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Nonbackscattering contribution to weak localization

A. P. Dmitriev* and V. Yu. Kachorovskii*
Uppsala University, S-751 08, Uppsala, Sweden
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A. F. Ioffe Physical-Technical Institute, St. Petersburg, 194021, Russia
~Received 20 March 1997; revised manuscript received 12 May 1997!

We show that the enhancement of backscattering responsible for the weak localization is accompanied by a
reduction of the scattering in other directions. A simple quasiclassical interpretation of this phenomenon is
presented in terms of a small change in the effective differential cross section for a single impurity. The
reduction of the scattering at the arbitrary angles leads to the decrease of the quantum correction to the
conductivity. Within the diffusion approximation this decrease is small, but it should be taken into account in
the case of a relatively strong magnetic field when the diffusion approximation is no longer valid.
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I. INTRODUCTION

The quantum correction to the conductivity arises fro
interference of electron waves propagating in opposite di
tions along closed paths. The interference is destroyed
trajectories which are long enough. In the absence of m
netic field and if spin effects may be neglected, the destr
tion of this interference due to processes of electron inela
scattering which are usually taken into account by introd
ing the phase breaking timetf . At sufficiently low tempera-
turestf is much greater than the elastic scattering timet and
the motion of electrons may be described by a diffus
equation~diffusion approximation!. The corresponding con
ductivity correction is negative and in the two-dimension
~2D! case is given by1

Ds52
e2

2p2\
ln

Lf
2

l 2
. ~1!

Here Lf5(2Dtf)1/2 is the phase breaking length
D5 l 2/(2t) is the diffusion coefficient, andl is the mean
free path. It is well known2 that Eq. ~1! allows a simple
quasiclassical derivation based on the calculation of
probability for an electron to return to the origin.

The presence of magnetic field leads to the phase co
ence distortion when the path linear dimensions are la
than the magnetic lengthl H5(\c/eB)1/2. With increasing
magnetic field,B, the magnetic length becomes smaller th
Lf and, accordingly, the conductivity correction decrease3

For relatively weak magnetic fields, whenl ! l H!Lf , the
equation ~1! is still valid with Lf being changed by the
length of the order ofl H . For stronger magnetic fields whe
l H! l ~but still l !Rc , Rc is the cyclotron radius!, the main
contribution to the conductivity correction comes from sh
closed trajectories with the length of the order ofl H and the
diffusion approximation is no longer valid. This case w
considered in Refs. 4 and 5 and it was found that in t
dimensions for short range potentialDs}2 l H / l .
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The quantitative theory of weak localization is based
the expansion of the conductivity in a series of the sm
parameter (kFl )21, wherekF is a Fermi wave vector. The
negative correction to the conductivity Eq.~1! arises in the
first order of this parameter. It can be derived by summ
so-called maximally crossed diagrams@Fig. 1~a!#. These dia-
grams describe the coherent backscattering of the elec
wave. In the case when the diffusion approximation is n
valid, together with the maximally crossed diagrams o
should also take into account the diagrams presented in F
1~b!, 1~c!, and 1~d!. These diagrams too, give a contributio
to the conductivity of the order of (kFl )21 but, in contrast to
the diagrams presented in Fig. 1~a!, their contribution is posi-
tive. The importance of these diagrams was emphasize
many works, but a clear quasiclassical interpretation of p
cesses corresponding to these diagrams was never g
Moreover in Ref. 6 it was claimed that a quasiclassical
terpretation of these processes is not possible.

