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Nonbackscattering contribution to weak localization
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We show that the enhancement of backscattering responsible for the weak localization is accompanied by a
reduction of the scattering in other directions. A simple quasiclassical interpretation of this phenomenon is
presented in terms of a small change in the effective differential cross section for a single impurity. The
reduction of the scattering at the arbitrary angles leads to the decrease of the quantum correction to the
conductivity. Within the diffusion approximation this decrease is small, but it should be taken into account in

the case of a relatively strong magnetic field when the diffusion approximation is no longer valid.
[S0163-182607)00639-3

I. INTRODUCTION The guantitative theory of weak localization is based on
the expansion of the conductivity in a series of the small
The quantum correction to the conductivity arises fromparameter KzI) %, wherekg is a Fermi wave vector. The
interference of electron waves propagating in opposite direcregative correction to the conductivity E(.) arises in the
tions along closed paths. The interference is destroyed fdirst order of this parameter. It can be derived by summing
trajectories which are long enough. In the absence of magso-called maximally crossed diagraffég. 1(a)]. These dia-
netic field and if spin effects may be neglected, the destrucgrams describe the coherent backscattering of the electron
tion of this interference due to processes of electron inelastigzave. In the case when the diffusion approximation is not
scattering which are usually taken into account by introducvalid, together with the maximally crossed diagrams one
ing the phase breaking time, . At sufficiently low tempera-  should also take into account the diagrams presented in Figs.
turesr, is much greater than the elastic scattering tim@d  1(b), 1(c), and 1d). These diagrams too, give a contribution
the motion of electrons may be described by a diffusionto the conductivity of the order okgl) ~* but, in contrast to
equation(diffusion approximation The corresponding con- the diagrams presented in Figal, their contribution is posi-
ductivity correction is negative and in the two-dimensionaltive. The importance of these diagrams was emphasized in
(2D) case is given b’y many works, but a clear quasiclassical interpretation of pro-
cesses corresponding to these diagrams was never given.
5 ) Moreover in Ref. 6 it was claimed that a quasiclassical in-
Ao=— € Inﬁ 1) terpretation of these processes is not possible.
2m2h 127 In this work we present a simple quasiclassical interpre-
tation of any diagram of the first order irkdl) 1. It is
shown that the contribution of these diagrams may be ex-
Here L,=(2D T¢)l/2 is the phase breaking length, pressed through the classical probability for an electron to
D=1%/(27) is the diffusion coefficient, andl is the mean return to the origin at a certain angle to the initial direction of
free path. It is well knowh that Eq. (1) allows a simple motion. We discuss the possibility of describing weak local-
quasiclassical derivation based on the calculation of thézation effects in terms of a small change of the differential
probability for an electron to return to the origin. cross section of a single impurity. The angular dependence
The presence of magnetic field leads to the phase coheof this modified cross section for the case of zero magnetic
ence distortion when the path linear dimensions are largefield and the short-range impurity potential is presented in
than the magnetic length,=(c/eB)¥2 With increasing Fig. 2. The positive peak ned#= corresponds to the en-
magnetic field B, the magnetic length becomes smaller thanhancement of backscattering described by Fig) While the
L, and, accordingly, the conductivity correction decredses.other diagrams in Fig. 1 are responsible for the decrease of
For relatively weak magnetic fields, whér<l;<L,, the the scattering rate in other directions, the total cross section
equation (1) is still valid with L, being changed by the remaining unchanged. At the same time the transport cross
length of the order of,, . For stronger magnetic fields when section changes and this is the reason for the weak localiza-
lu<<I (but still I<R., R; is the cyclotron radius the main  tion corrections. This means that all first order kgl) ~*
contribution to the conductivity correction comes from shortweak localization effects may be taken into account by
closed trajectories with the length of the order gfand the  changing the differential cross section of a single impurity. A
diffusion approximation is no longer valid. This case wassimilar consideration is also possible when magnetic field is
considered in Refs. 4 and 5 and it was found that in twoapplied. In this case the effective cross section depends on
dimensions for short range potenti&boc—1 /1. magnetic field.
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FIG. 1. Diagrams relevant in the first order ike{) ~1: the diagram describing coherent backscattet@gnd the diagrams describing

coherent scattering at different angles. The contributior(bdfdepends on the magnetic field. The contributions of tym@sand (d)
compensate each other.

