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Quantum transport in chaotic and integrable ballistic cavities with tunable shape

Y. Lee, G. Faini, and D. Mailly
CNRS, Laboratoire de Microstructures et de Microe´lectronique, 196 Avenue Henri Rave´ra, Boı̂te Postale 107,

92225 Bagneux Cedex, France
~Received 1 July 1996; revised manuscript received 21 January 1997!

We have performed magnetotransport measurements in ballistic cavities and obtained the average by small
modulations on the shapes and/or on the Fermi level. We work with cavities whose underlying classical
dynamics is chaotic~stadia and Sinaı¨ billiards! and integrable~circles and rectangles!. The former show a
Lorentzian weak-localization peak, in agreement with semiclassical predictions and other averaging methods
that have been used in recent measurements. For integrable cavities our measurements show that the shape of
the weak localization is very sensitive to the exact geometry of the sample: a linear magnetoconductance has
been observed for rectangles as expected by the theory for integrable cavities, whereas for circles the shape is
always Lorentzian. These discrepancies illustrate the nongeneric behavior of scattering through integrable
geometries, that we analyze taking into account the interplay of integrability with smooth disorder and geo-
metrical effects. The power spectra of the conductance fluctuations are also analyzed, the deduced typical areas
are in good agreement with those obtained from the weak localization. Periodic orbits in nonaveraged Fourier
transforms of the magnetoconductance for regular cavities are clearly identified indicating the good quality of
our samples.@S0163-1829~97!02439-9#
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I. INTRODUCTION

The transport in microstructures has been intensiv
studied for more than ten years and has shed a new ligh
our understanding of the notion of conductance. The fi
studies where mainly devoted to the diffusive regime, wh
beside the presence of impurities, electrons can pres
phase coherence and experience interferences on a m
larger distance than the elastic mean free path. These i
ference effects lead to the observation of the Aharon
Bohm oscillations, the universal conductance fluctuations
the persistent current in a solid.1 Shortly after these first pio
neer works, the improvements in the quality of the growth
semiconductors~mainly for the III-V compounds! and in the
lithographic methods have allowed physicists to perform
periments on samples with a size smaller than the ela
mean free path. This ballistic transport has shown many n
features, like the quantization of the conductance in a qu
tum point contact~QPC! ~Ref. 2! or the electron focusing by
a magnetic field.3 The first indication on the importance o
the shape was in the work on the quenching of the H
effect4 where the rounding of the corners of the Hall bar w
the principal ingredient to explain the focusing of the ele
trons suppressing the classical Hall effect.

Here, we discuss the ballistic transport in a very differe
approach. We will consider the exact shape of the sam
and analyze the implication of the interferences of the spe
larly scattered electron waves by the edges of the sampl
the transport properties. This question is also motivated
developments in the chaos community where quantum
perimental systems are rare.

The idea is to study how the classical dynamics affects
quantum properties or equivalently what is the connect
between classical trajectories and quantum mechanics.
is the aim of the quantum chaos. Most of the works in qu
tum chaos discuss the relation between the classical dyn
560163-1829/97/56~15!/9805~8!/$10.00
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ics and the energy-level statistics since the quantization
the energy level is the most obvious signature of quant
mechanics. Transport in ballistic cavities is a scattering pr
lem and therefore one deals with a continuous spectrum
this case, scattering properties of the electron through
cavities will be the quantities related to the classical dyna
ics of the system.

Classically, the essential difference in the dynamics
tween chaotic and regular structures is the exponential
sitivity to the initial conditions for the former. This signatur
of chaos is difficult to observe in the transport propert
since one cannot inject a sharp enough electron distribu
in the cavity. On the other hand, the comparison betw
chaotic and regular structures can be done through
magnetic-field dependence of the quantum transport. Se
classical theories have been developed to calculate the m
netoconductance and its quantum corrections. The esse
hypothesis for the semiclassical theory in this case is thaN,
the number of channels entering the cavity, is very large. T
starting point of the theory is to calculate the transmission
the modem entering the cavity and leaving it into the mod
n, and then the conductance through the Landa
formula.1,5,6 Semiclassically, each transmission amplitude
written as the product of an amplitude times a phase. T
phase can be expressed as the classical action accumu
by the electron when traveling through the cavity. This w
of connecting the classical dynamics to the quantum prop
ties, is analogous to the well-known Gutzwiller trac
formula7 expressing the density of states of a closed syst
Within this formulation, the relevant difference between ch
otic and regular structures is that concerning the distribut
of lengths and enclosed areas of the scattering trajecto
Both distributions follow an exponential law for the chaot
case, while a power law is found for integrable geometries
is worthwhile to note that only chaotic systems have a
neric behavior whereas for regular systems the exact sh
9805 © 1997 The American Physical Society
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9806 56Y. LEE, G. FAINI, AND D. MAILLY
of the particular structure plays an important role, leading
only qualitative predictions. See Ref. 5 and referen
therein for reviews.

