
PHYSICAL REVIEW B 15 OCTOBER 1997-IVOLUME 56, NUMBER 15
Excitons in extremely shallow quantum wells
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Excitons in extremely shallow semiconductor quantum wells are considered in the limit when both the
conduction band and the valence band confining potentials are small compared to the binding energy of a
three-dimensional~3D! exciton. Under these circumstances it is found that the quantization of the center-of-
mass motion can make a sizable contribution to energies of excitonic optical transitions. A simple effective
Hamiltonian is derived for describing this situation, with a potential that confines the motion of the exciton
center of mass. The shape of the potential is approximated either by a parabolic profile~when quantum wells
are narrow compared with the 3D exciton Bohr radius!, or by a rectangular potential~for wide quantum wells!,
and the resultant eigenvalue problem is solved accordingly. The results are compared to experimental data
obtained in magnetooptical studies of ZnSe/Zn12xMnxSe spin superlattices, giving excellent quantitative
agreement.@S0163-1829~97!03536-4#
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I. INTRODUCTION

Most of the usual variational approaches to the probl
of exciton energy in quasi-two-dimensional semiconduc
quantum structures assume that the ground state wave
tion of the exciton can be approximated by a product
x1(ze)x1(zh) and an appropriate ‘‘excitonic’’ envelope, e.g
e2r /l, wherexn(ze) and xm(zh) are the wave functions o
the confined electron and hole, respectively, both localize
the well region, and,r is their relative motion variable while
l represents an effective Bohr radius of the exciton~usually
found in a variational procedure!.1 This approximation is
suitable for relatively deep quantum wells, when the Co
lomb potential of the electron-hole interaction does not le
to significant admixtures of excited states of the elect
and/or the hole. Such assumption can be expected to w
provided that the characteristic energy of the Coulomb in
action @«3D5(me4/2k2\2), where k denotes the dielectric
constant of the material andm the reduced mass# is small
compared to interlevel distances of the electron or the h
confined in the quantum well.2 The interlevel distance de
creases, of course, with decreasing depth of the quan
well, as well as with increasing quantum well width. A sit
ation can be achieved when the above form of the exc
trial wave function is no longer justified.

Recently, there has been considerable interest specific
in quantum wells with small confinement, as illustrated b
number of papers published~see, e.g., Refs. 1–8! where
subtleties of the transition from three-dimensional~3D! to
two-dimensional behavior were studied as the quantum w
becomes progressively deeper. These works are of obv
importance in view of the role played by excitons wi
confinement-enhanced binding energies in optical phen
ena of semiconducting heterostructures~and, thus, in opto-
electronic devices!. In particular, Ref. 4 notes that even e
tremely shallow quantum wells in the GaAs/Ga12xAl xAs
560163-1829/97/56~15!/9775~7!/$10.00
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system~x50.01, width w5200 Å! do exhibit experimen-
tally measurable deviations of the exciton energy from
value characteristic for three dimensions. It is, therefore,
portant to develop a reliable theory of the exciton in su
weakly confined systems. It is obvious that one needs to
beyond the simple trial wave functions given above in ord
to treat this small well depth limit. II-VI spin
superlattices9–11 represent a system with small~vanishing in
the absence of an external magnetic field! offsets in both the
conduction and the valence bands. It is the study of t
system that gave initial motivation for the present work.

Various improvements of the theory of excitons in co
figurations involving weak confining potentials have be
suggested to amend the consistency of the approach12–22 In
the majority of quantum well systems, the holes are the fi
to become delocalized~since the valence band offset is us
ally smaller than that of the conduction band!. Therefore, it
is often assumed that the electrons remain strongly local
by the quantum well potential@and thus describable in term
of x1(xe)#, and then an effective Schro¨dinger equation is
derived for an exciton whose potential experienced by
holes contains a term proportional to Refs. 13–18,

* ux1~ze!u2dze

kr
, ~1!

wherer is the length of the relative variable of motion give
by

r 5A~xh2xe!
21~yh2ye!

21~zh2ze!
2. ~2!

