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Excitons in extremely shallow quantum wells
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Excitons in extremely shallow semiconductor quantum wells are considered in the limit when both the
conduction band and the valence band confining potentials are small compared to the binding energy of a
three-dimensional3D) exciton. Under these circumstances it is found that the quantization of the center-of-
mass motion can make a sizable contribution to energies of excitonic optical transitions. A simple effective
Hamiltonian is derived for describing this situation, with a potential that confines the motion of the exciton
center of mass. The shape of the potential is approximated either by a parabolic (prbéite quantum wells
are narrow compared with the 3D exciton Bohr ragius by a rectangular potentiéior wide quantum wellg
and the resultant eigenvalue problem is solved accordingly. The results are compared to experimental data
obtained in magnetooptical studies of ZnSe/ZmMn,Se spin superlattices, giving excellent quantitative
agreement{S0163-18207)03536-4

I. INTRODUCTION system(x=0.01, widthw=200 A) do exhibit experimen-
tally measurable deviations of the exciton energy from its
Most of the usual variational approaches to the problenvalue characteristic for three dimensions. It is, therefore, im-
of exciton energy in quasi-two-dimensional semiconductoortant to develop a reliable theory of the exciton in such
quantum structures assume that the ground state wave fungeakly confined systems. It is obvious that one needs to go
tion of the exciton can be approximated by a product ofoeyond the simple trial wave functions given above in order
Xl(ze)Xl(Zh) and an appropriate “excitonic” enve|0pe, e.g., to treat this small well depth limit. 11-VI Spil’l
e "™, where x,(z.) and x,,(z,) are the wave functions of superlattice 511 represent a system with smalanishing in
the confined electron and hole, respectively, both localized ihe absence of an external magnetic fietfsets in both the
the well region, andt, is their relative motion variable while conduction and the valence bands. It is the study of this
A represents an effective Bohr radius of the exc'(tnsua”y system that gave initial motivation for the present work.
found in a variational proceduré This approximation is Various improvements of the theory of excitons in con-
suitable for relatively deep quantum wells, when the Coudigurations involving weak confining potentials have been
lomb potential of the electron-hole interaction does not leacuggested to amend the consistency of the appt6actin
to significant admixtures of excited states of the electrorthe majority of quantum well systems, the holes are the first
and/or the hole. Such assumption can be expected to wofR become delocalizegince the valence band offset is usu-
provided that the characteristic energy of the Coulomb interally smaller than that of the conduction ban@herefore, it
action [e3p= (ne*/2«%%2), where k denotes the dielectric is often assumed that the electrons remain strongly localized
constant of the material and the reduced magss small by the quantum well potentigand thus describable in terms
compared to interlevel distances of the electron or the hol&f xi(Xe)], and then an effective Schdimger equation is
confined in the quantum wellThe interlevel distance de- derived for an exciton whose potential experienced by the
creases, of course, with decreasing depth of the quantufiPles contains a term proportional to Refs. 13-18,
well, as well as with increasing quantum well width. A situ-
ation can be achieved when the above form of the exciton JIx1(zo)|?dz,
trial wave function is no longer justified. Kl ! @
Recently, there has been considerable interest specifically
in qguantum wells with small confinement, as illustrated by awherer is the length of the relative variable of motion given
number of papers publishe@gee, e.g., Refs. 1)8vhere by
subtleties of the transition from three-dimensiofiab) to
two-dimensional bghavior were studied as the quantum wells r= \/(Xh—Xe)2+ (Yh—Yeo)+ (zn—20)°. 2
becomes progressively deeper. These works are of obvious
importance in view of the role played by excitons with A more general procedure was constructed in Ref. 19, which
confinement-enhanced binding energies in optical phenonallows for both types of particles to be only very weakly
ena of semiconducting heterostructufesd, thus, in opto- localized in the quantum well region. Unfortunately, the lat-
electronic devices In particular, Ref. 4 notes that even ex- ter approach relies on a lengthy variational self-consistent
tremely shallow quantum wells in the GaAs/GgAl,As  calculation that is not at all transparent.
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A systematic theoretical study of the problem of excitonseters in which the model is applicable by using various semi-
in a shallow quantum well has been very recently publishegtonductor systems as examples. Then, in Sec. Ill, we use the
in Ref. 22. In this variational approach the authors made usequations which have been derived to specifically calculate
of a class of trial wave functions that are suitable for boththe optical transition energies in ZnSefZpMn,Se spin su-
shallow and deep quantum wells. The primary aim of theperlattices, and we find that the model yields corrections that
study in Ref. 22 was to analyze the transition from a threeare quantitatively consistent with recent experimental obser-
dimensional exciton behavior to the 2D regime driven by arvations of Daiet al*°
application an in-plane magnetic field. For reasons stated be-
low, the results obtained in Ref. 22 are of special interest to Il. EORMULATION OF THE MODEL

