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Impurity in a Luttinger liquid away from half-filling: A numerical study
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Conformal field theory gives quite detailed predictions for the low-energy spectrum and scaling exponents of
a massless Luttinger liquid at generic filling in the presence of an impurity. While these predictions were
verified for half-filled systems, there was until now no analysis away from this particular filling. Here, we fill
in this gap by numerically investigating a quarter-filled system using the density-matrix renormalization-group
technique. Our results confirm conformal-field-theory predictions, and suggest that they are indeed valid for
arbitrary fillings.@S0163-1829~97!05235-1#
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I. INTRODUCTION

The behavior of a one-dimensional~1D! interacting Fermi
system~Luttinger liquid! in the presence of a single impurit
has been the subject of an intensive theoretical and nume
investigation in recent years, for its interesting anoma
with respect to higher dimensions, and its implications t
variety of physical problems as, for instance, the behavio
quantum wires~see, e.g., Refs. 1 and 2! or the tunneling
through a constriction in the fractional quantum H
regime.3 Specifically, if the interaction is repulsive, the ele
trons at low energies feel the impurity potential as if it we
effectively infinite. On the other hand, for attractive intera
tions, the effective scattering close to the Fermi energy
vanishingly small~see, e.g., Ref. 4!. In their seminal paper
Kane and Fisher4 argued that the low-energy behavior f
repulsive interaction in fact corresponds to a chain disc
nected at the impurity site. In the renormalization group la
guage of boundary conformal field theory~CFT! ~see, e.g.,
Refs. 5 and 6!, for repulsive interaction the open bounda
condition ~OBC! is the stable fixed point while the period
boundary condition~PBC! is unstable, and the opposite
true for attractive interaction~except for the presence of non
trivial fixed points for spinning electrons with spin anis
tropic interaction7,21!. CFT provides the low energy spectru
and the scaling exponents both for the approach to the
propriate stable fixed point and for the departure from
unstable one.

For a half-filled Luttinger liquid, these predictions hav
560163-1829/97/56~15!/9766~9!/$10.00
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been numerically verified.5,8 In the present work, we study
numerically the non-half-filled system, which is the gene
situation for realistic systems. Compared with the half-fill
case, the non-half-filled one has nonzero forward scatte
phase shift at the Fermi surface, which makes the anal
more cumbersome. In spite of that, we show that, also aw
from half-filling, the correct fixed point boundary condition
are those predicted in Refs. 4–6.

In Sec. V we will discuss in detail the boundary cond
tions in relation to some previous studies9 that gave results
different from those mentioned above.

II. NUMERICAL CALCULATION

We study numerically theS51/2 XXZ Heisenberg chains
with anisotropya5Jz /Jxy560.5 at magnetization per sit
M51/4, which correspond to quarter-filled Luttinger liquid
with repulsive (a50.5) or attractive interaction (a520.5).
We model the impurity by modifying the strength of a pa
ticular bond, scaling it by a factorb. Specifically, we con-
sider the following Hamiltonian:

H5 (
i 51

L21

@~Si
1Si 11

2 1Si
2Si 11

1 !/21aSi
zSi 11

z #

1b@~S1
1SL

21S1
2SL

1!/21aS1
zSL

z #, ~2.1!

whereSi
1 andSi

2 are spin raising and lowering operators
site i , Si

z being its z component.L is the chain length.
9766 © 1997 The American Physical Society
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56 9767IMPURITY IN A LUTTINGER LIQUID AWAY FROM . . .
b50 andb51 correspond to what we will define asideal
OBC and PBC, respectively. We use the density-ma
renormalization-group~DMRG! method10 to calculate the
low-energy spectrum and overlaps between ground-s
wave functions. To ensure the correct magnetizat
M51/4, we insert four sites at each step of DMRG iteratio
We run DMRG for a560.5, L58,12, . . . ,60, and
b50.0,0.05,0.1, . . . ,0.9,0.95,1.0. The optimal number o
states that are kept is 300 and the truncation errors are
than 531027. Like our previous DMRG calculation fo
magnetizationM50,8 we calculate the lowest-energy stat
with parity even and odd~with respect to the modified bond!,
and z component of total spinSz

tot5ML and ML11 for
M51/4. We denote these energies in increasing orde
E0, E1, E2, and E3. For states with magnetizationM , E0
corresponds to the ground-state energy whileE2 corresponds
to the energy of the lowest excited state with different par
E1 andE3 correspond to states withSz

tot5ML11, but with
different parity. In addition to these low-energy levels, w
calculate also the ground-state wave function overlaps
tween PBC chains (b51) and impurity chains (bÞ1).

