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The magnetoresistivity tensor of an interacting two-dimensional electron system with a lateral and unidirec-
tional electric or magnetic modulation, in a perpendicular quantizing magnetic field, is calculated within the
Kubo formalism. The influence of the spin splitting of the Landau bands and of the density of(Bt@®son
the internal structure of the Shubnikov—de Haas oscillations is analyzed. The Coulomb electron-electron
interaction is responsible for strong screening and exchange effects and is taken into account in a screened
Hartree-Fock approximation, in which the exchange contribution is calculated self-consistently with the DOS
at the Fermi level. This approximation describes both the exchange enhancement of the spin splitting and the
formation of compressible edge strips, unlike the simpler Hartree and Hartree-Fock approximations, which
yield either one or the othefS0163-182807)00740-4

I. INTRODUCTION uted to the van Hove singulariti€¢gHS’s) of the DOS.
Further experiments, on higher mobility samples modu-

Modern technigues allow the fabrication of semiconduc-lated by etching techniques, have clearly shown the spin
tor heterostructures incorporating a two-dimensional electrosplitting. For a weak modulation, again, a double-peak and
gas (2DEG and a lateral periodic electrostatic potential also a more complicated triple-peak structure have been de-
(electric modulatiopnand/or a periodic magnetic fielthag-  tected in the spin-polarized SdH maximagf, correspond-
netic modulatioin In the presence of an external, constant,ing to the bandn=12 For a stronger modulation the spin
and perpendicular magnetic field, the modulation lifts thesplitting vanishes, but the magnetoresistivitynimaat low
degeneracy of the Landau levels. The resulting Landau-banelen filling factors change intmaximaat higher even filling
structure determines various oscillations of the magnetoresidactors, simultaneously with the shift of the minima towards
tivities, which usually provide the only accessible informa-the odd filling factors. This behavior has convincingly been
tion on the modulation strength. explained by the cumulated effects of the overlapping vHS'’s

There are at least three types of modulation effects on th&om adjacent Landau bands. In the experiments mentioned
magnetoresistivities. First, the Weiss commensurability osso far the modulation period has been in the range of 300-
cillations in the quasiclassical regime of low magnetic fields, 500 nm, and much larger than the magnetic length.
both for the electri¢, and, more recently for the magnetic ~ Another series of recent measurements has been per-
modulations>® have attracted most of the experimental andformed on modulated systems produced by growing on vici-
theoretical work:® Second, the peculiar subband structurenal surfaces® This technique generates an electric modula-
generated by a two-dimensional superlattice, known as thgon of a much shorter period, about 30 nm. The resistivity
Hofstadter butterfly, leads to another type of commensurabilp,, also displays a multipeak structure which may be related
ity oscillations, inside the Shubnikov—de Ha&lH) peaks, to the vHS’s. The anisotropy of the resistivity, as well as an
their observation being currently the aim of importantabrupt onset of the spin splitting for a high magnetic field,
efforts® Third, at high magnetic fields, the profile of the have been clearly show.
density of state§DOS) associated to the energy dispersion In all these experiments a detailed interpretation of the
of the Landau bands, together with the exchange-enhancedsults is difficult, and still insufficiently clear. Beyond the
spin splitting, may also determine an internal structure of théechnological constrictions, the difficulties arise from the
SdH maxima. In the present paper we will discuss only thiscomplicated relationship between the DOS and the magne
last type of effects. toresistivities, and from the non-negligible electron-electron

The experimental results have been obtained for the resisateraction effects. Therefore, a transport calculation combin-
tivity pyy Of GaAs-AlLGa,_,As interfaces with an electric ing on the same footing the electron-modulation, electron-
modulation in thex direction, i.e., of a one-dimensional char- electron, and electron-impurity interactions, and also thermal
acter. The first investigation was performed on a modulatioreffects, is needed.
created by holographic illuminationln the absence of the The anisotropy of the modulation may result in a high
modulation the spin splitting of the second Landau level,anisotropy of the conductivity tensor. The conductivity,
with n=1, could not be resolved in the magnetoresistivity,has a scattering componefitter-Landau-leve| which de-
but with increasing the modulation amplitude, the evolutionpends quadratically on the DOS awdnishesn the absence
of a double-peak structure was observed, and it was attrief the impurities. The conductivityr,, has an additional
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band componerintra-Landau-leve| determined by the dis- that the exchange enhancement of the Zeeman splitting will
persion of the one-particle energies, whiifiergesfor weak  remain essentially like in the HFA. However, when the
electron-impurity collision broadening. Therefore, in a Fermi level will intersect a Landau band, the exchange ef-
high-mobility system, the band conductivity may cover thefects will substantially diminish. _
DOS effects inay, and in the related resistivity,, . > The Coulomb interaction is included in a transport calcu-
The Coulomb interaction also yields opposite effects. Thdation, within the standard Kubo formalism. For this purpose
tendency of the electrostatic screening is to reduce the efVe need to consider an electron-impurity scattering mecha-
ergy dispersion imposed by the modulation on the effective!iS™M- Wg will describe it within a self-consistent Born ap-
single-particle states, and henceiroreasethe DOS. At the ~Proximation(SCBA). _ o _
same time, the exchange interaction lowers the energy of the The realization of a magnetic modulation W'th_a period of
occupied states, enhances the energy gaps, but also broad&ntFW hundrgd hanometers, a_nd 2 large amplitude, of the
the Landau bandgjecreasingthe DOS. We have recently orderd 1T is technlcally fe_a3|blé. In the presence 9f a
calculated the energy specttand the resistivity tensbfor constant external magnetic field such a modulauon will pro-
a modulated system, in the Hartree-Fock approximatioﬁjuce L'andau bands and a chargg-densny response. Her_me
(HFA), and we could explain the spin splitting observed inScreening and exc_hange effects will occur, as for an electric
the magnetotransport experiments. However, other exchan odulation. Even in tr_\e_absencg of relevant magetotransport
effects have been overestimated in the standard HFA. neasurements, we will mcllude_ In our callcullat|on such a pe-
The main artifact in the HFA results has been the appearr-IOdIC magnetic field. Fo.r S|mpI|C|ty we will dISC.USS- only the
ance of strong short-range charge-density oscillations in th§ase when Fhe m.odulauon, electric or magnetic, is unidirec-
presence of a weak external modulation of period muc lonal and sm.usmdal.. .
longer than the magnetic length, for any filling factor. The The paperis organ_lzed as follows. In Sec._ I we derive the
reason is the competition of the Hartree interaction, of aself-con3|stent equations of the S.HFA which give us the
repulsive character, with the Fock interaction, of an attractive.ground state of the system. Then, in Sec. lll, we discuss the