In this work we present a simple quasiclassical interp
tation of any diagram of the first order in (kFl )21. It is
shown that the contribution of these diagrams may be
pressed through the classical probability for an electron
return to the origin at a certain angle to the initial direction
motion. We discuss the possibility of describing weak loc
ization effects in terms of a small change of the different
cross section of a single impurity. The angular depende
of this modified cross section for the case of zero magn
field and the short-range impurity potential is presented
Fig. 2. The positive peak nearu5p corresponds to the en
hancement of backscattering described by Fig. 1~a! while the
other diagrams in Fig. 1 are responsible for the decreas
the scattering rate in other directions, the total cross sec
remaining unchanged. At the same time the transport c
section changes and this is the reason for the weak loca
tion corrections. This means that all first order in (kFl )21

weak localization effects may be taken into account
changing the differential cross section of a single impurity
similar consideration is also possible when magnetic field
applied. In this case the effective cross section depends
magnetic field.
9910 © 1997 The American Physical Society
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FIG. 1. Diagrams relevant in the first order in (kFl )21: the diagram describing coherent backscattering~a! and the diagrams describin
coherent scattering at different angles. The contribution of~b! depends on the magnetic field. The contributions of types~c! and ~d!
compensate each other.
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It is also shown that within the diffusion approximatio
(Lf ,l H@ l ) taking into account Figs. 1~b!, 1~c!, and 1~d!
leads to the appearance in Eq.~1! of an additional factor 1/2
in the argument of the logarithm. At strong magnetic fie
( l H, l ), when the diffusion approximation is no longer vali
the contribution of Figs. 1~b!, 1~c!, and 1~d! differs from that
of Fig. 1~a! by the numerical factor only.

We calculate numerically the quantum correction to
conductivity for the total range of the classically weak ma
netic fields. The results are presented graphically.

The paper is organized as follows. In the first section
give the necessary formulas and definitions. In the sec
section the derivation of the correction to the conductiv
due to Fig. 1~a! is given in the coordinate representatio
This method allows us to reach more transparent phys
presentation. In the third section the quasiclassical inter
tation of Figs. 1~b!–1~d! is given, using the same metho
The dependence of the quantum correction on the magn
field is considered. Finally, in the fourth section we discu

FIG. 2. The angle dependence of the modified differential cr
section on single impurity.
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the possibility of describing the weak localization in terms
an interference correction to the differential cross section

II. BASIC EQUATIONS

We consider the motion of 2D electrons in a random p
tentialV(r )5(u(r2Ri…, whereRi is a vector of the position
of i th impurity, u(r ) is a single impurity potential, which is
supposed to be a short-range one. The correlation functio
the total potentialV(r ) is given by

^V~r !V~r 8!&5gd~r2r 8!. ~2!

Here the angular brackets denote averaging over the imp
ty’s positions. Static conductivity is calculated with the u
of the Kubo formula. It will be convenient for our purpose
to write this formula in the coordinate representation:

s52
e2\3

2pm2S
E E d2r id

2r f

3 K ]

]r i
Ge

R~r i ,r f ,EF!
]

]r f
Ge

A~r f ,r i ,EF!L . ~3!

Here m is the electron mass,S is the area of the system
Ge

R,A(r ,r 8,EF) are, respectively, the retarded and advanc
exact Green functions at the Fermi energyEF .

As is well known, the result of averaging over the imp
rity’s positions is represented as a sum of all the poss
diagrams with solid lines corresponding to averaged Gr
functions and dashed lines corresponding to the poten
correlation function.

The expressions for the averaged Green functions
given by
s
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GR,A~r ,r 8,EF!5^Ge
R,A~r ,r 8,EF!&

5E d2kexp@ ik~r2r 8!#

~2p!2S EF2
\2k2

2m
6

i\

2t D , ~4!

wheret5\3/(mg) is the elastic scattering time.7 These ex-
pressions have the following asymptotic behavior at d
tances exceeding the wavelength:

GR,A~r2r 8,EF!57
im

\2

1

A2pkFur2r 8u

3expS 6 ikFur2r 8u2
ur2r 8u

2l
7 i

p

4 D .

~5!