III. ENERGY SPECTRUM AND SCALING PREDICTED
IN CFT

The spin chain at nonzeroM and with a modified bond
can be written in terms of a boson fieldf which is defined
periodically: f[f12pR, and of its conjugate momentum
P. A detailed derivation is given in Ref. 5 for the ca
M50. Here we just point out the differences that occur
nonzeroM . The compactification radiusR and the spin-wave
velocity vs depend both ona and onM . Their values for
a560.5 andM51/4 are given in Table I. The effectiv
Hamiltonian is

H5E dx
1

2FP21S df

dx D 2G2d~x!FVf

df

dx
1VbcosS f

RD G .
~3.1!

~We will generally set the spin-wave velocityvs to 1 in most
of what follows.! Here the modified bond is parametrized
terms of two boundary operators, with coupling consta
Vf andVb . The Vf term is allowed, and therefore expecte
to occur, wheneverSz→2Sz symmetry as well as transla

TABLE I. Bulk quantities: site energye0, chemical potential
m, spin velocityvs , boson radiusR, and forward scattering phas
shift (d) for boundary conditionsb50,1; for quarter filling
S51/2 XXZ chains witha50.5 anda520.5. Values are obtained
independently from DMRG~RG! and Bethe ansatz~BA! calcula-
tions.

a 0.5 ~RG! 0.5 ~BA! 20.5 ~RG! 20.5 ~BA!

e0 20.220487 20.220487 20.233179 20.233179
m 21.1335 21.13349 20.32120 20.321201
vs 0.833 0.832900 0.500 0.500854
4pR2 1.20 1.18383 0.72 0.717842
d
p

(b51) 0 0 0 0

d
p

(b50)
20.29 20.19
x

te
n
.

ss

as

.

e-

r

s

tional invariance are broken, which is the case forMÞ0 and
with a modified bond. Specifically,Vf andVb correspond to
forward and backward scattering in the Luttinger liquid, r
spectively. Forward scattering is marginal but backwa
scattering is relevant ~irrelevant! for R.1/A4p
(R,1/A4p).

In cases where backscattering is irrelevant, which we
fine generically as PBC cases~not to be confused with idea
PBC with b51), Vf induces a discontinuity inf at the
impurity site,f(01)2f(02)[f(0)2f(L)52Rd modu-
lus 2pR. Therefore the mode expansion can be written a

f~x,t !52pRS n2
d

p D x

L
1

mt

RL
1•••. ~3.2!

Here the dots represent the harmonic oscillator mod
n5Sz

tot2ML and m are integer quantum numbers.~The f
periodicity is preserved in time by the discrete quantizat
of the momentum conjugate.! Thus the finite-size spectrum i

E5e0L1e11nm1
2pvs

L F2
1

12
1pR2S n2

d

p D 2

1
m2

4pR2

1 (
n51

`

n~mn
L1mn

R!G . ~3.3!

mn
L,R are occupation numbers for bosonic excitations of m

mentum62pn/L. The chemical potentialm is related to the
external magnetic field necessary to induce the magne
tion M in the spin chain.d is the analogous to a forwar
scattering phase shift. Here we have included the zero-p
energy22pvs /(12L), which was ignored in Ref. 5. This
formula differs slightly from the one in Ref. 6 because in th
case spinless fermions were considered rather thanS51/2
spins. While the models are identical under the Jord
Wigner transformation, PBC’s on the spinsdo not corre-
spond to PBC’s on the fermions.

When the backscattering term is relevant,f(0) gets
pinned. In analogy with the previous case, we define t
situation as OBC, again not to be confused with the id
OBC (b50). Without forward scattering~for M50),
f(0) will simply be pinned at a unique value,f(0)50 as-
sumingVb.0. With both backward and forward scatterin
present, we expectf to be pinned at equal and opposi
values,6f0 at x→06, with a discontinuity atx50. Pinning
forcesm50 in the mode expansion changes the wave fu
tions of the harmonic modes frome6 i2pnx/L to sin(pnx/L)
and reduces the zero-point energy by a factor of 1/4. Th

E5e0L1e11nm1
pvs

L F2
1

24
12pR2S n2

d

p D 2

1 (
n51

`

nmnG . ~3.4!