A more general procedure was constructed in Ref. 19, wh
allows for both types of particles to be only very weak
localized in the quantum well region. Unfortunately, the la
ter approach relies on a lengthy variational self-consist
calculation that is not at all transparent.
9775 © 1997 The American Physical Society
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A systematic theoretical study of the problem of excito
in a shallow quantum well has been very recently publish
in Ref. 22. In this variational approach the authors made
of a class of trial wave functions that are suitable for bo
shallow and deep quantum wells. The primary aim of
study in Ref. 22 was to analyze the transition from a thr
dimensional exciton behavior to the 2D regime driven by
application an in-plane magnetic field. For reasons stated
low, the results obtained in Ref. 22 are of special interes
that aspect of our study which concentrates on diluted m
netic semiconductor quantum structures. The authors of
22 noticed that in the case of shallow quantum wells~when
the well depth does not exceed the three-dimensional exc
binding energy«3D!, the wave function of the exciton can b
well approximated by a product of a function depending o
on the relative motion variable of the electron and the h
comprising the exciton by a wave function depending o
on the center-of-mass variable.~The decomposition of the
two-particle problem into independent relative motion a
center-of-mass motions is not, strictly speaking, possible
the presence of the quantum well potential which breaks
translational invariance of the system.! This particular case is
referred to in Ref. 22 as 3D-like regime~as opposed to a
2D-like regime, where the coupling of the center-of-ma
and relative motions of the electron and the hole becom
important!. In other words, the problem becomes that o
nearly 3D relative variable eigenproblem, with the center-
mass motion subject to quantization by a potential aris
from the confining potential due to the presence of the qu
tum well. In this paper we shall use the same assump
concerning the form of the exciton wave function. We sh
show further that this is an approximately justified approa
in the particular case of Zn0.96Mn0.04Se/ZnSe spin superlat
tices of interest to us. In these systems it is only in the pr
ence of an external magnetic field that the confining pot
tials in certain layers of the structure become appreciable
contrast to Refs. 6,22, however, in these structures involv
diluted magnetic semiconductors~DMS’s!26 we can neglect
the direct influence of the magnetic field via theAW •pW term in
the Hamiltonian on the motion of the particles. The magne
field will enter the problem only through modifications of th
depth of the quantum wells related to the spin splitting of
conduction and the valence band edges. This approxima
is very well justified in view of the smallness of cyclotro
energies for the holes and electrons compared to their g
spin splitting characteristic for DMS’s arising from the ve
strong coupling of electron and hole spins to localized m
netic moments of Mn ions.

In the present paper we attempt to find a formulation t
would be essentially analytical, and would make the phys
underlying the problem as explicit as possible. We find,
mentioned, that the correction to the energy of the nea
three-dimensional exciton occurring in small-offset stru
tures can be expressed in terms of a quantized energy o
center-of-mass motion~in the z direction!, which is ne-
glected in most earlier analyses~Refs. 6,22,23 being excep
tions!. In this respect, the present paper emphasizes the
portance of an aspect of excitonic energetics that w
completely ignored in the majority of the papers so far.
the next section we formulate the model, and we solve it
various exciton energies. We illustrate the ranges of par
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eters in which the model is applicable by using various se
conductor systems as examples. Then, in Sec. III, we use
equations which have been derived to specifically calcu
the optical transition energies in ZnSe/Zn12xMnxSe spin su-
perlattices, and we find that the model yields corrections t
are quantitatively consistent with recent experimental obs
vations of Daiet al.10

II. FORMULATION OF THE MODEL

We shall assume that both the conduction and the vale
band are nondegenerate~apart from spin degeneracy!, and
that they have simple isotropic and parabolic dispersi
characterized by the massesme and mh ~the heavy hole
mass!, respectively. These simplifications are justified by t
relatively large splitting between the heavy and the light h
subbands usually present in strained heterostructures.
Hamiltonian of an exciton in such a system is

Hex5
pe

2

2me
1

ph
2

2mh
1Ve~ze!1Vh~zh!2

e2

kurWe2rWhu
, ~3!

whereEg is the band gap of the ‘‘barrier’’ material, while th
potentials due to the band edge discontinuities are

Ve~ze!5H Eg2Ve
0 for 2

w

2
<ze<

w

2
,

Eg otherwise,

~4!

Vh~zh!5H Vh
0 if 2

w

2
<zh<

w

2
,

0 otherwise,

~5!

w being the width of the quantum well. With the prese
approach it is, in principle, possible to consider the ca
where the quantum wells for the electrons and for the ho
occur in spatially different regions of the structure~as in the
case of type-II structures!. However, here we shall limit our
selves to the simplest type-I situation, with both the ho
and the electrons experiencing the well potential foruzi u
<(w/2) (i 5e,h). We are thus assuming thatVe

0 andVh
0 are

positive quantities in Eqs.~4!–~5!. ~In the above expression
the zero of the energy scale was taken at the valence b
edge of the ‘‘barrier’’ material, and the origin ofz is taken at
the center of the well.!