It is also shown that within the diffusion approximation the possibility of describing the weak localization in terms of
(Ly.ly>1) taking into account Figs. (i), 1(c), and Xd) an interference correction to the differential cross section.
leads to the appearance in Efj) of an additional factor 1/2
in the argument of the logarithm. At strong magnetic fields
(Iy<I), when the diffusion approximation is no longer valid, Il. BASIC EQUATIONS
g}eF(i:;.nigutt);)?h%f rf&ggrﬁe(:?gallg‘gct?)?%rﬁ?/) differs from that We consider the motion of 2D electrons in a random po-

We calculate numerically the quantum correction to thetentialV(r)==u(r —R;), whereR; is a vector of the position
conductivity for the total range of the classically weak mag-°f 1th impurity, u(r) is a single impurity potential, which is
netic fields. The results are presented graphically. supposed to be. a shor.t-range one. The correlation function of

The paper is organized as follows. In the first section wehe total potential/(r) is given by
give the necessary formulas and definitions. In the second
section the derivation of the correction to the conductivity
due to Fig. 1a) is given in the coordinate representation.
This method allows us to reach more transparent physical
presentation. In the third section the quaSiCIaSSical interprqﬂere the angu|ar brackets denote averaging over the impuri-
tation of Figs. 1b)-1(d) is given, using the same method. ty's positions. Static conductivity is calculated with the use
The dependence of the quantum correction on the magnetiss the Kubo formula. It will be convenient for our purposes
field is considered. Finally, in the fourth section we diSCUS&O write this formula in the coordinate representation:

(VV(r))=yo(r—r’). (2

S e’h’
o=— f f dzridzrf
27m?S

J R Jd A
X (?_riGe(ri1rf1EF)(?_rfGe(rfari:EF) . (3

Sel. v . Here m is the electron massS is the area of the system,
GRXA(r,r' Eg) are, respectively, the retarded and advanced
exact Green functions at the Fermi enefy.

As is well known, the result of averaging over the impu-
rity’s positions is represented as a sum of all the possible

0 diagrams with solid lines corresponding to averaged Green
functions and dashed lines corresponding to the potential
correlation function.

FIG. 2. The angle dependence of the modified differential cross The expressions for the averaged Green functions are
section on single impurity. given by

0 11 2n



9912 A. P. DMITRIEV, V. YU. KACHOROVSKII, AND I. V. GORNY!I 56

GRA(r,r' Eg)=(GR(r,r" ,Ep))

d?kexfik(r—r")]

- e R W
(2w)2(EF—— )

+ —
2m 27

wherer=%53/(my) is the elastic scattering tinfeThese ex-
pressions have the following asymptotic behavior at dis-
tances exceeding the wavelength:

im 1
GRA(T—1" Ep)=F— ———
h2 2akelr—r’|
i R e S N
xexp xikglr—r |_T+IZ .

©)

The Green function§&R and G* describe the divergent and
convergent waves, respectively. These waves oscillate rap-
idly on the scalek;1 and their amplitudes decrease slowly
on the scale of the order of the mean free fatiihe large
value of the parametds:| allows us to give a quasiclassical
interpretation for various terms in the diagram series, the
guantity

—r/l

P(1)=yGR(1,Er)GA1 Er) =5 ®)

playing an essential role. This is a classical probability den- i

sity for an electron starting from the origin=0 to experi-

ence the first collision around point (b)
In what follows we will make use of the relation

9 ir 9 FIG. 3. The process related to Figal (a) Key points {, f, 1,
j dzriGﬁ\‘—GiRl=g—(Gﬁl—GQl) and N) have arbitrary positions(b) the positions of key points
an I satisfy the stationary phase condition.
mlb(ry=r1) _p A . . . "
~—— W[GNﬁ Gnil, (D two ways: (1) successively scattering on impurities
L e 1,2,... N, (2) passing the same chain of impurities in the
which may be easily derived from E¢4). Here we use the opposite order,N—1,...,1).
notationGJR'A:GR'A(rj —r). It means that each section of the trajectory from Nt

