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Impurity in a Luttinger liquid away from half-filling: A numerical study
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Conformal field theory gives quite detailed predictions for the low-energy spectrum and scaling exponents of
a massless Luttinger liquid at generic filling in the presence of an impurity. While these predictions were
verified for half-filled systems, there was until now no analysis away from this particular filling. Here, we fill
in this gap by numerically investigating a quarter-filled system using the density-matrix renormalization-group
technique. Our results confirm conformal-field-theory predictions, and suggest that they are indeed valid for
arbitrary fillings.[S0163-182607)05235-]

[. INTRODUCTION been numerically verified® In the present work, we study
numerically the non-half-filled system, which is the generic
The behavior of a one-dimensiondD) interacting Fermi  situation for realistic systems. Compared with the half-filled
system(Luttinger liquid) in the presence of a single impurity case, the non-half-filled one has nonzero forward scattering
has been the subject of an intensive theoretical and numericBhase shift at the Fermi surface, which makes the analysis
investigation in recent years, for its interesting anomaliegnore cumbersome. In spite of that, we show that, also away
with respect to higher dimensions, and its implications to drom half-filling! the <_:orrect fixed point boundary conditions
variety of physical problems as, for instance, the behavior of'® those predicted in Refs. 4-6. _
quantum wires(see, e.g., Refs. 1 and @r the tunneling . In Sec. V_we will discuss in detail the boundary condi-
through a constriction in the fractional quantum Hall “9”3 in relation to some previous studiabat gave results
regime? Specifically, if the interaction is repulsive, the elec- different from those mentioned above.
trons at low energies feel the impurity potential as if it were
effectively infinite. On the other hand, for attractive interac- Il. NUMERICAL CALCULATION
tions, the effective scattering close to the Fermi energy is
vanishingly small(see, e.g., Ref.)4 In their seminal paper, with anisotropya=J,/J,,= +0.5 at magnetization per site

K d Fishé d that the low- behavior f
ane anc, Hisherargue al e owenergy hehavior Tor M= 1/4, which correspond to quarter-filled Luttinger liquids

repulsive interaction in fact corresponds to a chain discon-", . o ;

nected at the impurity site. In the renormalization group lanWith repulsive @=0.5) or attractive interactiona= —0.5).
guage of boundary conformal field theof@FT) (see, e.g., We model the |m_pur|§y by modifying the _s_trength of a par-
Refs. 5 and § for repulsive interaction the open boundary ficular bond, scaling it by a factds. Specifically, we con-
condition (OBC) is the stable fixed point while the periodic Sider the following Hamiltonian:

boundary conditionPBC) is unstable, and the opposite is L_1
true for attractive interactiofexcept for the presence of non- H= E [
trivial fixed points for spinning electrons with spin aniso- 1
tropic interactiod®}). CFT provides the low energy spectrum

We study numerically th&=1/2 XXZ Heisenberg chains

S'S1tS Sh2+ass, ]

and the scaling exponents both for the approach to the ap- +b[(S; S +S,S)/2+aS ], (2.2
propriate stable fixed point and for the departure from the
unstable one. whereS” andS;” are spin raising and lowering operators at

For a half-filled Luttinger liquid, these predictions have site i, S’ being its z component.L is the chain length.
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TABLE I. Bulk guantities: site energg,, chemical potential tional invariance are broken, which is the caseNb# 0 and
w, spin velocityvs, boson radiut, and forward scattering phase with a modified bond. Specifically/; andV,, correspond to
shift (6) for boundary conditionsb=0,1; for quarter filing  forward and backward scattering in the Luttinger liquid, re-
S=1/2XXZ chains witha=0.5 anda= —0.5. Values are obtained gpectively. Forward scattering is marginal but backward
independently from DMRGRG) and Bethe ansatdBA) calcula- scattering is relevant (irrelevany for R> 1/\/E

tions, (R<1\/4m).
a 05(RG) 05(BA) —05(RG) —05(BA) In cases where backscattering is irrelevant, which we de-

fine generically as PBC casésot to be confused with ideal

€ —0.220487 —0.220487 —0.233179 —0.233179  pp "\ iy h—1), v, induces a discontinuity inb at the

" —1.1335 —1.13349 -0.32120 -—0.321201 . . . i 9IRS d
0833 0832900 0500 0500854 MPUMy site,a(0+)— H(0-)=aE(0)~ (L) =2Ro modu-

Us 2 ‘ ' ' : lus 27R. Therefore the mode expansion can be written as

47R 1.20 1.18383 0.72 0.717842

)

— 0 0 0 0 S\x mt

— (b=1) = ) RANTRL I

p d(x,t)=27R( n - L+ RL+ . (3.2

g (b=0) -0.29 -0.19

o Here the dots represent the harmonic oscillator modes.