The parameterse0, vs , R, andm, being bulk properties, are
the same for PBC and OBC cases. The parameterse1 and
d, on the other hand, depend on the boundary conditions
well as the 1/12 and 1/24 terms. The latter can be calcula
by elementary methods for theXX spin chain with PBC or
OBC, respectively. They have also been calculated, using
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Bethe ansatz for the generalXXZ model. They follow more
generally from conformal invariance.11,12 Note that forward
scattering always introduces a discontinuity inf at the ori-
gin, with or without pinning off depending on whether o
not backscattering is relevant. However, we expect the va
of the discontinuity}d to depend on whether or not pinnin
occurs.

The effect of a parity transformation on the various eige
states were worked out in Ref. 5. In the periodic case it ta
m→2m, mn

L↔mN
R and multiplies wave functions by

(21)n1m. In the case of OBC it multiples wave functions b
(21)n and transform a bosonic operatoram , corresponding
to an excitation with wave function sin(pmx/L), into
(21)mam .

We are now in position to work out the quantum numb
and energies of the four lowest energy states. Consider
the states withSz

tot5ML. These states haven50. The
ground state has all other quantum numbers 0 as well.
PBC, a state of reversed parity can be obtained either
taking m51 ~and all other quantum numbers 0! in Eq. ~3.3!
or by taking an odd parity linear combination of the sta
with (m1

L ,m1
R)5(1,0) or (0,1)~and all other quantum num

bers 0!. These two states have energies measured from
ground-state energy of (2pvs /L)/(4pR2) and (2pvs /L),
respectively. Thus, which of these states has lower ene
depends on whether 4pR2.1 or 4pR2,1. We see from
Table I that the first one has lower energy fora51/2, while
the second one has lower energy fora521/2. The states
with Sz

tot5ML11 haven51. The state with all other quan
tum numbers 0 has reversed parity relative to the gro
state. For PBC the state with the same parity as the gro
state is obtained again by choosingm51 ~for 4pR2.1) or
either m1

L or m1
R51 ~for 4pR2,1). For OBC, the lowest-

energy states for givenSz
tot ~i.e., n) are obtained by choosin

all themn50, while the parity-reversed lowest-energy sta
are obtained by choosingm151. We define new quantitie
di by writing the 1/L term in the energy as

Ei5•••1
2pvs

L S 2
1

12
1di D , ~3.5!

for PBC or OBC. The values of thedi for the first four states
for ideal PBC and OBC fora560.5 are given in Table II.

The renormalization-group flow in the vicinity of the PB
and OBC fixed points are determined by the permit
boundary operatorO of lowest scaling dimensionx. Depend-
ing on whether this dimension obeysx,1 or x.1, the fixed
point will be unstable or stable. We may calculate the~size-
dependent! corrections to the energies, in the vicinity of th
fixed point, by doing lowest-order perturbation theory in th
operator.13 The dimensions of a boundary operator at t
PBC and OBC fixed points can be read off from the fini
size energies. Specifically, if a boundary operator modi
some quantum numbers, its dimension is simply given by
term inside the square brackets of Eq.~3.3! for PBC and Eq.
~3.4! for OBC with the appropriate change of quantum nu
bers, minus the analogous term with the ground-state qu
tum numbers.

For instance, the leading boundary operator, which can
defined at the PBC fixed point, is the backscattering poten
O5cos(f/R) @see the Hamiltonian~3.1!#. Since it changes
e
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m by 61, its scaling dimension is simplyx51/4pR2. The
lowest-order perturbative calculation is quite different d
pending on whether 4pR2.1 or ,1. Let us denoteu0& and
u2& the states corresponding to the energy levelsE0 andE2

previously introduced, and used0 and d2 defined in Eq.
~3.5!. If 4pR2.1, then O is relevant and the PBC fixed
point is unstable. In this case the correction tod22d0 be-
comes larger than the fixed-point value, at sufficiently lar
L. Since the stateu2& has m51, and m corresponds to a
conserved quantum number at the PBC fixed point, the o
nonzero matrix element of cos(f/R) in the subspace ofu0&
and u2& is an off-diagonal onê2ucos(f/R)u0&. Since this is
larger than the diagonal matrix elements, the energy dif
ence, divided by L, scales asLy, where y is the
renormalization-group eigenvalue of the associated coup
constanty[12x. On the other hand, for 4pR2,1, the PBC
fixed point is stable, and in fact the corrections to thedi ’s
from O vanish at largeL. In this case, the stateu2& has
m50 ~andm1

L or m1
R51). Hence the first-order correction

to the energies vanish and the leading corrections are se
order, that is,d22d0}L2y.

