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Exciton-phonon interaction in fractional dimensional space

A. Thilagam
Faculty of Science, Northern Territory University, Northern Territory 0909, Australia

~Received 30 April 1997!

Explicit analytical expressions of Frohlich-like Hamiltonians for the interaction between an exciton and
optical phonons in fractional-dimensional space are derived for two illustrative cases of 1s→1s and 1s→2p
exciton scattering. The improved Hamiltonians incorporate any modification in the strength of the exciton-
optical-phonon interactions due to confinement, by means of a single parametera, a measure of the dimen-
sionality of the confined system. The Hamiltonians also incorporate the penetration of electron and hole wave
functions into the barrier region, an effect which becomes increasingly significant for narrow well widths. The
flexibility of the derived Hamiltonians are shown in the ease of systematic study of exciton linewidths in
GaAs/AlxGa12xAs quantum wells. Results show the high sensitivity of the excitonic linewidths toa due to
interactions with short-wavelength optical phonons.@S0163-1829~97!01139-9#
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I. INTRODUCTION

Interactions involving excitons and phonons play an i
portant role in the properties of quantum wells a
superlattices1–3 as the emission and absorption spectra n
the band-gap region is dominated by excitonic features4 in
high quality semiconductors. Earlier works5–8 have generally
used an exact three-dimensional or two-dimensional Ha
tonians to study the exciton-optical-phonon interaction
quantum wells. The form of these Hamiltonians are infle
ible and can only model the exciton-optical-phonon inter
tion rather approximately. Studies9,10 of the exciton-optical-
phonon interaction in GaAs/AlxGa12xAs and
GaAs/InxGa12xAs single quantum wells have shown that t
main phonon modes involved in the exciton-phonon inter
tion are neither the two-dimensional type as in the case
confined phonons or the three-dimensional phonons com
in bulk phonon modes. There are a variety of phonon mo
which arises from the anisotropy of quantum wells, whi
have been described by the Huang and Zhu model, Fu
Kliewer slab modes or Ridley’s guided mode models.10–12

These phonon modes undergo a gradual change in dim
sionality as the well width varies from zero to infinity.

The pseudo-two-dimensionality behavior of excitons
quantum wells was first popularized by Heet al.13 and Lefe-
bvre et al.14–16 Their use of fractional-dimensional spac
greatly simplified the problem of solving the energy levels
excitons in quantum well structures. In our work here,
present a unified approach to exciton-phonon interaction
quantum wells by treating both the exciton and phonons
existing in fractional-dimensional space. The excito
optical-phonon interaction operators are derived in
fractional-dimensional space, as a result, the interaction
erators are modified accordingly with changes in the qu
tum well width. The main advantage in using a fraction
dimensional space is that only a single parameter, know
the degree of dimensionality~denoted bya!, is needed to
incorporate the effects due to changes in the widths of
well or barrier regions on the strength of exciton-phon
interaction as a increases from 2 in an exact two
dimensional system~e.g., infinite potential with zero wel
560163-1829/97/56~15!/9798~7!/$10.00
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width! to 3 in an exact three-dimensional system~zero con-
finement!. Our results shows that the dimensionality,a, is a
critical factor in the interaction between exciton and sho
wavelength optical phonons.

This paper is organized as follows. In Sec. II, we defi
an a-dimensional electron-phonon interaction involvin
longitudinal-optical phonons. We also present the derivat
of the a-dimensional exciton-phonon matrix elements f
1s→1s and 1s→2p scattering. In Sec. III, we study th
effect of dimensionality on exciton-optical-phonon intera
tion and analyze the behavior of the interaction operat
derived in Sec. II, in the small wavevector limit. In Sec. IV
we obtain obtain numerical results of the exciton linewidth
GaAs/AlxGa12xAs quantum wells and present the concl
sion of this work in Sec. V.