In this paper, we will show experimental results on t
transport in chaotic and nonchaotic cavities. We have
served a line-shape typical for nonchaotic dynamics in
case of rectangle structures for the averaged magnetocon
tance. All the other studied structures, namely, stadiu
circle, and Sinaı¨ billiard show a Lorentzian shape, which
expected for a chaotic system. The unexpected finding
chaotic signature in the case of the circle is discussed in
light of previous experimental results. The power spectr
of the magnetoconductance is also analyzed and the typ
areas extracted show a systematic increase for the reg
cavities compared to the chaotic ones. This shows that
two dynamics are different even if the Lorentzian shape
the circle indicates the presence of chaos. Finally, we sh
that the nonaveraged Fourier spectrum of the circle exhi
high-frequency components which can be linked to perio
orbits since they are annihilated by changes in the ca
shape. This clearly demonstrates the presence of peri
orbits in quantum ballistic cavities.

II. SAMPLES AND EXPERIMENTAL TECHNIQUE

We have fabricated ballistic cavities using th
Al xGa12xAs-GaAs system. The distance of the tw
dimensional electron gas~2 DEG! from the surface in our
modulated-doped heterostructure is 120 nm. When coo
down to liquid-helium temperature the 2 DEG has an el
tron density n52.531011 cm22 and a mobility m51.2
3106 cm22 V21 s21. These values yield to a Fermi wave
lengthl f550 nm and an elastic mean free path 1e57 mm.
The shapes of the cavities are defined by shallow ion etch
using 200 V argon ions and an aluminum mask patterned
electron-beam lithography. Care has been taken in the de
in order to avoid direct paths through the structure. Differ
geometries have been investigated: circles, rectangles, st
and Sinaı¨ billiards. The first two having a regular dynamic
while the others are chaotic. A scheme of these structure
drawn in Fig. 1, whereas a scanning electron microsc
~SEM! micrograph of each cavity is shown in the insets
Figs. 3–5, 7, and 12. The effective areas for the circle
the two chaotic structures is 1.3mm2 while it is 0.9mm2 for
the rectangular one. These values include a lateral e
depletion of 0.1mm due to the etching process. The late
depletion is measured using weak-localization corrections
a set of parallel wires of different widths processed on
same samples.8 From these measurements a coherence len
of 20 mm is also extracted. The size of all the samples
much smaller than both the elastic mean free path and
coherence length, yielding to a fully coherent ballistic tran
port. Then, by lift-off of Ti/Au, we deposit two types o
gates on the structure. The first type is used to select
electron channel number entering and leaving the struct
Each of them consists of split gates placed on the leads
necting the cavity to the measuring probes. Such a de
allows us to separate the selection of the channel num
from the shape of the cavity, which is defined by the etch
process. The second type of gate is located directly on
top of the cavity allowing us to changein situ the shape or
o
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the Fermi level in order to average the conductance.
chaotic cavities, the shape of the central gate is not relev
whereas for the regular one this central gate must pres
the integrability of the geometry. This is important in ord
to not switch from a regular to a chaotic behavior wh
sweeping the gate voltage. The central gate for the circl
then circular~inset of Fig. 4!. For the rectangle, the centra
gate is located on one side~inset of Fig. 5!. The gate voltage
slightly changes the size of the rectangle, but not its dyna
ics.