For a short-range potential, when the scattering is isotroPassed twice. The amplitudes of these transitions are de-
pic, the main contribution to the conductivity is given by the Scribed by the functionss® and G*, respectively, which
diagram without dashed lines, which corresponds to indeperf:ome into the expression for the conductivity correction as
dent averaging of the Green functions in E8). It is easy to  Products VG_R(H’ —rj+1)GA(rj=rj41)=P(r;=rjs1). Thus
see that in this approximation E€B) is reduced to the inte- the phase difference of the two waves on the paths connect-
gral ing points 1 and\ is equal to zero and the quantity

e?7k2 d’r,d’r; e’nr  €?
f ri—r¢ = = kel, (8)

70" o rm S m 2mh'F

WN,l(rl_rN): f d2r2 s erN,]_
wheren is the electron concentration. This equation is in fact

the classical Drude formula. XP(ry—=ry) ...P(ryoa—ry) (9

appears in the expression for the conductivity correction.
This quantity is the classical probability density to find an
The coherent backscattering correction to the Drude forelectron started from point 1 near the poMtafter N—1
mula (8) is described, in the first order irkgl) "%, by Fig.  collisions.
1(a), the number of dashed lines being greater than%wo. The smallness of the contribution to conductivity of the
These diagrams represent the contribution to conductivityrig. 1(a) in comparison with the main Drude’s ofieg. (8)]
related to interference of two processes depicted in K. 3 results from the initial and last sections of the trajectories
An electron starting from the pointreaches the poirt by  (i,1), (i,N), (N,f), (1,f) that normally are passed only once

IIl. COHERENT BACKSCATTERING CORRECTION
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[see Fig. 8a)]. The total phase difference of the two waves at  After integrating in Eq{12) we finally obtain
point f comes from these sections only and is given by
2
Ap=Ke([ro—ri|+[ri—ry[=[ry—ri|=[ri=r1)). (10) e Ty

Ao,= In . (15
T

The smallness arises after integrating over the coordinates of 2mh
the pointsi and f in Eq. (3), due to rapid oscillations of

exp({A¢). The main contribution to the integral comes from  This formula represents the coherent backscattering cor-
such configurations for which the phase difference is stationrection to conductivity.

ary with respect to small variations of the coordinates of all

four key points {, 1, N, andf). This happens when all these

points are close to one line, the poiritand f lying on the IV. CORRECTION TO THE CONDUCTIVITY DUE TO

one side from the section N-[see Fig. &)]. That is why SCATTERING AT ARBITRARY ANGLE

the processes described by Fige)Imay be interpreted asan  The get of diagrams which describe the corrections to
additional backscattering on a single impurfithe impurity  conquctivity of the order ofK:1)~* is not restricted by the

1 for the configuration depicted in Fig(t8]. _ series of Fig. 1a) only. The diagrams presented in Figéb)l

We stress that it is the condition that the phase dlfferencq(c) and 1d) should also be taken into account. In the ab-

A¢ be stationary that is important, but not the conditiongence of magnetic field the contributions of such diagrams to
A¢=0. There are configurations for whidh¢=0, but sta-  the conductivity are of the same absolute value but differ in
tionarity condition is not validfor example, when the points  sjgn. The contribution of the diagrams of Figéblland Xc)

i and f lie symmetrically with respect to the line-IN). s positive whereas the contribution of the diagrams in Fig.
Such configurations do not contribute to the quantum correcy(q) is negative. It is easy to show, that magnetic field does
tion. It turns out, however, that in the case presented in Fighot change the contributions of diagrams in Figc)land
3(b) the total phase difference is equal to zero and construgrig, 1(d) and they still compensate each other. Thus, when
tive interference takes place. calculating the correction to conductivity one should take

The coherent backscattering correction to conductivityintg account only the diagrams in Fig(al, both in the pres-
can be expressed through the classical probability density fafnce and in the absence of magnetic field.

an electron to return to the area of the ordbre Let us show that the process described by Fip) tan be
(Np=27/kg) around the impurity I(see Appendix A easily interpreted quasiclassicallyie diagrams in Figs.(t)
(el and Xd) allow a similar interpretation Such a process is
0= — 0y W, (11)  depicted in Fig. 4a). An electron starting from point
7" reaches poinf by two ways:(1) consecutively scattering by
Here impurities 1,2...,N and finally by impurity 1 again(2)

scattering in the opposite order by impuritsN—1, . . . ,2,
and having no collisions at all with impurity 1.

