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Quantum transport in chaotic and integrable ballistic cavities with tunable shape
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We have performed magnetotransport measurements in ballistic cavities and obtained the average by small
modulations on the shapes and/or on the Fermi level. We work with cavities whose underlying classical
dynamics is chaotidstadia and Sinabilliards) and integrable(circles and rectanglgsThe former show a
Lorentzian weak-localization peak, in agreement with semiclassical predictions and other averaging methods
that have been used in recent measurements. For integrable cavities our measurements show that the shape of
the weak localization is very sensitive to the exact geometry of the sample: a linear magnetoconductance has
been observed for rectangles as expected by the theory for integrable cavities, whereas for circles the shape is
always Lorentzian. These discrepancies illustrate the nongeneric behavior of scattering through integrable
geometries, that we analyze taking into account the interplay of integrability with smooth disorder and geo-
metrical effects. The power spectra of the conductance fluctuations are also analyzed, the deduced typical areas
are in good agreement with those obtained from the weak localization. Periodic orbits in nonaveraged Fourier
transforms of the magnetoconductance for regular cavities are clearly identified indicating the good quality of
our samples[S0163-182607)02439-9

[. INTRODUCTION ics and the energy-level statistics since the quantization of
the energy level is the most obvious signature of quantum
The transport in microstructures has been intensivelymechanics. Transport in ballistic cavities is a scattering prob-
studied for more than ten years and has shed a new light dem and therefore one deals with a continuous spectrum. In
our understanding of the notion of conductance. The firsthis case, scattering properties of the electron through the
studies where mainly devoted to the diffusive regime, wherecavities will be the quantities related to the classical dynam-
beside the presence of impurities, electrons can preserves of the system.
phase coherence and experience interferences on a muchClassically, the essential difference in the dynamics be-
larger distance than the elastic mean free path. These intefween chaotic and regular structures is the exponential sen-
ference effects lead to the observation of the Aharonovsitivity to the initial conditions for the former. This signature
Bohm oscillations, the universal conductance fluctuations oof chaos is difficult to observe in the transport properties
the persistent current in a softdShortly after these first pio- since one cannot inject a sharp enough electron distribution
neer works, the improvements in the quality of the growth ofin the cavity. On the other hand, the comparison between
semiconductorgmainly for the 111-V compoundgsand in the  chaotic and regular structures can be done through the
lithographic methods have allowed physicists to perform eximagnetic-field dependence of the quantum transport. Semi-
periments on samples with a size smaller than the elasticlassical theories have been developed to calculate the mag-
mean free path. This ballistic transport has shown many newetoconductance and its quantum corrections. The essential
features, like the quantization of the conductance in a quarhypothesis for the semiclassical theory in this case isNhat
tum point contactQPQ (Ref. 2 or the electron focusing by the number of channels entering the cavity, is very large. The
a magnetic field. The first indication on the importance of starting point of the theory is to calculate the transmission of
the shape was in the work on the quenching of the Halthe modem entering the cavity and leaving it into the mode
effect where the rounding of the corners of the Hall bar wasn, and then the conductance through the Landauer
the principal ingredient to explain the focusing of the elec-formulal®® Semiclassically, each transmission amplitude is
trons suppressing the classical Hall effect. written as the product of an amplitude times a phase. This
Here, we discuss the ballistic transport in a very differentphase can be expressed as the classical action accumulated
approach. We will consider the exact shape of the samplby the electron when traveling through the cavity. This way
and analyze the implication of the interferences of the specusf connecting the classical dynamics to the quantum proper-
larly scattered electron waves by the edges of the sample dies, is analogous to the well-known Gutzwiller trace
the transport properties. This question is also motivated bjormula’ expressing the density of states of a closed system.
developments in the chaos community where quantum exWithin this formulation, the relevant difference between cha-
perimental systems are rare. otic and regular structures is that concerning the distribution
The idea is to study how the classical dynamics affects thef lengths and enclosed areas of the scattering trajectories.
guantum properties or equivalently what is the connectiorBoth distributions follow an exponential law for the chaotic
between classical trajectories and quantum mechanics. Thease, while a power law is found for integrable geometries. It
is the aim of the quantum chaos. Most of the works in quanis worthwhile to note that only chaotic systems have a ge-
tum chaos discuss the relation between the classical dynameric behavior whereas for regular systems the exact shape
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of the particular structure plays an important role, leading to
only qualitative predictions. See Ref. 5 and references a
therein for reviews.
In this paper, we will show experimental results on the
transport in chaotic and nonchaotic cavities. We have ob-