An essential condition to be fulfilled in order to compa
the different shapes is the good specularity of the bounc
of the electrons on the boundaries of the cavity. Diffusi
reflections will always lead to chaotic dynamics whatever
geometry is. To probe the good quality of the boundary
flections we have designed the same chip bend resist
measurement samples.9 These samples are multitermin
Hall barlike configurations. The current is injected betwe
two orthogonal leads next to each other, whereas the vol
probes are placed outside the current leads at various
tances from them. The measurement of the decrease o
voltage versus the distance together with the magnetore
tance allows us to determine the specularity coefficient:
find 85%. This value is similar to those obtained by Rouk
et al.9

Samples are placed on the cold finger of a dilution frid
at T50.1 K. A perpendicular magnetic field can be swe
with a minimum step of 0.03 mT. Measurements are
corded using an ac resistance bridge working at 33 Hz w
an injection of 1 nA. Most of the results reported in th
paper are collected in the low number of electron chan
mode, i.e.,N52 and 3. The major reason is that the esca
time is directly related to the ratio between the perimeter
the cavity and the width of its connections; therefore, in
der to have a small cavity with a good ‘‘trapping’’ we nee
small entry widths.

Because of the appearance of the Shubnikov–de Haa
cillations at about a magnetic field of 250 mT we restrict t
sweep in magnetic field below this value. A typical magn

FIG. 1. Schematic drawing of the geometries of the differe
cavities investigated in this work:~a! stadium,~b! Sinaı̈ billiard,
~c! rectangle, and~d! circle ~the circular top gate is not shown her
for clarity!.
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56 9807QUANTUM TRANSPORT IN CHAOTIC AND INTEGRABLE . . .
toresistance of a circle is plotted on the Fig. 2. In most of
traces, a peak in the magnetoconductance is observed
zero magnetic field although large fluctuations occur wh
sweeping the magnetic field. In order to extract the ex
shape of the backscattering peak we need to average
signal. This is done with the help of the central gate. Sev
magnetoconductance traces are recorded by changing
central gate voltage enough to decorrelate the conduct
fluctuations of two consecutive measurements. This allo
us to create many ensemble members, typically 15 tra
and to extract the ensemble-averaged backscattering pe

III. AVERAGE CONDUCTANCE

Similarly to the case of diffusive systems, semiclassi
theories predict for ballistic systems a quantum correction
the classical conductance due to the coherent backscatt
of exactly time-reversed paths. The dependence of this
rection with the magnetic field can be inferred from t
knowledge of the area distribution. In the chaotic case
Lorentzian shape is predicted:5

^G~B!&5^G~0!&2
DGBS

11S 2B

af0
D 2 , ~1!

wheref0 is the elemental flux quantum anda is the inverse
of the area enclosed by a typical trajectory which governs
exponential proliferation of the trajectories with the effecti
area,N(Q)}exp(2auQu).6 One should note thata21 can be
substantially larger than the size of the cavity since the p
ticles bounces many times on the boundaries before es
ing. Thus, more flux than one flux quantum is accumula
along a typical trajectory through the cavity.

Nonchaotic systems do not exhibit an exponential dis
bution of the effective areas, therefore a different shape
the magnetoconductance is expected. In addition, in i
grable systems the distributions may have a significant
pendence on the angle of the incident electrons and the
ductance dependence must be evaluated by d
simulations on the exact shape. A linear shape of the ba
scattering peak has been computed for some peculiar reg
geometries.5

FIG. 2. Typical magnetoresistance trace for a circle atT
5100 mK.
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This backscattering peak as been observed in all the
perimental works10–16 in ballistic transport, but Chang
et al.11 was the first group, and up to now the only one,
observe a difference in the line shape of the peak betw
regular and chaotic structures. They measured arrays of
dia and circles in order to average the magnetoconducta
and wash out the fluctuations. A Lorentzian-shaped peak
observed for the stadia whereas a more triangular signal
measured for the circles. All the other attempts were
successful, Berryet al.13 with a circular cavity, Keller
et al.16 with a polygonal cavity, and Lutjeringet al.17 with
rectangle cavities, all of them found a Lorentzian line sha

Figures 3 and 4 show a plot of the averaged magnetoc
ductance for the Sinaı¨ billiard and the circle. No significan
difference in the line shape is observed. For all data obtai
with the chaotic samples and the circle, we find a go
agreement with the Lorentzian fit~solid lines on the figures!.
The major difference between these samples lies in the t

FIG. 3. Averaged magnetoconductance of a Sinaı¨ billiard in
units of e2/h. Pluses are the experimental points, solid line t
Lorentzian fit using Eq.~1!: thea21 value deduced from the fit is
0.5mm2. The inset shows a SEM micrograph of the cavity.