Introducing, as usual, the center of mass and the rela
motion variables defined by

~me1mh!RW 5merWe1mhrWh , ~6!

rW5rWe2rWh , ~7!

and substituting them into Eq.~3!, we obtain

Hex5Eg1
P'

2

2M
1

PZ
2

2M
1S pW 2

2m
2

e2

kr
D 1VeS Z1

mh

M
zD

1VhS Z2
me

M
zD , ~8!
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56 9777EXCITONS IN EXTREMELY SHALLOW QUANTUM WELLS
where the reduced massm and that of the center-of-massM
are given by

m215me
211mh

21 , ~9!

M5me1mh . ~10!

In the above expression,pW denotes the momentum operat
related to the relative variablerW, while PW' and PW Z are the
components~two-dimensional and one-dimensional, respe
tively! of the momentum relative to the center-of-mass va
ableRW . The second and the third terms in Eq.~8! represent
the kinetic energy of the center-of-mass motion. The fou
and fifth terms in the parentheses in Eq.~8! correspond to the
three-dimensional relative motion of the exciton. The
maining two terms mix the two types of variables. If the
two terms are weak, then one can solve the equation app
mately, using the solution for the ground state of the exci
in the form

cex~rW,RW !5
1

AS
eiKW'•RW'

1

ApaB
3

e2 r /aBF~Z!, ~11!

whereaB5\2k/me2 is the three-dimensional exciton Boh
radius, S is the area of the sample,RW' is the ~two-
dimensional! in-plane vector related to the quasifree cent
of-mass motion, andKW ' is the corresponding momentum
The functionF(Z) ~normalized to unity! is yet to be deter-
mined.
l
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e

-
-
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-

The energy of the exciton described by the wave functi
Eq. ~11! can now be calculated:

^cexuHexucex&5Eg2«3D1
\2K'

2

2M
1K F~Z!U PZ

2

2M

1
1

paB
3 E e22~r /aB!FVeS Z1

mh

M
zD

1VhS Z2
me

M
zD Gd3rUF~Z!L . ~12!

The last term in the above expression can be treated~after
carrying out the integration over the three-dimensional re
tive variable! as a matrix element of an effective Hami
tonian which describes the motion of the excitonic center
mass in theZ direction. The corresponding eigenvalue pro
lem then becomes

HeffF~Z!5F PZ
2

2M
1Veff~Z!GF~Z!5«F~Z!, ~13!

where « gives the correction to the energy of the thre
dimensional exciton due to its center-of-mass motion in thz
direction that is weakly perturbed by the rectangular w
potential. Here

Veff5Ve
eff~Z!1Vh

eff~Z!, ~14!

with
Ve
eff~Z!55

2
1

2
Ve

0H F212S w

2
2ZD 1

aB

M

mh
Ge2~2/aB!@~w/2!2Z#~M /mh!1F12S w

2
1ZD 1

aB

M

mh
Ge~2/aB!@~w/2!1Z#~M /mh!J for Z,2

w

2

2
1

2
Ve

0H F212S w

2
1ZD 1

aB

M

mh
Ge2~2/aB!@~w/2!1Z#~M /mh!1F212S w

2
2ZD 1

aB

M

mh
Ge2~2/aB!@~w/2!2Z#~M /mh!12J for 2

w

2
,Z,

w

2

2
1

2
Ve

0H F212S w

2
1ZD 1

aB

M

mh
Ge2~2/aB!@~w/2!1Z#~M /mh!1F12S w

2
2ZD 1

aB

M

mh
Ge~2/aB!@~w/2!2Z#~M /mh!J for Z.

w

2

~15!

and

Vh
eff~Z!55

2
1

2
Vh

0H F11S w

2
2ZD 1

aB

M

me
Ge2~2/aB!@~w/2!2Z#~M /me!1F211S w

2
1ZD 1

aB

M

me
Ge~2/aB!@~w/2!1Z#~M /me!J for Z,2

w

2

2
1

2
Vh

0H F11S w

2
2ZD 1

aB

M

me
Ge2~2/aB!@~w/2!2Z#~M /me!1F11S w

2
1ZD 1

aB

M

me
Ge2~2/aB!@~w/2!1Z#~M /me!22J for 2

w

2
,Z,

w

2

2
1

2
Vh

0H F211S w

2
2ZD 1

aB

M

me
Ge~2/aB!@~w/2!2Z#~M /me!1F11S w

2
1ZD 1

aB

M

me
Ge2~2/aB!@~w/2!1Z#~M /e!J for Z.

w

2
.