case of rectangle structures for the averaged magnetocondU(/M

served a line-shape typical for nonchaotic dynamics in the

tance. All the other studied structures, namely, stadium, lum

circle, and Sinabilliard show a Lorentzian shape, which is -

expected for a chaotic system. The unexpected finding of a d
chaotic signature in the case of the circle is discussed in the ¢

light of previous experimental results. The power spectrum

of the magnetoconductance is also analyzed and the typica

areas extracted show a systematic increase for the regula

cavities compared to the chaotic ones. This shows that the
two dynamics are different even if the Lorentzian shape for
the circle indicates the presence of chaos. Finally, we show
that the nonaveraged Fourier spectrum of the circle exhibits FIG. 1. Schematic drawing of the geometries of the different
hlgh-frequency componen?slwhlch can be Ilnkeq to pe”Od_ICcavities investigated in this work:(a) stadium,(b) Sinal billiard,
orbits since they are annihilated by changes in the Ca,v't)(c) rectangle, andd) circle (the circular top gate is not shown here
shape. This clearly demonstrates the presence of periodig, clarity).

orbits in quantum ballistic cavities.

the Fermi level in order to average the conductance. For
chaotic cavities, the shape of the central gate is not relevant,
whereas for the regular one this central gate must preserve
We have fabricated ballistic cavities using the the integrability of the geometry. This is important in order
Al,Ga _,As-GaAs system. The distance of the two-to not switch from a regular to a chaotic behavior when
dimensional electron ga@ DEG from the surface in our sweeping the gate voltage. The central gate for the circle is
modulated-doped heterostructure is 120 nm. When coolethen circular(inset of Fig. 4. For the rectangle, the central
down to liquid-helium temperature the 2 DEG has an elecgate is located on one sidset of Fig. 5. The gate voltage
tron density n=2.5x10"cm 2 and a mobility x=1.2  slightly changes the size of the rectangle, but not its dynam-
x10° em?V~ts™L These values yield to a Fermi wave- ICS.
length\ ;=50 nm and an elastic mean free patt=T7 uwm. An essential condition to be fulfilled in order to compare
The shapes of the cavities are defined by shallow ion etchingie different shapes is the good specularity of the bouncing
using 200 V argon ions and an aluminum mask patterned b@f the electrons on the boundaries of the cavity. Diffusive
electron-beam lithography. Care has been taken in the desiggflections will always lead to chaotic dynamics whatever the
in order to avoid direct paths through the structure. Differengeometry is. To probe the good quality of the boundary re-
geometries have been investigated: circles, rectangles, stadf#ctions we have designed the same chip bend resistance
and Sinaibilliards. The first two having a regular dynamics measurement sampl@sThese samples are multiterminal
while the others are chaotic. A scheme of these structures idall barlike configurations. The current is injected between
drawn in Fig. 1, whereas a scanning electron microscopywo orthogonal leads next to each other, whereas the voltage
(SEM) micrograph of each cavity is shown in the insets ofprobes are placed outside the current leads at various dis-
Figs. 3-5, 7, and 12. The effective areas for the circle andances from them. The measurement of the decrease of the
the two chaotic structures is 1,8n? while it is 0.9um? for  voltage versus the distance together with the magnetoresis-
the rectangular one. These values include a lateral edgance allows us to determine the specularity coefficient: we
depletion of 0.1um due to the etching process. The lateralfind 85%. This value is similar to those obtained by Roukes
depletion is measured using weak-localization corrections oet al®
a set of parallel wires of different widths processed on the Samples are placed on the cold finger of a dilution fridge
same sampleSFrom these measurements a coherence lengtht T=0.1 K. A perpendicular magnetic field can be swept
of 20 um is also extracted. The size of all the samples iswith a minimum step of 0.03 mT. Measurements are re-
much smaller than both the elastic mean free path and theorded using an ac resistance bridge working at 33 Hz with
coherence length, yielding to a fully coherent ballistic trans-an injection of 1 nA. Most of the results reported in this
port. Then, by lift-off of Ti/Au, we deposit two types of paper are collected in the low number of electron channel
gates on the structure. The first type is used to select thmode, i.e.N=2 and 3. The major reason is that the escape
electron channel number entering and leaving the structurgéime is directly related to the ratio between the perimeter of
Each of them consists of split gates placed on the leads coithe cavity and the width of its connections; therefore, in or-
necting the cavity to the measuring probes. Such a desigder to have a small cavity with a good “trapping” we need
allows us to separate the selection of the channel numbemall entry widths.
from the shape of the cavity, which is defined by the etching Because of the appearance of the Shubnikov—de Haas os-
process. The second type of gate is located directly on theillations at about a magnetic field of 250 mT we restrict the
top of the cavity allowing us to changde situ the shape or sweep in magnetic field below this value. A typical magne-

