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Coulomb effects on the quantum transport of a two-dimensional electron system
in periodic electric and magnetic fields
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The magnetoresistivity tensor of an interacting two-dimensional electron system with a lateral and unidirec-
tional electric or magnetic modulation, in a perpendicular quantizing magnetic field, is calculated within the
Kubo formalism. The influence of the spin splitting of the Landau bands and of the density of states~DOS! on
the internal structure of the Shubnikov–de Haas oscillations is analyzed. The Coulomb electron-electron
interaction is responsible for strong screening and exchange effects and is taken into account in a screened
Hartree-Fock approximation, in which the exchange contribution is calculated self-consistently with the DOS
at the Fermi level. This approximation describes both the exchange enhancement of the spin splitting and the
formation of compressible edge strips, unlike the simpler Hartree and Hartree-Fock approximations, which
yield either one or the other.@S0163-1829~97!00740-6#
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I. INTRODUCTION

Modern techniques allow the fabrication of semicondu
tor heterostructures incorporating a two-dimensional elec
gas ~2DEG! and a lateral periodic electrostatic potent
~electric modulation! and/or a periodic magnetic field~mag-
netic modulation!. In the presence of an external, consta
and perpendicular magnetic field, the modulation lifts t
degeneracy of the Landau levels. The resulting Landau-b
structure determines various oscillations of the magnetore
tivities, which usually provide the only accessible inform
tion on the modulation strength.

There are at least three types of modulation effects on
magnetoresistivities. First, the Weiss commensurability
cillations in the quasiclassical regime of low magnetic fiel
both for the electric,1 and, more recently for the magnet
modulations,2,3 have attracted most of the experimental a
theoretical work.4,5 Second, the peculiar subband structu
generated by a two-dimensional superlattice, known as
Hofstadter butterfly, leads to another type of commensura
ity oscillations, inside the Shubnikov–de Haas~SdH! peaks,
their observation being currently the aim of importa
efforts.6 Third, at high magnetic fields, the profile of th
density of states~DOS! associated to the energy dispersi
of the Landau bands, together with the exchange-enhan
spin splitting, may also determine an internal structure of
SdH maxima. In the present paper we will discuss only t
last type of effects.

The experimental results have been obtained for the re
tivity rxx of GaAs-AlxGa12xAs interfaces with an electric
modulation in thex direction, i.e., of a one-dimensional cha
acter. The first investigation was performed on a modulat
created by holographic illumination.7 In the absence of the
modulation the spin splitting of the second Landau lev
with n51, could not be resolved in the magnetoresistivi
but with increasing the modulation amplitude, the evoluti
of a double-peak structure was observed, and it was at
560163-1829/97/56~15!/9707~12!/$10.00
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uted to the van Hove singularities~vHS’s! of the DOS.
Further experiments, on higher mobility samples mod

lated by etching techniques, have clearly shown the s
splitting. For a weak modulation, again, a double-peak a
also a more complicated triple-peak structure have been
tected in the spin-polarized SdH maxima ofrxx correspond-
ing to the bandn51.8 For a stronger modulation the spi
splitting vanishes, but the magnetoresistivityminimaat low
even filling factors change intomaximaat higher even filling
factors, simultaneously with the shift of the minima towar
the odd filling factors.9 This behavior has convincingly bee
explained by the cumulated effects of the overlapping vH
from adjacent Landau bands. In the experiments mentio
so far the modulation period has been in the range of 30
500 nm, and much larger than the magnetic length.

Another series of recent measurements has been
formed on modulated systems produced by growing on v
nal surfaces.10 This technique generates an electric modu
tion of a much shorter period, about 30 nm. The resistiv
rxx also displays a multipeak structure which may be rela
to the vHS’s. The anisotropy of the resistivity, as well as
abrupt onset of the spin splitting for a high magnetic fie
have been clearly shown.11

In all these experiments a detailed interpretation of
results is difficult, and still insufficiently clear. Beyond th
technological constrictions, the difficulties arise from t
complicated relationship between the DOS and the mag
toresistivities, and from the non-negligible electron-electr
interaction effects. Therefore, a transport calculation comb
ing on the same footing the electron-modulation, electr
electron, and electron-impurity interactions, and also ther
effects, is needed.

The anisotropy of the modulation may result in a hi
anisotropy of the conductivity tensor. The conductivitysxx
has a scattering component~inter-Landau-level!, which de-
pends quadratically on the DOS andvanishesin the absence
of the impurities. The conductivitysyy has an additional
9707 © 1997 The American Physical Society
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9708 56ANDREI MANOLESCU AND ROLF R. GERHARDTS
band component~intra-Landau-level!, determined by the dis
persion of the one-particle energies, whichdivergesfor weak
electron-impurity collision broadening.12 Therefore, in a
high-mobility system, the band conductivity may cover t
DOS effects insyy and in the related resistivityrxx .13

The Coulomb interaction also yields opposite effects. T
tendency of the electrostatic screening is to reduce the
ergy dispersion imposed by the modulation on the effec
single-particle states, and hence toincreasethe DOS. At the
same time, the exchange interaction lowers the energy o
occupied states, enhances the energy gaps, but also bro
the Landau bands,decreasingthe DOS. We have recentl
calculated the energy spectra14 and the resistivity tensor8 for
a modulated system, in the Hartree-Fock approximat
~HFA!, and we could explain the spin splitting observed
the magnetotransport experiments. However, other excha
effects have been overestimated in the standard HFA.

The main artifact in the HFA results has been the appe
ance of strong short-range charge-density oscillations in
presence of a weak external modulation of period mu
longer than the magnetic length, for any filling factor. T
reason is the competition of the Hartree interaction, o
repulsive character, with the Fock interaction, of an attrac
character, which in the presence of the modulation may
cite high charge-density harmonics.15 This is reminiscent of
the fact that the HFA predicts an instability of the homog
neous 2DEG against the formation of a charge-density w
for any filling factor,16 whereas experiments indicate an i
homogeneous ground state~Wigner crystal! only for very
low filling factors. Another consequence of the strong e
change energy is a strong exchange broadening of the
dau levels. A related implication is a substantial, qualitat
contradiction between the HFA and the results of
Hartree17,18 or Thomas-Fermi calculations19 of edge states
While the latter predict compressible edge strips much wi
than the magnetic length, but only the bare spin splitt
~which is negligible for GaAs!, the HFA gives considerably
narrower compressible edge channels, but a str
splitting.20–22,14However, the experimental confirmation o
wide edge channels23 suggests the domination of the electr
static effects.