that aspect of our study which concentrates on diluted mag- )
netic semiconductor quantum structures. The authors of Ref. We shall assume that both the conduction and the valence

22 noticed that in the case of shallow quantum wélisen ~ band are nondegeneratapart from spin degeneracyand

the well depth does not exceed the three-dimensional excitofiat they have simple isotropic and parabolic dispersions
binding energye 3p), the wave function of the exciton can be characterized by the masses, and my, (the heavy hole
well approximated by a product of a function depending on|ymass), respectively. These simplifications are justified by the
on the relative motion variable of the electron and the holdelatively large splitting between the heavy and the light hole
comprising the exciton by a wave function depending On|ysubb_and§ usually present in strained heter_ostructures. The
on the center-of-mass variabléThe decomposition of the ~Hamiltonian of an exciton in such a system is

two-particle problem into independent relative motion and ) ) )
center-of-mass motions is not, strictly speaking, possible in Ho— Pe n &JFV (20)+ V(1) — €

the presence of the quantum well potential which breaks the & 2m,  2m, & Thich K| Fo—Tr|
translational invariance of the systgmihis particular case is

referred to in Ref. 22 as 3D-like regim@s opposed to a whereE, is the band gap of the “barrier” material, while the
2D-like regime, where the coupling of the center-of-masspotentials due to the band edge discontinuities are

and relative motions of the electron and the hole becomes

()

importany. In other words, the problem becomes that of a 0 w w

nearly 3D relative variable eigenproblem, with the center-of- Vi(z)= Eg—Ve for — Egzeg 2 @
mass motion subject to quantization by a potential arising ere ]

from the confining potential due to the presence of the quan- Eq otherwise,

tum well. In this paper we shall use the same assumption
concerning the form of the exciton wave function. We shall VO i w___Ww
show further that this is an approximately justified approach Vi(zy) = h | 2 Shs %
in the particular case of ZrVIng g.Se/ZnSe spin superlat-

tices of interest to us. In these systems it is only in the pres-

ence of an external magnetic field that the confining poteny, being the width of the quantum well. With the present

tials in certain layers of the struc?ure become appreglable._ I%pproach it is, in principle, possible to consider the case

contrast to Refs. 6,22, however, in these structures involving,here the quantum wells for the electrons and for the holes
. : : 1o)26

d”Ut?d magnetic semmonducto@MS. S/~ we can neglfact occur in spatially different regions of the structues in the

the direct influence of the magnetic field via thep termin  case of type-Il structur¢sHowever, here we shall limit our-

the Hamiltonian on the motion of the particles. The magneticelves to the simplest type-| situation, with both the holes

field will enter the problem only through modifications of the and the electrons experiencing the well potential [t

depth of the quantum wells related to the spin splitting of theg(w/g) (i=e,h). We are thus assuming th\dﬂ andvﬂ are

conduction and the valence band edges. This approximatiofositive quantities in Eqg4)—(5). (In the above expressions

is very well justified in view of the smallness of cyclotron the zero of the energy scale was taken at the valence band

energies for the holes and electrons compared to their giarigge of the “barrier” material, and the origin afis taken at

spin splitting characteristic for DMS's arising from the very the center of the well.

