
Metamagnetism in the two-dimensional Hubbard model with easy axis

F. Bagehorn
Institut für Theoretische Physik, Technische Universita¨t Dresden, D-01062 Dresden, Germany

R. E. Hetzel
Max-Planck-Institut fu¨r Physik komplexer Systeme, Bayreuther Strasse 40, D-01187 Dresden, Germany

~Received 21 May 1997!

Although the Hubbard model is widely investigated, there are surprisingly few attempts to study the behav-
ior of such a model in an external magnetic field. Using the projector quantum Monte Carlo technique, we
show that the Hubbard model with an easy axis exhibits metamagnetic behavior if an external field is turned
on. For the case of intermediate correlations strengthU, we observe a smooth transition from an antiferro-
magnetic regime to a paramagnetic phase. While the staggered magnetization will decrease linearly up to a
critical field Bc , uniform magnetization develops only for fields higher thanBc . @S0163-1829~97!50840-X#

I. INTRODUCTION

The Hubbard model is one of the simplest models of
strongly correlated electrons.1 The magnetic properties of
this model have been extensively studied for many years.2–4

But only in a few instances has the influence of an external
magnetic field being coupled to the electrons been
investigated.5–7 A very popular approach is the Peierls sub-
stitution, i.e., a hopping amplitude of the electrons that de-
pends on the vector potential of the external field. This is
used, e.g., to study the superconducting properties of a Hub-
bard ring or torus threaded by a magnetic flux.5 It would also
be appropriate to calculate Hall coefficients in such systems.

A different approach is to include a Zeeman term in the
Hamiltonian, i.e., to couple the external magnetic field di-
rectly to the spins of the electrons.6 This case is well suited
for calculating static properties, such as magnetization.

For many years it has been well known that in alloys with
a layered structure the magnetization shows a specific behav-
ior. If the planes are themselves ferromagnetically ordered
but the coupling between them is antiferromagnetic, one ob-
serves that in an external field the total magnetization first
slowly increases linearly, then suddenly strongly rises before
saturation takes place.8 This was first observed by Becquerel
and van den Handel, who coined the term
‘‘metamagnetism.’’9

Especially since metamagnetic behavior was found in
heavy fermion compounds, the term metamagnetism has
been used whenever the magnetic susceptibilityxm(B) has a
maximum at a critical fieldBc , i.e., the magnetizationM (B)
has a point of inflexion at that field value, even if no phase
transition occurs.

It is widely believed that antiferromagnetic correlations
play a crucial role in metamagnetic behavior. Since antifer-
romagnetic correlations are inherent in the Hubbard model, it
would be very interesting to study whether the Hubbard
model shows metamagnetic behavior or not.

Recently Held, Ulmke, and Volhardt7 investigated an an-
isotropic Hubbard model in a magnetic field coupled via a
Zeeman interaction term. Using the grand canonical quantum
Monte Carlo approach, they calculated ind5` a magnetic

phase diagram and found several phase transitions of first
and second order. It is an open question whether these phases
still exist in the more realistic case ofd52 or 3.

Here, we consider the two-dimensional Hubbard model
on a square lattice in an external magnetic fieldB coupled to
the spins of the electrons via a Zeeman term. The Hamil-
tonianH is given by
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t i j cis
† cj s1

U
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nisni 2s2(
i

mBBzsi
z, ~1!

where t i j denotes nearest-neighbor hopping,Bz is the mag-
netic field parallel to thez axis, andsi

z5(ssnis is the spin
in z direction. While the Hamiltonian itself is isotropic, an
easy axis along thez direction will be introduced by the
simulational procedure as will be discussed later on.

II. METHOD

Here we briefly review the projector quantum Monte
Carlo ~PQMC! method for fermions in the ground state. For
a detailed discussion, the reader is referred to Ref. 10.

The key idea of the PQMC algorithm is to project out the
ground-state wave functionuC0& of a lattice fermion Hamil-
tonianH from a given trial wave functionuFT& by applying
the operator exp(2bH) on uFT& according to

lim
b→`

e2bH uFT&

A^FTue22bHuFT&
5uC0&

^C0uFT&
z^C0uFT& z . ~2!

The expectation values of physical quantitiesA are then ob-
tained from

^A&5 lim
b→`

^FTue2bHAe2bHuFT&

^FTue22bHuFT&
. ~3!

Applying the Trotter-Suzuki decomposition11,12 and the
discrete Hubbard-Stratonovich transformation13 to the pro-
jection operator, the effect of the projection operator on the
trial state can be rewritten symbolically as a sum
over the Hubbard-Stratonovich spins$s%, e2bHuFT&
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5($s%F($s%)uFT&. The expectation value of a physical quan-
tity A is then obtained from

^A&5

(
$s%,$s8%

^FTuF~$s%!AF~$s8%!uFT&

(
$s%,$s8%

^FTuF~$s%!F~$s8%!uFT&

. ~4!