FIG. 4. Averaged magnetoconductance of a circle in units
e2/h. Pluses are the experimental points, solid line the Lorentz
fit using Eq.~1!: the a21 value deduced from the fit is 2mm2.
The inset shows a SEM micrograph of the cavity.
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9808 56Y. LEE, G. FAINI, AND D. MAILLY
cal enclosed areas deduced from the fit with Eq.~1!. Al-
though the geometrical areas are identical, we founda21

52 mm2 for the circle and 0.5mm2 for both the stadium and
the Sinaı¨ billiard. This higher value fora21 for the regular
dynamic, which is the signature of the presence of large
riodic orbits, have been also observed.13

In Fig. 5 we show the same plot for a rectangle. A Lore
zian fit does not hold for these data. The weak-localizat
correction has a clearly linear behavior as expected
theory. This result for the rectangle is very similar to the o
Changet al. obtained for the circle.11 Surprisingly, they also
try the rectangular shape and they do not observe the li
magnetoconductance. Our result is then, in one sense, in
tradiction with what they obtained but on the other hand, i
a confirmation of the possibility to experimentally probe t
dynamics through the backscattering correction. Many r
sons can be invoked to understand a Lorentzian beha
observed for an integrable system.

The weak-localization peak depends on the area distr
tion. The triangular shape of the peak is a signature o
power-law distribution for largeu. Any perturbation that cuts
off or alters the large-u part of the distribution will then
break the triangular character of the weak-localization pe
Finite temperature gives rise to a cut off for the length
relevant classical trajectories, through inelastic processes
the rounding of the Fermi surface. A small amount of dis
der, an imperfect specularity of the walls, or some geome
cal imperfections altering the integrability of the dynami
will drive the area distribution away from a power law.
addition, the injection angle may be relevant for the a
distribution in integrable cavities. Varieties of these effe
have been invoked to explain the fragility of the integrab
behavior.

The assumption of residual impurities was given to e
plain a Lorentzian line shape also in nonchaotic cavities.16,17

In order to test this effect in our experiments, we have
duced the size of the circle down to 1.0mm and 0.75mm in
diameter and we have not obtained any change for the re
~except of course a reduction ofa21!. Figure 6 shows, for

FIG. 5. Averaged magnetoconductance of a rectangle in unit
e2/h, showing a linear behavior. The inset shows a SEM mic
graph of the cavity.
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example, the weak-localization correction for the 0.75mm
diameter circle together with the Lorentzian fit giving
a2150.6mm2. This rules out the effect of a too small mea
free path. One can also argue that the time of escape in
cavity which is given by the ratio of the perimeter of th
cavity with the size of the opening can be important a
leads to trajectories larger than the elastic mean free pat
even the phase-coherence length. For the 1.3mm2 circle this
ratio is such that a typical trajectory needs 13 bounces be
escaping forN53 and gives a typical length of about 1
mm. This value is larger than the mean free path and mi
be an explanation for our result on the circle. But the me
free path is an average quantity and one can ask what is
meaning of an elastic mean free path of 7mm in a single
cavity of about 1mm diameter. The same analysis for th
small circle yields to five bounces forN53 and a typical
trapped trajectory of 3mm much less than 1e . The fact that
the shapes of the weak-localization correction are ident
indicates, in our sense, that the mean-free-path argume
not relevant. Furthermore, the typical enclosed areasa21

scale with the geometrical area of the cavities: the ratio
the former is 3.3 and the ratio of the latter 3.9.

Another important point is to ensure that the volta
variations on the gate, which is our way to average the s
nal, do not produce any important change on the geometr
the circle. We check this point by a local averaging of t
magnetoconductance in the two extremities of the gate v
age exploration without finding a significant difference
a21. Furthermore, the averaged Fourier transforms of
signal at the two extreme gate voltages used are fully su
posable~see Sec. IV!, therefore, the classical mechanics
not altered by our averaging procedure.