character, which in the presence of the modulation may eXl_mpurity scattering and the conductivity tensor. The numeri-

cite high charge-density harmonitsThis is reminiscent of cal results of the transport calculation are presented in Sec.
the fact that the HFA predicts an instability of the homoge—l\_/' allndd ;[h_? conclqsmns atre CZIIECteS_'n Sec. V. Some tech-
neous 2DEG against the formation of a charge-density way8!ca! detalls are given in two Appendixes.

for any filling factor’® whereas experiments indicate an in-

homogeneous ground staf@/igner crystal only for very [l. SCREENED HARTREE-FOCK APPROXIMATION

l;:’; rfgltlangnfei(g)c/)riz :frs]tor E)hnegr g)?:r?:r?;:T)Cr(ca)a?jfe:\r;ﬁgsgf()&% ?_);_n_ We combine the influence of the electron-electron and the
dau levels. A related implication is a substantial qualitative(alec'{mn'Impurlty interactions on the single-particle states of

contradiction between the HFA and the results of thethe modulated 2DEG with the help of the average Green

Hartreé’*8 or Thomas-Fermi calculatiohsof edge states. function, having the operatorial definition
While the latter predict compressible edge strips much wider

than the magnetic length, but only the bare spin splitting G(E)E<é—(E)>imp: 5
(which is negligible for GaAs the HFA gives considerably E-[H"+
narrower compressible edge channels, but a stron
splitting 2°=?21*However, the experimental confirmation of

wide edge channeél$suggests the domination of the electro- - _ =)
static effects. =(E—H=i0™")"+, with H a generic one-body Hamiltonian

In order to avoid, or at least to minimize, these artificial ©f the interacting 2DEG with impurities:i® is the I_-|_am(|ale-
features of the HFA, our previous attempt to include thetor“"’meiOf the noninteracting 2DEG without impuritie,
Coulomb interaction in a magnetotransport calculation for2nd = are the self-energy operators determined by the
modulated systems has been limited to short mOdu|atioﬁlectron—electron and electron-impurity interactions, respec-
periods® The steepness of the energy dispersion, on the magvelY- _ , L
netic length scale, can reduce the relative importance of the N Our case the noninteracting Hamiltonian has the form
exchange interaction, such that the HFA may become quali- 1
tatively reasonable. o__~ 2 _T

In the present paper we want to extend our calculations to H S 2m* [p+eA(n)]"+V cosKx 2 91sB00.
the situation when the modulation period is much longer than (2.2

the magnetic length. Therefore our efforts will be mainly . .
focussed on the electron-electron interaction. Some prelimil '€ €lectrons are located in the plafre=(x,y)}. B(x) is

nary results have already been repoe@ur approach is the projection of the .magnetic field along theaxis, and it
based on a screened HRSHFA), in which we include the ™May have a periodic componenB(x) =B+ B, cosKx,
influence of screening on the exchange interaction. Althougi#imilar to the  periodic  electrostatic potentia/(x)

we consider only static screening, this already leads to th& ¥ ¢0SKx. We choose the vector potential in the Landau
desired reduction of the exchange effects and avoids the a#@Uge, as imposed by the symmetry of our system,

tifacts of the bare HFA. The screening is mainly determined

by the DOS at the Fermi levét. Therefore, when the latter A =] 0B.x+ By sin Kx 2.3
will be in an energy gap, the screening will be weak, such T K ' '

1
286+29I(E)] !

Hith the following notations{: - - )i, stands for the average
over all the impurity configurations; G*(E)

(2.1



56 COULOMB EFFECTS ON THE QUANTUM TRANSPORT B. . . 9709

We have also included iH® the Zeeman term, wheke= + We will discuss the electron-impurity interaction model in
for spin-up ando= — for spin-down statesg is the bare, Sec. lll. Clearly, in the absence of the impurities
band structurey factor, andug the Bohr magneton. anXO(E)E(S(E—EmXO).

We use the eigenfunctions ¢1° corresponding to the  For calculating the electron-electron self-energy we start

unmodulated system, i.e., f@&; =0 andV=0, as the basis with the form given by the HFA”?®In the Landau basis the
for the one-particle Hilbert space. These functions are thenrix elementss, do not mix the spin and the

. ’
well-known  Landau  wave  functions, f,x (X,Y) noXo.n'o'X,

_ . center-coordinate quantum numbers, and can be written as
=L, V2 exp(~iXoy?)fox (9, where f,x (x) are the one- d ’

dimensional harmonic-oscillator wave functions, with

n=0,1,..., centered at the positioX,, called the center 320 (0,Xg) = > ervoj

coordinate. Heré is the magnetic length, and we will denote mmYo

by w. the cyclotron frequency, both corresponding to the Xdrdr'fy (X,¥) ¢y (X y )u(r—r’)
uniform component of the magnetic fieBy,, | = (7%/eBy)*? 0 0
andw,=eBy/m*. In order to simplify the notations we keep X[ Enrx,(6Y) Py (X'1Y")

the same symbol for the two-variable wave function which

depends on both spatial coordinateandy, e.g.,fnx,(X.Y), = et (XY ) ey (X,Y) ]

and for the reduced wave function depending only>gn ceH

F
fnxo(x). The distinction will be made by the number of vari- ) (Xo)+2ﬁi, (,Xo), (2.9

ables specified inside the brackets. The plane-wave faCt%hereu(r)=e2/(K|r|) is the Coulomb potential with the

has been normaliozed to the macroscopic leigthThe ma-  giglectric ‘constant of the semiconductor background. The

trix elements ofH" are given in Appendix A. two terms in the square brackets of E2.9) define the Har-
We will assume randomly distributed impurities, such thatyree girect and the FocKexchanggcontributions, indicated

the modulated system is invariant to translations alongythe by the superscriptsl andF. The Hartree term can be rewrit-

axis. Consequently, the dependenceyoaf the interacting, ten in terms of the particle density,
effective, one-particle wave functions, also factorizes in a

simple plane wave. For these wave functions we use the

nn’

