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Exciton-phonon interaction in fractional dimensional space
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Explicit analytical expressions of Frohlich-like Hamiltonians for the interaction between an exciton and
optical phonons in fractional-dimensional space are derived for two illustrative casas-dfsland 1s—2p
exciton scattering. The improved Hamiltonians incorporate any modification in the strength of the exciton-
optical-phonon interactions due to confinement, by means of a single parametaneasure of the dimen-
sionality of the confined system. The Hamiltonians also incorporate the penetration of electron and hole wave
functions into the barrier region, an effect which becomes increasingly significant for narrow well widths. The
flexibility of the derived Hamiltonians are shown in the ease of systematic study of exciton linewidths in
GaAs/ALGa _,As quantum wells. Results show the high sensitivity of the excitonic linewidths doe to
interactions with short-wavelength optical phonoi&0163-18217)01139-9

[. INTRODUCTION width) to 3 in an exact three-dimensional systémro con-
finemenj. Our results shows that the dimensionality,is a
Interactions involving excitons and phonons play an im-critical factor in the interaction between exciton and short-
portant role in the properties of quantum wells andwavelength optical phonons.
superlattice® as the emission and absorption spectra near This paper is organized as follows. In Sec. II, we define
the band-gap region is dominated by excitonic feafuies an a-dimensional electron-phonon interaction involving
high quality semiconductors. Earlier woPk& have generally longitudinal-optical phonons. We also present the derivation
used an exact three-dimensional or two-dimensional Hamilof the a-dimensional exciton-phonon matrix elements for
tonians to study the exciton-optical-phonon interaction inls—1s and Is—2p scattering. In Sec. lll, we study the
quantum wells. The form of these Hamiltonians are inflex-effect of dimensionality on exciton-optical-phonon interac-
ible and can only model the exciton-optical-phonon interaction and analyze the behavior of the interaction operators
tion rather approximately. Studie¥? of the exciton-optical- derived in Sec. Il, in the small wavevector limit. In Sec. IV,
phonon interaction in GaAs/ABa _,As and We obtain obtain numerical results of the exciton linewidth in
GaAs/InGa, _,As single quantum wells have shown that the GaAs/ALGa - ,As quantum wells and present the conclu-
main phonon modes involved in the exciton-phonon interacsion of this work in Sec. V.
tion are neither the two-dimensional type as in the case of
ponfined phonons or the three-dimensiqnal phonons common || ExcITON-OPTICAL-PHONON INTERACTION
in t_)ulk phonon modes. Th_ere are a variety of phonon mo_des IN A ERACTIONAL-DIMENSIONAL SPACE
which arises from the anisotropy of quantum wells, which
have been described by the Huang and Zhu model, Fuchs- We define then-dimensional electron-phonon interaction
Kliewer slab modes or Ridley’s guided mode mod@s2  involving longitudinal-optical phonons by the Friich type
These phonon modes undergo a gradual change in dimehtamiltonian:
sionality as the well width varies from zero to infinity.
The pseudo-two-dimensionality behavior of excitons in
quantum wells was first popularized by ldeal® and Lefe- H® 0= 2 Vi (@)Bl.q,Bia(bgtb]), (D)
bvre et al141® Their use of fractional-dimensional space Kary

greatly simplified the problem of solving the energy levels Ofwhere the exciton operatorBi |B), and phonon operators

excitons in quantum well structures. In our work here, we b bl idered t te in a fractional-di ional
present a unified approach to exciton-phonon interaction it%a+Pq) are considered to operate in a fractional-dimensiona

quantum wells by treating both the exciton and phonons aSPace: All position(r) and momentum vectoréK,q) are
existing in fractional-dimensional space. The exciton-{@Ken to exist in a fractional-dimensional space.
optical-phonon interaction operators are derived in a M andvinEq.(1)are the internal quantum numbers of the
fractional-dimensional space, as a result, the interaction og2Xciton state and the matrix eleme¥f, ,(q), in oD space is
erators are modified accordingly with changes in the quandiven by

tum well width. The main advantage in using a fractional-

dimensional space is that only a single parameter, known as u + « .