strong coupling of electron and hole spins to localized mag- |ntroducing, as usual, the center of mass and the relative

netic moments of Mn ions. _ . motion variables defined by
In the present paper we attempt to find a formulation that

would be essentially analytical, and would make the physics
underlying the problem as explicit as possible. We find, as
mentioned, that the correction to the energy of the nearly oL
three-dimensional exciton occurring in small-offset struc- F=re=rn, (7)
tures can be expressed in terms of a quantized energy of its _ . .
center-of-mass motiorfin the z directiorn), which is ne- and substituting them into E¢3), we obtain
glected in most earlier analyséRefs. 6,22,23 being excep- ) )
tionsg). In this respect, the present paper emphasizes the im- H.o—E .+ iJr E+
portance of an aspect of excitonic energetics that was ex

completely ignored in the majority of the papers so far. In
the next section we formulate the model, and we solve it for Iy (Z— Ez) ®)
various exciton energies. We illustrate the ranges of param- h '

®)

0 otherwise,

(Mg+ Mp) R= Mgl o+ Myl (6)

+Ve

m
Z+ —hz)

24 KI M
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where the reduced magsand that of the center-of-masé The energy of the exciton described by the wave function,
are given by Eqg. (11) can now be calculated:
“1_m-1 -1 212 2
poT=mg T +mg (9) hoKT Pz
<¢ex|Hex|wex>:Eg_83D+ +\ F(2)| 577
2M 2M
M=mg+my. (10
In the above expressiorfr, denotes the momentum operator + is e~ 2(r/ag) Ve(z+ %z)
related to the relative variable while P, and P, are the map
componentgtwo-dimensional and one-dimensional, respec- m
tively) of the momentum relative to the center-of-mass vari- +Vy| Z—- Vez) d3r F(Z)>. (12

ableR. The second and the third terms in E6) represent
the kinetic energy of the center-of-mass motion. The fourthThe last term in the above expression can be treédétdr
and fifth terms in the parentheses in E8).correspond to the carrying out the integration over the three-dimensional rela-
three-dimensional relative motion of the exciton. The re-tive variable as a matrix element of an effective Hamil-
maining two terms mix the two types of variables. If thesetonian which describes the motion of the excitonic center of
two terms are weak, then one can solve the equation approxinass in theZ direction. The corresponding eigenvalue prob-
mately, using the solution for the ground state of the excitorlem then becomes

in the form
P?

eff —
H®'F(Z) M

+Vei(Z) |F(2)=eF(2), (13

- o 1 K R 1 .
lﬂex(f,R):Te' L L\/=3e "B (Z), (17
S mag where ¢ gives the correction to the energy of the three-
whereag=%2k/ue? is the three-dimensional exciton Bohr dimensional exciton due to its center-of-mass motion irzthe
radius, S is the area of the sampleR, is the (two- direction that is weakly perturbed by the rectangular well

dimensional in-plane vector related to the quasifree center-Potential. Here

of-mass r_notion, and | is_ the corre_sppnding momentum. Veﬁzvgﬁ(z)+vﬁﬁ(z)’ (14)
The functionF(Z) (normalized to unity is yet to be deter-
mined. with

_ lvo _1_(ﬂ_z im o (2lag)[(W2)~Z)(M/my) | 1_(ﬂ+z) M ol 2ap)[(Wi2)+ Z)(Mmp) for Z<— w
2°¢ 2 ag my 2 | ag my, 2
Veizy={ —Z\° 717(w+z iM e~ (2ag)l(W2)+Z](M/my) | 717(w72) iM e~ (2ag)[(W2)—~Z)(M/my) 4 o for — w<z<v_v (15)
€ € 2 ag my 2 ag my 2 2
_ I\ 717(w 17 i M e~ (2lag) (W2 +Z)(M/my) | | 1 _ (ﬂ 7 i M e(2ap) (W2 = Z)(M/mp) for Z>ﬂ
2°¢ 2 ag my 2 ag My 2
and
el (W) M cagrwz-zimm | _q 4 (W 7] 2 M| mpiwz ziwm,) for z<— &
2°h 2 ag M, 2 ag M, 2
verzy={ — ool 14 (2 oz 2 M o-cmarwn-z1mma o | 4 (Y4 7] 2 M o-crgrwazivmg o) for — Wz W (gg
h h 2 ag M, 2 ag m, 2 2
=AY B H—Z iM e(2lag)[(W2)=ZIM/mg) 4 | 1 4 ﬂ+z iM o~ (2ag)[(W2)+Z](M/g) for Z>ﬂ.
2°h 2 ag m, 2 ag m, 2

Figure 1 shows a sketch of the effective potenti&f(2)