NOtation yngx, (X.y) =Ly 2 exp(=iXoy/1?)ynx,(¥), and we N0)= 2 Vool Umo(X)|7= 2, np cospKx,
expand them in the Landau basis, ° P (2.10
_ the last form being the Fourier expansion appropriate to our
wnﬂ'xo(x)_g Cor (77,X0) Try(X). (24 external fields. The Fourier coefficients of the Hartree self-

) ) energy are given in Appendix A.
For the interacting, unmodulated system, we have ging Eq.(2.4) and the Fourier transform of the Coulomb

Cnnr (0, X0)= 6, @and the dependence on the spin Iabe'potential, T(q)=2me?(x|q), the Fock self-energy be-
arises as long as the exchange interaction and an externgyes

modulation are simultaneously present. The periodic fields
broaden the degenerate Landau le¥g|s into energy bands,
Enox,» Which we find by solving the eigenvalue problem S (0,X0) == 2 Vmovy 2 Cmmy(0,Y0)Cmm (07, Y0)
mYy mymy
(H0+2ee) l//n(rXO(Xiy):Ena'Xolvbna'Xo(Xiy)' (25) dq - i
. . . . Xf (277)2 U(Q)<fnxo|elqr|fleo>
The averaged effect of the impurities consists in the
spreading of the effective single-particle energies around the X{(F oy | €7 Friy ). (2.11)
energy spectrum given by E(.5), and thus in an additional 20 0

energy broadening. The statistical weight of an arbitrary enThe Fourier expansion @ﬁi{:(o‘,xo) is also given in Ap-

ergy E is given by the spectral function, pendix A.
1 In order to overcome the artifacts of the HFA mentioned
Prox,(E)= ;|m<¢naxo|G(E)|l/Inaxo>, (2.6)  in Sec. |, we screen the Coulomb potential in the exchange

self-energy, substituting(q) in Eq. (2.11) by
and the contribution of the effective statadx{Xy) to the

filling factor » can be defined as T(q)= e_2 2m (2.12
k qe(q)’
VnUXO:f dE pnex,(E)HE), (2.7 wheree(q) is the static dielectric function. We thus neglect
L _ _ . the dynamic screening effects. In the spirit of the random-
JF(E)=[expE—w)/T+1] " being the Fermi function, with  phase approximatiorg(q)=1— (2me? kq) x(q), x(q) be-
the chemical potential an@ the temperature, such that ing the dielectric susceptibility given by the well-known
q Lindhard formula’ to be evaluated self-consistently with
v=2 2 _XOV . (2.9 the effective states resulting from E@.5). In the diagram-
o Jo a " matic picture, Fig. 1, that means the series of the polarization
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FIG. 1. Diagrammatic representation of the combined screened
Hartree-Fock and self-consistent Born approximations. The wavy
lines are the Coulomb interaction and the dashed line is the
electron-impurity interaction.

-15 [ 1 1 i I n 1 1 n n

loops—previously contained only in the Hartree part of
3,%¢—is now included, via Eq(2.12), also in the Fock part.

For a two-dimensional system in a perpendicular mag-
netic field, one can identify two components of the static
dielectric susceptibility,

Energy (meV)

x(Q)=x1(a)+ x2(q), (2.13

corresponding to théntra- and to theinter-Landau-level

transitions, respectivek?. In other words,y(q) describes

the electrostatic response due to the electron redistribution B, (T)

around the Fermi level, under the action of an electric field

of an arbitrary wave vectoq, while y,(q) gives the re- FIG. 2. The Landau fafg) in the HFA and(b) in the SHFA for

sponse due to the distortion of the effective wave functionsa homogeneous GaAs system. The dashed line shows the chemical
For y,; we use the expression derived foomogeneous potential. The temperature=1 K.

systems by Labh& which we average over the Brillouin

zone determined by the external electric or magnetic modu- This SHFA has been used in the papers by Ando, Oh-

lation: kawa, and Uemura for explaining the exchange enhancement
of the Zeemai' and of the valley splittintf in homogeneous
— a dXy 9nox, (qh?\1? Si metal-oxide-semiconductor systems. Further improve-
x1(Q)= 52 % 0 a3 I nn( > ” ) ments have incorporated the dynamic screening, within the

21 plasmon-pole approximation, and the Coulomb-hole correla-
(2.149 tion effects, for the calculation of the photoluminescence en-

where we have used E6AL). We expect that this approxi- €rgy inn-doped GaAs quantum weff$:** Nevertheless, in

terized bylV<afiw., or IB;<aB,. Within the same pro- transport properties tractable, we will neglect such additional
cedure we evaluatg, as® corrections in the study of the modulated systems. In particu-