the degree of dimensionalitidenoted bye), is needed to Vx,u(Q)=faDdr PN (NVglexp(—iyeq-re)
incorporate the effects due to changes in the widths of the

well or barrier regions on the strength of exciton-phonon —expivhq-rn)l, (2)

interaction as « increases from 2 in an exact two-
dimensional systenge.g., infinite potential with zero well where

0163-1829/97/5@.5)/97987)/$10.00 56 9798 © 1997 The American Physical Society



56 EXCITON-PHONON INTERACTION IN FRACTIONA. . .. 9799

m* m;; 2a+47T(l—a)/2 1 1/2
e
Y= oy and yhwE () G(a)= | - 9
¢ (mi+mb) (my+mpy) r a;—l (at1)3 e ag
and
It is important to note that we have specifically choserpa 2
ul2 2me’hw o1 1 exciton state for which the quantum numbers=0, in Eq.
V3l “09q" T \en ey’ (49 (7). Because of the axial symmetry of the operator terms,

e(~17ed'Td andeli"nd ) which appear in Eq2), only exciton
wheree., ande, are the high- and low-frequency values of scattering in whichm is conserved, is allowed

the dielectric function of the well materiai andmj; are Using the relatiotf**

the respective electron and hole band masses.apds the

frequency of the LO phonons. In E@), we have neglected T il

the  LO-phonon  dispersion by  assuming 2 c

that f dr e72w|r\ce72wiq~r:
aD

ho o(g)~fhw o(0). Q% in Eg. (4) is the volume in areD w@t D2 (24 g2)(at D2

space, which is given by the Hausdorff measure, (10)
T2 and the hydrogenic form of the wave functiogi;5 in oD
Q(Ir)=———7lrl* (5  space given in Eq(6), the matrix elementy ,(q) in Eq.

i1+ > (2) can be evaluated as

where I'[x] is the Euler'sIT’ function. Note that we have Vi 1s(0) =
generalized Eq4) by introducing a noninteger dimension
Equation(4) reduces to the well established forms in both
the exact 2D and 3D limits. X
Instead of involved derivation of the exciton-optical-
phonon interaction operator for all allowed exciton states, we 1
only consider two important cased) A = v=1s (intraband X 1+ )] @ 2
scattering and(2) A =1s, v=2p (interband scatteringThis Bhla
is justified as in energy transitions involving excitonic states, 1
only the Is exciton state¥ are considered since they have a - 1+ f2(a) =7 D2
much stronger coupling to the photons than higher order e
states as the excitonic oscillator strength falls-a¥/n*. The  \here
guantum numbem=1,2, ... is theprincipal quantum num-
ber state of the exciton. We have included the caseé of yalal {a—1
=1s, v=2p for the purpose of comparison with=v Bn(a)= 2 ( ) B
=1s. In general, the two cases we study here are sufficient
to account for the salient features of exciton based transitionand
in resonant Raman scattering experiménts.
The 1s state of an exciton in amD space, which is veldl (a—l)
B

2mehw o\ Y2
1 1 ) 1/2

€ €p

: (11)

2

needed in both cases, can be written as Bela)=— 2 (12)
It is to be noted that Eq10) is based on functions known as

: (6)  the Poisson kernal which are discussed in detail by Stein and
Weiss'® In deriving Eq.(11), we have made use of the spa-

whereag is the three-dimensional Bohr radius of the exciton.tidl integral relation inaD spac 2
Likewise, the wave function of af2state exciton in amD o (a1
space can be written as f dr=27 f
aD r a';l 0
2

2
elfls(r)=F(a)exr{— —

a—1 aB

o

r“’ldrj dé sin®26. (13
0

r 2
Yap(r)=Gla) — exp[— —¥1 a0, (7)
® The derivation of the matrix elemerw,fslzp(q) involves
where F(a) and G(«) in Egs. (6) and (7) can be easily the use of the integrgkee Appendix A

obtained as

+1,_(1-a)2 12 if dr q-re27lrleg=2mia r
2R 4 al Jao
Fla)= a1 28 (8)
I ——|(a=1)*"* 8 a+3
2 — .
2 icq

and = at3)2 (C2+q2)(01+3)/2' (14
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Using Egs. (2), (6), (7), and (14), the matrix element,