The Green functionsGR andGA describe the divergent an
convergent waves, respectively. These waves oscillate
idly on the scalekF

21 and their amplitudes decrease slow
on the scale of the order of the mean free pathl . The large
value of the parameterkFl allows us to give a quasiclassic
interpretation for various terms in the diagram series,
quantity

P~r !5gGR~r ,EF!GA~r ,EF!5
e2r / l

2p lr
~6!

playing an essential role. This is a classical probability d
sity for an electron starting from the originr50 to experi-
ence the first collision around pointr .

In what follows we will make use of the relation

E d2r iGiN
A ]

]r i
Gi1

R 5
i t

\

]

]rN
~GN1

R 2GN1
A !

'2
ml

\2

~rN2r1!

urN2r1u @GN1
R 1GN1

A #, ~7!

which may be easily derived from Eq.~4!. Here we use the
notationGjk

R,A5GR,A(r j2r k).
For a short-range potential, when the scattering is iso

pic, the main contribution to the conductivity is given by th
diagram without dashed lines, which corresponds to indep
dent averaging of the Green functions in Eq.~3!. It is easy to
see that in this approximation Eq.~3! is reduced to the inte
gral

s05
e2tkF

2

2pm E P~r i2r f !
d2r id

2r f

S
5

e2nt

m
5

e2

2p\
kFl , ~8!

wheren is the electron concentration. This equation is in fa
the classical Drude formula.

III. COHERENT BACKSCATTERING CORRECTION

The coherent backscattering correction to the Drude
mula ~8! is described, in the first order in (kFl )21, by Fig.
1~a!, the number of dashed lines being greater than tw8

These diagrams represent the contribution to conducti
related to interference of two processes depicted in Fig. 3~a!.
An electron starting from the pointi reaches the pointf by
-

p-

e

-

-

n-

t

r-

.
ty

two ways: ~1! successively scattering on impuritie
1,2, . . . ,N , ~2! passing the same chain of impurities in th
opposite order (N,N21, . . . ,1).

It means that each section of the trajectory from 1 toN is
passed twice. The amplitudes of these transitions are
scribed by the functionsGR and GA, respectively, which
come into the expression for the conductivity correction
products gGR(r j2r j 11)GA(r j2r j 11)5P(r j2r j 11). Thus
the phase difference of the two waves on the paths conn
ing points 1 andN is equal to zero and the quantity

WN21~r12rN!5E d2r2 . . . d2rN21

3P~r12r2! . . . P~rN212rN! ~9!

appears in the expression for the conductivity correcti
This quantity is the classical probability density to find
electron started from point 1 near the pointN after N21
collisions.

The smallness of the contribution to conductivity of th
Fig. 1~a! in comparison with the main Drude’s one@Eq. ~8!#
results from the initial and last sections of the trajector
( i ,1), (i ,N), (N, f ), (1,f ) that normally are passed only onc

FIG. 3. The process related to Fig. 1~a!. ~a! Key points (i , f , 1,
and N) have arbitrary positions;~b! the positions of key points
satisfy the stationary phase condition.
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@see Fig. 3~a!#. The total phase difference of the two waves
point f comes from these sections only and is given by

Df5kF~ ur12r i u1ur f2rNu2urN2r i u2ur f2r1u!. ~10!

The smallness arises after integrating over the coordinate
the pointsi and f in Eq. ~3!, due to rapid oscillations o
exp(iDf). The main contribution to the integral comes fro
such configurations for which the phase difference is stat
ary with respect to small variations of the coordinates of
four key points (i , 1, N, and f ). This happens when all thes
points are close to one line, the pointsi and f lying on the
one side from the section 1 –N @see Fig. 3~b!#. That is why
the processes described by Fig. 1~a! may be interpreted as a
additional backscattering on a single impurity@the impurity
1 for the configuration depicted in Fig. 3~b!#.

We stress that it is the condition that the phase differe
Df be stationary that is important, but not the conditi
Df50. There are configurations for whichDf50, but sta-
tionarity condition is not valid~for example, when the point
i and f lie symmetrically with respect to the line 12N).
Such configurations do not contribute to the quantum cor
tion. It turns out, however, that in the case presented in
3~b! the total phase difference is equal to zero and const
tive interference takes place.