~16!
tan-

e

Figure 1 shows a sketch of the effective potentialVeff(Z)
for GaxAl12xAs/GaAs quantum wells, for widthw smaller
than, equal to, and greater thanaB , respectively. The overal
shape of the effective potential gradually changes from r
angularlike to paraboliclike, as we reduce the quantum w
width. This suggests that, whenaB /w,1, we can approxi-
mate the eigenvalues of Eq.~13! by solutions of the Schro¨-
dinger equation for a particle of mass M in a rectangular w
with width w, and with depth«0 given by
t-
ll

ll

«052~ uVe
0u1uVh

0u!1uVe
0uS 11

1

2

w

aB

M

mh
De2~w/aB!~M /mh!

1uVh
0uS 11

1

2

w

aB

M

me
De2~w/aB!~M /me!. ~17!

These eigenvalues can be easily found numerically in a s
dard way.1 In the opposite limit, whenaB /w.1, the eigen-
values of Eq.~13! can be approximated by solutions of th



ite

9778 56J. KOSSUT, J. K. FURDYNA, AND M. DOBROWOLSKA
Schrödinger equation for a particle with massM moving in a
parabolic potential,

Vparab
eff ~Z!5«01

w

aB
3 M3FVe

0e2~w/aB!~M /mh!
1

mh
3

1Vh
0e2~w/aB!~M /me!

1

me
3GZ2. ~18!
d-
5
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In general, solutions for a parabolic quantum well of a fin
depth are obtained numerically.24 However, when the well is
sufficiently deep~i.e., whenu«0u. 1

2 \v, see below!, we can
approximate the eigenvalues by

«5«01
1

2
\v, ~19!

where
v5A2S uVe
0ue2~w/aB!~M /mh!

1

mh
3 1uVh

0ue2~w/aB!~M /me!
1

mh
3D wM2

aB
3 . ~20!
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We see immediately from Eqs.~17! and ~20! that, for
(w/aB)→`, we have«0→2(uVe

0u1uVh
0u). For (w/aB)→0,

on the other hand, we have

«05
1

2

w

aB
M S uVe

0u
1

mh
1uVh

0u
1

me
D ~21!

and

v5
M

aB
AuVe

0u
1

mh
3 1uVh

0u
1

me
3. ~22!

In the intermediate case ofaB'w, we can numerically inte-
grate Eq.~13! using one of the appropriate routines for fin
ing solutions of differential equations. As shown in Ref. 2
the Schro¨dinger equation is very efficiently solved by the
called shooting method. We have used it in our approac
Eq. ~13!.

The sum ofEg1«2«3D represents now the total energ
of the exciton in the ground state. Thus,u«2«3Du can be
interpreted as the binding energy of a nearly thr
dimensional exciton, weakly perturbed by the presence
shallow quantum well. Since« is a negative quantity, we
obtain an enhancement of the binding energy due to the p
ence of the well potential. The ‘‘weakness’’ of the perturb
tion required at the outset of our calculation—and justifyi
our entire approach—can now be put on a more quantita
grounds by demanding thatu«u,u«3Du.

Figure 2 showsu«2«3Du calculated for GaAs quantum
wells surrounded by Ga0.99Al0.01As barriers. The curves fo
the parabolic approximation and the rectangular approxi
tion are drawn only in the regions where Eq.~19! and Eq.
~17! are, respectively, applicable. An experimental po
from Ref. 4 forw5200 Å is also shown.

III. APPLICATION TO ZnSe/Zn xMn12xSe SPIN
SUPERLATTICES

We apply the above formulation specifically to spin s
perlattices involving ZnSe and DMS’s Zn0.96Mn0.04Se
layers.26 DMS’s are characterized by a strong spin splitti
of the conduction band edge and, particularly, the vale
band edge. The origin of the splitting lies in the strongsp-d
coupling of the spins of band carriers and those localized
Mn ions. The splitting is proportional to the magnetization
,