Vis2(0) in Eq. (2) can be evaluated as 020
27Te2ﬁw|_o 1/2 1 1/2 018
Vis (@)= (W) P V(a)(agq) ) 016 1
2014
Yh T o012
1 ey § o
y % 0.08
e
— , 15 £ 006
[+ &l " 5
= 0.04
where 0.02 [
il velq 0T 2 3 4 5 6 7 8 o 10
tn(a)=""5—P(a)ag and &(a)=—5—P(a)ag 2
(16) .
FIG. 1. Plot of the matrix element terniLs|Hg? 57|1s) as a
and function of (ag|q|) at different values of.
a’—1 o ) )
P(a)= 5 (17)  for 1s—1s scattering increases wiila while g, decreases
o

with a. The width of the maximum can generally be seen to
andV(a) can be easily obtained using Eq8) and(9) as decrease with the dimensionality of the quantum well.
R In Fig. 2, we have plotted1s|H &°|1s) in Eq. (19), as
_ 2°P*" () (189 @ function of « for different values ofag|q|. The matrix
(= 1) a+ 1)V element remains unaffected layfor ag|qg|~3, however for

. ) ag|g/=3 it decreases withy, while the reverse occurs for
The matrix elementsyy, 15(q) and Vi ,,(q) both yield ag|q/=3.

the expected fornis® in the exact three-dimensional and ~Figure 3 shows a plot of the matrix element term,
two-dimensional limits. The matrix elements also vanish for<1S|Hop D op):
* _ ok : . . . ex-ph p):
m% =m¢ . Experimental resulf§ confirm this behavior for
excitons in bullé’ We are unable to find existing experimen- (1s|H2 20| 2p)

V(a)

tal results showing this result for excitons in quantum wells. ex-ph
VZ(a) Yh
IIl. EFFECT OF DIMENSIONALITY (aB|q|)(01—3)/2 [1+ gﬁ(a)](w+3)/2
ON EXCITON-OPTICAL-PHONON INTERACTION
op aD Ye

The dependency of the Hamiltonia g 5, on the pho-
non wave vectorg, is critically determined by the symmetry
of the the initial and final exciton states. For states of th

. . _ _ aD .
same parity, i.e.A=v=1s, Hg'—0 as[q|—0. This (19 we have used,=0.3 andy,=0.7. Unlike in the case
holds true for 2<a<3. For states of different parity, i.e., 5f15_1s scattering, the matrix element, ,, has maxima

_ _ D .
N=1s, v=2p, HE 5w —0 as|q|—0 for all values ofx less  peaks at two different values of the phonon wave vector.
than 3. HoweveH 2 57 takes on a finite value at=3. The

(20

1+ E(a)] @I

€s a function ofjglag for different values ofa. As in Eq.

behavior ofHZ, &> at =0 is consistent with that obtained 020 aqg=1
for the exact three-dimensional system by Bulyanésal 2 '
Figure 1 shows a plot of the matrix element term, 0.18
<1S|Hg§_§?| 1s): w 016
D £ 0.14
(15 P[15) 2
1 1 é 0.12 i
~ . 5 2 ot0
(agla)) “™ M2 | [1+ Bi(a)] 17 £ oos
=
1 =
- T (19
[1+ﬁe(a)] 0.04
as a function ofag|q| for different values ofa. We have 002

chosen values ofy,=0.3 and y,=0.7 appropriate for a
GaAs/ALGa _,As system. The matrix element, in Fig. 1,

increases gradually to a broad maximungaty, before de- FIG. 2. Plot of the matrix element ternd1s|Hg? 57|1s) as a
creasing again. The stength of the exciton-phonon interactiofunction of « at different values of4g|q|).