At the OBC fixed point, the most relevant permitted o
erator is a product of the operators, which changen61 from
the two sides of the broken chain, that is,S1

1SL
21H.c. The

n561 operator has dimension 2pR2(172d/p). Since the
two sides of the broken chain are decoupled at the ideal O
fixed point, the dimension of the product of operators on
two sides is simply additive, giving a total dimension for th
leading operator of 4pR2. Since there is no extra conserve
quantum number at the OBC fixed point we expect this
erator to have a nonvanishing expectation value in the st
u0& and u2&. Hence the correction tod22d0 should scale as
Ly.

Exactly atb50 or 1, the set of allowed operators is r
duced. For the PBC case,b51, all local as well asmÞ0
operators are forbidden by translation invariance. The le
ing irrelevant operators correspond to

TABLE II. Conformal field theory prediction ofdi for PBC and
OBC fixed points@see definition in Eq.~3.5! and predictions in Eqs.
~3.3! and~3.4!#. d is the forward scattering phase shift. The expre
sions for PBC are different fora50.5 anda520.5.

a ( 1
2,PBC! (2

1
2,PBC! (6

1
2,OBC!

d0 pR2Sd

pD2

pR2Sd

pD2
1
161pR2Sd

pD2

d1 pR2S12
d

pD2

pR2S12
d

pD2
1
161pR2S12

d

pD2

d2
1

4pR2
1pR2Sd

pD2

11pR2Sd

pD2
9
161pR2Sd

pD2

d3
1

4pR2
1pR2S12

d

pD2

11pR2S12
d

pD2 9
161pR2S12

d

pD2
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E dx~]f/]x!~]f/]x!2, E dx~]f/]x!~]f/]t !2,

~3.6!

of dimension 2. (]f/]x can be eliminated by a redefinitio
of f.! These dimension 2 operators are forbidden by sy
metry for M50 and so did not appear in Ref. 5. They co
tribute 1/L2 corrections to the energies. For theb50 case,
since translational symmetry is broken, we can constr
boundary operators but only at one side or the other of
broken link; we cannot take a product of operators on b
sides as above. In addition, spin rotational invariance forb
all operators withnÞ0. Again ]f/]x is eliminated by a
redefinition off, so the leading irrelevant boundary operat
is @]f(0)/]x#2 of dimension 2.5 This also contributes 1/L2

corrections to the energies.
Whenb is close to 0 or 1, we obtain analytic 1/L2 finite-

size corrections, as just discussed, with coefficients ofO(1),
as well as nonanalytic finite-size corrections, as previou
shown, with coefficients that vanish in the limitb→0 or 1.

IV. NUMERICAL STUDIES ON SPECTRUM
AND RENORMALIZATION

We first consider the bulk quantities,e0, m, vs , and R,
defined in Eq.~3.3!. We determined these using both th
DMRG and the Bethe ansatz technique.15

These bulk quantities can be determined from the fin
size spectrum with PBC, which can be derived from t
Bethe ansatz.16 The structure of the spectrum up to th
O(1/L) term agrees with the CFT prediction@d50,e150 in
Eq. ~3.3!#. By comparison, the various parameters a
determined16 as

e05E
2L

L

e0~h!s~h!dh,

R5
1

A4pj~L!
, ~4.1!

vs5
e

2ps~L!
.

Here the right-hand sides are given by

e0~h!5m2
sin2u

coshh2cosu
,

j~h!512
1

2pE2L

L

K~h2h8!j~h8!dh8,

s~h!5
1

2pF cot~u/2!

cosh2~h/2!1cot2~u/2!sinh2~h/2!

2E
2L

L

K~h2h8!s~h8!dh8G , ~4.2!
-

ct
e
h
s

r

ly

-
e

e

r~h!5
1

2pFdK~h2L!

dh
2E

2L

L

K~h2h8!r~h8!dh8G ,
e5

de0~L!

dL
1E

2L

L

e0~h!r~h!dh,

where cosu5a @see Eq.~2.1!# and the integral kernel is given
by

K~h!5
tanu

tan2u cosh2~h/2!1sinh2~h/2!
. ~4.3!