II. EXCITON-OPTICAL-PHONON INTERACTION
IN A FRACTIONAL-DIMENSIONAL SPACE

We define thea-dimensional electron-phonon interactio
involving longitudinal-optical phonons by the Fro¨hlich type
Hamiltonian:

Hex-ph
op aD5 (

K ,q,l,n
Vl,n

a ~q!BK1q,n
† BK ,l~bq1bq

†!, ~1!

where the exciton operators (BK
† ,BK), and phonon operator

(bq ,bq
†) are considered to operate in a fractional-dimensio

space. All position~r ! and momentum vectors~K ,q! are
taken to exist in a fractional-dimensional space.

l andn in Eq. ~1! are the internal quantum numbers of th
exciton state and the matrix element,Vl,n

a (q), in aD space is
given by

Vl,n
a ~q!5E

aD
dr cn

†~r !cl~r !Vq
a@exp~2 igeq•r e!

2exp~ ighq•r h!#, ~2!

where
9798 © 1997 The American Physical Society
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ge5
me*

~me* 1mh* !
and gh5

mh*

~me* 1mh* !
~3!

and

uVq
au25

2pe2\vLO

Vaqa21 S 1

«`
2

1

«0
D , ~4!

where«` and«0 are the high- and low-frequency values
the dielectric function of the well material.me* andmh* are
the respective electron and hole band masses andvLO is the
frequency of the LO phonons. In Eq.~4!, we have neglected
the LO-phonon dispersion by assuming th
\vLO(q)'\vLO(0). Va in Eq. ~4! is the volume in anaD
space, which is given by the Hausdorff measure,

Va~ ur u!5
pa/2

GF11
a

2G ur ua ~5!

where G@x# is the Euler’sG function. Note that we have
generalized Eq.~4! by introducing a noninteger dimensiona.
Equation~4! reduces to the well established forms in bo
the exact 2D and 3D limits.

Instead of involved derivation of the exciton-optica
phonon interaction operator for all allowed exciton states,
only consider two important cases:~1! l5n51s ~intraband
scattering! and~2! l51s, n52p ~interband scattering!. This
is justified as in energy transitions involving excitonic stat
only the 1s exciton states17 are considered since they have
much stronger coupling to the photons than higher or
states as the excitonic oscillator strength falls as; 1/n3. The
quantum number,n51,2, . . . is theprincipal quantum num-
ber state of the exciton. We have included the case ol
51s, n52p for the purpose of comparison withl5n
51s. In general, the two cases we study here are suffic
to account for the salient features of exciton based transit
in resonant Raman scattering experiments.17

The 1s state of an exciton in anaD space, which is
needed in both cases, can be written as

c1s~r !5F~a!expF2
2

a21

r

aB
G , ~6!

whereaB is the three-dimensional Bohr radius of the excito
Likewise, the wave function of a 2p-state exciton in anaD
space can be written as

c2p~r !5G~a!
r

aB
expF2

2

a11

r

aB
Gcosu, ~7!

where F(a) and G(a) in Eqs. ~6! and ~7! can be easily
obtained as

F~a!5F 2a11p~12a!/2

GFa21

2 G~a21!a11

1

aB
aG 1/2

~8!

and
t

e

,

r

nt
ns

.

G~a!5F 2a14p~12a!/2

GFa11

2 G~a11!31a

1

aB
aG 1/2

. ~9!

It is important to note that we have specifically chosen ap
exciton state for which the quantum number,m50, in Eq.
~7!. Because of the axial symmetry of the operator term
e(2 igeq•re) ande( ighq•rh) which appear in Eq.~2!, only exciton
scattering in whichm is conserved, is allowed

Using the relation18,19

E
aD

dr e22pur uce22p iq•r5

GFa11

2 G
p~a11!/2

c

~c21q2!~a11!/2

~10!

and the hydrogenic form of the wave function,c1s in aD
space given in Eq.~6!, the matrix element,V1s,1s

a (q) in Eq.
~2! can be evaluated as

V1s,1s
a ~q!5S 2pe2\vLO

Vaqa21 D 1/2

3S 1

«`
2

1

«0
D 1/2

3F 1

@11bh
2~a!#~a11!/2

2
1

@11be
2~a!#~a11!/2G , ~11!

where

bh~a!5
ghuqu

2 S a21

2 DaB

and

be~a!5
geuqu

2 S a21

2 DaB . ~12!

It is to be noted that Eq.~10! is based on functions known a
the Poisson kernal which are discussed in detail by Stein
Weiss.19 In deriving Eq.~11!, we have made use of the sp
tial integral relation inaD space:13

E
aD

dr5
2p~a21!/2

GFa21

2 G E
0

`

r a21drE
0

p

du sina22u. ~13!