oo

W= NZg Wy (0) (12 The classical quantitieB(r;—r;. 1) not containing phase
B factors correspond to the intervals
is the sum of probability densities for an electron to return to(2,3),(3,4),...,(N—1,N). The integration over the coordi-

the origin after 3,4,.. collisions. In what follows, for the sake nates of impurities 3... ,N—1 leads to the appearance of
of brevity we will name this quantity as the total probability the functionWy_,(ry—r5).

of return® The phase difference of the two paths ending at the point
It is easy to see that f depends on the lengths of the intervals
(1,1),(1,2),N,1),(1f) and (,N),(2f), and is given by
d2k P?
[ P 59
(2m)% 1= Py Ap=Ke([ry—ri|+[ro—rq|+|ry—ryl+|ri—ry
Here the quantity, = (k?1>+ 1)~ ¥2is the Fourier transform —|rn=ri|=|rs=r4)). (16)

of P(r).
The fact that electron should return to the axgh around

the impurity 1 can be explained in the following way. The . X S
distanc?e bgtween points E ahdshould be of thegorde)r/ 4f drate over the coordinates of the impuritiedl2Because of

in consequence of waves fading on the mean free path. Thl}ge phase stationarity requirement the contribution to the
only paths which pass at a distanoe-() Y2 from impurity 1 conductivity arises only from the configurations in which the
[see Fig. &)] interfere pointsN and 2 lie close to the lines-1 and 14, respec-

i i -1/2 ;
Without taking into account the inelastic processes théwely, in angles of the order ofkel) [see Fig. 40)]. In

; ; ; P this configurationA ¢ is equal to zero. It is clear from Fig.
integral in Eq.(12) diverges logarithmically. In order to take ) . :
into_ account such processes one can replace Hy 4(b) that the process described by Figbjlcan be inter-

Urt : Y . i preted as a coherent changing of the scattering by the impu-
(L/r+1/7y) in Eq. (4). Then the quantity, is given by rity 1 at angled. It can be shown that a reduction of scatter-

1 ing takes placé®
Pv="5 -z (14) The expression for the conductivity correction due to pro-
VK2 + (14 7/ 7,) cesses of Fig. @) can be written agsee Appendix B

Let us fix the positions of the poinisl,f and then inte-
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The total [with accounting both Figs. (&) and Xb)] weak
localization correction to conductivity in the diffusion ap-
proximation is given by

A ¢ | Ly’ (21)
o=— nl—|.
27%% | 212

Thus when the diffusion approximation is valid the con-
tribution of the diagrams presented in Figbjlis logarith-
mically small compared to the backscattering one and just
leads to the appearance of a factor 1/2 in the argument of the
large logarithm.

Beyond the diffusion approximation, when only the tra-
jectories with a small number of collisions are important, the
situation is quite different. This happens in sufficiently
strong magnetic field when the magnetic lentghis of the
order of the mean free pathor less. In this case the correc-
tion arising from Fig. 1a) does not contain the large loga-
rithm and contributions of Fig.(b) and Fig. 1a) differ only
by a numerical factor of the order of unity.

In the presence of magnetic field, E@8), (11), (12), and
(17) still hold, but the quantity?(r—r’) should be replaced
by

P(r—r")=P(r—r")expli(e/fc)B[rxr’']).

Using Kawabata’s methdtione can expand the functions

P(r),W(r) in terms of the eigenfunctions of a particle of
charge 2 in a magnetic field3, and obtain