Interferences between short paths can also give rise
particular magnetotransport effects. As one can easily
from the drawing of the cavities~Fig. 1! direct paths in the
case of circles are possible, whereas in the case of the
angle, it was possible in the design to avoid such trajecto
with the central triangular notch without affecting the d
namic. In addition, the influence of the connections onto
cavity has been observed by Birdet al.15 These authors have

of
-

FIG. 6. Same as in Fig. 4 for a smaller circle having a diame
of 0.75mm. Thea21 value deduced in this case is 0.6mm2.
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56 9809QUANTUM TRANSPORT IN CHAOTIC AND INTEGRABLE . . .
shown that a change in the lead geometry can switch
backscattering peak from a Lorentzian to a linear dep
dence.

Finally, a fine analysis of the classical mechanics of
circle shows that the distribution of areas contains an ex
nential decay at the beginning before being a power law18

Therefore the weak localization in the circle depends on
relationship between this switching length and the len
cutting off the integrable behavior. A simulation of the tran
port properties of our cavities including connections will
undertaken in the near future. This will clarify the case of t
circle.

IV. CONDUCTANCE FLUCTUATIONS

Fluctuations around the average conductance are cha
terized by their amplitude and their power spectrum. Se
classical treatment of the power spectrum leads to a qua
tive difference in the shape of the spectrum of chaotic a
nonchaotic structures. More precisely, for chaotic syste
one finds5,6

SB~n!5SB~0!~112paf0n!e22paf0n, ~2!

wheren is the magnetic frequency in cycle/Tesla. Equiv
lently, the correlation function in magnetic field can be wr
ten as

CB~DB!5
CB~0!

F11S DB

af0
D 2G2 . ~3!

The field scale for the correlation function is twice the o
for the average conductance@Eq. ~1!# because here the re
evant phase involves the difference of two areas while
backscattering correction involves the sum. Again, in
case of nonchaotic systems there is no generic analytic d
vation for the power spectrum, but a smaller decay, i.e
power law, is expected.

In the experimental studies one can always fit the po
spectrum with an exponential decay~2! independently of the
dynamics.10,12,13,19The main difference between the two d
namics relies on the departure of data from the fit that
pears earlier in the regular case and the slope of the d
that depends ona21.

To extract the power spectrum we divide each trace i
256 point intervals, Fourier transform, and average. Thi
done for several central gate voltages. Figures 7 and 8 ar
measured power spectra for a stadium and a circle billia
respectively. The solid lines show the fit with Eq.~2!, using
thea values obtained from the weak-localization width. T
agreement with the experimental data is satisfactory altho
we can fit only two to three decades as in other works.10,11,14

This agreement for the values ofa deduced from two differ-
ent mechanisms gives good confidence with the se
classical theory. As a way to ensure that the classical
chanics of our structures does not change through
average procedure of the previous section, we verified
correspondence between the values of thea obtained on the
two extrema of the gate voltage.

We stress here that the semiclassical approximation is
well justified in the few channels mode. This is shown f
e
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the circle~Fig. 8!, for instance, where forN'1 the departure
from the exponential decay is more pronounced. This rest
tion to a small channel number is always present in exp
mental studies as opposed to analytical expansions since
finite value of the mean free path limits the size of the ca
ties, and hence restrains the size of the apertures to a
direct trajectories and small escape times.

Similar results were obtained for the rectangle and
Sinaı̈billiard. Figure 9 summarizes the data collected for t
power spectrum for the four geometries. For the rectangle
scaled the abscissa in order to take into account the dif
ence in area. Clearly, the two dynamics have a different
havior. The regular samples have, on the one hand, a m
richer harmonic spectrum and, on the other hand, a la
value of a21. This is also consistent with the theoretic

FIG. 7. Power spectrum of the fluctuations for the stadiu
Pluses are the experimental points, solid line the fit using Eq.~2!
with the a value deduced from the fit of the backscattering d
correction. The inset shows a SEM micrograph of the cavity.

FIG. 8. Power spectrum of the fluctuations for the circle. Clos
symbols are the experimental points for a channel numberN'1
~d! and .1 ~m!, solid line the fit using Eq.~2! with the a value
deduced from the fit of the backscattering dip correction.
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9810 56Y. LEE, G. FAINI, AND D. MAILLY
descriptions. A complementary test is given by the corre
tion function from which we extract, using Eq.~3!, typical
enclosed area values similar to those obtained by the w
localization width. This is shown on the Fig. 10 where th
correlation is plotted together with the fit for the Sinaı¨ bil-
liard.