The derivation of the matrix element,V1s,2p
a (q) involves

the use of the integral~see Appendix A!:

1

uqu EaD
dr q•re22pur uce22p iq•r

5

GFa13

2 G
p~a13!/2

icq

~c21q2!~a13!/2 . ~14!
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Using Eqs. ~2!, ~6!, ~7!, and ~14!, the matrix element,
V1s,2p

a (q) in Eq. ~2! can be evaluated as

V1s,2p
a ~q!5S 2pe2\vLO

Vaqa21 D 1/2S 1

«`
2

1

«0
D 1/2

V~a!~aBq!

3F gh

@11jh
2~a!#~a13!/2

2
ge

@11je
2~a!#~a13!/2G , ~15!

where

jh~a!5
ghuqu

2
P~a!aB and je~a!5

geuqu
2

P~a!aB

~16!

and

P~a!5S a221

2a D ~17!

andV(a) can be easily obtained using Eqs.~8! and ~9! as

V~a!5
2aPa11~a!

~a221!a/2~a11!1/2. ~18!

The matrix elements,V1s,1s
a (q) and V1s,2p

a (q) both yield
the expected forms5–8 in the exact three-dimensional an
two-dimensional limits. The matrix elements also vanish
me* 5mh* . Experimental results20 confirm this behavior for
excitons in bulk.20 We are unable to find existing experime
tal results showing this result for excitons in quantum we

III. EFFECT OF DIMENSIONALITY
ON EXCITON-OPTICAL-PHONON INTERACTION

The dependency of the Hamiltonian,Hex-ph
op aD on the pho-

non wave vector,q, is critically determined by the symmetr
of the the initial and final exciton states. For states of
same parity, i.e.,l5n51s, Hex-ph

op aD→0 as uqu→0. This
holds true for 2<a<3. For states of different parity, i.e
l51s, n52p, Hex-ph

op aD→0 asuqu→0 for all values ofa less
than 3. HoweverHex-ph

op aD takes on a finite value ata53. The
behavior ofHex-ph

op aD at q50 is consistent with that obtaine
for the exact three-dimensional system by Bulyanitsaet al.21

Figure 1 shows a plot of the matrix element ter
^1suHex-ph

op aDu1s&:

^1suHex-ph
op aDu1s&

;
1

~aBuqu!~a21!/2 F 1

@11bh
2~a!#~a11!/2

2
1

@11be
2~a!#~a11!/2G ~19!

as a function ofaBuqu for different values ofa. We have
chosen values ofge50.3 and gh50.7 appropriate for a
GaAs/AlxGa12xAs system. The matrix element, in Fig.
increases gradually to a broad maximum atqmax, before de-
creasing again. The stength of the exciton-phonon interac
r

.

e

,

n

for 1s→1s scattering increases witha while qmax decreases
with a. The width of the maximum can generally be seen
decrease with the dimensionality of the quantum well.

In Fig. 2, we have plotted̂1suHex-ph
op aDu1s& in Eq. ~19!, as

a function of a for different values ofaBuqu. The matrix
element remains unaffected bya for aBuqu;3, however for
aBuqu<3 it decreases witha, while the reverse occurs fo
aBuqu>3.

Figure 3 shows a plot of the matrix element term
^1suHex-ph

op aDu2p&:

^1suHex-ph
op aDu2p&

;
V2~a!

~aBuqu!~a23!/2 F gh

@11jh
2~a!#~a13!/2

2
ge

@11je
2~a!#~a13!/2G ~20!

as a function ofuquaB for different values ofa. As in Eq.
~19!, we have usedge50.3 andgh50.7. Unlike in the case
of 1s→1s scattering, the matrix element,V1s,2p has maxima
peaks at two different values of the phonon wave vec

FIG. 1. Plot of the matrix element term,^1suHex-ph
op aDu1s& as a

function of (aBuqu) at different values ofa.

