 4 transition takes place leading to a jump in both magnetiza-
- 1 tion curves. For fields larger thay, the staggered magne-
tization remains zero while the uniform magnetization in-
creases further. In contrast, oli=0 value ofB. is twice as

L - large as B, and close to the mean-field value of
- : BHF~0.27%.1° Besides, we find a rather smooth transition in
the staggered magnetization decreasing steadily uB.to
Due to strong fluctuations and large statistical errors close to
the phase transition, we were not able to resolve the question
el bt d if ther_e isamixe_d phase wittmy# 0 aanQaﬁ.O.'Neverthe-
0.0 02 04 0.6 08 !es_s, in our opinion the absence of a jumpng is a strong

: : B : : indication of a second order phase transition in two dimen-

sions.

mq/mo
T

0.0 — —

FIG. 2. Uniform (X) with respect to staggeredl) magnetiza- IV. SUMMARY
tion versus external magnetic field. Note the transition point from
an antiferromagnetic to a paramagnetic phasBat0.2%. Lines To summarize, we have studied the half-filled two-
are guides to the eye only. dimensional Hubbard model with an easy axis in an external
magnetic field which was coupled to the spin of the electrons
tion parameterss. Even if we would not have reached high Via @ Zeeman term. The model was investigated numerically
enoughg, the system would behave effectively as a long-YSing an enhanced version of the projector quantum Monte

range ordered one if the correlation length is larger than thé&arlo method. . , . .
system size. The model shows in zero field an antiferromagnetic

The fact that the system has an easy axis due to the Simlg_ro_un(_j state that remgins present in increasing extgrnal mag-
lational constraint is certainly a limitation. In an anisotropic netic fields up to a critical field v_aIuBCwO.ZB. FOT higher .
Heisenberg model, being the limiting case of latgethere f!eldg the system_ IS fqund tp be in a paramagnetic state with
exists a minimum fieldB, at which a so-called spin-flop f|eld-|nduceq.spln orientation. Our data suggest that the
transition occurd® The spins of the electrons will then orient Phase transition 8. should be of second order.
themselves perpendicular to the external field. In the isotro-
pic model, this will happen already for an infinitesimal small
field B, . Raising the anisotropyB,, will increase'® Further Support from the Deutsche Forschungsgemeinschaft is
attempts have to be made to clarify whether this scenarigratefully acknowledged. The authors thank K. W. Becker
holds for the Hubbard model with intermedidtie too. and M. Voijta for helpful discussions and valuable comments.
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