The coherent backscattering correction to conductiv
can be expressed through the classical probability density
an electron to return to the area of the orderllF
(lF52p/kF) around the impurity 1~see Appendix A!:

Dsa52s0

~lFl !

p
W. ~11!

Here

W5 (
N53

`

WN~0! ~12!

is the sum of probability densities for an electron to return
the origin after 3,4,.. collisions. In what follows, for the sa
of brevity we will name this quantity as the total probabili
of return.9

It is easy to see that

W5E d2k

~2p!2

Pk
3

12Pk
. ~13!

Here the quantityPk5(k2l 211)21/2 is the Fourier transform
of P(r ).

The fact that electron should return to the arealFl around
the impurity 1 can be explained in the following way. Th
distance between points 1 andN should be of the order ofl
in consequence of waves fading on the mean free path. T
only paths which pass at a distance (lFl )1/2 from impurity 1
@see Fig. 3~b!# interfere.

Without taking into account the inelastic processes
integral in Eq.~12! diverges logarithmically. In order to tak
into account such processes one can replace 1/t by
(1/t11/tf) in Eq. ~4!. Then the quantityPk is given by

Pk5
1

Ak2l 21~11t/tf!2
. ~14!
t
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After integrating in Eq.~12! we finally obtain

Dsa52
e2

2p2\
ln

t1tf

t
. ~15!

This formula represents the coherent backscattering
rection to conductivity.

IV. CORRECTION TO THE CONDUCTIVITY DUE TO
SCATTERING AT ARBITRARY ANGLE

The set of diagrams which describe the corrections
conductivity of the order of (kFl )21 is not restricted by the
series of Fig. 1~a! only. The diagrams presented in Figs. 1~b!,
1~c!, and 1~d! should also be taken into account. In the a
sence of magnetic field the contributions of such diagram
the conductivity are of the same absolute value but differ
sign. The contribution of the diagrams of Figs. 1~b! and 1~c!
is positive whereas the contribution of the diagrams in F
1~d! is negative. It is easy to show, that magnetic field do
not change the contributions of diagrams in Fig. 1~c! and
Fig. 1~d! and they still compensate each other. Thus, wh
calculating the correction to conductivity one should ta
into account only the diagrams in Fig. 1~b!, both in the pres-
ence and in the absence of magnetic field.

Let us show that the process described by Fig. 1~b! can be
easily interpreted quasiclassically~the diagrams in Figs. 1~c!
and 1~d! allow a similar interpretation!. Such a process is
depicted in Fig. 4~a!. An electron starting from pointi
reaches pointf by two ways:~1! consecutively scattering by
impurities 1,2, . . . ,N and finally by impurity 1 again,~2!
scattering in the opposite order by impuritiesN,N21, . . . ,2,
and having no collisions at all with impurity 1.

The classical quantitiesP(r j2r j 11) not containing phase
factors correspond to the interva
(2,3),(3,4),. . . ,(N21,N). The integration over the coordi
nates of impurities 3, . . . ,N21 leads to the appearance
the functionWN22(rN2r2).

The phase difference of the two paths ending at the p
f depends on the lengths of the interva
( i ,1),(1,2),(N,1),(1,f ) and (i ,N),(2,f ), and is given by

Df5kF~ ur12r i u1ur22r1u1ur12rNu1ur f2r1u

2urN2r i u2ur f2r2u!. ~16!

Let us fix the positions of the pointsi ,1,f and then inte-
grate over the coordinates of the impurities 2,N. Because of
the phase stationarity requirement the contribution to
conductivity arises only from the configurations in which t
points N and 2 lie close to the linesi –1 and 1 –f , respec-
tively, in angles of the order of (kFl )21/2 @see Fig. 4~b!#. In
this configurationDf is equal to zero. It is clear from Fig
4~b! that the process described by Fig. 1~b! can be inter-
preted as a coherent changing of the scattering by the im
rity 1 at angleu. It can be shown that a reduction of scatte
ing takes place.10

The expression for the conductivity correction due to p
cesses of Fig. 4~b! can be written as~see Appendix B!
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Dsb52 (
N53

`
s0

Sp
~lFl !E d2r1d2r2d2rNP~r12r2!