: _ 0 0 0
for GaAl,_,As/GaAs quantum wells, for widtiv smaller e0=—(|Vel+ VD) +[Vel
than, equal to, and greater thag, respectively. The overall
shape of the effective potential gradually changes from rect-
angularlike to paraboliclike, as we reduce the quantum well
width. This suggests that, whexg /w<<1, we can approxi-
mate the eigenvalues of E¢L3) by solutions of the Schro  These eigenvalues can be easily found numerically in a stan-
dinger equation for a particle of mass M in a rectangular welldard way* In the opposite limit, whemg/w>1, the eigen-
with width w, and with depthe, given by values of Eq.(13) can be approximated by solutions of the

14 2 WM wagmimy
2 ag my

+|Vil

1w M
| a—(Wag)(M/mg)
l+2aB me)e e), (17)
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Schralinger equation for a particle with maks movingina  In general, solutions for a parabolic quantum well of a finite

parabolic potential, depth are obtained numericaﬂﬁlHowever, when the well is
L sufficiently deeg(i.e., when|eo|> 3% w, see below we can
W . X
Vggrat(z):80+ —5 M3 Ve (Wag)(Mimy) = approximate the eigenvalues by
aB mh 1
1 e=gp+ Eﬁw, (19
+VDe~ (Wag)(M/me) —422. (18)
Mg where
|
1 1)\ wM?
w= \/2( |Vg|e_(W/aB)(M/mh)ﬁ + |Vﬁ|e—(w/a5)(M/me)F ?_ (20)
h h B

We see immediately from Eqg17) and (20) that, for the DMS material. The idea of a spin superlafticevolves
(w/ag)—, we havesy— — (|VO|+|VI]). For W/ag)—0, alternating layers of nonmagnetic and DMS materials, where

on the other hand, we have the materials are chosen in such a way that, in the absence of
an external magnetic field, both constituents have the same

e :E ﬂM |Vo|i+|vo|i) 21) value of the energy gap, and their conduction and valence

072 ag emy "'m band edges are aligned. After application of a magnetic field,

however, the band edges in both types of layers begin to shift
with respect to one another, because the spin splitting in the
M 1 1 nonmagnetic component is negligible compared to that in the
w=— \/|V2|—3+|Vﬂ| —. (220  DMS layer. Depending on the spin of the particigp or
as My Me down) a well may be created in this way for, say, the spin-up
In the intermediate case a~w, we can numerically inte- €lectrons in the DMS layers, while the spin-down electrons
grate Eq.(13) using one of the appropriate routines for find- €xperience a quantum well in the nonmagnetic layers of the
ing solutions of differential equations. As shown in Ref. 25, heterostructure. The amount of Mn in the DMS layers in
the Schrdinger equation is very efficiently solved by the so ZNSe/Zi ogMNg osS€ superlattice was chosen to make the en-
called shooting method. We have used it in our approach t6r9y gaps of the two constutuents equal making use of a
Eq. (13). small bowing of theAE, vs x relationship. Similar spatial
The sum ofEy+&—e3p represents now the total energy separation of the spin species occurs in the valence Yand.
of the exciton in the ground state. Thys,—esp| can be The idea of a spin superlattice has been realized in practice
interpreted as the binding energy of a nearly threein ZnSe/ZgMn;_,Se (Ref. 10 and in ZnSe/ZgFe _,Se
dimensional exciton, weakly perturbed by the presence of &Ref. 11 DMS systems.
shallow quantum well. Since is a negative quantity, we  As a result, when studying spin superlattices, one deals
obtain an enhancement of the binding energy due to the pre¥ith systems of quantum wells whose barrier heights depend
ence of the well potential. The “weakness” of the perturba-on the magnetic field, growing from zero to a maximum
tion required at the outset of our calculation—and justifyingvalue determined by the saturation magnetization. In the par-
our entire approach—can now be put on a more quantitativicular case of a ZnSe/ZRgVing o,Se spin superlattice, the
grounds by demanding tha|<|esp|. maximum band discontinuity in the heavy hole band is of the
Figure 2 showse —e4p| calculated for GaAs quantum order of 30 meV at liquid helium temperatures. For the con-
wells surrounded by GaAlgo:As barriers. The curves for duction band, the maximum band discontinuity is even
the parabolic approximation and the rectangular approximasmaller, due to a smaller exchange coupling constant for the
tion are drawn On'y in the regions where Hq_g) and Eq s-like eleCtr0n52.6’27 Thus, the depth of the quantum wells