The parameterL is fixed from the filling factorn51/4 by

E
2L

L

s~h!dh5n, ~4.4!

and the chemical potentialm is determined by the condition
ed(L)50, where

ed~h!5e0~h!2
1

2pE2L

L

K~h2h8!ed~h8!dh8. ~4.5!

The half-filled casen51/2 corresponds toL5`. In this
case the integral equations can be solved analytically
Wiener-Hopf method,16 which gives

R5A12u/p

2p

andvs5psinu/(2u), as deduced earlier from the Bethe ans
solution using other methods.17,18 In particular, fora560.5
andM50, the case considered in Ref. 8,vs53A3/4, 3A3/8,
and 4pR252/3, 1/3, respectively. The Bethe ansatz resu
for L(E12E0), e2[(E22E0)/(E12E0), and e3[
(E32E0)/(E12E0) are given in Table III. Excellent agree
ment is obtained with the finite-size spectrum calculated
ing DMRG in Ref. 8.

For the non-half-filled case, these equations cannot
solved analytically. We solved them numerically by iterati
numerical integration. Since we have already taken the li
of large system sizeL in analytic treatment, we can obtai
highly accurate results with a relatively small amount
computation. Accuracy to six digits can be achieved with
minutes on an IBM RS6000 work station. On the other ha
it would be difficult to calculate other quantities, for ex
ample, orthogonality exponent, directly from Bethe ansat

By fitting all four Ei ’s obtained from DMRG according to
Eqs. ~3.3! and ~3.4!, for the cases we defined asideal PBC
(b51) and OBC (b50), we find consistent bulk quantities
e0, m, vs , andR, which are listed in Table I. These value

TABLE III. Properties ofM50 model.

a 0.5 20.5
L(E12E0) pA3/2 pA3/8
e2(b50) 3/2 3
e2(b51) 9/4 6
e3(b50) 5/2 4
e3(b51) 13/4 7
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agree well with the Bethe ansatz results, as also show
Table I. Thus the accuracy of our DMRG calculation is co
firmed. We also determined, from DMRG, the nonze
forward-scattering phase shiftd for the case of OBC, as
shown in Table I.

With these parameters, we have found that the finite-s
corrections to the energiesdi found numerically agree with
the low-energy spectrum predicted by CFT for PBC a
OBC and listed in Table II. The finite-size values ofdi are
plotted versus 1/L in Figs. 1 and 2, and extrapolated
L→` by fitting with polynomials of 1/L . The quality of
these fittings confirms the prediction that only analytic fini
size corrections exist in the cases withb50 or 1.

FIG. 1. Fora50.5, b50, andb51, thedi defined in Eq.~3.5!
is plotted for chain lengthsL58,16, . . . ,64 as afunction of 1/L.
We extrapolated thedi of chain lengthsL532–52 toL→` limit by
polynomials of 1/L to the second order. The extrapolated values
di are in agreement with the conformal field theory predictio
given in Table II, withd50 for b51 andd520.29 forb50.

FIG. 2. For a520.5, b50, andb51, the di defined in Eq.
~3.5! is plotted for chain lengthsL58,16, . . . ,64 as afunction of
1/L. We extrapolated thedi by data of chain lengthsL532–52 to
L→` limit by polynomials of 1/L to the second order. The extrapo
lated values fordi are in agreement with the conformal field theo
predictions given in Table II, withd50 for b51 andd520.19 for
b50.
in
-

e

d

-

After having verified the low-energy CFT spectrum, w
confirm another prediction, namely, that the orthogona
exponent between the ground states of two models descr
by the same Hamiltonian but different conformally invaria
boundary conditions is equal to the difference between th
correspondingd0’s. The orthogonality exponenta is defined
through the overlap between the two ground-state w
functionsuf& and uf0& for a chain of sizeL. In particular,

O~L !5^fuf0&}S 1

L D a

. ~4.6!

The overlap integralsO(L) are evaluated numerically. Th
a for L→` limit is obtained by extrapolating

a~L !5
lnO~L14!2 lnO~L !

lnL2 ln~L14!
. ~4.7!

We start by verifying the above prediction for the overl
between the ground states withideal PBC and OBC. The
ideal OBC d0’s for L→` limit ~for the ideal PBC,d050) is
obtained by extrapolating

d0~L !5
1

12
2

L~L14!

8pvs
@E0~L14!2E0~L !24e0#.

~4.8!

In Fig. 3 we plota(L), the exponent of the overlap betwee
the ideal OBC and PBC ground-state wave functions, a
the ideal OBC d0(L), vs 1/L. Up to the two significant digits
the extrapolateda andd0 are equal forL→` limit, for both
a50.5 anda520.5.