n=SP-ML andm are integer quantum number&he ¢
b=0 andb=1 correspond to what we will define adeal  Periodicity is preserved in time by the discrete quantization

OBC and PBC, respectively. We use the density-matrix°f the momentum conjugajeThus the finite-size spectrum is

renormalization-groupf DMRG) method® to calculate the

2 2

low-energy _spectrum and overlaps between ground's,tateEzeoLvLelJrnMJr 2mvs _i+ sz(n—— + m .
wave functions. To ensure the correct magnetization L 12 T 47R
M =1/4, we insert four sites at each step of DMRG iteration. "

We run DMRG for a==*+0.5 L=8,12...,60, and L, R

b—00.0.050.1. ...0909510. The optimal number of 2 "(Matmy)|. 33

states that are kept is 300 and the truncation errors are less . ) ] o
than 5<10°7. Like our previous DMRG calculation for Mn' are occupation numbers for bosonic excitations of mo-

magnetizatiorM =02 we calculate the lowest-energy states mentum=27n/L. The chemical potential is related to the
with parity even and odédwith respect to the modified bopd ~ €xternal magnetic field necessary to induce the magnetiza-
and z component of total spirs®=ML and ML+1 for  tion M in the spin chainé is the analogous to a forward
M=1/4. We denote these energies in increasing order ascattering phase shift. Here we have included the zero-point
Eo, Ej, E,, andEs. For states with magnetizatiod, E, energy —2mv¢/(12L), which was ignored in Ref. 5. This
corresponds to the ground-state energy whieorresponds formula differs slightly from the one in Ref. 6 because in that
to the energy of the lowest excited state with different parity.c8S€ Spinless fermions were considered rather 8rad/2

E, andE; correspond to states witB%= ML +1, but with spins. While the models are identical under the Jordan-
different parity. In addition to these low-energy levels, we Wigner transformation, PBC's on the spide not corre-

calculate also the ground-state wave function overlaps bes_pond to PBC’s on the fer.mions. .
tween PBC chainsk(=1) and impurity chainst{+ 1). When the backscattering term is relevamf(0) gets

pinned. In analogy with the previous case, we define this
situation as OBC, again not to be confused with the ideal
I1l. ENERGY SPECTRUM AND SCALING PREDICTED OBC (b=0). Without forward scattering(for M=0),
IN CFT #(0) will simply be pinned at a unique valué(0)=0 as-
The spin chain at nonzerdl and with a modified bond SUMINgVy>0. With both backward and forward scattering
can be written in terms of a boson fielgl which is defined ~ Present, we expecp to be pinned at equal and opposite
periodically: = ¢+2R, and of its conjugate momentum Values,= ¢, atx—0~, with a discontinuity ak=0. Pinning
I1. A detailed derivation is given in Ref. 5 for the case forcesm=0 in the mode expan5|on+c2ha£1/gges the wave func-
M =0. Here we just point out the differences that occur fortions of the harmonic modes fromr '™~ to sin(mnxL)
nonzeroM . The compactification raditR and the spin-wave and reduces the zero-point energy by a factor of 1/4. Thus
velocity vs depend both ora and onM. Their values for

2
a=*0.5 andM=1/4 are given in Table I. The effective E=eol+e,+nut TUs —i+2wR2 n—é
Hamiltonian is L 24 T
1 de)\2 do b -
= i ) N i I - e + nm,|. 3.4
H de2 1 +(dx) } 8(X) Vde+Vbco =/ |- nzl h (3.9
3.0

The parametersy, vs, R, andu, being bulk properties, are
(We will generally set the spin-wave velocity to 1 in most  the same for PBC and OBC cases. The parametgand

of what follows) Here the modified bond is parametrized in 8, on the other hand, depend on the boundary conditions, as
terms of two boundary operators, with coupling constantsvell as the 1/12 and 1/24 terms. The latter can be calculated
V¢ andV,. TheV; term is allowed, and therefore expected by elementary methods for theX spin chain with PBC or

to occur, wheneveB’— —S* symmetry as well as transla- OBC, respectively. They have also been calculated, using the
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Bethe ansatz for the generdXZ model. They follow more TABLE II. Conformal field theory prediction ofi; for PBC and
generally from conformal invariancé:'? Note that forward OBC fixed pointdsee definition in Eq(3.5 and predictions in Egs.
scattering always introduces a discontinuitygnat the ori- (3.3 and(3.4)]. 5 is the forward scattering phase shift. The expres-

gin, with or without pinning of¢ depending on whether or Sions for PBC are different for=0.5 anda=—0.5.
not backscattering is relevant. However, we expect the value