II. SAMPLES AND EXPERIMENTAL TECHNIQUE
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FIG. 2. Typical magnetoresistance trace for a circle Tat FIG. 3. Averaged magnetoconductance of a Sioiliard in
=100 mK.

units of e/h. Pluses are the experimental points, solid line the

) ] ) ] Lorentzian fit using Eq(1): the «~* value deduced from the fit is

toresistance of a circle is plotted on the Fig. 2. In most of they 5 ,;m2. The inset shows a SEM micrograph of the cavity.

traces, a peak in the magnetoconductance is observed near

zero magnetic field although large fluctuations occur when This backscattering peak as been observed in all the ex-

sweeping the magnetic field. In order to extract the exacherimental work¥ 1 in ballistic transport, but Chang

shape of the backscattering peak we need to average thg 511! was the first group, and up to now the only one, to

signal. This is done with the help of the central gate. Severappserve a difference in the line shape of the peak between

magnetoconductance traces are recorded by changing thggular and chaotic structures. They measured arrays of sta-

central gate voltage enough to decorrelate the conductangga and circles in order to average the magnetoconductance

fluctuations of two consecutive measurements. This allowgnd wash out the fluctuations. A Lorentzian-shaped peak was

us to create many ensemble members, typically 15 tracegpserved for the stadia whereas a more triangular signal was

and to extract the ensemble-averaged backscattering peakmeasured for the circles. All the other attempts were not
successful, Berryet al’® with a circular cavity, Keller

Ill. AVERAGE CONDUCTANCE et al® with a polygonal cavity, and Lutjeringt al1” with
ctangle cavities, all of them found a Lorentzian line shape.

- T . . _re
Similarly to the case of diffusive systems, sem|<:la55|calr Figures 3 and 4 show a plot of the averaged magnetocon-

theories predict for ballistic systems a quantum COITection ty,yance for the Siiailliard and the circle. No significant

the classical conductance due to the coherent backscatteri%ference in the line shape is observed. For all data obtained
of exactly_ time-reversed _paths. The dependence of this COIith the chaotic samples and the circle, we find a good
rection with the magnetic field can be inferred from theagreement with the Lorentzian figolid lines on the figurs

knowleqlge of the_area qlistribution. In the chaotic case, &g major difference between these samples lies in the typi-
Lorentzian shape is predictéd:

GBS 0.15.""|llll|l|||||||.
<G(B)>=<G(0)>_T, (1)
1+ — : 1 )
o-l=2um
a¢0 m‘ M -
where ¢, is the elemental flux quantum andis the inverse 0.1 ,

2/h)

of the area enclosed by a typical trajectory which governs the
exponential proliferation of the trajectories with the effective
area,N(0®)xexp(—a|0|).. One should note that~* can be
substantially larger than the size of the cavity since the par-
ticles bounces many times on the boundaries before escap 0.05
ing. Thus, more flux than one flux quantum is accumulated
along a typical trajectory through the cavity.