Dimensionality, o
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a=2 band. This accounts for the cancellation effect afd1s

"""" a=23 scattering for small values af. Physically, this means that
for large wavelength phonons, the exciton is “seen” as elec-
trically neutral which results is almost zero coupling. For
small values ofg, Eq. (19) reduces to

1s,2p o
o
<3

T
R
I
w
<

o

o

o
T

* *

Mg — My,

op aD ~ =
<1S|Hex—gh |1S> m; +m:

(aB|q|)v (22)

Matrix element, H
=)
>

hence ifm}>mj , the cancellation effect becomes less sig-
nificant at smallg’s. Due to the mixing of different states of
relative motion, the cancellation effect at small phonon wave
vectors is less significant for thes32s scattering, and is
strongly dependent on the dimensionality of the exciton.

o
=]
&

0.00

B. Determining dimensionality, «, of an exciton

FIG. 3. Plot of the matrix element ternj1s|H2 %°|2p) as a ;
in a quantum well

ex-ph

function of (ag|q|) at different values ofv.
It is important to use a proper definition for the dimen-
After the first maximum,(ls|Hg§_§r?|2p) reaches zero for Sionality of the confined exciton in order to obtain accurate

values of phonon wave vecta,, given by values ofa. Mathieuet al'* have suggested a simple defi-
nation by whicha can be easily computed for a given value
Vh) [2/(a+3)]-1 12z of the well width:
1 Ye
9= P(a) ( h)? 7h)2’<“*3)( 7e>2 @ “ex:s_ex% B 2:W ) @3
—_— — | — ai— ex
2 Ve 2
whereL,, is the well width andh,, is the exciton bohr radius.
Equation(21) shows that asy decreasesg, increases for In general, reliable values af of an exciton in a quantum
fixed values ofy, andy;, as is shown in Fig. 3. well of known well width can be obtained by using experi-

The exciton-phonon interaction operators in E4$) and  mental value? of exciton binding energies as a function of
(20) yield different expressions for the two- and three-the well width. The dimensionality is then determined by
dimensional cases due to different powers in terms ofising a simple expressibit* of the exciton energyEy, :
[1+,8i2(a)] and[1+ §i2(a)] (i=e,h). There is little differ-
ence between the exact two-dimensional and three- B Ry
dimensional behavior of the interaction operataré ;4(q) Bp= a—3\?’
andV{; 5,(d), for long-wavelength phonons whege and¢; n+ T)
can be neglected. However, for short-wavelength phonons,
the differences would be significant as is shown in Figs. 1-3where the quantum numben=1,2,... is theprincipal
and is expected to give rise to major differences in the transquantum number state amj, is the effective Rydberg. The
port properties of excitons in quasi-two-dimensional sys-empirical estimates ofr are generally larger by 0.15-0.20
tems. than the values calculated using E@3). This is mainly
attributed to the fact that Eq24) is an exact result of the
exciton binding energy whereas Hg3) is based on an em-
o _ _ pirical assumptiort*

It is important to analyze the salient features of the matrix | Fig. 4, we have plotted of the heavy-hole exciton as
elementsV s 1 and Vs 5, for small values of the wave vec- 3 function of the well width using empirical values of exci-
tor, g near the origin. In an ideal semiconductor, the excitorygp, binding energiéd in GaAs/ALGa, _,As quantum wells.
center of mass wave vector equals zero as the excitation | can pe seen that the ideal confinement at which? is
caused by an optical ph_oton gvhich does not occur in practicgever reached 28 due to the spreading of electron and hole
due to several mechanisrffs?* Thus the dependence of the \yave functions into the barrier regions. It is important to
Frohlich exciton-optical phonon matrix element gnis im-  note that this spreading effect, which becomes significant for

portant in resonant Raman scattering studfeBhe interac-  thin wells, is taken into account in the matrix elements, Eq.
tion of a longitudinal-optical phonon with an excitonic state (19) and Eq.(20), througha.

becomes highly enhanced, when an incident photon becomes
resonant with the initial, & state. As shown in Figs. 1 and 3,
the strong dependency ap gives rise to a different set of
Raman rule® which are not based og~0.