In order to avoid, or at least to minimize, these artific
features of the HFA, our previous attempt to include t
Coulomb interaction in a magnetotransport calculation
modulated systems has been limited to short modula
periods.8 The steepness of the energy dispersion, on the m
netic length scale, can reduce the relative importance of
exchange interaction, such that the HFA may become qu
tatively reasonable.

In the present paper we want to extend our calculation
the situation when the modulation period is much longer th
the magnetic length. Therefore our efforts will be main
focussed on the electron-electron interaction. Some prel
nary results have already been reported.24 Our approach is
based on a screened HFA~SHFA!, in which we include the
influence of screening on the exchange interaction. Altho
we consider only static screening, this already leads to
desired reduction of the exchange effects and avoids the
tifacts of the bare HFA. The screening is mainly determin
by the DOS at the Fermi level.25 Therefore, when the latte
will be in an energy gap, the screening will be weak, su
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that the exchange enhancement of the Zeeman splitting
remain essentially like in the HFA. However, when th
Fermi level will intersect a Landau band, the exchange
fects will substantially diminish.

The Coulomb interaction is included in a transport calc
lation, within the standard Kubo formalism. For this purpo
we need to consider an electron-impurity scattering mec
nism. We will describe it within a self-consistent Born a
proximation~SCBA!.

The realization of a magnetic modulation with a period
a few hundred nanometers, and a large amplitude, of
order of 1 T is technically feasible.26 In the presence of a
constant external magnetic field such a modulation will p
duce Landau bands and a charge-density response. H
screening and exchange effects will occur, as for an elec
modulation. Even in the absence of relevant magetotrans
measurements, we will include in our calculation such a
riodic magnetic field. For simplicity we will discuss only th
case when the modulation, electric or magnetic, is unidir
tional and sinusoidal.

The paper is organized as follows. In Sec. II we derive
self-consistent equations of the SHFA which give us
ground state of the system. Then, in Sec. III, we discuss
impurity scattering and the conductivity tensor. The nume
cal results of the transport calculation are presented in S
IV, and the conclusions are collected in Sec. V. Some te
nical details are given in two Appendixes.

II. SCREENED HARTREE-FOCK APPROXIMATION

We combine the influence of the electron-electron and
electron-impurity interactions on the single-particle states
the modulated 2DEG with the help of the average Gre
function, having the operatorial definition

G~E![^Ĝ2~E!& imp5
1

E2@H01See1Sei~E!#
, ~2.1!

with the following notations:̂ •••& imp stands for the averag
over all the impurity configurations; Ĝ6(E)
5(E2H6 i01)21, with H a generic one-body Hamiltonia
of the interacting 2DEG with impurities;H0 is the Hamil-
tonian of the noninteracting 2DEG without impurities;See

and Sei are the self-energy operators determined by
electron-electron and electron-impurity interactions, resp
tively.

In our case the noninteracting Hamiltonian has the for

H05
1

2m* @p1eA~r !#21V cosKx2
s

2
gmBB~x!.

~2.2!

The electrons are located in the plane$r5(x,y)%. B(x) is
the projection of the magnetic field along thez axis, and it
may have a periodic component,B(x)5B01B1 cosKx,
similar to the periodic electrostatic potentialV(x)
5V cosKx. We choose the vector potential in the Land
gauge, as imposed by the symmetry of our system,

A~r !5S 0,B0x1
B1

K
sin KxD . ~2.3!
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56 9709COULOMB EFFECTS ON THE QUANTUM TRANSPORT OF . . .
We have also included inH0 the Zeeman term, wheres51
for spin-up ands52 for spin-down states,g is the bare,
band structureg factor, andmB the Bohr magneton.

We use the eigenfunctions ofH0 corresponding to the
unmodulated system, i.e., forB150 andV50, as the basis
for the one-particle Hilbert space. These functions are
well-known Landau wave functions, f nX0

(x,y)

5Ly
21/2 exp(2iX0y/l2)fnX0

(x), where f nX0
(x) are the one-

dimensional harmonic-oscillator wave functions, wi
n50,1, . . . , centered at the positionX0 , called the center
coordinate. Herel is the magnetic length, and we will deno
by vc the cyclotron frequency, both corresponding to t
uniform component of the magnetic fieldB0 , l 5(\/eB0)1/2

andvc5eB0 /m* . In order to simplify the notations we kee
the same symbol for the two-variable wave function wh
depends on both spatial coordinatesx andy, e.g.,f nX0

(x,y),

and for the reduced wave function depending only onx,
f nX0

(x). The distinction will be made by the number of var
ables specified inside the brackets. The plane-wave fa
has been normalized to the macroscopic lengthLy . The ma-
trix elements ofH0 are given in Appendix A.

We will assume randomly distributed impurities, such th
the modulated system is invariant to translations along thy
axis. Consequently, the dependence ony of the interacting,
effective, one-particle wave functions, also factorizes in
simple plane wave. For these wave functions we use
notation cnsX0

(x,y)5Ly
21/2 exp(2iX0y/l2)cnsX0

(x), and we
expand them in the Landau basis,

cnsX0
~x!5(

n8
cnn8~s,X0! f n8X0

~x!. ~2.4!

For the interacting, unmodulated system, we ha
cnn8(s,X0)5dnn8 , and the dependence on the spin lab
arises as long as the exchange interaction and an ext
modulation are simultaneously present. The periodic fie
broaden the degenerate Landau levelsEns into energy bands
EnsX0

, which we find by solving the eigenvalue problem

~H01See!cnsX0
~x,y!5EnsX0

cnsX0
~x,y!. ~2.5!

The averaged effect of the impurities consists in
spreading of the effective single-particle energies around
energy spectrum given by Eq.~2.5!, and thus in an additiona
energy broadening. The statistical weight of an arbitrary
ergy E is given by the spectral function,

rnsX0
~E!5

1

p
Im^cnsX0

uG~E!ucnsX0
&, ~2.6!

and the contribution of the effective state (nsX0) to the
filling factor n can be defined as

nnsX0
5E dErnsX0

~E!F~E!, ~2.7!