Nonchaotic systems do not exhibit an exponential distri-
bution of the effective areas, therefore a different shape for 0 '
the magnetoconductance is expected. In addition, in inte- -100 -50 0 50 100
grable systems the distributions may have a significant de- H(Gauss)
pendence on the angle of the incident electrons and the con-
ductance dependence must be evaluated by direct FIG. 4. Averaged magnetoconductance of a circle in units of
simulations on the exact shape. A linear shape of the back?/h. Pluses are the experimental points, solid line the Lorentzian
scattering peak has been computed for some peculiar regulfit using Eq.(1): the o~ ! value deduced from the fit is 2m2.
geometries. The inset shows a SEM micrograph of the cavity.
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) FIG. 5. Averaged magnetoconductance of a rectangle in units of ¢\ 6 same as in Fig. 4 for a smaller circle having a diameter
e“/h, showing a linear behavior. The inset shows a SEM micro- 0.75 um. Thea ! value deduced in this case is anz_

graph of the cavity.

example, the weak-localization correction for the 0%

cal enclosed areas deduced from the fit with EQ. Al- diameter circle together with the Lorentzian fit giving a
though the geometrical areas are identical, we found a~1=0.6 um? This rules out the effect of a too small mean
=2 um? for the circle and 0.5.:m? for both the stadium and free path. One can also argue that the time of escape in the
the Sinaibilliard. This higher value for ™ for the regular  cavity which is given by the ratio of the perimeter of the
dynamic, which is the signature of the presence of large pecavity with the size of the opening can be important and
riodic orbits, have been also obser/éd. leads to trajectories larger than the elastic mean free path or

In Fig. 5 we show the same plot for a rectangle. A Lorent-even the phase-coherence length. For theuhy circle this
zian fit does not hold for these data. The weak-localizatiorratio is such that a typical trajectory needs 13 bounces before
correction has a clearly linear behavior as expected byscaping forN=3 and gives a typical length of about 15
theory. This result for the rectangle is very similar to the oneum. This value is larger than the mean free path and might
Changet al. obtained for the circlé! Surprisingly, they also be an explanation for our result on the circle. But the mean
try the rectangular shape and they do not observe the linediree path is an average quantity and one can ask what is the
magnetoconductance. Our result is then, in one sense, in comeaning of an elastic mean free path ofuih in a single
tradiction with what they obtained but on the other hand, it iscavity of about 1um diameter. The same analysis for the
a confirmation of the possibility to experimentally probe thesmall circle yields to five bounces fad=3 and a typical
dynamics through the backscattering correction. Many reatrapped trajectory of 3uim much less thanl The fact that
sons can be invoked to understand a Lorentzian behavidhe shapes of the weak-localization correction are identical
observed for an integrable system. indicates, in our sense, that the mean-free-path argument is

The weak-localization peak depends on the area distriburot relevant. Furthermore, the typical enclosed areas
tion. The triangular shape of the peak is a signature of &cale with the geometrical area of the cavities: the ratio of
power-law distribution for larg®. Any perturbation that cuts the former is 3.3 and the ratio of the latter 3.9.
off or alters the large# part of the distribution will then Another important point is to ensure that the voltage
break the triangular character of the weak-localization peakvariations on the gate, which is our way to average the sig-
Finite temperature gives rise to a cut off for the length ofnal, do not produce any important change on the geometry of
relevant classical trajectories, through inelastic processes anlde circle. We check this point by a local averaging of the
the rounding of the Fermi surface. A small amount of disor-magnetoconductance in the two extremities of the gate volt-
der, an imperfect specularity of the walls, or some geometriage exploration without finding a significant difference in
cal imperfections altering the integrability of the dynamicsa . Furthermore, the averaged Fourier transforms of the
will drive the area distribution away from a power law. In signal at the two extreme gate voltages used are fully super-
addition, the injection angle may be relevant for the aregosable(see Sec. IV, therefore, the classical mechanics is
distribution in integrable cavities. Varieties of these effectsnot altered by our averaging procedure.
have been invoked to explain the fragility of the integrable Interferences between short paths can also give rise to
behavior. particular magnetotransport effects. As one can easily see

The assumption of residual impurities was given to ex-from the drawing of the cavitiefFig. 1) direct paths in the
plain a Lorentzian line shape also in nonchaotic cavifids.  case of circles are possible, whereas in the case of the rect-
In order to test this effect in our experiments, we have re-angle, it was possible in the design to avoid such trajectories
duced the size of the circle down to 1un and 0.75um in  with the central triangular notch without affecting the dy-
diameter and we have not obtained any change for the resulteamic. In addition, the influence of the connections onto the
(except of course a reduction ef ). Figure 6 shows, for cavity has been observed by Bied al1® These authors have
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shown that a change in the lead geometry can switch the 105
backscattering peak from a Lorentzian to a linear depen-
dence.