V. AMPLITUDES OF THE INTERFERENCE EFFECTS—
RANDOM-MATRIX THEORY

All derivations of semiclassical theory only compute o
part of the transmission coefficient, namely, the diagonal p
in channel number. The conjecture is that all contributio
will keep the same shape and this is supported by nume
simulations with chaotic dynamics.6 It follows that the am-
plitude of the fluctuations cannot be obtained through se
classical theory. Random-matrix theory~RMT! has been suc

FIG. 9. Power spectra for the four geometries investigated.
scissa of the data collected for the rectangle have been scale
take into account the difference in area.

FIG. 10. Correlation function for the Sinaı¨ billiard. Pluses are
experimental points, solid line the fit using Eq.~3!. Thea21 value
of 0.5mm2 deduced from this fit is the same as that deduced fr
the backscattering peak~see Fig. 3!.
-

k-

rt
s
al

i-

cessfully used to compute the amplitude of the interfere
effects but only for chaotic systems. The reason for this lim
tation is that the phase space of the system must be eq
filled in order to apply RMT. This happens only in the ca
of chaotic structures because of the exponential prolifera
of the trajectories, whereas in regular systems, strong p
odic orbits populate only part of the phase space. The m
results of RMT applied to ballistic transport are liste
below.20,21

^g&2
N

2
52

N

4N12
d1,b→2 1

4 d1,b when N→`, ~4!

var~g!5
N~N11!2

~2N11!2~2N13!
→ 1

8

when N→`, b51, COE, ~5!

var~g!5
N2

4~4N221!
→ 1

16 when N→`, b52, CUE,

~6!

whereg is the conductance in units ofe2/h, d is the Kro-
necker symbol, andb determines the symmetries of the e
semble. COE and CUE stand for the circular orthogonal a
unitary ensemble, respectively. The universal behavior~simi-
lar to that of the diffusive systems! is only recovered for the
large number of channels. Nevertheless, these equation
quite disappointing for an experimentalist since the var
tions of var(g) versus the channel number are small, even
the extreme quantum limit, i.e.,N51. Fortunately, RMT can
also compute higher moments and a drastic effect appear
the distribution ofg for small channel numbers:20 when N
53 the distribution of the transmission is almost Gauss
and forN52 andN51 there are strong deviations from th
Gaussian, the distribution being almost flat forN51 in the
CUE.

Up to now, no evidence of such conductance distribut
has been observed. The amplitude of interference effects
only be compared with theory for chaotic systems. For
weak localization we find a correction of 0.25 for the st
dium and 0.17 for the Sinaı¨ billiard whereas RMT predicts
0.2 forN52. The rms amplitude of the fluctuations are 0.0
(B50) and 0.04 (BÞ0) for the stadium, whereas for th
Sinaı̈billiard we find 0.065 (B50) and 0.05 (BÞ0). RMT
gives 0.32 (B50) and 0.26 (BÞ0) for two channels. The
amplitude measured by Marcuset al.22 was also smaller than
RMT predictions and phase-breaking channels were invo
in order to explain this discrepancy. The amplitude of t
fluctuations that we measure is not universal but depend
the channel number or equivalently on the mean cond
tance, at odds with the universality of the theoretical pred
tions. The conductance fluctuations increase with increas
channels number quite strongly. Figure 11 is a plot of
amplitude of the conductance fluctuations versus the cha
number ~deduced from the average conductance! for the
circle and the stadium. The amplitude increases qu
strongly for both geometries and this is in contrast with t
very small dependence predicted by the RMT. A similar
crease has been also observed.10 Our data can be explaine
by taking into account the fact that long trajectories do n
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participate in the fluctuations if they are larger than the ph
coherence or the thermal length. When the average con
tance increases by opening the connections, the escape
decreases leading to a decrease of the weight of the
trajectories on the conductance. This can explain the ris
the fluctuation amplitudes with the channel number. On
other hand, weak localization is already an averaged qua
and is thus less sensitive to phase-breaking effects. R
describes a linear behavior of the fluctuations with the ch
nel number by introducing phase-breaking channels.23