We point out here that the low-energy spectrum in Ta
II holds also if the magnetizationM50, as it was shown in
Ref. 8. For generic impurity strength, it was shown in th
reference that theM50 system flows either to OBC
(a.0) or to PBC (a,0), by a detailed analysis of the siz
dependence of the low-energy levels and by calculating
orthogonality exponent. Since the nonuniversal forward sc
tering phase shiftd50 for M50, universality is recovered
and all systems flowing to the OBC fixed point had an e

r
s

FIG. 3. The orthogonality exponenta(L) and ground-state scal
ing dimensiond0(L) for OBC chains@see Eqs.~4.7! and~4.8!#, are
extrapolated toL→` limit by polynomials of 1/L to the second
order. We show the extrapolated values fora andd0 are equal, as
conformal field theory predicts.



.
g
te

rit
e
e
in
be

w

n
th
th

-
e

rs
o

er
II.

n
r-

ot
f

no
-
-

nt
.
n

for
di-

just
BC

as
e
ts.

id

m

.
ed

gy

t
-

56 9771IMPURITY IN A LUTTINGER LIQUID AWAY FROM . . .
trapolated d051/16, in agreement with CFT prediction
Moreover, 1/16 was also shown to be equal to the ortho
nality exponent of the overlap between the ground sta
with PBC in the presence and in the absence of the impu

Analogously, in the following, we will first show that th
low-energy spectrum forM51/4 systems does flow to th
PBC or OBC fixed points, depending on the sign of the
teraction. Then we will show the qualitative agreement
tweena(L) and d0(L) for arbitrary impurity strengthb at
finite size.

We start by showing how the low-energy spectrum flo
away from PBC towards the OBC fixed point fora50.5 and
vice versa fora520.5. We previously said thatd is not a
universal property. This implies that, if a system flows to o
of the two fixed points, it does not mean necessarily that
value of d will be exactly the same as that of a chain wi
b50 or b51 ~as given in Table I!. Thus we expectd to be
some nonuniversal function ofb anda. The finite size spec-
trum should be given by the OBC formula of Eq.~3.4! and
Table II for a50.5 and allb but with some unknown func
tion d(b). Likewise, for a520.5 the spectrum should b
given by the PBC formula of Eq.~3.3! and Table II for all
b but with some other unknown functiond(b). d(b) should
approach zero asb→1 for a520.5 andd(b) should ap-
proach its OBC value ('20.29p) asb→0 for a50.5 since
in these two cases 12b or b produce no relevant operato
and the marginal operator has a coupling constant that g
to zero.

For the four energy levels we decided to calculate num
cally, E32E15E22E0 always holds, as seen from Table
Notice that the forward scattering phase shiftd generated by
the impurity contributes toE12E0 ~and alsoE32E2). In
order to simplify the analysis, we will concentrate only o
E22E0 ~i.e., d22d0), which instead depends on the unive
sal properties identifying each fixed point. Let us den
D(a,b)5d2(a,b)2d0(a,b). Then, for small deviations o
b away from one of the two fixed-point valuesb* 51,0, the
following scaling should hold:

D~a,b!2D~a,b* !}Lg~a,b
*

!. ~4.9!

These exponents can be obtained by calculating the first
vanishing correction toD(a,b), within a perturbation expan
sion in b2b* , following the prescriptions given in the pre
vious section. The predictedg ’s are listed in Table IV. In
Fig. 4, for a560.5, we plot ln@D(a,b)2D(a,b* )#/lnL vs
1/lnL. The extrapolated scaling exponentsg in the figure
agree with those listed in Table IV, up to two significa
digits. These results have a very simple interpretation
g,0, the deviation from the fixed point is not a releva
perturbation and the system flows back to theb* -fixed point,
which is therefore stable. On the other hand, ifg.0, the

TABLE IV. The scaling exponentg for small deviation from
fixed points (a,b* ). g.0 and g,0 means the energy spectru
flows away from and flows to the fixed points, respectively.

(a,b* ) ( 1
2,1! ( 1

2,0! (2
1
2,1! (2

1
2,0!

g 121/4pR2 124pR2
2(12 1/4pR2) 124pR2

0.17 20.20 20.78 0.28
o-
s
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-
-

s

e
e
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e

n-
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t

perturbative correction blows up asL→`, which implies
that the system flows away from theb* fixed point, which is
therefore unstable. Again, our results demonstrate that,
repulsive interactions, the stable fixed point boundary con
tion is the OBC, and vice versa for attractive interaction.