2
e
= = +
FIG. 4. Similar to Fig. 3, but for the diagrams presented in 7 2z FOO, FOO=Fa(x)+Fy(x),
Fig. 1(b).
(P n)3
— Fa(x)= XZ
Aoy=—> —°(>\F|)f d2r 02,02 \P(ry— 1) :
N=3 ST
5 Pl (PhZ2+(Pr Y22
XWy-2(ry—r2)P(ry—r1)cos, (17 Fp(X)=—Xx> ol (Pr)7/2+ (Py )7/2]
5 1-P, '
rn—r)(ri—r
cosy= M where
[rn—ralfri—r2]
Using the Fourier transformation one can get Pn=§fxdtexp(—st—t2/2)Ln(t2),
z

e d’k  Py(Py)?
o e a9
m (27) k pm— —f dtexp( —st—t2/2)L™(t2),
where P, = (1/kl)(1—-P,) is the Fourier component of the zyn+(1-m)/2
function —iP(r)cosy, a is the angle of the vectar. Calcu-  x=B/Bo, By=1ic/(2el?), s=2z(2/x)Y2 z=1+ /74, L, and
lating the integral in Eq(18), we finally obtain L™ are the Laguerre polynomials. The functidhg(x) and
Fp(x) describe the contributions of Figs(al and ib), re-

Ao e’ (N2 In(l+7y/7) (19 spectively. In the high-field limit the quantum correction to
O omp\ 1+ 12T, 1427407 conductivity has the forfi?
Note that this correction is positive in contrast to contribu- e2
tion due to the coherent backscattering. In the diffusion ap- Ao=Ac,+Aoy=—-4.96—— —+,
proximation (r4> 7) the expressioii19) simplifies: 2m%h x
2 e2 e’ 1
Aoy= In2. 20 Ao,=—T1. 74— Aop,=2. 78—
" om?h 20 272k [ L AN
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1(b) can be considered in the frame of the Boltzman trans-

4r . . .
...... correction due to port equation as well as coherent backscattering processes.
diagrams (1a) One should just replace the isotropic cross sec8gby the
X _ following expression:
3 —— total correction
S(0)=S,+AS(6). (22
— Here the functionS(#) is the modified impurity scattering
X . N - g
rag cross section which is represented schematically in Fig. 2
and
AS(0)=AS,(0)+AS,(6).
The term
AS(6)=CA(7—6)
160 161 1(';2 163 104 corresponds to the coherent backscattering at small angles of
x=B/B, the order of kel) 1. The functionA (7 — 6) is concentrated

in this angle and the integral of it ove¥ is equal to unity.
FIG. 5. The conductivity correction dependence on the magnetid h€ quantityC is expressed through the total probability of

field at 7,=c. The contributions of Fig. (&) also is presented. return W:
Note, that this asymptotical behavior is valid only at very o i4wl 2 23
high values ofx and can be hardly observed in experiment. Kel '

We have performed numerical calculationsfof(B) for In the diffusion approximatioW=In(r,/7/(2m1?)
the total range of the classically weak magnetic fields. The The functionAS,(6) is negative and corresponds to a

dependencies oA (B) and Ao,(B) for 7,=> are pre- : : . .

sented in Fig. 5. The dependente(B) for different values iiebcre_?s_e ]?f scattering bat angle be|dr]ghdesc;|bﬁd by IF|g. b

of 7, is represented in Fig. 6 (.)_. is function can be expressed through the total prob-
¢ T ability W(6) for an electron to return to the origin at an angle

0 to the initial direction of propagation
V. INTERPRETATION OF THE WEAK LOCALIZATION

IN TERMS OF CHANGING OF IMPURITY S
SCATTERING CROSS SECTION AS,(0)=— k—F|47T| W(6). (24

The method presented above allows us to give a transpaihe return probabilityV/( 8) is given by
ent interpretation of weak localization effects. In Refs. 12,13
the effects, described by Fig(a) were treated in the frame *
of the Boltzman transport equation. The authors of Ref. 13 W( 6)=27rf rdrr’dr’ P(r)P(r') >, Wy(Jr=r']).
claim that the main weak localization effect is an effective N=1
reduction of elastic scattering time. Using the ideas of these (25
works it is easy to show that the processes related to Figrhe integration in this equation should be done over absolute
values of vectors,r’, the angle between them being fixed
and equal tar— 6. For 7,> 7 the straightforward calculation

T ;
) gives
0.0 , | o o
0.01 _ Tg T—| 7=
W(0)= In— —Injcos;| — ————cot;|.
0.02 (6) (277)2|2 T % 2 E
0.05 26)
g'; This expression is correct fosr— 6| > (kgl) 2. In the oppo-
0:3 site case co#(2) in the second term should be replaced by

the quantity of the order ofkgl) ~1. Within the diffusion
approximation the main contribution %/(6) comes from
the first term in Eq(26) and therefore this function is almost
isotropic. The anisotropic part &¥(6) arises mainly due to
triangle trajectories.