In the Frdnlich type exciton-phonon interaction, the elec-  Studies of the exciton linewid®A is important as it pri-
trostatic interaction termVy in Eq. (4) remains the same for marily determines the shape of the absorption spectra. At
both the conduction and valence bands in contrast to theoom temperatures, the exciton-optical-phonon scattering
deformation potential interaction which differs from band to dominate® over scattering processes involving acoustic

(24)

A. Cancellation effect at small phonon wave vectors

IV. EXCITON LINEWIDTHS IN GaAs/Al ,Ga;_,As
QUANTUM WELLS
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Linewidth, T (meV)

0 20 40 60 80 100 120 140 160 180 200
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Dimensionality, o

FIG. 4. Dimensionalityg, of the heavy-hole exciton, as a func- ] ) ) )
tion of well width at various aluminum concentratior, in _ FIG. 5. Exciton linewidths['y51s andI'5p,;s as a function of
GaAs/ALGa,_,As quantum wells. dimensionality,« at qo=2, 2.5, and Jsee Eq.(29)].

1
[+ Baa) 27

2
: (28)

phonons. Since the optical-phonon enerfjw, o, is larger 1
than the binding energy of an exciton, it is highly likely that I'1515(qo) = 2.7 10° (2m)* g,
the exciton decays to the continuum state after collision with

an optical phonon. However it also possible for the exciton 1

to jump to the excited 2 or higher states, with an increase in - [1+ Be(a)?] (et D2
the kinetic energy in its center-of-mass motion.

For the purpose of simplicity in analytical expressions, We\yhere the dimensionless wave vectg, is given by
shall assume that the final states in the exciton-optical-
phonon interaction are in theslor 2p state. This possibility
cannot be excluded for hot excitdfistin which the kinetic
energy is large enough to be of the same order as the binding
energy.

~ Using Egs.(1) and (11), the magnitude of the exciton wherel o= /(A/2m* w o) and the exact value of the dimen-
linewidth due to 5—1s scattering by optical phonons can gjgnless wave vectog,, depends on the photon enerdy,

be obtained as the exciton energyE;(q), and the range imposed by the

2ML,
do=Lolg|= ) [fo—Ei()+7hw o], (29

> melh 1 1 1 conservation law given in Eq26).
T, ls:< Te w0 (__ _) 2 . Likewise an expression for the exciton linewidiPy, s,
S Q« €. &g/ 9% in meV, can be obtained using Eq4) and(15) as
" 1 1 2 »
2 et DR 2 et D2 Ve(a)do Yh
[1+Bh(a)] [1+Be(a)] sz'lszl.3>< 107 (277_)[1_1 [1+§ﬁ(a’)](a+3)/2
X hw—E(q)+hoo]. (25)

2

Ye , (30)

[+ ()] IR

The 6 function in Eq.(25) conserves the energy of the scat-
tered exciton and phonon in theD space.E;4(q) denotes

the energy of the 4 exciton and the phonon wave vector, _ .
|q|, is restricted to the range where the phonon wave vectdq, is restricted to the range

12

2M 1/2 2M 1/2
K_ KZ_ ﬂ ngK‘F K2_ wLO , K_ K2_ 3EbM _ 2M (,L)Lo
A % 2K?2#2 [
(26) 1/2
3ELpM  2M
whereM =mj +m}, is the total mass of the exciton akdis <q=K+|K?— ZK;’ﬁz - tho) , (32
the exciton wave vector.