(17 are, respectively, applicable. An experimental pointthat form in these spin superlattices (is magnetic fields
from Ref. 4 forw=200 A is also shown. smaller than those corresponding to saturation of the magne-

tization) comparable or smaller than the exciton binding en-
ergy in the bulk material, which is-22.1 meV. In this situ-
ation the usual approaches to the exciton problem appears to
be inappropriate.

We apply the above formulation specifically to spin su- The authors of Ref. 10 used the value of the three-
perlattices involving ZnSe and DMS's {gpMngo.Se  dimensional exciton binding energy for calculating the tran-
layers®® DMS'’s are characterized by a strong spin splittingsition energies to be compared with those observed in their
of the conduction band edge and, particularly, the valencenagnetoabsorption experiments. They noted a conspicuous
band edge. The origin of the splitting lies in the stramgd deviation of the calculated transition energies, which consis-
coupling of the spins of band carriers and those localized otently overestimated the observed values. The deviations also
Mn ions. The splitting is proportional to the magnetization of showed a clear trend of increasing with the field. Already in

and

Ill. APPLICATION TO ZnSe/Zn Mn;_,Se SPIN
SUPERLATTICES
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FIG. 2. The energy of the exciton in a shallow
GaAs/Gag gAlg o/ASs quantum well as a function of the well width.
Dash-dotted line corresponds to the solution of the rectangular well
eigenproblem, Eq(17), dashed line shows the solutions of the
eigenproblem with aitinfinite) parabolic potential with parameters
given by Eq.(18); and the solid line shows the solution with the
general form of the potential, Eq14) obtained by the shooting
method. The dashed and dash-dotted lines are plotted only in the
regions of applicability of the respective approximations. An ex-
perimental point from Ref. 4 is also shown. The thin dotted line
indicates the binding energy of a 3D exciton.

Ver/ AE

(b) 400 -200 0 200 400 Lo . . .
oo - - the band-edge variation of a DMS material in a magnetic
e ; ki field B:
02f VO=|1axNy(S,)| (23

and

04 F \ ,’l
y VE=13BxXNy(S)l, (24
>"oep N where|a|Ng=0.27 eV, | 8|No=0.9 eV2®*?" and(S,) is the

N L average component of the Mn-spin along the field direction
o8k is given by
400 A -
éo 200 300 2:)(; ----- w0 0 100 lzoo 00 400 500 (S,)=3 Cot}‘{ 39unieB ! co }‘{ B
-5 -4 E E E = _— = = _ .

(©) position in the quantum well [angstrom] kB(T+ TO) 2 ZkB(T+ TO)

(29

Heregun=2, ug is the Bohr magnetorkz—the Boltzmann
constant,T—the temperature, an@i;=1.4 K. This expres-

w=100 A, and(c) w=400 A. Material parameters were taken as sion proved very accurate in describing .the spin splitt.ing in
for GaAs/Ga_,Al,As quantum wells(m,=0.067, m,=0.38, « the bulk ZrVing gsSe (C.f. Ref. 10. Using the effective
=12.50, which lead toag=116 A. The potential is in units of the mass values for the electrons and th_e hea\_/y holes in _ZnSe
energy gap discontinuithE, (which depends om), with the va- (m=0.133 andm,=0.773 and the dielectric constant in
lence band offset constituting 35% of this value and the conductiohis material =8.8), we can calculate the relevant quanti-
band offset being equal to 65% dfE,. The dotted and dashed ti€s, and convince ourselves that for the well widths in the
lines show the approximate rectangular and parabolic potential§amples studied in Ref. @3 A and 105 A we can accu-
respectively. rately approximate the potenti&t®(2), Eq. (14), by a rect-
angular potential with a depth given by Ed7) in the entire
Ref. 10 a hypothesis was put forward that the aforemenrange of the fields studie@p to 5 T). Solving for the eigen-
tioned discrepancies between calculations and experimentahlues, we obtain the exciton enerfgy—e4p| as a function
data could be related to modifications of the exciton bindingof the magnetic fieldB. The results are shown in Fig. 3,
energy due to the presence of a shallow potential of theéogether with the three-dimensional exciton binding energy.
(field-induced quantum well. In Fig. 4 we compare the optical transition energies cal-
To check this hypothesis, we calculated the energy of theulated using both the three-dimensional exciton binding en-
excitonvia the procedure developed in the previous sectionergy and the exciton energies obtained in the present ap-
with Vg andvﬂ calculated using the standard expressions foproach with those observed experimentaftfihe calculated