to

-
a

s-
-

e

a-

t

-

e

n
f

the DMS material. The idea of a spin superlattice9 involves
alternating layers of nonmagnetic and DMS materials, wh
the materials are chosen in such a way that, in the absenc
an external magnetic field, both constituents have the s
value of the energy gap, and their conduction and vale
band edges are aligned. After application of a magnetic fi
however, the band edges in both types of layers begin to s
with respect to one another, because the spin splitting in
nonmagnetic component is negligible compared to that in
DMS layer. Depending on the spin of the particle~up or
down! a well may be created in this way for, say, the spin-
electrons in the DMS layers, while the spin-down electro
experience a quantum well in the nonmagnetic layers of
heterostructure. The amount of Mn in the DMS layers
ZnSe/Zn0.96Mn0.04Se superlattice was chosen to make the
ergy gaps of the two constutuents equal making use o
small bowing of theDEg vs x relationship. Similar spatia
separation of the spin species occurs in the valence ban10

The idea of a spin superlattice has been realized in prac
in ZnSe/ZnxMn12xSe ~Ref. 10! and in ZnSe/ZnxFe12xSe
~Ref. 11! DMS systems.

As a result, when studying spin superlattices, one de
with systems of quantum wells whose barrier heights dep
on the magnetic field, growing from zero to a maximu
value determined by the saturation magnetization. In the p
ticular case of a ZnSe/Zn0.96Mn0.04Se spin superlattice, the
maximum band discontinuity in the heavy hole band is of
order of 30 meV at liquid helium temperatures. For the co
duction band, the maximum band discontinuity is ev
smaller, due to a smaller exchange coupling constant for
s-like electrons.26,27 Thus, the depth of the quantum wel
that form in these spin superlattices is~in magnetic fields
smaller than those corresponding to saturation of the mag
tization! comparable or smaller than the exciton binding e
ergy in the bulk material, which is;22.1 meV. In this situ-
ation the usual approaches to the exciton problem appea
be inappropriate.

The authors of Ref. 10 used the value of the thre
dimensional exciton binding energy for calculating the tra
sition energies to be compared with those observed in t
magnetoabsorption experiments. They noted a conspicu
deviation of the calculated transition energies, which con
tently overestimated the observed values. The deviations
showed a clear trend of increasing with the field. Already
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Ref. 10 a hypothesis was put forward that the aforem
tioned discrepancies between calculations and experime
data could be related to modifications of the exciton bind
energy due to the presence of a shallow potential of
~field-induced! quantum well.

To check this hypothesis, we calculated the energy of
excitonvia the procedure developed in the previous secti
with Ve

0 andVh
0 calculated using the standard expressions

FIG. 1. Calculated shapes of the effective potential given by
~14! for three values of the quantum well width:~a! w550 Å, ~b!
w5100 Å, and~c! w5400 Å. Material parameters were taken
for GaAs/Ga12xAl xAs quantum wells~me50.067, mh50.38, k
512.56!, which lead toaB5116 Å. The potential is in units of the
energy gap discontinuityDEg ~which depends onx!, with the va-
lence band offset constituting 35% of this value and the conduc
band offset being equal to 65% ofDEg . The dotted and dashe
lines show the approximate rectangular and parabolic potent
respectively.
-
tal
g
e

e
,
r

the band-edge variation of a DMS material in a magne
field B:

Ve
05u 1

2 axN0^Sz&u ~23!

and

Vh
05u 1

2 bxN0^Sz&u, ~24!

whereuauN050.27 eV, ubuN050.9 eV,26,27 and ^Sz& is the
average component of the Mn-spin along the field direct
is given by

^Sz&53 cothF 3gMnmBB

kB~T1T0!G2
1

2
cothF gMnmBB

2kB~T1T0!G .
~25!

HeregMn52, mB is the Bohr magneton,kB—the Boltzmann
constant,T—the temperature, andT051.4 K. This expres-
sion proved very accurate in describing the spin splitting
the bulk Zn0.96Mn0.04Se ~c.f. Ref. 10!. Using the effective
mass values for the electrons and the heavy holes in Z
(me50.133 andmh50.775! and the dielectric constant in
this material (k58.8), we can calculate the relevant quan
ties, and convince ourselves that for the well widths in t
samples studied in Ref. 10~73 Å and 105 Å! we can accu-
rately approximate the potentialVeff(Z), Eq. ~14!, by a rect-
angular potential with a depth given by Eq.~17! in the entire
range of the fields studied~up to 5 T!. Solving for the eigen-
values, we obtain the exciton energyu«2«3Du as a function
of the magnetic fieldB. The results are shown in Fig. 3
together with the three-dimensional exciton binding ener