Finally, a fine analysis of the classical mechanics of the
circle shows that the distribution of areas contains an expo-
nential decay at the beginning before being a power'faw.
Therefore the weak localization in the circle depends on the
relationship between this switching length and the length
cutting off the integrable behavior. A simulation of the trans-
port properties of our cavities including connections will be
undertaken in the near future. This will clarify the case of the
circle.
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IV. CONDUCTANCE FLUCTUATIONS
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Fluctuations around the average conductance are charac 10

terized by their amplitude and their power spectrum. Semi- 0 500 1000 1500
classical treatment of the power spectrum leads to a qualita CYCIG/T esla

tive difference in the shape of the spectrum of chaotic and

nonchaotic structures. More precisely, for chaotic systems

FIG. 7. Power spectrum of the fluctuations for the stadium.

one finds$:® Pluses are the experimental points, solid line the fit using(Bq.
with the a value deduced from the fit of the backscattering dip
SB(V):SB(O)(1+27TQ¢OV)6—2M¢OV’ 2) correction. The inset shows a SEM micrograph of the cavity.

where v is the magnetic frequency in cycle/Tesla. Equiva-the circle(Fig. 8), for instance, where fal~1 the departure
lently, the correlation function in magnetic field can be writ- from the exponential decay is more pronounced. This restric-

ten as tion to a small channel number is always present in experi-
mental studies as opposed to analytical expansions since the
Cg(0) finite value of the mean free path limits the size of the cavi-
Ce(AB)= I 7TAB\?12 3 ties, and hence restrains the size of the apertures to avoid
1+ W) direct trajectories and small escape times.
0

Similar results were obtained for the rectangle and the

The field scale for the correlation function is twice the OneSina"I billiard. Figure 9 summarizes the data collected for the
for the average conductanfEq. (1)] because here the rel- power spectrum for the four geometries. For the rectangle we
evant phase involves the difference of two areas while th&caled the abscissa in order to take into account the differ-
backscattering correction involves the sum. Again, in thence in area. Clearly, the two dynamics have a different be-
case of nonchaotic systems there is no generic analytic dedavior. The regular samples have, on the one hand, a much
vation for the power spectrum, but a smaller decay, i.e., dicher harmonic spectrum and, on the other hand, a larger
power law, is expected. value of @ 1. This is also consistent with the theoretical
In the experimental studies one can always fit the power
spectrum with an exponential dec&) independently of the 1()4
dynamicst®!2131%The main difference between the two dy-
namics relies on the departure of data from the fit that ap-
pears earlier in the regular case and the slope of the deca
that depends o L.
To extract the power spectrum we divide each trace into~ 102
256 point intervals, Fourier transform, and average. This is &
done for several central gate voltages. Figures 7 and 8 are th
measured power spectra for a stadium and a circle billiard,
respectively. The solid lines show the fit with Eg), using
the a values obtained from the weak-localization width. The
agreement with the experimental data is satisfactory althougt
we can fit only two to three decades as in other wdfkg:*
This agreement for the values afdeduced from two differ-
ent mechanisms gives good confidence with the semi-
classical theory. As a way to ensure that the classical me- 0 500 1000 1500
chanics of our structures does not change throggh our cycle/Tesla
average procedure of the previous section, we verified the
correspondence between the values ofdhebtained on the FIG. 8. Power spectrum of the fluctuations for the circle. Closed
two extrema of the gate voltage. symbols are the experimental points for a channel nuniberl
We stress here that the semiclassical approximation is ng®) and >1 (A), solid line the fit using Eq(2) with the « value
well justified in the few channels mode. This is shown fordeduced from the fit of the backscattering dip correction.
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10° | | cessfully used to compute the amplitude of the interference
= effects but only for chaotic systems. The reason for this limi-
= —e— Stadium tation is that the phase space of the system must be equally
5107 F —e— Circle . filled in order to apply RMT. This happens only in the case
£ —&— Rectangle of chaotic structures because of the exponential proliferation
& 10° b =— Stomach of the trajectories, whereas in regular systems, strong peri-
£ odic orbits populate only part of the phase space. The main
g " resultszocz)f RMT applied to ballistic transport are listed
o 107 below?%?1
o
95}
SR N N .
E 10" <g>—§=—m 51,13_)_251,!3 when N—oo, (4)
10f 0 500 1000 1500 ng) NN+ 1)° 5
var(g)= —3
Cycle / Tesla k (2N+1)%(2N+3) ~°
FIG. 9. Power spectra for the four geometries investigated. Ab- when N—«, B=1, COE, (5
scissa of the data collected for the rectangle have been scaled to
take into account the difference in area. N2 1
var(g) = mﬁm when N—w~, B8=2, CUE,
descriptions. A complementary test is given by the correla- (6)