F(E)5@exp(E2m)/T11#21 being the Fermi function, withm
the chemical potential andT the temperature, such that

n5(
ns

E
0

a dX0

a
nnsX0

. ~2.8!
e

or

t
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e

e
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We will discuss the electron-impurity interaction model
Sec. III. Clearly, in the absence of the impuritie
rnsX0

(E)[d(E2EnsX0
).

For calculating the electron-electron self-energy we s
with the form given by the HFA.27,28 In the Landau basis the
matrix elementsSnsX0 ,n8s8X

08
ee

do not mix the spin and the

center-coordinate quantum numbers, and can be written

Snn8
ee

~s,X0!5 (
mtY0

nmtY0
E

3dr dr 8 f nX0
* ~x,y!cmtY0

* ~x8,y8!u~r2r 8!

3@ f n8X0
~x,y!cmtY0

~x8,y8!

2dst f n8X0
~x8,y8!cmtY0

~x,y!#

[Snn8
ee,H

~X0!1Snn8
ee,F

~s,X0!, ~2.9!

whereu(r )5e2/(kur u) is the Coulomb potential withk the
dielectric constant of the semiconductor background. T
two terms in the square brackets of Eq.~2.9! define the Har-
tree~direct! and the Fock~exchange! contributions, indicated
by the superscriptsH andF. The Hartree term can be rewrit
ten in terms of the particle density,

n~x!5 (
mtY0

nmtY0
ucmtY0

~x!u25 (
p>0

np cospKx,

~2.10!

the last form being the Fourier expansion appropriate to
external fields. The Fourier coefficients of the Hartree se
energy are given in Appendix A.

Using Eq.~2.4! and the Fourier transform of the Coulom
potential, ũ(q)52pe2/(kuqu), the Fock self-energy be
comes

Snn8
ee,F

~s,X0!52(
mY0

nmsY0 (
m1m2

cmm1
~s,Y0!cmm2

~s,Y0!

3E dq

~2p!2 ũ~q!^ f nX0
ueiqru f m1Y0

&

3^ f m2Y0
ue2 iqru f n8X0

&. ~2.11!

The Fourier expansion ofSnn8
ee,F(s,X0) is also given in Ap-

pendix A.
In order to overcome the artifacts of the HFA mention

in Sec. I, we screen the Coulomb potential in the excha
self-energy, substitutingũ(q) in Eq. ~2.11! by

ũ~q!5
e2

k

2p

qe~q!
, ~2.12!

wheree(q) is thestatic dielectric function. We thus neglec
the dynamic screening effects. In the spirit of the rando
phase approximation,e(q)512 (2pe2/kq) x(q), x(q) be-
ing the dielectric susceptibility given by the well-know
Lindhard formula,27 to be evaluated self-consistently wit
the effective states resulting from Eq.~2.5!. In the diagram-
matic picture, Fig. 1, that means the series of the polariza
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9710 56ANDREI MANOLESCU AND ROLF R. GERHARDTS
loops—previously contained only in the Hartree part
See—is now included, via Eq.~2.12!, also in the Fock part.

For a two-dimensional system in a perpendicular m
netic field, one can identify two components of the sta
dielectric susceptibility,

x~q!5x1~q!1x2~q!, ~2.13!

corresponding to theintra- and to the inter-Landau-level
transitions, respectively.29 In other words,x1(q) describes
the electrostatic response due to the electron redistribu
around the Fermi level, under the action of an electric fi
of an arbitrary wave vectorq, while x2(q) gives the re-
sponse due to the distortion of the effective wave functio

For x1 we use the expression derived forhomogeneous
systems by Labbe´,30 which we average over the Brillouin
zone determined by the external electric or magnetic mo
lation:

x1~q!5
21

2p l 2 (
ns

E
0

a dX0

a

]nnsX0

]m FFnnS ~ql !2

2 D G2

,

~2.14!

where we have used Eq.~A1!. We expect that this approxi
mation is appropriate for weakly modulated systems cha
terized bylV!a\vc , or lB1!aB0 . Within the same pro-
cedure we evaluatex2 as29

x2~q!5
1

2p l 2 (
nÞn8

FFnn8S ~ql !2

2 D G2

3(
s

E
0

a dX0

a

nnsX0
2nn8sX0

EnsX0
2En8sX0

. ~2.15!

For a sufficiently high magnetic fieldB0 , that is for suffi-
ciently large energy gapsEn11,sX0

2EnsX0
, and for a small

q, x2(q) is typically negligible with respect tox1(q), except
eventually when there are very few states at the Fermi le
such thatx1(q) is vanishingly small. Since for our wea
modulations, in the limitq→0, x1(q) becomes proportiona
to the thermodynamic DOS, i.e.,]n/]m, we can say the
screening of the exchange interaction is dominated by
intra-Landau-level transitions, which at low temperatures
determined by the DOS at the Fermi level.

FIG. 1. Diagrammatic representation of the combined scree
Hartree-Fock and self-consistent Born approximations. The w
lines are the Coulomb interaction and the dashed line is
electron-impurity interaction.
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This SHFA has been used in the papers by Ando, O
kawa, and Uemura for explaining the exchange enhancem
of the Zeeman31 and of the valley splitting32 in homogeneous
Si metal-oxide-semiconductor systems. Further impro
ments have incorporated the dynamic screening, within
plasmon-pole approximation, and the Coulomb-hole corre
tion effects, for the calculation of the photoluminescence
ergy in n-doped GaAs quantum wells.33,34 Nevertheless, in
order to keep the consistent treatment of ground-state
transport properties tractable, we will neglect such additio
corrections in the study of the modulated systems. In part
lar, even without dynamic screening effects, our results
the self-energy for a homogeneous 2DEG in
GaAs-AlxGa12xAs interface are qualitatively similar to thos
shown in Refs. 33 and 34. In Fig. 2 we compare the first fi
spin splitted Landau levels vs magnetic field, i.e., the Land
fan, in the standard~bare! HFA with the results given by the
SHFA. The material parameters arem* 50.067m0 , g50.4,
and k512.7, and the carrier concentration is chosen s
that nB0510 T, n being the filling factor. Both the Landau
and the spin gaps are enhanced by the exchange interac
but in the SHFA the Fock self-energy is strongly depend
on the DOS at the Fermi level,D(EF). Thus the exchange
interaction is screened for a highD(EF), i.e., for noninteger
filling factors, but it may become very large for an integ
filling. Since the exchange interaction is negative, the scre
ing mechanism leads to the deep cusps in Fig. 2~b!, also
present in the dynamic-screening calculations.33,34 As in the
HFA, the largest energy gaps occur for integer filling facto