of the discontinuityx § to depend on whether or not pinning 2 (2PBO (—2PBO +3,080)
occurs. , , ,
The effect of a parity transformation on the various eigen- 6 6 1 6
states were Worke% ou){ in Ref. 5. In the periodic case it ?akego WRZ(’J_T) WRZ(a_T) 6" WRZ(’J_T)
m——m, m-—mR and multiplies wave functions by
(—1)™™ In the case of OBC it multiples wave functions by 5\2 5\2 ) 5\2
(—1)" and transform a bosonic operaty,, corresponding dy WR2(1* ;T) WRZ(P ;T) it WRZ(P ;T)
to an excitation with wave function sinxL), into
(_1)mam- ) . 1 5\2 5\2 5\2
We are now in position to work out the quantum nL_mee_rsd2 —+7TR2(—) 1+ WRZ(—) 2+ wRZ(—)
and energies of the four lowest energy states. Consider first 472 m ™ ™
the states withS”'=ML. These states hava=0. The
ground state has all other quantum numbers 0 as well. For ) 2 e 5\2
PBC, a state of reversed parity can be obtained either by, L'F’HRZ 1— _) 1+ 782 1- f) E+7TR2(1* ;T)
takingm=1 (and all other quantum number$id Eq. (3.3 472 ™

or by taking an odd parity linear combination of the states
with (ms,m?)=(1,0) or (0,1)(and all other quantum num-

bers (. These two states have energies measured from the : : : L _ 2
ground-state energy of v /L)/(4wR2) and (2mv./L), m by =1, its scaling dimension is simply=1/47R*. The

respectively. Thus, which of these states has lower energ west-order perturbative calculation is quite different de-
depends on whetr;ernR2>1 or 47R2<1. We see from Pendingon whether #4R?>1 or <1. Let us denot¢0) and

Table | that the first one has lower energy &« 1/2, while |2) the states corresponding to the energy le&jsandE;

the second one has lower energy foe — 1/2. The states Previously introduced, and us#, and d, defined in Eg.
with S®=ML +1 haven=1. The state with all other quan- (3.5). .If 47R?>1, thenp is relevant and-the PBC fixed
tum numbers O has reversed parity relative to the groun@0int is unstable. In this case the correctiondip-d, be-
state. For PBC the state with the same parity as the groungPmes larger than the fixed-point value, at sufficiently large
state is obtained again by choosimg=1 (for 47R2>1) or L. Since the stat¢2) hasm=1, andm corresponds to a
eitherm} or mR=1 (for 47R?<1). For OBC, the lowest- conserved quantum number at the PBC fixed point, the only
energy states for giveB™ (i.e., n) are obtained by choosing Nonzero matrix element of casfR) in the subspace d0)

all them,=0, while the parity-reversed lowest-energy statesand |2) is an off-diagonal oné2|cos/R)|0). Since this is
are obtained by choosing,=1. We define new quantities larger than the diagonal matrix elements, the energy differ-
d; by writing the 1L term in the energy as ence, divided byL, scales asLY, where y is the
renormalization-group eigenvalue of the associated coupling
constany=1—x. On the other hand, for#R?><1, the PBC
fixed point is stable, and in fact the corrections to thes

for PBC or OBC. The values of thd; for the first four states fro_mOO V;m'fh at La_rglel_.k:n th'str:: a?_e ,tthe q statf2) hf_‘s
for ideal PBC and OBC foa= +0.5 are given in Table II. m=0 (andm; or m;=1). Hence the first-order corrections

The renormalization-group flow in the vicinity of the PBC to the energies vanish gmd the leading corrections are second
and OBC fixed points are determined by the permitted®rder, that isdp—doocL™. _
boundary operatdd of lowest scaling dimensiox. Depend- At the OBC fixed point, the most relevant permitted op-
ing on whether this dimension obeys:1 orx>1, the fixed €rator is a product of the operators, which changel from
point will be unstable or stable. We may calculate teige-  the two sides of the broken chain, that &,S_ +H.c. The
dependentcorrections to the energies, in the vicinity of the n= =1 operator has dimensionzR?*(1¥ 25/ ). Since the
fixed point, by doing lowest-order perturbation theory in thistwo sides of the broken chain are decoupled at the ideal OBC
operator® The dimensions of a boundary operator at thefixed point, the dimension of the product of operators on the
PBC and OBC fixed points can be read off from the finite-two sides is simply additive, giving a total dimension for the
size energies. Specifically, if a boundary operator modifieseading operator of #R?. Since there is no extra conserved
some quantum numbers, its dimension is simply given by theluantum number at the OBC fixed point we expect this op-
term inside the square brackets of E8.3) for PBC and Eq. erator to have a nonvanishing expectation value in the states
(3.4) for OBC with the appropriate change of quantum num-|0) and|2). Hence the correction td,—d, should scale as
bers, minus the analogous term with the ground-state quar-.
tum numbers. Exactly atb=0 or 1, the set of allowed operators is re-