FIG. 2. Plot of the matrix element term,^1suHex-ph
op aDu1s& as a

function of a at different values of (aBuqu).
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After the first maximum,̂ 1suHex-ph
op aDu2p& reaches zero for

values of phonon wave vector,qc , given by

qc5
1

P~a! F S gh

ge
D @2/~a13!#21

S gh

2 D 2

2S gh

ge
D 2/~a13!S ge

2 D 2G 1/2

. ~21!

Equation ~21! shows that asa decreases,qc increases for
fixed values ofge andgh , as is shown in Fig. 3.

The exciton-phonon interaction operators in Eqs.~19! and
~20! yield different expressions for the two- and thre
dimensional cases due to different powers in terms
@11b i

2(a)# and@11j i
2(a)# ( i 5e,h). There is little differ-

ence between the exact two-dimensional and thr
dimensional behavior of the interaction operators,V1s,1s

a (q)
andV1s,2p

a (q), for long-wavelength phonons whereb i andj i

can be neglected. However, for short-wavelength phono
the differences would be significant as is shown in Figs. 1
and is expected to give rise to major differences in the tra
port properties of excitons in quasi-two-dimensional s
tems.

A. Cancellation effect at small phonon wave vectors

It is important to analyze the salient features of the ma
elements,V1s,1s andV1s,2p for small values of the wave vec
tor, q near the origin. In an ideal semiconductor, the exci
center of mass wave vector equals zero as the excitatio
caused by an optical photon which does not occur in prac
due to several mechanisms.22,23 Thus the dependence of th
Fröhlich exciton-optical phonon matrix element onq is im-
portant in resonant Raman scattering studies.24 The interac-
tion of a longitudinal-optical phonon with an excitonic sta
becomes highly enhanced, when an incident photon beco
resonant with the initial, 1s state. As shown in Figs. 1 and 3
the strong dependency onq, gives rise to a different set o
Raman rules25 which are not based onq'0.

In the Fröhlich type exciton-phonon interaction, the ele
trostatic interaction term,Vq

a in Eq. ~4! remains the same fo
both the conduction and valence bands in contrast to
deformation potential interaction which differs from band

FIG. 3. Plot of the matrix element term,^1suHex-ph
op aDu2p& as a

function of (aBuqu) at different values ofa.
f
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band. This accounts for the cancellation effect of 1s→1s
scattering for small values ofq. Physically, this means tha
for large wavelength phonons, the exciton is ‘‘seen’’ as el
trically neutral which results is almost zero coupling. F
small values ofq, Eq. ~19! reduces to

^1suHex-ph
op aDu1s&;S me* 2mh*

me* 1mh*
D ~aBuqu!, ~22!

hence ifmh* @me* , the cancellation effect becomes less s
nificant at smallq’s. Due to the mixing of different states o
relative motion, the cancellation effect at small phonon wa
vectors is less significant for the 1s→2s scattering, and is
strongly dependent on the dimensionality of the exciton.

B. Determining dimensionality, a, of an exciton
in a quantum well

It is important to use a proper definition for the dime
sionality of the confined exciton in order to obtain accura
values ofa. Mathieuet al.14 have suggested a simple de
nation by whicha can be easily computed for a given valu
of the well width:

aex532expS 2
Lw

2aex
D , ~23!

whereLw is the well width andaex is the exciton bohr radius
In general, reliable values ofa of an exciton in a quantum

well of known well width can be obtained by using expe
mental values26 of exciton binding energies as a function
the well width. The dimensionality is then determined
using a simple expression13,14 of the exciton energy,Eb :

Eb5
Ry

S n1
a23

2 D 2 , ~24!

where the quantum number,n51,2, . . . is theprincipal
quantum number state andRy is the effective Rydberg. The
empirical estimates ofa are generally larger by 0.15–0.2
than the values calculated using Eq.~23!. This is mainly
attributed to the fact that Eq.~24! is an exact result of the
exciton binding energy whereas Eq.~23! is based on an em
pirical assumption.14

In Fig. 4, we have plotteda of the heavy-hole exciton a
a function of the well width using empirical values of exc
ton binding energies26 in GaAs/AlxGa12xAs quantum wells.
It can be seen that the ideal confinement at whicha52 is
never reached27,28 due to the spreading of electron and ho
wave functions into the barrier regions. It is important
note that this spreading effect, which becomes significant
thin wells, is taken into account in the matrix elements, E
~19! and Eq.~20!, througha.