lar, even without dynamic screening effects, our results for
(qh)?\ ]2 the self-energy for a homogeneous 2DEG in a
F””'(T) } GaAs-ALGa, _,As interface are qualitatively similar to those
shown in Refs. 33 and 34. In Fig. 2 we compare the first five
spin splitted Landau levels vs magnetic field, i.e., the Landau
. (2195 fan, inthe standartbare HFA with the results given by the
0o @ Enox,~Enrox, SHFA. The material parameters aré =0.067n,, g=0.4,
and k=12.7, and the carrier concentration is chosen such
For a sufficiently high magnetic fiel8, that is for suffi-  that yBy=10 T, » being the filling factor. Both the Landau
ciently large energy gapBn. 1,x,~Ensx,, and for a small  and the spin gaps are enhanced by the exchange interaction,
d, x2(q) is typically negligible with respect tg4(q), except but in the SHFA the Fock self-energy is strongly dependent
eventually when there are very few states at the Fermi levedn the DOS at the Fermi leve) (Eg). Thus the exchange
such thaty,(q) is vanishingly small. Since for our weak interaction is screened for a hig(E), i.e., for noninteger
modulations, in the limig—0, y;(q) becomes proportional filling factors, but it may become very large for an integer
to the thermodynamic DOS, i.edn/du, we can say the filling. Since the exchange interaction is negative, the screen-
screening of the exchange interaction is dominated by théng mechanism leads to the deep cusps in Figp),2also
intra-Landau-level transitions, which at low temperatures arg@resent in the dynamic-screening calculatidh¥' As in the
determined by the DOS at the Fermi level. HFA, the largest energy gaps occur for integer filling factors.

1
Xz(Q)=m >

n#n’

a dXO Vna'Xo_ Vn’a'XO

X2
o
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exchange enhancement of spin splitting is suppressed. With a
decreasing slope of the potential, the enhancement recovers
suddenly, and a large spin splitting of the Landau bands oc-
curs nearly symmetrically with respect to the Fermi energy
in such a manner, that both spin polarized bands touch the
Fermi energy with large dispersions. Thus the compressible
strips obtained in the Hartree approximation are destroyed in
the bare HFA and replaced with spin-polarized incompress-
ible strips. This spin polarization of the edge states may oc-
cur spontaneously even if the baydactor vanishes, and has
been discussed as a type of phase transffloffWe believe
X . . . that the occurrence of this spontaneous spin polarization is
0 200 400 600 800 1000 an artifact of the unscreened HFA, since our SHFA yi¢kis
X, (nm) long asa>|) only a very smooth and gradual reduction of
the spin splitting with increasing modulation strength, with
20 T - - - compressible spin-polarized strigenergies pinned to the
Fermi energy instead of incompressible ones.
() ] In Fig. 3(b) we transpose the results shown in Figa)Jor
a magnetic modulation. In this case the Hartieérec)
screening is weaker, due to the weaker, purely quantum-
mechanical, coupling of the charge density to the nonuni-
form magnetic field, and consequently the pinning effect is
less pronounced in Fig.(B). The peculiar Hartree response
to a nonuniform magnetic field, which becomes negligible in
the classical limit(cyclotron radius at the Fermi energy
larger than the modulation peripdill be discussed in detail
. - : . elsewheré® In the present paper we restrict ourselves to a
0 100 200 300 400 500 strong uniform componer,, such that the electrostatic and
X, (nm) the exchange effects due to the periodic component are simi-
lar to those due to the electric modulation.

FIG. 3. Compressible and incompressible strips in the SHFA,

Energy (meV)

15

Energy (meV)

for (a) an electric modulation havinga=1000 nm and IIl. CONDUCTIVITIES

V=200 meV withB,=6 T, and(b) a magnetic modulation having o )
a=500 nm andB;=1.2 T andBy,=4 T. The Fermi level is indi- In order to calculate conductivities we have to consider
cated by the horizontal dashed life=1 K. the electron-impurity interaction. For randomly distributed

impurities, the self-energ}® is diagonal with respect t¥,,
gnd obviously also with respect ®. Since we are mostly

The thermal energy is much smaller than the ener aps, . .
9y 99 plg{erested in the effects due to the electron-electron interac-

and no disorder broadening is assumed. Therefore the gaps ¢ o . o X
integer filling factors in Fig. @) are smaller than those in 10N, we simplify the calculation o&® by employing the

Fig. 2(a), only because of the screening involved by the re_phenomenologicql ansatz in which one ignores the depen-
sponse of the wave functions, describedyay dence of its matrix elements on the L'andau guantum nymber
We believe that the energy spectra, which we obtained and on thg center  coordinateX,, that is
within the SHFA for the modulated system, are much im-2nox,,n"ox,(E) =2(E) dnn - In the SCBA, Fig. 1, we need
proved with respect to those in the HFA. In FigaBwe to solve the equatidi
show the SHFA of the Landau bands generated by an electric
modulation of a period much larger than the magnetic length. , a dX,
The Zeeman splitting is enhanced in the states around the SAE)=T?Y f 3 Crnoxo(E)
Fermi energy, with replica in each of the upper and lower nJo
Landau bands, as in the HEAThe improvement consists in a
the recovering of the pinning effect, resulting from electro- ZFZE f
static screening® on the spin-split energy bands near the n 70
Fermi level. The pinning effect defines both compressible i o
(dispersionlegsand spin-polarized strips. In the HFA, forthe =~ We also take a simple parametrization of the electron-
modulation parameters of Fig(a8, strong short-range oscil- impurity interaction energyl”’= yyB(T) (meV). Using Eq.
lations of the effective energies and of the charge density(3-1) the DOS can be written in the form
with typical periods of 3—b would occur. Those oscilla-
tions would disappear only if the energy dispersion imposed
by the external modulation would dominate the interaction
effects, i.e., for a sufficiently short modulation period and/or
for a sufficiently large modulation amplitud.In suffi-  whereD,=m*/2742 is the DOS per spin level for the ho-
ciently strong modulation or steep confinement potentials thenogeneous system without magnetic field.

dX, 1
8 E—Epgx,— 2(E)’

(3.9

hw .
D(E)= 7T?DOZ Im 38(E), (3.2
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The standard Kubo formula for the conductivity tensor

can be written as

eia)t_l
hw

o

dt e ot

U'a,g(w):ef

0
X Tr<f(H)[r’3 ’e(i/h) Htj ae_ (ilh) Ht]>imp!
(3.3

where a,8=X,y, r,=a, and e—0". The operatorr is

given by

Cd
ng[H,r]EvoJrvex, (3.9

whereV? is the usual form of the velocity operator, resulting

from the commutator of the noninteracting Hamiltonidh,
with the position

(3.9

v0=i[p+eA(r)]
m* ’

All the other terms of the full Hamiltonianl commute with

r except the Fock self-energy, due to its nonlocal character.