For instance, the leading boundary operator, which can bduced. For the PBC casb=1, all local as well asn#0
defined at the PBC fixed point, is the backscattering potentiabperators are forbidden by translation invariance. The lead-
O=cos(@/R) [see the Hamiltoniar§3.1)]. Since it changes ing irrelevant operators correspond to

E = +27wS 1+d
=T S+

, (3.9
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TABLE lll. Properties ofM =0 model.

fdx(a¢/ax)(a¢/ax)2, de(a¢/ax)(a¢/(9t)2,

S L(E;—Eyp) w312 m/3/8
of dimension 2. §&/dx can be eliminated by a redefiniton ~ €2(P=0) 312 3
of ¢.) These dimension 2 operators are forbidden by sym- €2(P=1) o4 6
metry forM=0 and so did not appear in Ref. 5. They con-  €3(b=0) 5/2 4
tribute 1L.2 corrections to the energies. For the=0 case, e3(b=1) 13/4 7

since translational symmetry is broken, we can construct
boundary operators but only at one side or the other of the

broken link; we cannot take a product of operators on both _11dK(n—=A) (A , ey
_ " . SRR e P(M=5—————| K(np=n")p(n")dy'|,
sides as above. In addition, spin rotational invariance forbids 2 dzy —A
all operators withn#0. Again d¢/dx is eliminated by a
redefinition of¢, so the leading irrelevant boundary operator deg(A) A
is [9¢(0)/9x]? of dimension 2 This also contributes L7 e=—gn T J:Afo( n)p(n)dy,

corrections to the energies.
Whenb is close to 0 or 1, we obtain analyticL¥/ finite- ~ where cog=a[see Eq(2.1)] and the integral kernel is given
size corrections, as just discussed, with coefficien® (), by
as well as nonanalytic finite-size corrections, as previously
shown, with coefficients that vanish in the lintit-0 or 1. tang

K = .
(m) tar? § cosh?( 5/2) + sink?( 5/2)

4.3

IV. NUMERICAL STUDIES ON SPECTRUM

AND RENORMALIZATION The parameten is fixed from the filling factorv=1/4 by

We first consider the bulk quantitiesg, u, vs, andR, jA a(p)dnp=v (4.4)

defined in Eq.(3.3). We determined these using both the ' '

DMRG and the Bethe ansatz techniqlﬁe. ) o . »
These bulk quantities can be determined from the finite@"d the chemical potential is determined by the condition

size spectrum with PBC, which can be derived from the€da(A)=0, where

Bethe ansat?® The structure of the spectrum up to the 1 (A

O(1/L) term agrees with the CFT predictip@=0,e,=0 in ea(m)=€o(m)— _f K(np—7n")eq(n')dn'. (4.5

Eq. (3.3]. By comparison, the various parameters are 27 ) A

determinedf as

The half-filled casev=1/2 corresponds td =oo. In this
case the integral equations can be solved analytically by

A
€= f,AGO( 7 a(n)dy, Wiener-Hopf method® which gives
[1— 6l
1 R: 27T
R= JAmE(A)' 4.1 andv ;= mwsind/(26), as deduced earlier from the Bethe ansatz

solution using other method4In particular, fora= +0.5
andM =0, the case considered in Ref.8=3/3/4, 3,/3/8,

D= € _ and 4rR?=2/3, 1/3, respectively. The Bethe ansatz results
* 2mo(A) for L(E;—Eo), €,=(E,—Eo)/(E;—Eg), and e;=
_ _ _ (Es—Eg)/(E1—Ey) are given in Table Ill. Excellent agree-
Here the right-hand sides are given by ment is obtained with the finite-size spectrum calculated us-
ing DMRG in Ref. 8.
sinte For the non-half-filled case, these equations cannot be
e(n)=pn— m, solved analytically. We solved them numerically by iterative

numerical integration. Since we have already taken the limit
of large system sizé& in analytic treatment, we can obtain
1 (A , . , highly accurate results with a relatively small amount of
E(m=1- ZJ_AK(’?_ n')é&(n")dn’, computation. Accuracy to six digits can be achieved within
minutes on an IBM RS6000 work station. On the other hand,
it would be difficult to calculate other quantities, for ex-
cot( 6/2) ample, orthogonality exponent, directly from Bethe ansatz.