It is easy to see from Eq$23), (24), and(25) that

ol

o L L ul
2m 2m
0.15 100 13;3/];002 108 104 f W(6)do=W, f AS(6)de=0. (27)
0 0

FIG. 6. The conductivity correction dependence on the magnetid his means, in contrast to the statement in Ref. 13, that the
field at different breaking phase times. weak localization effects do not change the elastic scattering



9916 A. P. DMITRIEV, V. YU. KACHOROVSKII, AND I. V. GORNY!I 56
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localization effects in the framework of the Boltzman equa-
tion is only possible when Fig.(l) is taken into account. It APPENDIX A
can be explained by the following way. For inverse transport

scattering time we have The conductivity correction corresponding to the Figa)1

is given by

1 1

2m 1
Ty 2777'Sof0 3(0)(1—C039)d0=;+y, (28 “ehs

Ao,=—

Y
— 2
where the correctiow arises due to the terdS(6) in Eq. N=3 27mm"S

(22). In the first order in kgl) ~* the transport scattering time 9
readsr,= r(1— 7v). Then for the conductivity we get the Xf dzridzrfEG
following expression: !

R__
il arf

XGHIN_1GRGND?ry ... d%ry, (A1)

where
o=0

1 27
PEL AS(6)(1—cos)da|. (29

It is easy to see that taking into account in this method Tyo1= YV IGRGY, . . .GR_\GR_1n:
only the contribution of Fig. () [i.e., assuming that ’ ’
AS(0)=AS,(6)] leads to the conductivity correction which Using Eqgs.(6) and(9) we rewrite the expressiofAl) as
is twice greater than the correct one.

Using EQ.(27) we obtain for the conductivity correction ®

e’n’ d
__ 2 2r A
Ao, &, 2wm257f d°r,d rfGlNﬁri
o) 27
Ao=— f AS(#)co#dbd=Ao,+ Aoy, (30 d
27SoJo ><GﬁG?Na—rfeﬁle,l(rl—rN)dzrlerN.
where (A2)
oo (27 U_sing Eq.(7) for integration over;,r; in Eq. (A2) we
Aaa'b:mjo AS, p(0)cos9d 6. (31)  obtain
These expressions fako, , coincide with that derived by = e’nr o 2 0
using the Kubo formuld®* Note, that after integrating in Eq. Ao,= —NE:S msﬂ_()\Fl)f d°r dradiry
(31) the isotropic part oAS,(#) arising from the first term
in Eqg. (26) does not contribute to the conductivity. As a XP(ri=ry)Wy_o(ro—ry)P(ry—rq).
result the conductivity correction due to Figlbl does not
contain a divergent withr,, contribution. Here we neglect the rapidly oscillating produ@8GR and

In the presence of magnetic field E@2) remains valid. GAGA. Finally, using Eqs(9), (12) we derive Eq.(11) pre-
The quantitiesW and W(6) entering Egs.(23) and (24) sented in the main text.
should be calculated in this case using E®, (12), and
(25) in which P(r) should be replaced bi(r). In the high-
field limit only triangle paths are important and/(6) is
strongly anisotropic and conductivity correctios, ,, dif- The conductivity correction corresponding to Figb)lis
fer by numerical factor of the order of unity. given by

APPENDIX B
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=3 27m°S

J
d?rd’r;—GR —
f far, '1(9rf

X GG N 2GR GiNG Ty - . . d?ry, (BD)

I'y_p=yN"2G5Gh;. . .Gy 1NGN IN-

The factor 2 in Eq(B1) arises due to the consideration of
both diagrams in Fig. (b) and the complex conjugated to
them. Using Eqs(6) and(9) we rewrite the expressiofiB1)
as
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5 es
Aop=-2 2
22 s
fdzr dzrquNa Gi GlRZGElGlfa GHWy -2

X (rp—ry)d?rd?r,dry. (B2)

Using Eq.(7) and neglecting the rapidly oscillating functions
we get Eq.(17) of the main text.
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