According to Eqgs(2.9) and(2.10, the Coulomb interaction

gives an exchange contribution to the velocity operator of the

form

vexz;i—[zeeF,r]. (3.6

The matrix elements of the velocity operat@dss) and(3.6),
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<G_(E)raG_(E)>imp:_W<G_(E)>imp
xby
x|tk 1SE) 1]
X(G*(E))imp» (3.10

where we have used a Ward identity to express the current
vertex correction due to the impurities with the help of the
corresponding self-energy operatbrSince we have as-
sumed>,®(E) to be a trivial(spin-dependehtc number, the
impurity vertex correction vanishes. But we see that the Cou-
lombian vertex correction is automatically included in Eq.
(3.10 via the exchange current.

The Hall conductivity can now be written s

O'Xy: _G'yx

he? (= a dXg .
=202 f_md E}—(E)jo a > <¢naxo|x|¢n’axo>

nn'o

. d
X{Wnt oxo| Y] ¥noxg) IM GnUXO(E)Red_EGn'UXO( E).

(3.1)

Since we treat the disorder in the SCBA, we cannot consider
localization effects, and hence we cannot expect real Hall
plateaus. Moreover, if the disorder broadening of the Landau
levels is much smaller than the energy bands,(Bd.]) can

be well approximated by the limit of a vanishing electron-

in the Landau basis, can be found in Appendix B. For theimpurity interaction,y— 0. In this limit o, takes the more

current-density operator we adopt the definition

e

LL, "

j=- 3.7

and we will call the term corresponding to E(B.6) the

“exchange current.” After a straightforward manipulation
the Kubo formula can be put into the form

1
o-aﬁ(w):m[)\aﬁ(w)_)\aﬁ(o)]l (38)
with

)\aﬁ( (1))

—e? (= L |
L fﬁde}'(E)Tr{@(E—H)raG (E+50)F g)imp

+(7 4G (E— )T 4S(E—H))impt- (3.9

familiar form

i7e?
Oxy= 12

a dX,
fo T; F(Enox,)

% < lv[/n(rX0| X| wn’(rX0>< l:bn’ (rX0| y| lzbner())

(EnU'XO_ En’oXO)z '

in which the energy gaps are explicitly evidenced.

It is instructive to mention that, neglecting the exchange
current, one obtains deviations from the well-known quan-
tized values(rxy:(ezlh)x(integer), for an integer filling
factor. Let us consider the simplest case, with no external
modulation. In the absence of the Coulomb interaction the
energy gaps are determined by the cyclotron energy. The
cyclotron frequency squared, in the denominator of Eg.
(3.12, is compensated for by the cyclotron frequencies in-
troduced in the numerator by the velocity matrix elements,
Eqg. (B1), and for a sufficiently low temperature one obtains
the simple Drude formular,,= (e?/h) v. When the Coulomb

(3.12

Of courser depends on the impurity configuration, via the jnteraction is present, the energy gaps are enhanced, but a
exchange contribution. However, since in the following wegjmjlar enhancement occurs in the numerator, determined by
will restrict ourselves to a weak disorder, the dependence gk e exchange term of the velocities, E®.6) and(B3), and
Eq. (3.6) on the disorder broadening will be negligible. the prude formula remains valid. Obviously, when the ex-
Therefore we neglect the impurity effects onn Eq. (3.9.  change interaction is screened, the exchange currents may be
Then, making use of the formal relation gmga|l. In our calculations, for the modulated systems, their
S(E—H)=[G (E)—G"(E)])/2mi, we find that, in the contribution to the conductivities have been of the order 30—
static limit, —0, we have to average combinations like 50 % in the HFA8 but of no more than 10% in the present
(GT(E)r oG (E))imp- The result can be written as SHFA.
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The longitudinal conductivities can be transformed from
Egs.(3.8—(3.9 to

7 -

- [ e~ o.ie |

Oaa™ T dE 0 4o(E), (313 al

. 5|

hez a dXO . L
a'aa(E):Wfo a Z |<irlln(rXo|ra|l//n’(rX0>|2 f

nn'o [

XM Gpox (E)IM Gy (E).
(b)

The relation between the longitudinal conductivities and
the DOS is complicated. Both the diagonal conductivities
oy and oy, have interlevel components, corresponding to
n#n’ in EqQ.(3.13, also known ascatteringconductivities.
One can show, by inspecting E¢B3.13), that for a weak
disorder,y— 0, the scattering conductivities become propor-
tional to['D(Eg)]2. Hence they qualitatively reproduce the
DOS profile, with van Hove singularities corresponding to
the edges of the one-dimensional Landau bands.

Due to the anisotropy of the system, an intralevel compo-
nent of Eq.(3.13, with n=n’, is nonzero foro, only. It is
called band conductivity*?*2 being directly related to the
dispersion of the Landau bands which yields equilibrium
Hall currents. If the Hamiltonian is a local operator, the
Hellman-Feynman theorem leads to

Conductivity (arbitrary units})
- N W s~ OO N

d En(rXO
a%o

= Mo UV dnoxy) (314 Energy (atbitary unis

which is no longer valid when the exchange interaction is FIG. 4. Three possible profiles of the magnetoconductivity cor-
considered. However, if the latter is screened, the deviation€sponding to a sinusoidal-like isolated Landau band. The full lines
from Eq.(3.14 are not very important, and the band conduc-Showayy, the dashed lines show boih, and the scattering com-
tivity can still be understood in terms of the energy disper-Ponent ofayy, and the dotted lines show the band conductivity.
sion. Classically, it corresponds to the quasifree drift of the

centers of the cyclotron orbits along thexis, parallel to the ~diagonalize the Hamiltonian matrix, Eq§A2), (A9), and
periodic electric field. Thus the band conductivity behavedAl0), in L points of the half Brillouin zone, & X,< /K,
contrary to the scattering components: It vanishes at the barghd then we compute the firkt Fourier harmonics for Egs.
edges, has maxima at the band centers, dimergesfor a  (A4) and(A5). We have takem in the range 10—40, and we
small disorder, likey 2, becoming the dominant contribu- have mixed 5-10 Landau levels. Then, we use E§d2