To evaluate these sums, the Monte Carlo method is
used,14 utilizing

uv~$s%,$s8%!u5 z^FTuF~$s%!F~$s8%!uFT& z ~5!

as the weight of a configuration of Hubbard-Stratonovich
spins. Since in generalv($s%,$s8%) can be negative for
some spin configurations$s%, it can be difficult to evaluate
Eq. ~4! numerically. This problem is often referred to as the
minus-sign problem.

All quantum Monte Carlo simulations suffer from the so-
called ‘‘minus-sign’’ problem though it does not always oc-
cur at half-filling. In the PQMC scheme, the minus-sign
problem can be avoided for the bare Hubbard model at half-
filling if one uses a spin-density wave~SDW! ground state as
the trial wave function. In our simulations, we found that an
appropriately chosen SDW ground-state wave function re-
duces the minus-sign problem in case of an additional exter-
nal magnetic field, too.

The ~zero-field! Hubbard model is invariant under SU~2!
spin rotation symmetry. Since the zero-field Hamiltonian
commutes withSz , the eigenstates ofSz are a natural choice
for a basis of states. At half-filling, the ground state is a state
with Sz50. Therefore, one usually constructs the trial wave
function as a direct product of spin-up and spin-down wave
functions with an equal and fixed number of electrons in
each spin direction. Hence, the PQMC scheme not only con-
serves the total number of electrons, but, moreover, it re-
stricts the simulation to states ofSz50.

In order to incorporate the external magnetic field, we
have to remove this constraint. Therefore, we have extended
the PQMC algorithm to all eigenstates ofSz . This is
achieved by allowing the number of electrons with a certain
spin to change while still keeping the total number of elec-
trons fixed. Hence, we still work in the canonical ensemble
appropriate for the ground state. In the framework of the
PQMC method, our procedure corresponds to a manifold of
trial wave functions, all differing in spinSz , which are all
sampled by the Monte Carlo method.

To be more specific, let us write a general trial wave
function as a sum over trial wave functions with fixedSz ,

uFT&5(
Sz

a~Sz!uFT~Sz!&. ~6!

Now, the expectation value of an operatorA, which con-
serves the spin, reads
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~7!

where the absolute value of

v~$s%,$s8%,Sz!5@a~Sz!#
2^FT~Sz!uF~$s%!F~$s8%!uFT~Sz!& ~8!

is now being used as the generalized weight of a configura-
tion. Application of the Monte Carlo method is now straight-
forward. We want to stress that each point of the configura-
tion space is still characterized by a definite value ofSz . The
original scheme ofSz50 for a half-filled band corresponds
to a choice of

a~Sz!5H 1 for Sz50

0 otherwise.
~9!

Since the Zeeman term is bilinear in the electronic opera-
tors and commutes with the other parts of the Hamiltonian

~1!, it is easily incorporated into the operator exp(2bH) and
the Hubbard-Stratonovich transformation stays unchanged.

The trial wave functions in our scheme are composed of
direct products of Slater determinants of electrons of fixed
spin directions,

uFT~Sz!&5uFT
↑~Sz!& ^ uFT

↓~Sz!& . ~10!

Hence no linear combinations of up and of down spins can
occur as would be necessary to construct eigenstates ofSx or
Sy . This introduces an easy axis along thez axis into the
simulation, constraining the spins to lie parallel to it. Since
the Hamiltonian conserves spin directions, the structure of
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the trial wave function also applies to the projected ground-
state wave function, Eq.~2!. Consequently, the easy axis is
conserved throughout the simulation.

III. NUMERICAL RESULTS AND DISCUSSION

We have performed simulations for square lattices up to a
linear system size ofL58, i.e., N5L3L lattice sites. On
average, we usedm564–128 time slices for our Trotter-
Suzuki decomposition. The number of electrons was set toN
and kept fixed throughout the whole simulation. As outlined
above, however, the number of electrons with a given spin
direction may change during the course of the simulation so
that a net magnetization results. Typically, we run an initial
warmup and following measurements for several thousands
of Monte Carlo sweeps. This procedure was repeated about
10 times to get independent data from which the average and
the error was computed.

In order to compare our results to the work of Held,
Ulmke, and Vollhardt we useU52 ~in units of t). We made
extensive studies using different projection parametersb to
ensure proper convergence of the energy and the magnetiza-
tion, respectively, to the ground state. It can be observed that
the energy converges to ab-independent value much faster
than the magnetization. However, it turned out that in most
cases a value ofb56 is sufficient to reach a final value.
Furthermore, we checked that the error due to the Trotter-
Suzuki decomposition is smaller than the statistical error in
our data. This was achieved by varying the numberm of
time slices. Then the error due to the decomposition can be
estimated from a scaling of the ground-state energy versus
1/m2.

For the trial stateuFT&, we choose a spin-density wave
state. The external magnetic field is parallel to the quantiza-
tion axis of the spins of the electrons and thus parallel to the
easy axis. Applying such an external field to the system, the
electrons can gain energy by orienting their spin in the di-
rection of the field. Therefore, one would expect a decrease
in the ground-state energy with increasing field. In Fig. 1 we

have depicted the ground-state energy per siteEg as mea-
sured for three different system sizes. With increasing mag-
netic fieldB, the energy is considerably reduced. For small
systems, we observe a linear decrease ofEg while for larger
systems the slope slowly changes.