We have also calculatedD(a,b) for arbitrary deviations
b2b* , namely, forb50.05,0.15, . . . ,0.85,0.95. To analyze
the data, we made a very simple scaling ansatz in order
to reproduce the correct scaling behavior close to the O
fixed point. Specifically,D(a,b) is plotted in Fig. 5 vs
arctan@L20.2tan(bp/2)#/p for a50.5, and in Fig. 6 vs
arctan@L0.28tan(bp/2)#/p for a520.5. The arrows in the
figures show towards which fixed point the system flows
the chain lengthL increases. We see qualitatively how th
excitation energy flows between OBC and PBC fixed poin

The proposed scaling is tan@(D2 1
2 )p#'Lgtan(bp/2). Sur-

prisingly, our scaling ansatz, which is, in principle, val

FIG. 4. The scaling exponentg for excitation energy near fixed
points, see Eq.~4.9!, is given for chains with lengths around 50
The calculatedg are in agreement with the theoretical values list
in Table IV.

FIG. 5. The renormalization-group flow of the excitation ener
to OBC (b50) fixed point fora50.5 is qualitatively shown in this
figure for the rangeL520–50. The line segments from left to righ
of the plot are forb50.05,0.15, . . . ,0.95, respectively, and the ar
row indicates how excitation energyD(0.5,b) flows whenL in-
creases.
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only close tob50 andLg being small, seems to give a goo
description of the data for a wide range ofb’s. For
(b/2)Lg→0, we have the scaling relation

D2
1

2
→

b

2
Lg. ~4.10!

Finally we compare the orthogonality exponenta(L) of
the overlap between the ground state with PBC and in
presence of the impurity, and the ground state with PBC
in the absence of the impurity. According to CFT, this exp
nent should also be equal tod0 for a chain with impurity. We
plot a(L) andd0(L) vs the same variables as used above
D. The resulting data are plotted in Fig. 7 fora50.5, and in
Fig. 8 for a520.5. They show thata(L) andd0(L) are of
similar magnitude and have similar flows for various cha
lengths and impurity strengths. Again, an important rem
is needed regarding the forward scattering phase shift. S
we cannot exclude its generation at the fixed point, t
would imply, for instance, that the orthogonality expone
for attractive interaction is, in general, nonzero. With lo
enough chains it should be possible to determined(b) and
check that botha(L) and d0(L) extrapolate to the sam
numbers determined by these phase shifts. However,
the limited lengths available (L<60) we have not found it
possible to do this. This is presumably due to the unkno
value of the phase shift, the slow convergence of the fin
size corrections due to the small exponent in the nonana
corrections (L20.2 for a50.5), and the relatively large coe
ficient in the analytic corrections. The situation appea
somewhat better in theM50 case.8

V. DISCUSSION ON BOUNDARY CONDITION

With periodic boundary conditions, the boson may
written in terms of decoupled left- and right-moving parts

f~ t,x!5fL~ t1x!1fR~ t2x!. ~5.1!

FIG. 6. The renormalization-group flow of the excitation ener
to PBC (b51) fixed point fora520.5 is qualitatively shown in
this figure for the rangeL520–50. The line segments from left t
right of the plot are forb50.05,0.15, . . . ,0.95, respectively, and
the arrow indicates how excitation energyD(20.5,b) flows when
L increases.
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The dual field is defined asf̃[fL2fR . The boundary con-
dition f(06)56f0 couples left movers to right movers
separately, on both sides of the origin:

fL~ t,02!52fR~ t,02!2f0

fR~ t,01!52fL~ t,01!1f0 . ~5.2!

On the other hand, the fields on opposite sides of the or
are not coupled by the boundary condition. This means
an incoming excitation atx,0 is reflected, with unit prob-
ability with a phase shift proportional tof0 and similarly for

FIG. 7. The orthogonality exponenta(L) and ground-state scal
ing dimensiond0(L) for impurity chains witha50.5 @see Eqs.
~4.7! and ~4.8!#, are plotted in this figure. The line segments fro
left to right of the plot are forb50.0,0.05,0.15, . . . ,0.95,1.0, re-
spectively. The figure shows qualitatively howa(L) and d0(L)
flow to OBC fixed point as the chain length increases.