tion function from which we extract, using E(), typical _ _ _ _
enclosed area values similar to those obtained by the weakthereg is the conductance in units @f/h, §is the Kro-

localization width. This is shown on the Fig. 10 where thisnecker symbol, ang determines the symmetries of the en-
correlation is plotted together with the fit for the Sirak ~ Semble. COE and CUE stand for the circular orthogonal and

liard. unitary ensemble, respectively. The universal beha(gioni-
lar to that of the diffusive systemss only recovered for the
large number of channels. Nevertheless, these equations are
V. AMPLITUDES OF THE INTERFERENCE EFFECTS— quite disappointing for an experimentalist since the varia-
RANDOM-MATRIX THEORY tions of var@) versus the channel number are small, even in

All derivations of semiclassical theory only compute onethe extreme quantum limit, i.eN=1. Fortunately, RMT can
part of the transmission coefficient, namely, the diagonal parf/S© compute higher moments and a drastic effect appears on
in channel number. The conjecture is that all contributiondh€ distribution ofg for small channel nu_mbeFQ:when N
will keep the same shape and this is supported by numericaf 3 the distribution of the transmission is glmost Gaussian
simulations with chaotic dynami&slt follows that the am- and forN=2 andN=1 there are strong deviations from the
plitude of the fluctuations cannot be obtained through semi&aussian, the distribution being almost flat fo~=1 in the

classical theory. Random-matrix thed®MT) has been suc- ) o
Up to now, no evidence of such conductance distribution

2 has been observed. The amplitude of interference effects can
LI B B I B only be compared with theory for chaotic systems. For the
weak localization we find a correction of 0.25 for the sta-
dium and 0.17 for the Sinadilliard whereas RMT predicts
0.2 forN=2. The rms amplitude of the fluctuations are 0.085
(B=0) and 0.04 B#0) for the stadium, whereas for the
Sinai billiard we find 0.065 B=0) and 0.05 B#0). RMT
gives 0.32 B=0) and 0.26 B#0) for two channels. The
amplitude measured by Marces al?? was also smaller than
RMT predictions and phase-breaking channels were invoked
in order to explain this discrepancy. The amplitude of the
fluctuations that we measure is not universal but depends on
the channel number or equivalently on the mean conduc-
tance, at odds with the universality of the theoretical predic-
tions. The conductance fluctuations increase with increasing
channels number quite strongly. Figure 11 is a plot of the
0 200 400 600 amplitude of the conductance fluctuations versus the channel
H (Gauss) number (deduced from the average conductanter the
circle and the stadium. The amplitude increases quite
FIG. 10. Correlation function for the Sinailliard. Pluses are ~ Strongly for both geometries and this is in contrast with the
experimental points, solid line the fit using E§). Thea~* value ~ very small dependence predicted by the RMT. A similar in-
of 0.5 um? deduced from this fit is the same as that deduced froncrease has been also obseri2@ur data can be explained
the backscattering pedkee Fig. 3. by taking into account the fact that long trajectories do not

p—

o

Correlation (arb. units)
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- - FIG. 12. Nonaveraged Fourier transform of a circle with a cen-
- n tral gate designed in such a way to switch from a regular to a
0 Do b b b v oo b L chaotic dynamicfSEM micrograph of the circle is shown in the