: By fitting all four E;’s obtained from DMRG according to
costf(7/2) +cot'(6/2)sint(7/2) Egs.(3.3) and (3.4), for the cases we defined &eal PBC
(b=1) and OBC p=0), we find consistent bulk quantities,

, (4.2 ey, M, vs, andR, which are listed in Table I. These values

0(7])=ﬂ

A
_f_AK(ﬂ_ n')o(n')dy’
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1~2 T T T T T 0'1 T T T T T
v T for a=0.5,d g ——|
— 1\ o B--
i L e PBC (b=1): gg) j: 0.09 | for a=-0.5,d g ~+-
o0 d 8- : : o e
) M 3 e
08 e e e - I o | 0.08 - - 7
OBC (b=0): dg 4|
. dy - 0.07 & " -+ A
5 e * o e mmn o +
B 0.6 C - *ﬁ_;‘_;——*"—* ...... Koo * 2 _i»- Mxx.x e
P27 00000 -0+ 0- - o - o 0.06 | xx i
04 - i TR
| et T s atuinle snieeiet —mmmmmm + 0.05 L e |
0.2 i
004 1 1 1 1 1
o] 0.02 0.04 0.06 0.08 0.1 0.12
O ancko. I 1 1 1 1/L
0 0.02 0.04 0.06 0.08 0.1 0.12 .
1L FIG. 3. The orthogonality exponen{L) and ground-state scal-

. ) ing dimensiondy(L) for OBC chaingsee Eqs(4.7) and(4.8)], are
FIG. 1. Fora=0.5,b=0, andb=1, thed; defined in Eq(3.5  gyrapolated td_— limit by polynomials of 1L to the second

is plotted for chain lengtht =8,16 ...,64 as dunction of 1L.  4r4er We show the extrapolated values doandd, are equal, as
We extrapolated thd; of chain lengthd. =32-52 toL. — o limit by conformal field theory predicts.

polynomials of 1L to the second order. The extrapolated values for

d; are in agreement with the conformal field theory predictions After having verified the low-energy CFT spectrum, we
given in Table II, with6=0 for b=1 andé=—0.29 forb=0. confirm another prediction, namely, that the orthogonality
agree well with the Bethe ansatz results, as also shown i xpiﬁnent betv;eeryltthe_grogjrld dgftfates ?f tw? modlielg desprlk)ted
Table I. Thus the accuracy of our DMRG calculation is con-by 3 same di!“' onian ul tl t?]reré_f?on ormz 3{ mvanflhn .
firmed. We also determined, from DMRG, the nonzero>oundary con |,|ons IS €qual to the diference between their
correspondingly’s. The orthogonality exponert is defined

forward-scattering phase shif for the case of OBC, as
shown in Table 1. through the overlap between the two ground-state wave

With these parameters, we have found that the finite—sizéuncm)ns|‘f’> and|¢o) for a chain of size. In particular,
corrections to the energiel found numerically agree with
the low-energy spectrum predicted by CFT for PBC and O(L)=(¢| pg)*
OBC and listed in Table Il. The finite-size values ayfare

plotted versus 1/ in Figs. 1 and 2, and extrapolated at The overlap integral©(L) are evaluated numerically. The

L—oo by fitting with polynomials of 1L . The quality of 4 for L limit is obtained by extrapolating
these fittings confirms the prediction that only analytic finite-

1)“
e (4.6

size corrections exist in the cases witk-0 or 1. WL INO(L+4)—InO(L) @7
a = .
6 . . . . . InL—In(L+4)
al X | We start by verifying the above prediction for the overlap
‘ e PBC (b=1): dg —~— between the ground states wiit,eal PBC and OBC. The
2l Xxx B i ideal OBC dg's for L— o limit (for theideal PBC,dy=0) is
o m g obtained by extrapolating
4 Eg,-s:’f'::‘;‘;‘;.magﬁﬁﬂ’a"E‘-"-B i
OBC (b=0):  dy -+ do(L 1_Ld+4) Eo(L+4)—Eqy(L)—4
= 0.8 - 31 _r.. 0( )_ 1_2 TUS[ O( + ) 0( ) eO]'
ol I 6 48
s NN In Fig. 3 we plota(L), the exponent of the overlap between
04 | . the ideal OBC and PBC ground-state wave functions, and
"""" KRR A KK ek theideal OBCdy(L), vs 1L. Up to the two significant digits
0.2 b b ey + 1 the extrapolatedr andd, are equal fol.— limit, for both
oo . : . . a=0.5 anda=—-0.5.
00 0.02 004 006 0.08 01 012 We point out here that the low-energy spectrum in Table
n Il holds also if the magnetizatiohl =0, as it was shown in