3WN22~rN2r2!P~rN2r1!cosu, ~17!

cosu5
~rN2r1!~r12r2!

urN2r1uur12r2u
.

Using the Fourier transformation one can get

Dsb5
e2

p\
l 2E d2k

~2p!2

Pk~Pk8!2

12Pk
, ~18!

where Pk85(1/kl)(12Pk) is the Fourier component of th
function 2 iP(r )cosa, a is the angle of the vectorr . Calcu-
lating the integral in Eq.~18!, we finally obtain

Dsb5
e2

2p2\
S ln2

11t/2tf
2

ln~11tf /t!

112tf /t D . ~19!

Note that this correction is positive in contrast to contrib
tion due to the coherent backscattering. In the diffusion
proximation (tf@t) the expression~19! simplifies:

Dsb5
e2

2p2\
ln2. ~20!

FIG. 4. Similar to Fig. 3, but for the diagrams presented
Fig. 1~b!.
-
-

The total @with accounting both Figs. 1~a! and 1~b!# weak
localization correction to conductivity in the diffusion ap
proximation is given by

Ds52
e2

2p2\
lnS Lf

2

2l 2 D . ~21!

Thus when the diffusion approximation is valid the co
tribution of the diagrams presented in Fig. 1~b! is logarith-
mically small compared to the backscattering one and
leads to the appearance of a factor 1/2 in the argument o
large logarithm.

Beyond the diffusion approximation, when only the tr
jectories with a small number of collisions are important, t
situation is quite different. This happens in sufficient
strong magnetic field when the magnetic lengthl H is of the
order of the mean free pathl , or less. In this case the correc
tion arising from Fig. 1~a! does not contain the large loga
rithm and contributions of Fig. 1~b! and Fig. 1~a! differ only
by a numerical factor of the order of unity.

In the presence of magnetic field, Eqs.~9!, ~11!, ~12!, and
~17! still hold, but the quantityP(r2r 8) should be replaced
by

P̃~r2r 8!5P~r2r 8!exp„i ~e/\c!B@r3r 8#….

Using Kawabata’s method11 one can expand the function
P̃(r ),W(r ) in terms of the eigenfunctions of a particle o
charge 2e in a magnetic fieldB, and obtain

Ds52
e2

2p2\
F~x!, F~x!5Fa~x!1Fb~x!,

Fa~x!5x(
0

`
~Pn!3

12Pn
,

Fb~x!52x(
0

` Pn@~Pn
1!2/21~Pn

21!2/2#

12Pn
,

where

Pn5
s

zE0

`

dtexp~2st2t2/2!Ln~ t2!,

Pn
m5

s

zAn1~12m!/2
E

0

`

dtexp~2st2t2/2!Ln
m~ t2!,

x5B/B0, B05\c/(2el2), s5z(2/x)1/2, z511t/tf , Ln and
Ln

m are the Laguerre polynomials. The functionsFa(x) and
Fb(x) describe the contributions of Figs. 1~a! and 1~b!, re-
spectively. In the high-field limit the quantum correction
conductivity has the form4,5

Ds5Dsa1Dsb524.96
e2

2p2\

1

Ax
,

Dsa527.74
e2

2p2\

1

Ax
, Dsb52.78

e2

2p2\

1

Ax
.
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Note, that this asymptotical behavior is valid only at ve
high values ofx and can be hardly observed in experime

We have performed numerical calculations ofDs(B) for
the total range of the classically weak magnetic fields. T
dependencies ofDs(B) and Dsa(B) for tf5` are pre-
sented in Fig. 5. The dependenceDs(B) for different values
of tf is represented in Fig. 6.