d
y
e

FIG. 2. The Landau fan~a! in the HFA and~b! in the SHFA for
a homogeneous GaAs system. The dashed line shows the che
potential. The temperatureT51 K.
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The thermal energy is much smaller than the energy g
and no disorder broadening is assumed. Therefore the ga
integer filling factors in Fig. 2~b! are smaller than those i
Fig. 2~a!, only because of the screening involved by the
sponse of the wave functions, described byx2 .

We believe that the energy spectra, which we obtain
within the SHFA for the modulated system, are much i
proved with respect to those in the HFA. In Fig. 3~a! we
show the SHFA of the Landau bands generated by an ele
modulation of a period much larger than the magnetic leng
The Zeeman splitting is enhanced in the states around
Fermi energy, with replica in each of the upper and low
Landau bands, as in the HFA.14 The improvement consists i
the recovering of the pinning effect, resulting from electr
static screening,25 on the spin-split energy bands near t
Fermi level. The pinning effect defines both compressi
~dispersionless! and spin-polarized strips. In the HFA, for th
modulation parameters of Fig. 3~a!, strong short-range oscil
lations of the effective energies and of the charge dens
with typical periods of 3 – 5l , would occur. Those oscilla
tions would disappear only if the energy dispersion impo
by the external modulation would dominate the interact
effects, i.e., for a sufficiently short modulation period and
for a sufficiently large modulation amplitude.14 In suffi-
ciently strong modulation or steep confinement potentials

FIG. 3. Compressible and incompressible strips in the SH
for ~a! an electric modulation havinga51000 nm and
V5200 meV withB056 T, and~b! a magnetic modulation having
a5500 nm andB151.2 T andB054 T. The Fermi level is indi-
cated by the horizontal dashed line.T51 K.
s,
at
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d
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ric
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e
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d
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e

exchange enhancement of spin splitting is suppressed. W
decreasing slope of the potential, the enhancement reco
suddenly, and a large spin splitting of the Landau bands
curs nearly symmetrically with respect to the Fermi ene
in such a manner, that both spin polarized bands touch
Fermi energy with large dispersions. Thus the compress
strips obtained in the Hartree approximation are destroye
the bare HFA and replaced with spin-polarized incompre
ible strips. This spin polarization of the edge states may
cur spontaneously even if the bareg factor vanishes, and ha
been discussed as a type of phase transition.20–22We believe
that the occurrence of this spontaneous spin polarizatio
an artifact of the unscreened HFA, since our SHFA yields~as
long asa@ l ! only a very smooth and gradual reduction
the spin splitting with increasing modulation strength, w
compressible spin-polarized strips~energies pinned to the
Fermi energy! instead of incompressible ones.

In Fig. 3~b! we transpose the results shown in Fig. 3~a! for
a magnetic modulation. In this case the Hartree~direct!
screening is weaker, due to the weaker, purely quant
mechanical, coupling of the charge density to the nonu
form magnetic field, and consequently the pinning effec
less pronounced in Fig. 3~b!. The peculiar Hartree respons
to a nonuniform magnetic field, which becomes negligible
the classical limit ~cyclotron radius at the Fermi energ
larger than the modulation period! will be discussed in detai
elsewhere.35 In the present paper we restrict ourselves to
strong uniform componentB0 , such that the electrostatic an
the exchange effects due to the periodic component are s
lar to those due to the electric modulation.

III. CONDUCTIVITIES

In order to calculate conductivities we have to consid
the electron-impurity interaction. For randomly distribute
impurities, the self-energySei is diagonal with respect toX0 ,
and obviously also with respect tos. Since we are mostly
interested in the effects due to the electron-electron inte
tion, we simplify the calculation ofSei by employing the
phenomenological ansatz in which one ignores the dep
dence of its matrix elements on the Landau quantum num
n and on the center coordinateX0 , that is
SnsX0 ,n8sX0

ei (E)'Ss
ei(E)dnn8 . In the SCBA, Fig. 1, we need

to solve the equation13

Ss
ei~E!5G2(

n
E

0

a dX0

a
GnsX0

~E!

5G2(
n
E

0

a dX0

a

1

E2EnsX0
2Ss

ei~E!
. ~3.1!

We also take a simple parametrization of the electr
impurity interaction energy,G5gAB(T) (meV). Using Eq.
~3.1! the DOS can be written in the form

D~E!5
\vc

pG2 D0(
s

Im Ss
ei~E!, ~3.2!

whereD05m* /2p\2 is the DOS per spin level for the ho
mogeneous system without magnetic field.

,
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9712 56ANDREI MANOLESCU AND ROLF R. GERHARDTS
The standard Kubo formula for the conductivity tens
can be written as

sab~v!5eE
0

`

dt
eivt21

\v
e2«t

3Tr^F~H !@ ṙ b ,e~ i /\! Ht j ae2 ~ i /\! Ht#& imp ,

~3.3!

where a,b5x,y, r a[a, and «→01. The operatorṙ is
given by

ṙ5
i

\
@H,r #[v01vex, ~3.4!

wherev0 is the usual form of the velocity operator, resultin
from the commutator of the noninteracting HamiltonianH0,
with the position

v05
1

m* @p1eA~r !#. ~3.5!

All the other terms of the full HamiltonianH commute with
r except the Fock self-energy, due to its nonlocal charac
According to Eqs.~2.9! and ~2.10!, the Coulomb interaction
gives an exchange contribution to the velocity operator of
form

vex5
i

\
@See,F,r #. ~3.6!