FIG. 2. Fora=—0.5, b=0, andb=1, the d; defined in Eq Ref. 8. For generic impurity strength, it was shown in that
. . g ] ’ 1 i . R
(3.5) is plotted for chain length& =8,16 . . . ,64 as dunction of ~ reference that theM=0 system flows either to OBC

1/L. We extrapolated the; by data of chain lengths=32-52 to ~ (a>0) or to PBC @<0), by a detailed analysis of the size
L—sco limit by polynomials of 1L to the second order. The extrapo- dependence of the low-energy levels and by calculating the
lated values for; are in agreement with the conformal field theory Orthogonality exponent. Since the nonuniversal forward scat-
predictions given in Table I, wit=0 forb=1 ands=—0.19 for  tering phase shif6=0 for M =0, universality is recovered
b=0. and all systems flowing to the OBC fixed point had an ex-
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TABLE IV. The scaling exponent for small deviation from T T T az05, 609 o |
fixed points @,b,). ¥>0 and y<0 means the energy spectrum 205, g:g.; *
flows away from and flows to the fixed points, respectively. ol ™7 inear fiting nes: g?}quzgzgﬁl B

N -0.20-3.13/InL -~
(aby) (D (20 (=20 (—20 028515 T
% 1-14nR?  1-47R* 21— 1/4nR?) 1-47nR® s | |
0.17 -0.20 -0.78 0.28 - %XX‘X
RN X
-1 \:;\E% N
trapolated dy=1/16, in agreement with CFT prediction. e,
Moreover, 1/16 was also shown to be equal to the orthogo- gﬁ.\\i\.
nality exponent of the overlap between the ground states o T
with PBC in the presence and in the absence of the impurity. e RN
Analogously, in the following, we will first show that the o o1 o2 o5 oa os

low-energy spectrum foM =1/4 systems does flow to the MinL

PBC or OBC fixed pqints, depending on _the sign of the in- FIG. 4. The scaling exponent for excitation energy near fixed
teraction. Then we will show the qualitative agreement be‘points, see Eq(4.9), is given for chains with lengths around 50.

tweena(L) anddo(L) for arbitrary impurity strengttb at  The calculatedy are in agreement with the theoretical values listed
finite size. in Table IV.

We start by showing how the low-energy spectrum flows
away from PBC towards the OBC fixed point fa=0.5 and  perturbative correction blows up ds—o, which implies
vice versa fora=—0.5. We previously said thai is not a  that the system flows away from the fixed point, which is
universal property. This implies that, if a system flows to onetherefore unstable. Again, our results demonstrate that, for
of the two fixed points, it does not mean necessarily that theepulsive interactions, the stable fixed point boundary condi-
value of & will be exactly the same as that of a chain with tion is the OBC, and vice versa for attractive interaction.
b=0 orb=1 (as given in Table)l Thus we expecb to be We have also calculatefi(a,b) for arbitrary deviations
some nonuniversal function &f anda. The finite size spec- b—b, , namely, forbo=0.05,0.15. ..,0.85,0.95. To analyze
trum should be given by the OBC formula of E®.4) and  the data, we made a very simple scaling ansatz in order just
Table Il fora=0.5 and allb but with some unknown func- to reproduce the correct scaling behavior close to the OBC
tion &(b). Likewise, fora=—0.5 the spectrum should be fixed point. Specifically,A(a,b) is plotted in Fig. 5 vs
given by the PBC formula of Eq3.3) and Table Il for all  arctafL ~°%an(/2)]/7 for a=0.5, and in Fig. 6 vs
b but with some other unknown functia®(b). §(b) should  arctafiL%?&an(o/2)]/7 for a=—0.5. The arrows in the
approach zero ab—1 for a=—0.5 and§(b) should ap- figures show towards which fixed point the system flows as
proach its OBC value£ —0.297) asb—0 fora=0.5 since  the chain length. increases. We see qualitatively how the
in these two cases-1b or b produce no relevant operators excitation energy flows between OBC and PBC fixed points.
and the marginal operator has a coupling constant that gogg,e proposed scaling is o — ) 7]~L "tan(p=/2). Sur-

° IZ:E(EJrrOt.he four energy levels we decided to calculate numeriprismgly’ our scaling ansatz, which is, in principle, valid
cally, E;—E;=E,— Ej always holds, as seen from Table II. .~ . . . . 9
Notice that the forward scattering phase shifjenerated by
the impurity contributes t&E;—E, (and alsoE;—E,). In O A e point
order to simplify the analysis, we will concentrate only on 09 |- OBC fixed point & .
E,—Ey (i.e.,d,—dg), which instead depends on the univer-
sal properties identifying each fixed point. Let us denote ©
A(a,b)=d,(a,b)—dy(a,b). Then, for small deviations of 08 ~ T
b away from one of the two fixed-point valués = 1,0, the < .
following scaling should hold: ,