FIG. 8. The orthogonality exponenta(L) and ground-state scal
ing dimensiond0(L) for impurity chains witha520.5 @see Eqs.
~4.7! and ~4.8!#, are plotted in this figure. The line segments fro
left to right of the plot are forb50.0,0.05,0.15, . . . ,0.95,1.0, re-
spectively. The figure shows qualitatively howa(L) and d0(L)
flow to OBC fixed point as the chain length increases.
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an incoming excitation atx.0. This boundary condition is
the same as the one used in Ref. 6, where a different b
was used.

This coupling of left and right movers by relevant bac
scattering changes Green’s functions.5 To illustrate this, we
consider theM50 case, where there is no forward scatteri
termf050. One term in the bosonized representation ofSj

2

is

Sj
2}ei2pRf̃1 if/R1•••}ei ~2pR11/R!fLei ~22pR11/R!fR1•••.

~5.3!

The Green’s function, with PBC, factorizes into separ
Green’s functions for left and right movers, giving

^S1~ t,x!S2~0, x8!&}~ t1x2x8!2~2pR11/R!2/4p

3~ t2x1x8!2~22pR11/R!2/4p1•••.

~5.4!

On the other hand, with the perfectly reflecting bounda
condition, this correlation function equals 0 ifx and x8 are
on opposite sides of the origin. To calculate the Gree
function when they are on the same side~say,x,x8.0) we
use a standard device from boundary CFT.14 We can regard
the second boundary condition of Eq.~5.2! as definingfR
for all x.0 as the analytic continuation offL to the negative
x axis:

fL~ t,2x![2fR~ t,x!1f0 . ~5.5!

The reason this works is that the boundary condition is t
at all t andfL andfR only depend on the variablest1x and
t2x, respectively. We emphasize that this analytically co
tinuedfL is not the originalfL at x,0, which is completely
decorrelated from the fields atx.0. Using this approach
S2(t,x) becomes bilocal:

S2~ t,x!}ei ~2pR11/R!fL~ t1x!2 i ~22pR11/R!fL~ t2x!1•••.
~5.6!

Instead of getting a product of two-point Green’s functio
for left- and right-moving fields, we now obtain a four-poi
Green’s function for left movers only, giving

^S1~ t,x!S2~0,x8!&}U xx8

t22~x1x8!2U21/4pR21pR2

3U 1

t22~x2x8!2U1/4pR21pR2Ut2x1x8

t1x2x8
U

1•••. ~5.7!

In the limit, x,x8→01,
sis

e

y

’s

e

-

S2~ t,0!}ei2pRf̃~ t,01!}ei4pRfL~ t,01!, ~5.8!

giving

^S1~ t,01!S2~0,01!&}utu24pR2
1•••, ~5.9!

which is the limiting behavior of Eq.~5.7! ~with xx8 set
equal to a value of order of the short distance cutoff, i.e.,
lattice spacing!. Note that without pinning

^ei2pRf̃~ t,0!e2 i2pRf̃~0,0!&5^ei2pRfL~ t,0!e2 i2pRfL~0,0!&

3^e2 i2pRfR~ t,0!ei2pRfR~0,0!&

}utu22pR2
. ~5.10!

Thus pinning increases the exponent by a factor of 2. P
haps surprisingly, pinningf(0) changes correlation func
tions involving f̃. This effect ultimately arises becausef
and f̃ cannot be regarded as being independent.]f̃/]x is
canonically conjugate tof. Therefore whenf gets pinned
we must take into account the effect onf̃. Different results
were obtained in Ref. 9 because this effect was not taken
account. In particular, a factor of 2 discrepancy in the ex
nent occurring in the electron Green’s function~at
x5x850) arose from the mechanism explained here.
alternative way of understanding the disagreement with R
9 can be found in Ref. 19 and in Ref. 20.

VI. SUMMARY

In summary, this paper studies the effects of an impu
in a non-half-filled 1D Luttinger liquid. Our numerical stud
for the low-energy spectrum confirms previous results. T
is, we show that the low-energy spectrum of a chain with
impurity flows to the spectrum of a chain with PBC if th
interaction is attractive, and to the spectrum of a chain w
OBC if the interaction is repulsive. The behavior of a no
half-filled system is shown to be the same as that of a h
filled one and the presence of particle-hole symmetry is
essential for this behavior. Therefore, we numerically co
firm that the properties of a generic 1D Luttinger liquid wi
an impurity are indeed those predicted by Kane and Fish4
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