tion to oy, . and(3.13 to calculate the conductivity tensor.
The structure of the longitudinal conductivities, In order to resolve both the van Hove peaks in the modu-
oy(E) = oY E) and gyy(E):(,;;atter'nQE)+U$§nﬁtE), lated system and the spin splitting of the Landau bands, we

for an isolated, sinusoidal Landau band are qualitatively disneed a very small disorder parameter. In Fig. 5 we show the
played in Fig. 4. In our calculations the two scattering con-magnetoconductivity tensor for a magnetic fiddg varied
ductivities are nearly equal. In Fig(a we assume a small such that the Fe-rmi level traverses the Landau pands with
band conductivity, such that both,, and o, show the two  h=1 and 2. In Fig. &) we consider a pure electric modu-
van Hove peaks. Reducing the disorder broadening the scdation of amplitudeV=15 meV and perio@& =500 nm. For
tering components decrease, but at the same time the baddPetter understanding of the conductivity oscillations, three
conductivity increases, and a triple-peak structure evolves igualitatively different energy-band structures are indicated in
oyy, Fig. 4b), while the shape ofr,, remains unchanged. Fig. 6,_ ina half.BnIIpum zone. The bands cc')r.respondlng to
For an even smaller disorder,, becomes dominated by the opposite spin directions are separated for filling factors be-

band conductivity, the central peak covering the vHS, like inlow 4, i.e., forBo>2.5 T, due to the exchange enhancement,
Fig. 4(c). and they patrtially overlap for higher filling factors.

For the electric modulation the energy dispersion is
strongly dependent oB(Eg), due to the strong screening
contained both ir2,®®" and in3°F. All the Landau bands

We perform the calculations of the effective electronicshrink whenever a band is intersected by the Fermi level.
states within a numerical iterative scheme, starting from th& herefore a full spin spliting—i.e., nonoverlapping bands
noninteracting solution, and assuming a fixed number of parwith the samen, but with different spin directions—can re-
ticles for determining the chemical potential. At each step wesult even for a modulation amplitude much larger tthas. .

IV. DISCUSSION OF THE NUMERICAL RESULTS
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FIG. 6. Three energy spectra corresponding to Fig).5

By (M

tivity further increases, contrary to the scattering term, which
becomes negligible. For the overlapping bands of Fig),6

FIG. 5. The conductivity tensor calculated fa@) an electric ~ the minimum ofo, atBy=2 T corresponds to the strongest
modulation with a=500 nm andV=15 meV, (b) a magnetic screening, i.e., to the higheBt(Eg).
modulation witha=500 nm andB;=0.25 T, and(c) the resistivi- In Fig. 5(b) we show similar results obtained for a purely
ties corresponding tga). The xx components are magnified by a magnetic modulation which produces Landau bands equiva-
factor of 2. The temperatur€=1K and the disorder parameter |ent to those of Fig. 6. We have chos@&3=0.25T, the
y=0.06. other parameters of the calculation being the same as those

for Fig. 5(a). There are two, but unessential differences with

Due to the small bandwidth, and also due to the pinnin X . . :
of the band edges to the Fermi level, the resolution of th%respect to the electric modulation of Figah First, the en

; ) ; ergy dispersion increases with increasing Landau quantum
VHS peaks requires a very small disorder broadening. For Lo . .
: S . . numbern. In a crude approximation, i.e., neglecting the
our parameters the vHS'’s can be distinguishedjp, Fig. c .
) i . . . oulombian effects, as long & <1 the energy bands are
5, and their resolution even improves with decreasing Magy ormined by the local cvelotron ener Z (helm*
netic field. The reason is the increase of the exchange intefj- y 4 Bhox, = (Rie/M™)
action, self-consistently with the reduction of the DOS: X(Bgy+B; cosKXg)(n+3). Second, as mentioned at the end
D(Eg) decreases, the screening diminishes, and the ef Sec. Il, the Hartreédirect screening is weaker than in the
change broadening is larger. Nevertheless, the screening malectric case, and hence the strength of the exchange with
again increase for overlapping bands, like in Fig)6Iln that  respect to the Hartree interaction may increase to some ex-
case two bands contribute to the pinning effect, and thereforent. Going through Fig.(®) from high to low values of the
the resolution of the vHS’s in the statg®,+,00 and constant fieldB,, the increase of the energy dispersion at the
(2,—,7/K), which yield the two maxima oér,, in Fig. 5a) Fermi level due to the increase of the quantum nunmbér
for 1.9 T<By<2.1 T, is poorer than in the states {2,7/K) thus amplified by the exchange broadening. For filling fac-
and (2,—-,0, that is for 24KBy<25T and tors higher than 4, four Landau bands overlap, i.e., those
1.6 T<By<1.7 T, respectively. with n=2 and 3. The order of the vHS’s observeda,,
While the scattering component of,, is nearly identical for Bo<2.5T is (2#,7/K) (By=2.48T), (2;,m/K)
to o4y, the very small disorder parameter makes the bandBy,=2.10 T), (2,+,00 (By=1.84T), and (3+,n/K)
conductivity large. In Fig. &), oy, is thus in the situation (By=1.72 T). The small scattering conductivity,, for
depicted in Fig. &), with the vHS profile hidden by the 2.15T<B<2.40T also reflects a strong energy dispersion.
band-conductivity single peak. Decreasing the magnetiddditionally, the screening-exchange balance may generate
field, due to the stronger energy dispersion the band condueveak DOS fluctuations near the band edyesich can be
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seen as the shoulders of the band conductivity the Green
function squared in the Kubo formylain oy, for
2.0 T<By<2.5T. For lower magnetic fields, whed(Eg)
increases due to the overlapping bands, the exchange effect
are again small, and the maxima of the scattering conductiv-
ity corresponds to the minima of the band conductivity, and
vice versa.