IV. EXCITON LINEWIDTHS IN GaAs/Al xGa12xAs
QUANTUM WELLS

Studies of the exciton linewidth29 is important as it pri-
marily determines the shape of the absorption spectra
room temperatures, the exciton-optical-phonon scatte
dominates6 over scattering processes involving acous
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phonons. Since the optical-phonon energy,\vLO , is larger
than the binding energy of an exciton, it is highly likely th
the exciton decays to the continuum state after collision w
an optical phonon. However it also possible for the exci
to jump to the excited 2s or higher states, with an increase
the kinetic energy in its center-of-mass motion.

For the purpose of simplicity in analytical expressions,
shall assume that the final states in the exciton-opti
phonon interaction are in the 1s or 2p state. This possibility
cannot be excluded for hot excitons30,31 in which the kinetic
energy is large enough to be of the same order as the bin
energy.

Using Eqs.~1! and ~11!, the magnitude of the exciton
linewidth due to 1s→1s scattering by optical phonons ca
be obtained as

G1s,1s5S 2pe2\vLO

Va D S 1

«`
2

1

«0
D(

q

1

qa21

3F 1

@11bh
2~a!#~a11!/22

1

@11be
2~a!#~a11!/2G2

3d@\v2E1s~q!1\vLO#. ~25!

The d function in Eq.~25! conserves the energy of the sca
tered exciton and phonon in theaD space.E1s(q) denotes
the energy of the 1s exciton and the phonon wave vecto
uqu, is restricted to the range

K2S K22
2MvLO

\ D 1/2

<q<K1S K22
2MvLO

\ D 1/2

,

~26!

whereM5me* 1mh* is the total mass of the exciton andK is
the exciton wave vector.

Transforming the discrete sum over the phonon wave v
tors,q, in Eq. ~25! into a spatial integral using

(
q
→

Va

~2p!a E
aD

dq, ~27!

we get a simple expression for the exciton linewidth,G1s,1s ,
in meV as

FIG. 4. Dimensionality,a, of the heavy-hole exciton, as a func
tion of well width at various aluminum concentration,x in
GaAs/AlxGa12xAs quantum wells.
h
n

e
l-

ng

c-

G1s,1s~q0!52.73105
1

~2p!a21q0
F 1

@11bh~a!2#~a11!/2

2
1

@11be~a!2#~a11!/2G2

, ~28!

where the dimensionless wave vector,q0 , is given by

q05L0uqu5
2ML0

\2 @\v2E1s~q!1\vLO#, ~29!

whereL05A(\/2me* vLO) and the exact value of the dimen
sionless wave vector,q0 , depends on the photon energy,\v,
the exciton energy,E1s(q), and the range imposed by th
conservation law given in Eq.~26!.

Likewise an expression for the exciton linewidth,G2p,1s ,
in meV, can be obtained using Eqs.~1! and ~15! as

G2p,1s51.33107
V2~a!q0

~2p!a21 F gh

@11jh
2~a!#~a13!/2

2
ge

@11je
2~a!#~a13!/2G2

, ~30!

where the phonon wave vector,uqu, is restricted to the range

K2S K22
3EbM

2K2\2 2
2MvLO

\ D 1/2

<q<K1S K22
3EbM

2K2\2 2
2MvLO

\ D 1/2

, ~31!

where the exciton energy,Eb is given in Eq.~24!.
Using the three-dimensional effective Rydberg ener

Ry , as 3.1 meV for the heavy-hole exciton
\vLO536.8 meV, ge50.3 and gh50.74 for
GaAs/AlxGa12xAs quantum wells, the linewidthsG1s,1s and
G2p,1s in Eqs.~28! and~30! are calculated forq052, 2.5, and
3 in Fig. 5. For selected ranges ofq0 and a, the order-of-

FIG. 5. Exciton linewidths,G1s,1s and G2p,1s as a function of
dimensionality,a at q052, 2.5, and 3@see Eq.~29!#.



n

e

y
ed
ion

x

c
ic
4

ex

n-
d

a
t

ic
As
n

n
e
l-
a
s
e

ith
sm
ith
e

tte
ts

es
ica

are
al
asily
nd

n
n
ior
im-

ns
of
en-

-

g

56 9803EXCITON-PHONON INTERACTION IN FRACTIONAL . . .
magnitudes of exciton linewidth in GaAs/Al are consiste
with available experimental results32 which show that the
excitonic linewidth decreases from 11 to 8 meV as the w
width increases from 60 Å to 200 Å.