The matrix elements of the velocity operators~3.5! and~3.6!,
in the Landau basis, can be found in Appendix B. For
current-density operator we adopt the definition

j52
e

LxLy
ṙ , ~3.7!

and we will call the term corresponding to Eq.~3.6! the
‘‘exchange current.’’ After a straightforward manipulatio
the Kubo formula can be put into the form

sab~v!5
1

iv
@lab~v!2lab~0!#, ~3.8!

with

lab~v!

5
2e2

LxLy
E

2`

`

dEF~E!Tr$^d~E2H ! ṙ aĜ1~E1\v! ṙ b& imp

1^ ṙ bĜ2~E2\v! ṙ ad~E2H !& imp%. ~3.9!

Of courseṙ depends on the impurity configuration, via th
exchange contribution. However, since in the following w
will restrict ourselves to a weak disorder, the dependenc
Eq. ~3.6! on the disorder broadening will be negligibl
Therefore we neglect the impurity effects onṙ in Eq. ~3.9!.
Then, making use of the formal relatio
d(E2H)5@Ĝ2(E)2Ĝ1(E)#/2p i , we find that, in the
static limit, v→0, we have to average combinations lik
^Ĝ6(E) ṙ aĜ6(E)& imp . The result can be written as
r

r.

e

e

of

^Ĝ6~E! ṙ aĜ6~E!& imp52
e

LxLy
^Ĝ6~E!& imp

3S ṙ a1
i

\
@Sei~E!,r a# D

3^Ĝ6~E!& imp , ~3.10!

where we have used a Ward identity to express the cur
vertex correction due to the impurities with the help of t
corresponding self-energy operator.36 Since we have as
sumedSei(E) to be a trivial~spin-dependent! c number, the
impurity vertex correction vanishes. But we see that the C
lombian vertex correction is automatically included in E
~3.10! via the exchange current.

The Hall conductivity can now be written as13

sxy52syx

5
\e2

ip2l 2 E
2`

`

d EF~E!E
0

a dX0

a (
nn8s

^cnsX0
uẋucn8sX0

&

3^cn8sX0
u ẏucnsX0

&Im GnsX0
~E!Re

d

dE
Gn8sX0

~E!.

~3.11!

Since we treat the disorder in the SCBA, we cannot cons
localization effects, and hence we cannot expect real H
plateaus. Moreover, if the disorder broadening of the Lan
levels is much smaller than the energy bands, Eq.~3.11! can
be well approximated by the limit of a vanishing electro
impurity interaction,g→0. In this limit sxy takes the more
familiar form

sxy5
i\e2

p l 2 E
0

a dX0

a (
nÞn8,s

F~EnsX0
!

3
^cnsX0

uẋucn8sX0
&^cn8sX0

u ẏucnsX0
&

~EnsX0
2En8sX0

!2 , ~3.12!

in which the energy gaps are explicitly evidenced.
It is instructive to mention that, neglecting the exchan

current, one obtains deviations from the well-known qua
tized valuessxy5(e2/h)3(integer), for an integer filling
factor. Let us consider the simplest case, with no exter
modulation. In the absence of the Coulomb interaction
energy gaps are determined by the cyclotron energy.
cyclotron frequency squared, in the denominator of E
~3.12!, is compensated for by the cyclotron frequencies
troduced in the numerator by the velocity matrix elemen
Eq. ~B1!, and for a sufficiently low temperature one obtai
the simple Drude formulasxy5(e2/h)n. When the Coulomb
interaction is present, the energy gaps are enhanced, b
similar enhancement occurs in the numerator, determined
the exchange term of the velocities, Eqs.~3.6! and~B3!, and
the Drude formula remains valid. Obviously, when the e
change interaction is screened, the exchange currents ma
small. In our calculations, for the modulated systems, th
contribution to the conductivities have been of the order 3
50 % in the HFA,8 but of no more than 10% in the prese
SHFA.
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The longitudinal conductivities can be transformed fro
Eqs.~3.8!–~3.9! to

saa5E dES 2
dF
dEDsaa~E!,

~3.13!

saa~E!5
\e2

l 2p2 E
0

a dX0

a (
nn8s

u^cnsX0
u ṙ aucn8sX0

&u2

3Im GnsX0
~E!Im Gn8sX0

~E!.

The relation between the longitudinal conductivities a
the DOS is complicated. Both the diagonal conductivit
sxx and syy have interlevel components, corresponding
nÞn8 in Eq. ~3.13!, also known asscatteringconductivities.
One can show, by inspecting Eq.~3.13!, that for a weak
disorder,g→0, the scattering conductivities become prop
tional to @GD(EF)#2. Hence they qualitatively reproduce th
DOS profile, with van Hove singularities corresponding
the edges of the one-dimensional Landau bands.

Due to the anisotropy of the system, an intralevel com
nent of Eq.~3.13!, with n5n8, is nonzero forsyy only. It is
called band conductivity,12,13 being directly related to the
dispersion of the Landau bands which yields equilibriu
Hall currents. If the Hamiltonian is a local operator, t
Hellman-Feynman theorem leads to

dEnsX0

dX0
52mvc^cnsX0

u ẏucnsX0
&, ~3.14!

which is no longer valid when the exchange interaction
considered. However, if the latter is screened, the deviat
from Eq.~3.14! are not very important, and the band condu
tivity can still be understood in terms of the energy disp
sion. Classically, it corresponds to the quasifree drift of
centers of the cyclotron orbits along they axis, parallel to the
periodic electric field. Thus the band conductivity behav
contrary to the scattering components: It vanishes at the b
edges, has maxima at the band centers, anddivergesfor a
small disorder, likeg22, becoming the dominant contribu
tion to syy .

The structure of the longitudinal conductivitie
sxx(E)5sxx

scattering(E) and syy(E)5syy
scattering(E)1syy

band(E),
for an isolated, sinusoidal Landau band are qualitatively d
played in Fig. 4. In our calculations the two scattering co
ductivities are nearly equal. In Fig. 4~a! we assume a sma
band conductivity, such that bothsxx andsyy show the two
van Hove peaks. Reducing the disorder broadening the s
tering components decrease, but at the same time the
conductivity increases, and a triple-peak structure evolve
syy , Fig. 4~b!, while the shape ofsxx remains unchanged
For an even smaller disordersyy becomes dominated by th
band conductivity, the central peak covering the vHS, like
Fig. 4~c!.