0 1 2 inse). Solid and dotted lines are the spectra for a negative and a
3 4 positive voltage bias applied, respectively, to the central gate. Ar-
channel number rows indicate the position of the first two strong periodic orbits
) . expected for the circle.
FIG. 11. rms amplitude of the conductance fluctuations vs the
channel number for the circlé®) and for the stadium{O). The with a negative voltage on the gate which depletes the 2
channel number is deduced from the averaged conductance. DEG beneath the gate. We clearly annihilate the high-
L ) . ) frequency components corresponding to the shortest periodic
participate in the fluctuations if they are larger than the phasgpits when we remove a portion of the pie; low frequencies
coherence or the thermal length. When the average condugye only reduced. Arrows indicate the position of the first
tance increases by opening the connections, the escape tiqg, strong periodic orbits expected for the circle:  the tri-
decreases leading to a decrease of the weight of the longhgle and the square. Peaks appear at a very close position
trajectories on the conductance. This can explain the rise Qfjith the full circle and are suppressed when the notch is
the fluctuation amplitudes with the channel number. On th&sective. Rather than claiming that we have identified given
other hand, weak localization is already an averaged quantityets of periodic orbits, we only stress that the position of the
and is thus less sensitive to phase-breaking effects. RMfgaks scales with the range of fields expected for periodic
describes a linear behavior of the fluctuations with the changpits in our geometry. For the stadium the central gate has a
nel number by introducing phase-breaking chanffels. much weaker effect on the spectrum: mainly the very-low-
Our investigation of the distribution of the conductance alfrequency signals are affected. In Fig. 13 we have plotted the
low channel number needs at the moment more data t0 Bgynaveraged Fourier transform of the stadium and the circle
quantitative. First analysis of our preliminary data gives evi-ghowing the large amount of high frequencies for the circle
dence of a strong deviation from the Gaussian distribution a8ompared to the stadiuikeeping in mind that the areas are
the channel number approaches the unity. The main diffine same One can note that the spectrum of the circle with
culty is the cross talking of the central gate with the QPCy pegative gate voltag&ig. 12 is very similar to the one of
gates, which means that the channel number can slightiy,o stadium(Fig. 13, indicating the change of dynamics

vary when one sweeps the central gate voltage and limits thgiih the central gate that eliminates the large area enclosing
range of available gate voltages, hence limiting our statistiCSst5pje trajectories of the circle.

VI. DIRECT EVIDENCE VII. CONCLUSIONS

FOR STABLE PERIODIC ORBITS . . . L
We have studied quantum transport in ballistic cavities in

Finally, we can demonstrate that we are able to effectivelythe Al,Ga, _,As-GaAs 2 DEG. The shape was obtained by
fabricate nonchaotic systems. We have designed a circle witton etching whereas gates deposited on each lead allow us to
a central gate in the form of a pie portigphoto in the inset control the channel number independently from the geom-
of Fig. 12. In this case, the central gate allows us to switchetry. The average of the conductance was obtained by small
from a regular to a chaotic dynamics. Figure 12 shows theénodulations of the shape and/or the Fermi level with the
effect of this gate on the nonaveraged Fourier transform ohelp of an additional gate on the top of the cavity. Different
the magnetoconductance. The dotted line is the recorded sighapes have been investigated: circles, rectangles, stadia,
nal with a small positive voltage on the gate which ensuresind Sinaibilliards. The backscattering peak shows a linear
that no depletion occurs beneath the gate and the solid orshape as predicted by the theory for integrable geometries
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16 — T T T T observed for the circle can be attributed to the influence of

: the contact leads or to the direct paths and to the presence of

. exponential length distribution for the short trajectories. Nu-

P circle Vg=+0.2V | merical simulations on the exact shape of the experimental
i stadium Vg=+0.3V cavities will be undertaken to settle this problem.

The typical enclosed area deduced from either the weak
localization or the power spectrum are the same in all the
cases investigated. This typical enclosed area is larger for the
= regular dynamics than for the chaotic one as expected from
their difference in the distribution of areas.

The conductance fluctuations increase sharply by increas-
4 ing the channel number. This behavior is due to the existence
N T of long trajt()actories, V¥hif$h c\j/anish whefn;he channel number

' B increases because of the decrease of the escape time.
0 100 200 300 400 500 Finally, we have shown the good quality of our samples
cycle/Tesla by the indication of the presence of short periodic orbits in
the circle.

Fourier transform (arb. units)

FIG. 13. Nonaveraged Fourier transform of a cir@etted line,
same as in Fig. 13 with a positive voltage bias applied to the central
gate and of a stadiungsolid line) with the same area, showing the ACKNOWLEDGMENTS
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