V. INTERPRETATION OF THE WEAK LOCALIZATION
IN TERMS OF CHANGING OF IMPURITY

SCATTERING CROSS SECTION

The method presented above allows us to give a trans
ent interpretation of weak localization effects. In Refs. 12
the effects, described by Fig. 1~a! were treated in the frame
of the Boltzman transport equation. The authors of Ref.
claim that the main weak localization effect is an effecti
reduction of elastic scattering time. Using the ideas of th
works it is easy to show that the processes related to

FIG. 5. The conductivity correction dependence on the magn
field at tf5`. The contributions of Fig. 1~a! also is presented.

FIG. 6. The conductivity correction dependence on the magn
field at different breaking phase times.
.

e

r-
3

3

e
g.

1~b! can be considered in the frame of the Boltzman tra
port equation as well as coherent backscattering proces
One should just replace the isotropic cross sectionS0 by the
following expression:

S~u!5S01DS~u!. ~22!

Here the functionS(u) is the modified impurity scattering
cross section which is represented schematically in Fig
and

DS~u!5DSa~u!1DSb~u!.

The term

DSa~u!5CD~p2u!

corresponds to the coherent backscattering at small angle
the order of (kFl )21. The functionD(p2u) is concentrated
in this angle and the integral of it overu is equal to unity.
The quantityC is expressed through the total probability
returnW:

C5
S0

kFl
4p l 2W. ~23!

In the diffusion approximationW5 ln(tf /t)/(2pl2).
The functionDSb(u) is negative and corresponds to

decrease of scattering at angleu, being described by Fig
1~b!. This function can be expressed through the total pr
ability W(u) for an electron to return to the origin at an ang
u to the initial direction of propagation

DSb~u!52
S0

kFl
4p l 2W~u!. ~24!

The return probabilityW(u) is given by

W~u!52pE rdrr 8dr8P~r !P~r 8! (
N51

`

WN~ ur2r 8u!.

~25!

The integration in this equation should be done over abso
values of vectorsr ,r 8, the angle between them being fixe
and equal top2u. Fortf@t the straightforward calculation
gives

W~u!5
1

~2p!2l 2F ln
tf

t
2 lnUcos

u

2U2 p2up2uu
2

cot
u

2G .
~26!

This expression is correct forup2uu.(kFl )21. In the oppo-
site case cos(u/2) in the second term should be replaced
the quantity of the order of (kFl )21. Within the diffusion
approximation the main contribution toW(u) comes from
the first term in Eq.~26! and therefore this function is almos
isotropic. The anisotropic part ofW(u) arises mainly due to
triangle trajectories.

It is easy to see from Eqs.~23!, ~24!, and~25! that

E
0

2p

W~u!du5W, E
0

2p

DS~u!du50. ~27!

This means, in contrast to the statement in Ref. 13, that
weak localization effects do not change the elastic scatte

ic

ic



c
ck
e
e
ng
m

is

al
ic

de

ea
a

o

e
e

o
t
h

.

a

ful
ish

ch
in

sup-
lid

9916 56A. P. DMITRIEV, V. YU. KACHOROVSKII, AND I. V. GORNYI
time, which is inversely proportional to the total cross se
tion. The reduction of this time due to the coherent ba
scattering is exactly compensated by its enhancement du
the reduction of the scattering at other angles. This happ
due to the fact that each impurity configuration, contributi
to coherent backscattering, gives the contribution of the sa
value to scattering in angleu too @see Figs. 3~b! and 4~b!#. At
the same time, since the differential cross section is an
tropic due to the quantum corrections~see Fig. 2!, the trans-
port scattering time changes and does not anymore equ
the elastic scattering time. This is the physical reason wh
leads to the quantum corrections to conductivity of the or
of (kFl )21.