IV. DISCUSSION OF THE NUMERICAL RESULTS

We perform the calculations of the effective electron
states within a numerical iterative scheme, starting from
noninteracting solution, and assuming a fixed number of p
ticles for determining the chemical potential. At each step
s

-

-

s
ns
-
-
e

s
nd

-
-

at-
nd
in

e
r-
e

diagonalize the Hamiltonian matrix, Eqs.~A2!, ~A9!, and
~A10!, in L points of the half Brillouin zone, 0<X0<p/K,
and then we compute the firstL Fourier harmonics for Eqs
~A4! and~A5!. We have takenL in the range 10–40, and w
have mixed 5–10 Landau levels. Then, we use Eqs.~3.12!
and ~3.13! to calculate the conductivity tensor.

In order to resolve both the van Hove peaks in the mo
lated system and the spin splitting of the Landau bands,
need a very small disorder parameter. In Fig. 5 we show
magnetoconductivity tensor for a magnetic fieldB0 varied
such that the Fermi level traverses the Landau bands
n51 and 2. In Fig. 5~a! we consider a pure electric modu
lation of amplitudeV515 meV and perioda5500 nm. For
a better understanding of the conductivity oscillations, th
qualitatively different energy-band structures are indicated
Fig. 6, in a half Brillouin zone. The bands corresponding
opposite spin directions are separated for filling factors
low 4, i.e., forB0.2.5 T, due to the exchange enhanceme
and they partially overlap for higher filling factors.

For the electric modulation the energy dispersion
strongly dependent onD(EF), due to the strong screenin
contained both inSee,H and inSee,F. All the Landau bands
shrink whenever a band is intersected by the Fermi le
Therefore a full spin splitting—i.e., nonoverlapping ban
with the samen, but with different spin directions—can re
sult even for a modulation amplitude much larger than\vc .

FIG. 4. Three possible profiles of the magnetoconductivity c
responding to a sinusoidal-like isolated Landau band. The full li
showsyy , the dashed lines show bothsxx and the scattering com
ponent ofsyy , and the dotted lines show the band conductivity.
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Due to the small bandwidth, and also due to the pinn
of the band edges to the Fermi level, the resolution of
vHS peaks requires a very small disorder broadening.
our parameters the vHS’s can be distinguished insxx , Fig.
5, and their resolution even improves with decreasing m
netic field. The reason is the increase of the exchange in
action, self-consistently with the reduction of the DO
D(EF) decreases, the screening diminishes, and the
change broadening is larger. Nevertheless, the screening
again increase for overlapping bands, like in Fig. 6~c!. In that
case two bands contribute to the pinning effect, and there
the resolution of the vHS’s in the states~2,1,0! and
(2,2,p/K), which yield the two maxima ofsxx in Fig. 5~a!
for 1.9 T,B0,2.1 T, is poorer than in the states (2,1,p/K)
and ~2,2,0!, that is for 2.4 T,B0,2.5 T and
1.6 T,B0,1.7 T, respectively.

While the scattering component ofsyy is nearly identical
to sxx , the very small disorder parameter makes the b
conductivity large. In Fig. 5~a!, syy is thus in the situation
depicted in Fig. 4~c!, with the vHS profile hidden by the
band-conductivity single peak. Decreasing the magn
field, due to the stronger energy dispersion the band con

FIG. 5. The conductivity tensor calculated for~a! an electric
modulation with a5500 nm andV515 meV, ~b! a magnetic
modulation witha5500 nm andB150.25 T, and~c! the resistivi-
ties corresponding to~a!. The xx components are magnified by
factor of 2. The temperatureT51 K and the disorder paramete
g50.06.
g
e
or

g-
r-

:
x-
ay

re

d

ic
c-

tivity further increases, contrary to the scattering term, wh
becomes negligible. For the overlapping bands of Fig. 6~c!,
the minimum ofsyy at B052 T corresponds to the stronge
screening, i.e., to the highestD(EF).

In Fig. 5~b! we show similar results obtained for a pure
magnetic modulation which produces Landau bands equ
lent to those of Fig. 6. We have chosenB150.25 T, the
other parameters of the calculation being the same as t
for Fig. 5~a!. There are two, but unessential differences w
respect to the electric modulation of Fig. 5~a!. First, the en-
ergy dispersion increases with increasing Landau quan
number n. In a crude approximation, i.e., neglecting th
Coulombian effects, as long asKl !1 the energy bands ar
determined by the local cyclotron energy,EnsX0

5(\e/m* )

3(B01B1 cosKX0)(n11
2). Second, as mentioned at the en

of Sec. II, the Hartree~direct! screening is weaker than in th
electric case, and hence the strength of the exchange
respect to the Hartree interaction may increase to some
tent. Going through Fig. 5~b! from high to low values of the
constant fieldB0 , the increase of the energy dispersion at t
Fermi level due to the increase of the quantum numbern is
thus amplified by the exchange broadening. For filling fa
tors higher than 4, four Landau bands overlap, i.e., th
with n52 and 3. The order of the vHS’s observed insxx ,
for B0,2.5 T is (2,1,p/K) (B052.48 T), (2,2,p/K)
(B052.10 T), ~2,1,0! (B051.84 T), and (3,1,p/K)
(B051.72 T). The small scattering conductivitysxx for
2.15 T,B,2.40 T also reflects a strong energy dispersi
Additionally, the screening-exchange balance may gene
weak DOS fluctuations near the band edges,8 which can be

FIG. 6. Three energy spectra corresponding to Fig. 5~a!.
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seen as the shoulders of the band conductivity~via the Green
function squared in the Kubo formula!, in syy for
2.0 T,B0,2.5 T. For lower magnetic fields, whenD(EF)
increases due to the overlapping bands, the exchange e
are again small, and the maxima of the scattering conduc
ity corresponds to the minima of the band conductivity, a
vice versa.