FIG. 1. Calculated shapes of the effective potential given by Eq
(14) for three values of the quantum well widtta) w=50 A, (b)
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FIG. 3. Exciton binding energies in ZnSegggMng o,Se spin FIG. 4. Comparison of the measured energieJ atl.5 K of

superlattices with layer thicknesses of 105 A for both materials as aptical transitions in ZnSe/ZrdMnyg.Se spin superlatticéRef.

function of magnetic field aT=1.5 K. For comparison, the value 10) (symbols with calculations assuming either uncorrected, three-

of the three-dimensional exciton binding energy is also shown bydimensional exciton energi¢broken lines(Ref. 10] or those cal-

the dashed line. culated using the present approdeblid lineg within the rectan-
gular well approximation.

values based on the quantization of the exciton Center'Of\7vave function used by us. Nevertheless, it is possible that the

mass motion in thg Q|rect|on are in good agreement with deviations between our calculations and the experimental
the observations, giving a marked improvement over thosﬁata in Fig. 4 are related to the onset of the-32D cross-
using the 3D approach, and confirming the original conjec- X

ture concerning the source of the deviations noted in Ref. 109ver, and constitutes a limitation of the present method.
Let us check the validity of the assumptions used in the
derivation of the above results. First, notice that dropping the
terms in the Hamiltonian of the electron and the hole that are We have developed a simple theory of excitons in very
due to the direct influence of a magnetic field throvgtp ~ shallow quantum wells, which includes the energy correc-
terms (see, Ref. 2Ris perfectly justified. This is because tions due to size quantization of the center-of-mass motion.
7.0, (whereQ.=eB/cu) is much smallefmaximum 2%  We were able to solve the problem analytically assuming
in the entire range of the magnetic field considered in Ref. 1@ealistic parameters for the quantum wells. In particular, the
than the total spin splitting of the valence and conductiorenergy corrections derived by us satisfactorily explain devia-
band edges, which determines the depth of the quantum welions between calculated and observed values of magneto-
In fact# ), becomes equal to the total depth of the quantunpptical transition energies in DMS spin superlattices, where
well only in fields as large as 500 (the quantum well varies an external magnetic field creates shallow but well-defined
only slightly with B in the high magnetic field region due to quantum wells.
saturation of the magnetizatipn Similar conclusion concerning the importance of the ex-
Second, the relatively large value of the 3D exciton bind-Citon center-of-mass quantization in shallow guantum wells
ing energyssp in 11-VI compounds justifies the use of wave Were arrived at in recent theoretical calculatiorisee, also,
functions in the form of the product of functions dependingRef. 6. Let us note, however, that although the application
separately o and (ﬁL 7). In fact, in our case we have of th_e magnetic f|elq drives the transition from a3_D—I|ke toa
e3p=22.1 meV, and the depth of the quantum well in thezp'l'ke exciton regime, as c_oncluded n Ref._22_, N our case
conduction band aB=5T (i.e., at the maximum field con- this occurs algo in the conflgurat_lon \.N'Hﬂ p0|.nt|.ng' along
sidered hergis V2~ 11 meV, while that in the valence band the growth axis of the structurg direction. This is in con-

is VO~ 43 meV. While, strictly speaking, the depth of the trast to the case considered in Ref. 22, where only the in-

) L . . lane component of the field induces the transition.
guantum well at the highest magnetic field considered in Ref[.) P

10 does exceesl;n, an inspection of Figs. 1 and 2 in Ref. 22
convince us that even for quantum wells as deep-2s 3
the crossover from the 3D-like regime to the 2D-like regime This work was supported by the NSF Grant No. DMR
is rather slow. This gives some confidence in the separabl@2-08400.

IV. CONCLUSIONS
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