Transforming the discrete sum over the phonon wave vec- . o ]
tors, g, in Eq. (25) into a spatial integral using where the exciton energy, is given in Eq.(24).
Using the three-dimensional effective Rydberg energy,
a« Ry, as 31 meV for the heavy-hole exciton,
zq: ~2me Lqua @27 fw,o=36.8meV, y.=03 and _ yh_=0.74 for
GaAs/ALGa _ As quantum wells, the linewidthB, ;5 and
we get a simple expression for the exciton linewidih, ;. , I';,.15 In E@s.(28) and(30) are calculated fogo=2, 2.5, and
in meV as 3 in Fig. 5. For selected ranges qf and «, the order-of-
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magnitudes of exciton linewidth in GaAs/Al are consistentexciton scattering. The improved interaction operators are
with available experimental resultswhich show that the derived within the framework of a fractional-dimensional
excitonic linewidth decreases from 11 to 8 meV as the wellspace. The derivation techniques employed here can easily
width increases from 60 A to 200 A. be extended to exciton-deformation potential interaction and

The linewidthsl'; 15 and ', 15 can be seen to be highly piezoelectric interaction involving acoustic phonthsas
sensitive toa. It is to be noted that we have not consideredwell.
the effects of temperature and other experimental conditions Numerical results of the exciton linewidths in
(e.g., interface roughness, excitation intensitien comput-  GaAs/ALGa, _,As quantum wells predict exciton transition
ing the exciton linewidths. Inclusion of these factors is ex-from three-dimensional to quasi-two-dimensional behavior
pected to introduce a chand#0-30 % in our calculated as the well width is decreased. Our results indicate the im-
results shown in Fig. 5. The effects of leakage of the exciportance of dimensionalityy, as a critical factor in the in-
tonic wavefunction into the barrier region on the excitonicteraction of excitons with short-wavelength optical phonons
linewidths in quantum wells can be predicted from Fig. 4.in quasi-two-dimensional systems. Finally, the flexibility of
This behavior has already been observed by Berailel®*  the derived Hamiltonians may be a useful aid to experimen-
for heterostructures with binary wells. talists in this field.

It may desirable to compare numerical values of the ex-
citonic linewidths obtained here with those bf s [EQ. APPENDIX A
(28)] calculatefl using an exact two-dimensional exciton- o )
optical-phonon interaction operator and an exciton model The derivation of Eq(14) is based on the method em-
based on a variational wave function. Unlike in FigIg,,,  Ployed by Stein and WeiSsfor the derivation of Eq(10).
in Ref. 6 was computed only for long-wavelength dpticaIThe integral is first solved in one-dimensional space using
phonons, and hence showed a very slow decrease with the , it ,
well width (i.e., increasingx valueg for GaAs/ALGa _,As ye " e 2mVlqy= e "/ (A1)
quantum wells. 1D c

The strong dependence of the excitonic linewidthsxdn |
Fig. 5 suggests that it may be possible to determine empirica
values ofa from exciton-phonon scattering experiments. As 1 e it it 2
exciton interactions with short-wavelength optical phonons m f Dy't e Ve T ldy= c(at2r € (A2)
become dominant at higher temperatures160 K), one “
need to also consider non-negligible contributions from ionfor vectorsy andt, such thaty-t=yt coss, 6 is a pesudo-
ized donor impurities, exciton-exciton interactions, and wellangle in the fractional-dimensional space.
width fluctuationd* as well. In this regard, the theory devel-  Using the relations
oped here is not adequate enough to yield reliable estimates

P an aD space we get

of a from experimental values of the excitonic linewidths 2mlyl 1 (~et 2y

and one may need to utilize the methods described in Sec. € i fo We du, (A3)

[Il B. However at lower temperatures, exciton scattering with

acoustic phonons becomes the sole dominant mechéhism " Ia+1]

thus making it easier to relate experimental linewidths with f x2e~PXdx= —paT (A4)
0

theoretical expressions based on derivation techniques men-
tioqed in this work. One can thus expect to obtain better, 4 Eq.(A2) we get
estimates ofa from exciton-phonon scattering experiments
at lower temperatures~50 K).

P S\( ) ﬁ f dyt-y e—27r\y|ce—2wit~y
t aD

V. CONCLUSION

. . . : +
We have derived simple but realistic analytical expres- r a_3 )
sions for the interaction between an exciton and optical _ 2 Ict (A5)
phonons for two illustrative cases of1:1s and 1s—2p @32 (24 12yt
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