Our investigation of the distribution of the conductance
low channel number needs at the moment more data to
quantitative. First analysis of our preliminary data gives e
dence of a strong deviation from the Gaussian distribution
the channel number approaches the unity. The main d
culty is the cross talking of the central gate with the QP
gates, which means that the channel number can slig
vary when one sweeps the central gate voltage and limits
range of available gate voltages, hence limiting our statist

VI. DIRECT EVIDENCE
FOR STABLE PERIODIC ORBITS

Finally, we can demonstrate that we are able to effectiv
fabricate nonchaotic systems. We have designed a circle
a central gate in the form of a pie portion~photo in the inset
of Fig. 12!. In this case, the central gate allows us to swi
from a regular to a chaotic dynamics. Figure 12 shows
effect of this gate on the nonaveraged Fourier transform
the magnetoconductance. The dotted line is the recorded
nal with a small positive voltage on the gate which ensu
that no depletion occurs beneath the gate and the solid

FIG. 11. rms amplitude of the conductance fluctuations vs
channel number for the circle~d! and for the stadium~s!. The
channel number is deduced from the averaged conductance.
e
c-

ime
ng
of
e
ity
T
-

t
be
-
s
-

tly
he
s.

ly
ith

e
f

ig-
s
ne

with a negative voltage on the gate which depletes th
DEG beneath the gate. We clearly annihilate the hig
frequency components corresponding to the shortest peri
orbits when we remove a portion of the pie; low frequenc
are only reduced. Arrows indicate the position of the fi
two strong periodic orbits expected for the circle: the t
angle and the square. Peaks appear at a very close pos
with the full circle and are suppressed when the notch
effective. Rather than claiming that we have identified giv
sets of periodic orbits, we only stress that the position of
peaks scales with the range of fields expected for perio
orbits in our geometry. For the stadium the central gate ha
much weaker effect on the spectrum: mainly the very-lo
frequency signals are affected. In Fig. 13 we have plotted
nonaveraged Fourier transform of the stadium and the ci
showing the large amount of high frequencies for the cir
compared to the stadium~keeping in mind that the areas a
the same!. One can note that the spectrum of the circle w
a negative gate voltage~Fig. 12! is very similar to the one of
the stadium~Fig. 13!, indicating the change of dynamic
with the central gate that eliminates the large area enclo
stable trajectories of the circle.

VII. CONCLUSIONS

We have studied quantum transport in ballistic cavities
the AlxGa12xAs-GaAs 2 DEG. The shape was obtained
ion etching whereas gates deposited on each lead allow u
control the channel number independently from the geo
etry. The average of the conductance was obtained by s
modulations of the shape and/or the Fermi level with
help of an additional gate on the top of the cavity. Differe
shapes have been investigated: circles, rectangles, st
and Sinaı¨ billiards. The backscattering peak shows a line
shape as predicted by the theory for integrable geome

e

FIG. 12. Nonaveraged Fourier transform of a circle with a ce
tral gate designed in such a way to switch from a regular to
chaotic dynamics~SEM micrograph of the circle is shown in th
inset!. Solid and dotted lines are the spectra for a negative an
positive voltage bias applied, respectively, to the central gate.
rows indicate the position of the first two strong periodic orb
expected for the circle.
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only for the rectangle structure. Such triangular back scat
ing peak has been observed up to now only by Changet al.11

for a circular geometry. A Lorentzian shape is observed
all the other structures. The Lorentzian dependence we h

FIG. 13. Nonaveraged Fourier transform of a circle~dotted line,
same as in Fig. 13 with a positive voltage bias applied to the cen
gate! and of a stadium~solid line! with the same area, showing th
large amount of high frequency for the integrable cavity.
b
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observed for the circle can be attributed to the influence
the contact leads or to the direct paths and to the presenc
exponential length distribution for the short trajectories. N
merical simulations on the exact shape of the experime
cavities will be undertaken to settle this problem.

The typical enclosed area deduced from either the w
localization or the power spectrum are the same in all
cases investigated. This typical enclosed area is larger fo
regular dynamics than for the chaotic one as expected f
their difference in the distribution of areas.

The conductance fluctuations increase sharply by incre
ing the channel number. This behavior is due to the existe
of long trajectories, which vanish when the channel num
increases because of the decrease of the escape time.

Finally, we have shown the good quality of our samp
by the indication of the presence of short periodic orbits
the circle.
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