For comparison with experiment we need to invert t
conductivity tensor into resistivities,

rxx5
syy

D , ryy5
sxx

D , rxy5
syx

D , ~4.1!

whereD5sxxsyy1sxy
2 . In our calculationssxxsyy!sxy

2 ,
and hence we haverxx,yy'syy,xx /sxy

2 . In Fig. 5~c! we see
that the resistivity measured perpendicular to the modula
reflects in fact the band conductivity, while the scatteri
conductivity alone can be observed only in the resistiv
measured parallel to the modulation.

In the experiments on the systems with an etched elec
modulation, of parameters comparable to our model, m
complicated structures of the resistivityrxx have been
observed.8 The SdH maxima corresponding to a certain s
direction may show two and even three internal peaks. O
possible explanation could consist in the more complica
exchange effects on the band conductivity, like the should
we have found for the magnetic modulation, Fig. 5~b!. We
have also obtained such effects for an electric modulat
with a shorter period,a5100 nm, when the screening
considerably reduced.8 Another possible explanation, whic
is supported by the present results of the SHFA, is that in
real system the band and the scattering conductivities ma
comparable in magnitude, such that their superposition
syy may lead to one to three peaks per Landau level,
illustrated in Fig. 4. However, within our approximation
the price for the resolution of both the spin splitting and t
vHS’s is a relatively large band conductivity.

To our knowledge, a simultaneous measurement of b
rxx andryy , capable of indicating the real magnitude of t
two components of the longitudinal conductivities, has be
reported, at high magnetic fields, only for the short-per
modulated systems,10 and rxx has been found considerab
larger thanryy , but without a clear DOS structure. For sho
periods, the Hartree screening becomes weaker, and the
dau bands become wider, such that in principle we co
cover several situations, including those of Fig. 4, by vary
the modulation amplitude and the disorder parameterg. We
cannot extend our SHFA to that regime, because of
steepness of the energy dispersion which is not compa
with the assumption about the quasihomogeneous scree
of the exchange interaction. Nevertheless, the results of
HFA may be satisfactory.8

We want now to discuss the situation of an electric mo
lation with a larger amplitude, such that the Landau ba
overlap. In the experiment by Weisset al.,7 the double-peak
structure of the resistivityrxx has been found, while the ab
sence of the spin splitting for the unmodulated system m
be attributed to the combined disorder and thermal effe
We have recently confirmed such a possibility, within t
SHFA, by choosing such a disorder parameter and temp
ture that both the exchange enhancement of the Zee
cts
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splitting and the band conductivity have been suppress
andrxx have been obtained as resulting from Fig. 4~a!.24

In the example of Fig. 7 we consider the situation
which neither the spin splitting nor the vHS’s are resolved
the low-energy Landau bands, but the vHS’s develop in
higher, overlapped bands. The SdH minima at filling fact
around 2 and 4 are slightly shifted to higher magnetic fiel
The energy gaps are small, nearly vanishing, but the adja
bands are separated due to the pinning effect. For we
magnetic fields, at even filling factors the vHS’s from the t
of the Landau band below the Fermi level overlaps with t
from the bottom of the upper band, resulting in the maxim
of sxx for n58 and 10 and in the minima for the odd fillin
factorsn57 and 9. The transition occurs aroundn56. Since
the DOS decreases when the magnetic field is lowered,
screening becomes less efficient, and the bandwidth may
crease when the Fermi level is in a band center, leading
large band conductivity, wherefrom the maxima ofsyy for
n57 and 9. The switching from even to odd filling factors
the resistivity minima, which we show here only forryy
(sxx), has been recently observed forrxx and supported by a
transport calculation similar to the present one, but with
Coulomb interaction neglected.9

Finally we want to mention that the plateaus we obtain
the Hall resistivity, Fig. 7~b!, do not correspond to plateau
of the Hall conductivity, since localization effects do n
exist in our model, but to the wide minima of the longitud

FIG. 7. ~a! The conductivities and~b! the resistivities, for an
electric modulation witha5500 nm andV520 meV. The Hall
components are reduced by a factor of 2. The numbers inside
plot indicate the filling factors.T51 K andg50.20.
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9716 56ANDREI MANOLESCU AND ROLF R. GERHARDTS
nal conductivities. In the noninteracting approximation, a
also in the HFA, for a fixed number of particles, the Fer
level jumps abruptly from one Landau band to the other.
the SHFA the exchange interaction is very sensitive to
variation ofD(EF), and since they are self-consistently d
termined, the stability of the chemical potential in an ene
gap considerably improves.

V. CONCLUSIONS AND FINAL REMARKS

We have calculated energy spectra of a two-dimensio
electron gas in an electric or magnetic superlattice, and
perpendicular magnetic field, beyond the standard HFA.
superlattice potential is smooth and the uniform magn
field is strong, such that the electrostatic screening is v
important. The essential element of our approach is the
clusion of screening in the exchange term, self-consiste
with the DOS at the Fermi level. The numerical calculatio
are complicated and time consuming, such that approxi
tions in treating the screening are unavoidable: we have o
considered the static screening, in a manner appropriate
quasihomogeneous system. Improvements of our proce
are possible, e.g., along the lines of Refs. 32 and 33, but e
within the present approach the results drastically cha
with respect to the HFA. The obtained screening of the
change interaction may be even somewhat too strong, s
we found that our SHFA yields no charge-density-wave
stability of the homogeneous 2DEG, even at very low filli
factors.

Using a large-amplitude modulation as a model for ed
states, we have shown that our SHFA results interpolate
tween the contradictory Hartree and Hartree-Fock appr
mations: we obtained both compressible edge strips m
wider than the magnetic length, and an enhanced spin s
ting. To the best of our knowledge, this expected result
never been obtained within a microscopic many-body the
before.