For comparison with experiment we need to invert the
conductivity tensor into resistivities,

Condugctivity (€%/h)

_Oyy Txx Oyx

pxx_ﬁy pyyzﬁy pr:31 (41)

where D= 0,0y, + 07,. In our calculationso oy, <o, ,

and hence we havg,, ,,~ O'yy,xx/o'g(y- In Fig. 5c) we see
that the resistivity measured perpendicular to the modulation
reflects in fact the band conductivity, while the scattering
conductivity alone can be observed only in the resistivity
measured parallel to the modulation.

In the experiments on the systems with an etched electric
modulation, of parameters comparable to our model, more
complicated structures of the resistivity,, have been
observed The SdH maxima corresponding to a certain spin
direction may show two and even three internal peaks. One
possible explanation could consist in the more complicated
exchange effects on the band conductivity, like the shoulders
we have found for the magnetic modulation, Figb)5 We
have also obtained such effects for an electric modulation,
with a shorter perioda=100 nm, when the screening is
considerably reducetiAnother possible explanation, which  FIG. 7. (@) The conductivities andb) the resistivities, for an
is supported by the present results of the SHFA, is that in thelectric modulation witha=500 nm andV=20 meV. The Hall
real system the band and the scattering conductivities may ®mponents are reduced by a factor of 2. The numbers inside the
comparable in magnitude, such that their superposition iRlot indicate the filling factorsT=1 K andy=0.20.
oy, may lead to one to three peaks per Landau level, as
illustrated in Fig. 4. However, within our approximations, splitting and the band conductivity have been suppressed,
the price for the resolution of both the spin splitting and theand p,, have been obtained as resulting from Fi¢g) 4
VHS's is a relatively large band conductivity. In the example of Fig. 7 we consider the situation in

To our knowledge, a simultaneous measurement of botlwhich neither the spin splitting nor the vHS’s are resolved in
pxx andpy, , capable of indicating the real magnitude of thethe low-energy Landau bands, but the vHS’s develop in the
two components of the longitudinal conductivities, has beerhigher, overlapped bands. The SdH minima at filling factors
reported, at high magnetic fields, only for the short-periodaround 2 and 4 are slightly shifted to higher magnetic fields.
modulated system’é), and p,, has been found considerably The energy gaps are small, nearly vanishing, but the adjacent
larger tharp,,, but without a clear DOS structure. For short bands are separated due to the pinning effect. For weaker
periods, the Hartree screening becomes weaker, and the Lamagnetic fields, at even filling factors the vHS’s from the top
dau bands become wider, such that in principle we could®f the Landau band below the Fermi level overlaps with that
cover several situations, including those of Fig. 4, by varyingfrom the bottom of the upper band, resulting in the maxima
the modulation amplitude and the disorder paramgtéile  of oy, for =8 and 10 and in the minima for the odd filling
cannot extend our SHFA to that regime, because of théactorsy=7 and 9. The transition occurs aroung 6. Since
steepness of the energy dispersion which is not compatiblthe DOS decreases when the magnetic field is lowered, the
with the assumption about the quasihomogeneous screenisgreening becomes less efficient, and the bandwidth may in-
of the exchange interaction. Nevertheless, the results of therease when the Fermi level is in a band center, leading to a
HFA may be satisfactor§. large band conductivity, wherefrom the maximadgf, for

We want now to discuss the situation of an electric modu-v=7 and 9. The switching from even to odd filling factors at
lation with a larger amplitude, such that the Landau bandshe resistivity minima, which we show here only fo,
overlap. In the experiment by Weiss$ al.’ the double-peak (o), has been recently observed fgs and supported by a
structure of the resistivity,, has been found, while the ab- transport calculation similar to the present one, but with the
sence of the spin splitting for the unmodulated system mayoulomb interaction neglectéd.
be attributed to the combined disorder and thermal effects. Finally we want to mention that the plateaus we obtain for
We have recently confirmed such a possibility, within thethe Hall resistivity, Fig. ?), do not correspond to plateaus
SHFA, by choosing such a disorder parameter and temperaf the Hall conductivity, since localization effects do not
ture that both the exchange enhancement of the Zeemaaxist in our model, but to the wide minima of the longitudi-

Resistivity (h/e?)

By (M
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nal conductivities. In the noninteracting approximation, and APPENDIX A: HAMILTONIAN MATRIX ELEMENTS
also in the HFA, for a fixed number of particles, the Fermi . . B 2
level jumps abruptly from one Landau band to the other. In With the notationsz=(K1)/2 and
the SHFA the exchange interaction is very sensitive to the n’1\ 12 )
variation of D(Eg), and since they are self-consistently de- an,(z):(_l') Z(n—n’)lzefzIZLz/—ﬂ (2), (A1)
termined, the stability of the chemical potential in an energy n:

ap considerably improves. - ,
gap y imp where L' "(z) are the Laguerre polynomiaf,
n,n'=0,1,..., and,, =(—1)""""F,,, we can write the
matrix elements of the noninteracting Hamiltonian in the

We have calculated energy spectra of a two-dimensiondP™m

electron gas in an electric or magnetic superlattice, and in a

V. CONCLUSIONS AND FINAL REMARKS

perpendicular magnetic field, beyond the standard HFA. The 0 _ = i iﬂ _ g
superlattice potential is smooth and the uniform magneti(?-lnn/(a'x()) Onfrwg N5+ g7 Bo Onn 5 9180
field is strong, such that the electrostatic screening is very hw. B
important. The essential element of our approach is the in- 4| 2% _1[|: (2)+VNn'Fo 10 _1(2)
clusion of screening in the exchange term, self-consistently 2z By ™ e
with the DOS at the Fermi level. The numerical calculations —————