07 | P 4

A(a,b)—A(a,b, )ocL7@Px), 4.9 -~
K

These exponents can be obtained by calculating the first non- o0 . ol
vanishing correction ta (a,b), within a perturbation expan- «
sion inb—b, , following the prescriptions given in the pre- 05 tg¢ ! ! ! ! o
vious section. The predictegl's are listed in Table IV. In 0 0.1 02 0.3 0.4 0.5
Fig. 4, for a==0.5, we plot IiA(a,b)—A(a,b,)VInL vs arctan{ L+ tan(brt /2) 1 / 7

1/InL. The extrapolated scaling exponengsin the figure FIG. 5. The renormalization-group flow of the excitation energy
agree with those listed in Table IV, up to two significant o 0BC (b=0) fixed point fora=0.5 is qualitatively shown in this
digits. These results have a very simple interpretation. Ifigure for the rangé. = 20-50. The line segments from left to right
y<0, the deviation from the fixed point is not a relevant of the plot are fob=0.05,0.15. . .,0.95, respectively, and the ar-
perturbation and the system flows back to lthefixed point,  row indicates how excitation energy(0.5b) flows whenL in-
which is therefore stable. On the other hand;if0, the creases.
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1F T T T T S °H 0.1 F T T T T H
>
chains with impurity strengths b —— 4 do(l) -—
PBC fixed point + o ¥ § o (L) -+
09 OBC fixed point O / i 0.08 F § 4
08 | / . 006 | % .
< / %
07 F . 0.04 + Y E
A S
06 B 0.02 %% -
o« b
W
0.5 ! 1 ! 1 0 0k 1 1 1 1 « o
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 04 0.5
arctan L8 tan(bm 12)] / T arctan] L%2C tan(bTe /2)] / T

FIG. 6. The renormalization-group flow of the excitation energy  FIG. 7. The orthogonality exponem{L) and ground-state scal-
to PBC (b=1) fixed point fora=—0.5 is qualitatively shown in ing dimensiondy(L) for impurity chains witha=0.5 [see Egs.
this figure for the rangé =20-50. The line segments from left to (4.7) and (4.8)], are plotted in this figure. The line segments from
right of the plot are forb=0.05,0.15...,0.95, respectively, and left to right of the plot are folb=0.0,0.05,0.15. ..,0.95,1.0, re-
the arrow indicates how excitation energy —0.5p) flows when  spectively. The figure shows qualitatively hom(L) and dy(L)

L increases. flow to OBC fixed point as the chain length increases.

only close tob=0 andL?” being small, seems to give a good
description of the data for a wide range ofs. For
(b/2)L"—0, we have the scaling relation

The dual field is defined ag= ¢, — ¢&. The boundary con-
dition ¢(0*)=+ ¢, couples left movers to right movers,
separately, on both sides of the origin:

1 b
A-5—5L7 (4.10 dL(1,07)=—¢r(t,07) — g
Finally we compare the orthogonality exponer(l) of dr(1,01)=— ¢ (1,0") + ¢bg. (5.2

the overlap between the ground state with PBC and in the

presence of the impurity, and the ground state with PBC bugy, e other hand, the fields on opposite sides of the origin

in the absence of the impurity. AccorQing .to .CFT’ 'ghis EXPO-are not coupled by the boundary condition. This means that
nent should also be equal dg for a chain with impurity. We 5 in0oming excitation at<0 is reflected, with unit prob-

plot a(L) anddy(L) vs the same variables as used above forabilit with a phase shift proportional and similarly for
A. The resulting data are plotted in Fig. 7 fa+= 0.5, and in y b prop o y

Fig. 8 fora= —0.5. They show thait(L) anddy(L) are of

LT . .. . . 0.08 T T T T .=
similar magnitude and have similar flows for various chain
!engths and impu_rity strengths. Again, an important.remgrk 0.07 ho do(L) ~— J
is needed regarding the forward scattering phase shift. Since : L) ==
we cannot exclude its generation at the fixed point, this  0.06 + N 8
would imply, for instance, that the orthogonality exponent
for attractive interaction is, in general, nonzero. With long 0.05 - # 1
enough chains it should be possible to determifle) and 0.04 L %\> |
check that botha(L) and do(L) extrapolate to the same )
numbers determined by these phase shifts. However, with 03| T %\) 4
the limited lengths availableL(=60) we have not found it
possible to do this. This is presumably due to the unknown  o.02 | Bt %\ .
value of the phase shift, the slow convergence of the finite- WQ\
size corrections due to the small exponent in the nonanalytic 901 o .