For a weak modulation, the standard HFA yields stro
short-range oscillations of the Landau bands and the par
density, which to our knowledge have never been obser
experimentally. Such oscillations completely disappear
our SHFA, and we believe that these present results
much more realistic. Clearly, we cannot expect a quantita
agreement with experiments since, besides the approx
tions regarding the electron-electron interaction, we h
used a rather crude simplification of the electron-impur
scattering in our transport calculation, such that the disor
vertex correction vanishes. However, qualitatively, we ha
obtained smooth internal structures of the SdH peaks de
mined by the interplay of the scattering and band conduct
ties, the ingredients of which have been carefully analyz
These smooth internal structures compare much more fa
ably with the experimental results than the sharp structu
near the Landau band edges obtained in the bare HFA.8
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APPENDIX A: HAMILTONIAN MATRIX ELEMENTS

With the notationsz5(Kl )2/2 and

Fnn8~z!5S n8!

n! D 1/2

z~n2n8!/2e2z/2Ln8
n2n8~z!, ~A1!

where Ln8
n2n8(z) are the Laguerre polynomials,37

n,n850,1, . . . , andFnn85(21)n2n8Fn8n , we can write the
matrix elements of the noninteracting Hamiltonian in t
form

Hnn8
0

~s,X0!5dnn8\vcFn1
1

2
1

1

8z S B1

B0
D 2G2dnn8

s

2
gmBB0

1F\vc

2z

B1

B0
@Fnn8~z!1Ann8Fn21,n821~z!

2A~n11!~n811!Fn11,n811~z!#

1S V2
s

2
gmBB1DFnn8~z!G

3cosS KX01~n2n8!
p

2 D
2

\vc

8z S B1

B0
D 2

Fnn8~4z!

3cosS 2KX01~n2n8!
p

2 D . ~A2!

Due to the reflection symmetry of the external fields, w
have the parity rule

Hnn8
0

~s,X0!5~21!n2n8Hnn8
0

~s,2X0!, ~A3!

which also holds for the Coulomb self-energy matrix e
ments, Eq.~2.9!, which depend on the self-consistent wa
functions given by Eq.~2.4!. In order to write those matrix
elements in a form suitable for a numerical calculation,
expand the mixing coefficients in Fourier series,

cnn8~s,X0!5 (
p>0

gnn8~s,p!cosS pKX01~n2n8!
p

2 D ,

~A4!

where we have taken into account the parity rule.
The effective energies can thus be expanded as

EnsX0
5 (

p>0
ensp cospKX0 , ~A5!

and similarly the occupation numbers

nnsX0
5 (

p>0
f nsp cospKX0 . ~A6!

We define

Ap1p2p3p4

n1n2n3n45
4

p E
2p

p

dx)
i 51

4

cosS pix1ni

p

2 D . ~A7!
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With this notation, and using Eqs.~A4! and~A6!, the Fourier
coefficients of the particle density can be written, by inve
ing Eq. ~2.10!, as

np5
22dp0

16p l 2 (
m1>0,s56

p1>0

f m1sp1

3 (
m2,m3>0
p2,p3>0

App1p2p3

m22m3,0,m12m2 ,m12m3

3Fm2m3
~p2z!gm1m2

~s,p2!gm1m3
~s,p3!. ~A8!

The matrix elements of the Hartree term, defined by E
~2.9! and ~2.10!, can now be put in the form

Snn8
ee,H

~X0!5
2pe2

kKl (
p>1

np

p
Fnn8~p2z!

3cosS pKX01~n2n8!
p

2 D , ~A9!

where we have used the Fourier transform of the Coulo
potential. The corresponding Fourier series for the Fock te
of the Hamiltonian, Eq.~2.11!, can be found by directly
searching for the Fourier amplitudes, and, after a lengthy,
straightforward calculation, one obtains

Snn8
ee,F

~s,X0!52
1

16p2l (
p>0

~22dp0!

3cosS pKX01~n2n8!
p

2 D (
m1>0
p1>0

f m1sp1

3 (
m2,m3>0
p2,p3>0

App1p2p3

m22m3,0,m12m2 ,m12m3

3Snm2 ,n8m3
~pKl !gm1m2

~s,p2!gm1m3
~s,p3!,

~A10!

whereS denotes the exchange integrals

Sm1n1 ,m2n2
~ t !5S m1!m2!

n1!n2! D 1/2E
0

`

dqũ~q& !e2q2

3qn12m11n22m211Jn12m12n21m2
~ tq& !

3Lm1

n12m1~q2!Lm2

n22m2~q2!, ~A11!

with Jn(x) the Bessel functions. For the homogeneous s
tem the self-consistent wave functions are identical with
-

s.

b
m

ut

s-
e

Landau wave functions, so thatgn1n2
(s,p)5dn1n2

dp0 , and

the exchange integrals reduce toSm1n1 ,m1n1
(0).14,28

APPENDIX B: VELOCITY MATRIX ELEMENTS

The matrix elements of the noninteracting components
the velocity operators, Eq.~3.5!, in the absence of a magnet
modulation, are

~va
0 !nn8~X0!5ha

lvc

&
~An11dn8,n111ha

2An811dn,n811!,

~B1!

with the notation (hx ,hy)5( i ,1). When the magnetic field
has a periodic component in thex direction, one has to add to
vy

0 the extra term

vcB1

KB0
Fnn8~z!sinS KX01~n2n8!

p

2 D . ~B2!

The matrix elements of the exchange current can be tra
formed in Fourier series like those of the exchang
interaction operator, as sketched in Appendix A. Accord
to Eq. ~3.6!, the form of vnn8

ex (s,X0) is similar to that of
Snn8

ee,F(s,X0), with the replacementu(r2r 8)→(r2r 8)
3u(r2r 8) in Eq. ~2.9!, and, after an integration by parts
with ũ(q)→¹qũ(q) in Eq. ~2.11!, one obtains the following
Fourier expansion:

vnn8
ex

~s,X0!5
1

8&ph
(
p>0

~22dp0!

3sinS pKX01~n2n8!
p

2 D
3 (

m1>0
p1>0

f m1sp1 (
m2,m3>0
p2,p3>0

3App1p2p3

m22m3,0,m12m2 ,m12m3Tnm2 ,n8m3
~pKl !

3gm1m2
~s,p2!gm1m3

~s,p3!, ~B3!

in which

~Ta!m1n1 ,m2n2
~ t !

5haS m1!m2!

n1!n2! D 1/2E
0

`

dqFdũ~q& !

dq G
3e2q2

qn12m11n22m211@Jn12m12n21m221~ tq& !

2ha
2Jn12m12n21m211~ tq& !#

3Lm1

n12m1~q2!Lm2

n22m2~q2!. ~B4!
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