- (n+1)(n +1)Fn+1,n’+l(z)]

are complicated and time consuming, such that approxima-
tions in treating the screening are unavoidable: we have only
considered the static screening, in a manner appropriate to a +
guasihomogeneous system. Improvements of our procedure

g
V- EgIL"BBl> Frn(2)

are possible, e.g., along the lines of Refs. 32 and 33, but even T
within the present approach the results drastically change XCOS( KXo+ (n—n") 5)
with respect to the HFA. The obtained screening of the ex-
change interaction may be even somewhat too strong, since hog (B2
we found that our SHFA yields no charge-density-wave in- T8z (B_o Fan(42)
stability of the homogeneous 2DEG, even at very low filling
factors. iy
Using a large-amplitude modulation as a model for edge XCO{ 2KXo+(n—n") E)- (A2)

states, we have shown that our SHFA results interpolate be-

tween the contradictory Hartree and Hartree-Fock approxibue to the reflection symmetry of the external fields, we
mations: we obtained both compressible edge strips muchave the parity rule

wider than the magnetic length, and an enhanced spin split-

ting. To the best of our knowledge, this expected result has Hgn,(a,xo)=(—1)“‘”'H2n,(a,—xo), (A3)
never been obtained within a microscopic many-body theory .
before. which also holds for the Coulomb self-energy matrix ele-

For a weak modulation, the standard HFA yields strongMents, Eq.(2.9), which depend on the self-consistent wave
short-range oscillations of the Landau bands and the particlB/nctions given by Eq(2.4). In order to write those matrix
density, which to our knowledge have never been observeflléments in a form suitable for a numerical calculation, we
experimentally. Such oscillations completely disappear irffXPand the mixing coefficients in Fourier series,
our SHFA, and we believe that these present results are -
much more re_allst|c. Cl_early, we cannot expect a quantitative Conr (0, X0) = 2 Vnnf(U,IO)COE< pPKXo+(n—n') =|,
agreement with experiments since, besides the approxima- p=0 2
tions regarding the electron-electron interaction, we have (A4)
used a rather crude simplification of the electron-impurity
scattering in our transport calculation, such that the disordef’
vertex correction vanishes. However, qualitatively, we have
obtained smooth internal structures of the SdH peaks deter-
mined by the interplay of the scattering and band conductivi- Enox.= 2 €nop COSPK Xy, (A5)
ties, the ingredients of which have been carefully analyzed. o p=0
These smooth internal structures compare much more favozri—nd similarly the occupation numbers
ably with the experimental results than the sharp structures
near the Landau band edges obtained in the bare HFA.

here we have taken into account the parity rule.
The effective energies can thus be expanded as

V“"onpzo frop COSPKXo. (AB)
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With this notation, and using EqeA4) and(A6), the Fourier Landau wave functions, so tha@]lnz(a,p)z n1n,0p0: and
coefficients of the particle density can be written, by invert- (0).1428

) h h i I
ing Eq.(2.10, as the exchange integrals reduceSg

1N1.My Ny

APPENDIX B: VELOCITY MATRIX ELEMENTS

n— 2= Spo f The matrix elements of the noninteracting components of
P~ 16412 m=0g=+ 17P1 the velocity operators, E43.5), in the absence of a magnetic
p1=0 modulation, are
X E my—mg3,0m;—my,my—mg lo
~g  PP1P2P _ c
22’?3;00 1rers (Ug)nn’(xo)_naE(Vn+15n’,n+1+ 7h21\/nl+15n,n’+1)a
22P3=

(B1)
X szms( pzz) 7m1m2(0'a P2) ')’mlm3(0" p3). (A8) . . ) o
with the notation ,, 7y) = (i,1). When the magnetic field

has a periodic component in tRadirection, one has to add to
The matrix elements of the Hartree term, defined by EquO the extra term

(2.9 and(2.10), can now be put in the form

27e? n w.B -
3 eeH — PE (D2 cP1 . T
2 (Xg)= <Kl pé:l D Fon(P°2) KBy Fon (2)sinf KXg+(n—n") 2). (B2)
><cos< pKXo+(n—n’) ” , (A9) The matrix eIe_ments Qf the_ exchange current can be trans-
2 formed in Fourier series like those of the exchange-

interaction operator, as sketched in Appendix A. According
where we have used the Fourier transform of the Coulomio Ed. (3.6), the form of vy, (a,Xo) is similar to that of
potential. The corresponding Fourier series for the Fock terniﬁ‘;,F(a,Xo), with the replacementu(r—r')—(r—r’)
of the Hamiltonian, Eq.(2.11, can be found by directly xu(r—r’) in Eq. (2.9), and, after an integration by parts,
searching for the Fourier amplitudes, and, after a lengthy, bugith u(q)ﬁvqu(q) in Eq. (2.11), one obtains the following

straightforward calculation, one obtains Fourier expansion:
1 Vo (0, X0) = 2 (2= 68y0)
eeF <
S (0.X0) =~ T p;o (2= 8y0) 8v2h p=0

an
- Xsin pKXg+(n—n") 5
xcog pKXo+(n=n") > mZO fmyop,
1

p1=0
X 2 fmgop, 2
m;=0 my,m3=0
% my—mgz,0m; —m;,my —mg p1=0 P2,p3=0

my,M3=0 PP1P2P3

p2,p3=0 gslpTg?’Oml M2~ m3Tnm2,n’m3(pK|)
X Snmz,n/mS(pKl)')’mlmz(o'vp2) 'ymlmS(Ua Pa), X 'ymlmz(o'a D) 7m1m3(0'vp3)1 (B3)
(AL0) i which
whereS denotes the exchange integrals (T.) (t)
a’/mqnq,Myn,y
my!my,! | 2 2 o (mytmyt| T2 " du(qv2)

Smlnl'm2n2(t) ny!in,! f dqu(av2)e” ~ e nq{!ny! 0 q T
Xanm1+n27m2+1Jnl_ml_n2+m2(tq‘/§) Xe7qzanmﬁnrm2+1[‘]n1*m1*n2+m2*1(tqﬁ)
Xl M@l "), (A1D) = 7y my- gy (t0V2)]

with J,(x) the Bessel functions. For the homogeneous sys-

Ny—=mMy, 2y No—My, 2
tem the self-consistent wave functions are identical with the X Lm1 (q )Lmz (a%). (B4)
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