We want to emphasize that the correct treatment of w
localization effects in the framework of the Boltzman equ
tion is only possible when Fig. 1~b! is taken into account. It
can be explained by the following way. For inverse transp
scattering time we have

1

t tr
5

1

2ptS0
E

0

2p

S~u!~12cosu!du5
1

t
1n, ~28!

where the correctionn arises due to the termDS(u) in Eq.
~22!. In the first order in (kFl )21 the transport scattering tim
readst tr5t(12tn). Then for the conductivity we get th
following expression:

s5s0F12
1

2pS0
E

0

2p

DS~u!~12cosu!duG . ~29!

It is easy to see that taking into account in this meth
only the contribution of Fig. 1~a! @i.e., assuming tha
DS(u)5DSa(u)# leads to the conductivity correction whic
is twice greater than the correct one.

Using Eq.~27! we obtain for the conductivity correction

Ds52
s0

2pS0
E

0

2p

DS~u!cosudu5Dsa1Dsb , ~30!

where

Dsa,b5
s0

2pS0
E

0

2p

DSa,b~u!cosudu. ~31!

These expressions forDsa,b coincide with that derived by
using the Kubo formula.14 Note, that after integrating in Eq
~31! the isotropic part ofDSb(u) arising from the first term
in Eq. ~26! does not contribute to the conductivity. As
result the conductivity correction due to Fig. 1~b! does not
contain a divergent withtf contribution.

In the presence of magnetic field Eq.~22! remains valid.
The quantitiesW and W(u) entering Eqs.~23! and ~24!
should be calculated in this case using Eqs.~9!, ~12!, and
~25! in which P(r ) should be replaced byP̃(r ). In the high-
field limit only triangle paths are important andW(u) is
strongly anisotropic and conductivity correctionsDsa,b dif-
fer by numerical factor of the order of unity.
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APPENDIX A

The conductivity correction corresponding to the Fig. 1~a!
is given by

Dsa52 (
N53

`
e2\3

2pm2S
g

3E d2r id
2r f

]

]r i
Gi1

R ]

]r f

3Gf 1
A GN21Gf N

R GiN
A d2r1 . . . d2rN , ~A1!

where

GN215gN21G12
R G12

A . . . GN21,N
R GN21,N

A .

Using Eqs.~6! and ~9! we rewrite the expression~A1! as

Dsa52 (
N53

`
e2\3

2pm2S
gE d2r id

2r fGiN
A ]

]r i

3Gi1
R Gf N

R ]

]r f
Gf 1

A WN21~r12rN!d2r1d2rN .

~A2!

Using Eq.~7! for integration overr i ,r f in Eq. ~A2! we
obtain

Dsa52 (
N53

`
e2nt

mSp
~lFl !E d2r1d2r2d2rN

3P~r12r2!WN22~r22rN!P~rN2r1!.

Here we neglect the rapidly oscillating productsGRGR and
GAGA. Finally, using Eqs.~9!, ~12! we derive Eq.~11! pre-
sented in the main text.

APPENDIX B

The conductivity correction corresponding to Fig. 1~b! is
given by
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Dsb522 (
N53

`
e2\3

2pm2S
g2E d2r id

2r f

]

]r i
Gi1

R ]

]r f

3Gf 2
A G12

R GN22GN1
R GiN

A G1 f
R d2r1 . . . d2rN , ~B1!

GN225gN22G23
R G23

A . . . GN21,N
R GN21,N

A .

The factor 2 in Eq.~B1! arises due to the consideration o
both diagrams in Fig. 1~b! and the complex conjugated t
them. Using Eqs.~6! and~9! we rewrite the expression~B1!
as
f

Dsb522 (
N53

`
e2\3

2pm2S
g2

3E d2r id
2r fGiN

A ]

]r i
Gi1

R G12
R GN1

R G1 f
R ]

]r f
Gf 2

A WN22

3~r22rN!d2r1d2r2d2rN . ~B2!

Using Eq.~7! and neglecting the rapidly oscillating function
we get Eq.~17! of the main text.
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