Clearly, there are finite-size effects for the energy. We
observe that our dataEg(B,N) scale according to a 1/N be-
havior. Extrapolating them toN→`, we derivedEg(B) for
an infinitely large system, too. For fields ofB50.2t . . . 0.8t,
the ground-state energyEg(B) can nicely be fitted with a
quadratic function, i.e.,Eg(B)}B2. This quadratic behavior
can easily be understood: For free electrons (U50), it is
known that a Zeeman coupling of the electrons leads to a
~temperature-independent! van Vleck contribution to the
static susceptibility. Therefore, the energy should show a
quadratic dependence on the magnetic field as confirmed in
our simulations. This behavior, observed forU52t, could be
a sign that the antiferromagnetic correlations introduced by
the Coulomb repulsionU, are broken up by the external field
B. So we expect some influence on the magnetization as will
be discussed below.

In our simulation we computed the spin-spin correlation
function

S~q!5
1

N(
i , j

eiq•~Ri2Rj !^~ni↑2ni↓!~nj↑2nj↓!& . ~11!

In order to extrapolate to the thermodynamic limit, we plot
S(q)/N vs 1/N.15–17It should follow a straight line according
to

S~q!5Nmq
21Sc~q! , ~12!

whereSc is the connected structure factor andmq the mag-
netization

mq5
1

N(
i

eiq•Ri^~ni↑2ni↓!& . ~13!

From the extrapolated valueN→`, we obtain the square of
the magnetizationmq . We have followed this procedure for
q50 andq5Q[(p,p) to obtain the uniform and the stag-
gered magnetization.

Our results for the magnetizationsm0(B) andmQ(B) are
shown in Fig. 2. In zero field, the Hubbard model shows
antiferromagnetic order. With increasing external field, the
staggered magnetization clearly decreases up to a critical
field Bc'0.25t where it vanishes. At about the same field
value, the uniform magnetization strongly rises. The inflex-
ion point is clearly seen in the uniform magnetization, thus a
metamagnetic behavior takes place.

Since in our case the trial wave function is a generalized
spin-density wave from which the true ground state is pro-
jected out, any nonzero staggered magnetization means that
the system is still in an antiferromagnetic ground state. This
is true up to the critical fieldBc .

According to a theorem due to Mermin and Wagner, an
isotropic two-dimensional system does not undergo a con-
tinuous transition at any finite temperature. However, long-
range order at zero temperature is not excluded. Although
the simulation method cannot deal withT50 directly, the
true ground state is approached for sufficiently high projec-

FIG. 1. Ground-state energy versus external magnetic fieldBz .
The symbols correspond to a linear system size ofL54(3), 6(h),
8(L), and`(* ). Lines are guides to the eye only.
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tion parametersb. Even if we would not have reached high
enoughb, the system would behave effectively as a long-
range ordered one if the correlation length is larger than the
system size.

The fact that the system has an easy axis due to the simu-
lational constraint is certainly a limitation. In an anisotropic
Heisenberg model, being the limiting case of largeU, there
exists a minimum fieldBtr at which a so-called spin-flop
transition occurs.18 The spins of the electrons will then orient
themselves perpendicular to the external field. In the isotro-
pic model, this will happen already for an infinitesimal small
field Btr . Raising the anisotropy,Btr will increase.18 Further
attempts have to be made to clarify whether this scenario
holds for the Hubbard model with intermediateU, too.

If one compares our results with those of Held, Ulmke,
and Vollhardt7 there are remarkable differences. For low
temperatures, they found at low external fields a constant,
finite staggered magnetization and vanishing uniform mag-
netization. At a critical field ofB̃c'0.12t, a first-order phase
transition takes place leading to a jump in both magnetiza-
tion curves. For fields larger thanB̃c , the staggered magne-
tization remains zero while the uniform magnetization in-
creases further. In contrast, ourT50 value ofBc is twice as
large as B̃c and close to the mean-field value of
Bc

HF'0.27t.19 Besides, we find a rather smooth transition in
the staggered magnetization decreasing steadily up toBc .
Due to strong fluctuations and large statistical errors close to
the phase transition, we were not able to resolve the question
if there is a mixed phase withm0Þ0 andmQÞ0. Neverthe-
less, in our opinion the absence of a jump inmQ is a strong
indication of a second order phase transition in two dimen-
sions.

IV. SUMMARY

To summarize, we have studied the half-filled two-
dimensional Hubbard model with an easy axis in an external
magnetic field which was coupled to the spin of the electrons
via a Zeeman term. The model was investigated numerically
using an enhanced version of the projector quantum Monte
Carlo method.

The model shows in zero field an antiferromagnetic
ground state that remains present in increasing external mag-
netic fields up to a critical field valueBc'0.25t. For higher
fields the system is found to be in a paramagnetic state with
field-induced spin orientation. Our data suggest that the
phase transition atBc should be of second order.
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