; -0.2 _ ; i,
corrections [ for a=0.5), and the relatively large coef- oL, . TN
ficient in the analytic corrections. The situation appeared 5 03 02 03 oa Pyt
somewhat better in the! =0 casé arctan[ L928 tan(bTc /2)] / T
V. DISCUSSION ON BOUNDARY CONDITION FIG. 8. The orthogonality exponen{ L) and ground-state scal-

ing dimensiondy(L) for impurity chains witha=—0.5 [see Egs.
With periodic boundary conditions, the boson may be(4.7) and(4.8)], are plotted in this figure. The line segments from
written in terms of decoupled left- and right-moving parts: left to right of the plot are fob=0.0,0.05,0.15...,0.95,1.0, re-
spectively. The figure shows qualitatively hoa(L) and do(L)
d(t,X) = ¢ (t+X)+ Ppr(t—X). (5.2 flow to OBC fixed point as the chain length increases.
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an incoming excitation at>0. This boundary condition is S—(t,o)ocei277R$(t,0+)ocei477Rq6|_(t,O+), (5.9
the same as the one used in Ref. 6, where a different basis
was used. giving
This coupling of left and right movers by relevant back- )
scattering changes Green’s functiongo illustrate this, we (S*(t,0M)S7(0,0"))oc|t| ™R+ .. (5.9

consider theM =0 case, where ther_e is no forward S_Catt_e”ngwhich is the limiting behavior of Eq(5.7) (with xx’ set
term ¢,=0. One term in the bosonized representatiosof

equal to a value of order of the short distance cutoff, i.e., the
is

lattice spacing Note that without pinning

Sj_oceiz’TR"’+i¢’R+ o @@TREIR G I (- 27RT IR GRy ., <ei27RT¢(t,0)e—iszZ{S(o,O)>:<ei27R¢L(t,o>e—i2wR¢L<o,o>>

(5.3
. ) X ) —i27RpR(t,0) ai 2mRPR(0,0)
The Green’s function, with PBC, factorizes into separate X (e~ TR D TR
Green'’s functions for left and right movers, giving o<|t|*27TR2_ (5.10
— ! ry— T 2 T . . .
(ST(t,X)S7(0, X') ) (t+x—x')~ GTRIIRTA Thus pinning increases the exponent by a factor of 2. Per-

><(t—x+x’)*(*2"R+l’R)2’4’T+ - haps _surprlglngly, plhnmgﬁ(O) c_hanges cgrrelatlon func-
tions_involving ¢. This effect ultimately arises becauge
(5.9 and ¢ cannot be regarded as being independégtox is

On the other hand, with the perfectly reflecting boundarycanomcaIIy conjugate t@. Therefore when gets pinned

condition, this correlation function equals Oxfandx’ are we must take into account the effect gn Different results

. . g ., were obtained in Ref. 9 because this effect was not taken into
on opposite sides of the origin. To calculate the Green's

function when they are on the same sigay, x,x'>0) we account. In particular, a factor of 2 discrepancy in the expo-
use a standard device from boundary CEWe can regard nent occurring in the electron Green's functiofat

" . x=x"=0) arose from the mechanism explained here. An
the second boundary C(_)ndmo_n of !5@'2) as dEfmmgqb.R alternative way of understanding the disagreement with Ref.
for all x>0 as the analytic continuation @f, to the negative

. 9 can be found in Ref. 19 and in Ref. 20.
X axis:

The reason this works is that the boundary condition is true In summary, this paper studies the effects of an impurity
at allt and¢, and¢g only depend on the variablés-x and  in a non-half-filled 1D Luttinger liquid. Our numerical study
t—x, respectively. We emphasize that this analytically con-for the low-energy spectrum confirms previous results. That
tinued ¢, is notthe originalg, atx<<0, which is completely is, we show that the low-energy spectrum of a chain with an
decorrelated from the fields at>0. Using this approach, impurity flows to the spectrum of a chain with PBC if the
S (t,x) becomes bilocal: interaction is attractive, and to the spectrum of a chain with
OBC if the interaction is repulsive. The behavior of a non-
. half-filled system is shown to be the same as that of a half-
(5.6)  filled one and the presence of particle-hole symmetry is not

Instead of getting a product of two-point Green’s functions€Ssential for this behavior. Therefore, we numerically con-
for left- and right-moving fields, we now obtain a four-point firm that the properties of a generic 1D Luttinger liquid with

S(t,x) @l 2TRFIRIGLEH—I(—27R+ IR LX)

Green’s function for left movers only, giving an impurity are indeed those predicted by Kane and Fisher.
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