In Fig. 4 we compare the optical transition energies c
culated using both the three-dimensional exciton binding
ergy and the exciton energies obtained in the present
proach with those observed experimentally.10 The calculated

.

n

ls,

FIG. 2. The energy of the exciton in a shallo
GaAs/Ga0.99Al0.01As quantum well as a function of the well width
Dash-dotted line corresponds to the solution of the rectangular
eigenproblem, Eq.~17!, dashed line shows the solutions of th
eigenproblem with an~infinite! parabolic potential with parameter
given by Eq.~18!; and the solid line shows the solution with th
general form of the potential, Eq.~14! obtained by the shooting
method. The dashed and dash-dotted lines are plotted only in
regions of applicability of the respective approximations. An e
perimental point from Ref. 4 is also shown. The thin dotted li
indicates the binding energy of a 3D exciton.
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9780 56J. KOSSUT, J. K. FURDYNA, AND M. DOBROWOLSKA
values based on the quantization of the exciton center
mass motion in thez direction are in good agreement wit
the observations, giving a marked improvement over th
using the 3D approach, and confirming the original conj
ture concerning the source of the deviations noted in Ref.

Let us check the validity of the assumptions used in
derivation of the above results. First, notice that dropping
terms in the Hamiltonian of the electron and the hole that
due to the direct influence of a magnetic field throughAW •pW
terms ~see, Ref. 22! is perfectly justified. This is becaus
\Vc ~whereVc5eB/cm! is much smaller~maximum 2%!
in the entire range of the magnetic field considered in Ref
than the total spin splitting of the valence and conduct
band edges, which determines the depth of the quantum w
In fact \Vc becomes equal to the total depth of the quant
well only in fields as large as 500 T~the quantum well varies
only slightly with B in the high magnetic field region due t
saturation of the magnetization!.

Second, the relatively large value of the 3D exciton bin
ing energy«3D in II-VI compounds justifies the use of wav
functions in the form of the product of functions dependi
separately onr and (RW' ,Z). In fact, in our case we hav
«3D522.1 meV, and the depth of the quantum well in t
conduction band atB55 T ~i.e., at the maximum field con
sidered here! is Ve

0'11 meV, while that in the valence ban
is Vh

0'43 meV. While, strictly speaking, the depth of th
quantum well at the highest magnetic field considered in R
10 does exceed«3D , an inspection of Figs. 1 and 2 in Ref. 2
convince us that even for quantum wells as deep as;2«3D
the crossover from the 3D-like regime to the 2D-like regim
is rather slow. This gives some confidence in the separ

FIG. 3. Exciton binding energies in ZnSe/Zn0.96Mn0.04Se spin
superlattices with layer thicknesses of 105 Å for both materials
function of magnetic field atT51.5 K. For comparison, the valu
of the three-dimensional exciton binding energy is also shown
the dashed line.
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wave function used by us. Nevertheless, it is possible that
deviations between our calculations and the experime
data in Fig. 4 are related to the onset of the 3D→2D cross-
over, and constitutes a limitation of the present method.

IV. CONCLUSIONS

We have developed a simple theory of excitons in ve
shallow quantum wells, which includes the energy corr
tions due to size quantization of the center-of-mass mot
We were able to solve the problem analytically assum
realistic parameters for the quantum wells. In particular,
energy corrections derived by us satisfactorily explain dev
tions between calculated and observed values of magn
optical transition energies in DMS spin superlattices, wh
an external magnetic field creates shallow but well-defin
quantum wells.

Similar conclusion concerning the importance of the e
citon center-of-mass quantization in shallow quantum we
were arrived at in recent theoretical calculations22 ~see, also,
Ref. 6!. Let us note, however, that although the applicati
of the magnetic field drives the transition from a 3D-like to
2D-like exciton regime, as concluded in Ref. 22, in our ca
this occurs also in the configuration withB pointing along
the growth axis of the structure~z direction!. This is in con-
trast to the case considered in Ref. 22, where only the
plane component of the field induces the transition.
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FIG. 4. Comparison of the measured energies atT51.5 K of
optical transitions in ZnSe/Zn0.96Mn0.04Se spin superlattice~Ref.
10! ~symbols! with calculations assuming either uncorrected, thre
dimensional exciton energies@broken lines~Ref. 10!# or those cal-
culated using the present approach~solid lines! within the rectan-
gular well approximation.
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