The linewidthsG1s,1s andG2p,1s can be seen to be highl
sensitive toa. It is to be noted that we have not consider
the effects of temperature and other experimental condit
~e.g., interface roughness, excitation intensity! when comput-
ing the exciton linewidths. Inclusion of these factors is e
pected to introduce a change~10–30 %! in our calculated
results shown in Fig. 5. The effects of leakage of the ex
tonic wavefunction into the barrier region on the exciton
linewidths in quantum wells can be predicted from Fig.
This behavior has already been observed by Bertoletet al.33

for heterostructures with binary wells.
It may desirable to compare numerical values of the

citonic linewidths obtained here with those ofG1s,1s @Eq.
~28!# calculated6 using an exact two-dimensional excito
optical-phonon interaction operator and an exciton mo
based on a variational wave function. Unlike in Fig. 5,G1s,1s
in Ref. 6 was computed only for long-wavelength optic
phonons, and hence showed a very slow decrease with
well width ~i.e., increasinga values! for GaAs/AlxGa12xAs
quantum wells.

The strong dependence of the excitonic linewidths ona in
Fig. 5 suggests that it may be possible to determine empir
values ofa from exciton-phonon scattering experiments.
exciton interactions with short-wavelength optical phono
become dominant at higher temperatures (>150 K), one
need to also consider non-negligible contributions from io
ized donor impurities, exciton-exciton interactions, and w
width fluctuations34 as well. In this regard, the theory deve
oped here is not adequate enough to yield reliable estim
of a from experimental values of the excitonic linewidth
and one may need to utilize the methods described in S
III B. However at lower temperatures, exciton scattering w
acoustic phonons becomes the sole dominant mechani35

thus making it easier to relate experimental linewidths w
theoretical expressions based on derivation techniques m
tioned in this work. One can thus expect to obtain be
estimates ofa from exciton-phonon scattering experimen
at lower temperatures (;50 K).

V. CONCLUSION

We have derived simple but realistic analytical expr
sions for the interaction between an exciton and opt
phonons for two illustrative cases of 1s→1s and 1s→2p
n

s.

. N

ro
t

ll

s

-

i-

.

-

el

l
he

al

s

-
ll

tes

c.

n-
r

-
l

exciton scattering. The improved interaction operators
derived within the framework of a fractional-dimension
space. The derivation techniques employed here can e
be extended to exciton-deformation potential interaction a
piezoelectric interaction involving acoustic phonons36 as
well.

Numerical results of the exciton linewidths i
GaAs/AlxGa12xAs quantum wells predict exciton transitio
from three-dimensional to quasi-two-dimensional behav
as the well width is decreased. Our results indicate the
portance of dimensionality,a, as a critical factor in the in-
teraction of excitons with short-wavelength optical phono
in quasi-two-dimensional systems. Finally, the flexibility
the derived Hamiltonians may be a useful aid to experim
talists in this field.

APPENDIX A

The derivation of Eq.~14! is based on the method em
ployed by Stein and Weiss19 for the derivation of Eq.~10!.
The integral is first solved in one-dimensional space usin

E
1D

ye2pcy2
e22p iytdy5

i t

c3/2e2pt2/c. ~A1!

In an aD space we get

1

utu EaD
y•t e2pcy2

e22p iy•t dy5
i t

c~a12!/2 e2pt2/c ~A2!

for vectorsy and t, such thaty•t5yt cosu, u is a pesudo-
angle in the fractional-dimensional space.

Using the relations

e22puyu5
1

Ap
E

0

` e2u

Au
e2p2uyu2/udu, ~A3!

E
0

`

xae2bxdx5
G@a11#

ba11 , ~A4!

and Eq.~A2! we get

1

utu EaD
dy t•y e22puyuce22p i t•y

5

GFa13

2 G
p~a13!/2

ict

~c21t2!~a13!/2 . ~A5!
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