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Aharanov-Bohm oscillations of conductance in two-dimensional rings
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Transport properties of mesoscopic rings with applied external magnetic field are considered numerically.
Rings have square and circular forms and a finite aspectd&tiavhereL is the ring size and is the width
of ring arms. The type of the Aharonov-Bohm oscillatigA80’s) of the transmission substantially depends
on the number of channels participating in the electron transmission. Moreover the aspect ratio and the
geometrical form of the ring are important for the ABO's. In square rings with a small aspectdétie (/10)
the transmission displays periodic ABO’s in the region of applied magnetic field defined by the inequality
w>|g=(%c/eB)Y?=d, while for rings with a large aspect ratia/L = 1/3) only the single-channel transmis-
sion has quasiperiodical ABQO’s. For the circular rings with small aspect ratios the quasiperiodic ABQO'’s are
observed all over the region of the applied magnetic field while for the rings with moderate aspect ratios only
the multichannel transmission displays irregular ABO’s. The probability current flow patterns demonstrate fine
correspondence between the transmission and the vortex structure of current distributions in the rings. For
single-channel transmission, electron currents are laminar. For multichannel transport, current flow patterns
display a complicated convection pattern in the form of a vortex lattice. An elementary cell of the vortex lattice
consists of a few vortices and antivortices and has a size @ff, wheref is the number of channels of
electron transmission in the ring. Application of the flux distorts the vortex lattice enormously, partially
destroying it. Correspondingly the Aharonov-Bohm oscillations of the transmission become irregular.
[S0163-18297)02836-1

[. INTRODUCTION magnetoresistance with the period 1/2. This is believed to be
the result of some kind of coherent backscattering associated
Transport properties of mesoscopic structures and nanavith localization. Later, in Refs. 5—7 the transmission prob-
structures in the form of quantum wires, dots and wells, hetability between two terminals of the one-dimensional ring
erostructures and so on attract much attention because wfith two arbitrary scatterers was calculated exactly as a
rapid development of nanotechnology with the use of methfunction of the flux. The period of the ABO’s was found to
ods of molecular beam epitaxy and lithograghfthese be ®, , though for weak scattering higher harmonics may
methods can fabricate such perfect structures that the olevelop. Geferet al® found specific conditions on the pa-
served transport properties are defined mostly by theameters of scatterers to enhance the effect of the second
qguantum-mechanical coherence of electrons over the wholearmonic and produce the effective ABQO’s peride,/2.
structure. In these structures the magnetic field can tune th@imilar results were obtained in Ref. 8 where the processes
phase of the electronic wave function by the valueof elastic scattering of electron by phonons were modeled by
(e/hic)fdrA. If an electron can pass two different trajecto- the time-periodic flux. In Refs. 9 and 10 it was demonstrated
ries, at the place of crossing of the trajectories the phase shiftith the help of modeled disorder that to observe only the

is given by 27y, where ®,/2 component of the ABO’s in the single ring experiments
it is necessary to perform ensemble disorder averaging.

~ @ Moreover, Bitiker et al!! considered the the multichannel
7:30’ 1) conductance of the one-dimensional ring and obtained the

dependence on channel numibéof the contributions to the

®=BS is the magnetic flux enclosed by these trajectoriecconductance. They found that the terms with pedagand
with areaS, and®,=2rfic/e is the flux quantuni:® There-  period®,/2 vary with N as 1N.
fore, in the case of the one-dimensional ring with two leads In reality, in experiments on very small rings of gold with
the transport properties of electrons should be periodicatircumference~100—500 nm and width=40 nm no strictly
with the periody=1. This type of oscillation is referred to periodic behavior of any kind was obsend!® Basically
as Aharonov-Bohm oscillation®BQO'’s). magnetoresistance oscillations have the ABO’s pedagd

Obviously, the backscattering processes which can takand the period®y/2 as a harmonic. Besides, the Fourier
place in the arms of the ring due to, for example, impuritiestransformation of the flux dependence of the magnetoresis-
or geometry of the ring may change the type of the ABQO's. Ittance reveals the contribution of the aperiodic fluctuations.
has been believed, that the ABO’s should vanish once th&he detailed structure of th®, peak in the power spectrum
elastic mean free path of the electron is smaller than or of thés, as it was suggested by Stofiehe result of mixing of the
order of the system’s size. However, Al'tshuleral’ pre- field scales corresponding to the area of the hole in the ring
dicted the ABQO's in highly disordered systems the ABO’s of and the area of the arms of the ring. Actually, with decreas-
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ing of the aspect ratid/L, whered is a width of the arms considered to be homogeneous over the whole ring structure
andL is a size of the ring, the contribution of the aperiodic plus leads. Similar to Ref. 38, we use the hard-wall approxi-
fluctuations increasé$:’® The first numerical analysis of mation for the electron confinement inside the structure. This
guantum fluctuations of the magnetoresistence of the twoapproximation is justified if the Fermi energy of the transport
dimensional strip in the framework of the hopping modelelectron is much smaller than the confinement potential. The
with random site energies was performed by St6hiewas  main attention is given ABO’s of the transmission to dem-
shown that the stationary fluctuations of the magnetotranssnstrate how the ABO’s are “deteriorated” with increasing
port of electrons are a direct consequence of the microscop@&spect ratia/L and a number of electron transport channels.
guantum states in specific samples. These fluctuations en- We solve the Schdinger equation numerically in the
hance much if the states become localized. Magnetotranspdramework of the two-dimensional tight-binding model to
in the two-dimensional tight-binding model of a strip was find the ABO'’s of the conductance and detailed current flow
also numerically considered recently in Ref. 17. It wasdistributions. However, we are restricted by the field region
shown that the “Hofstadter's butterfly” structure of the where one flux quantum per lattice plaquette is much less
spectrum of energy levels of the strip gives rise to the fractathan unity, which makes the continual Sctiimger equation
structure in the field and energy dependence of the conduertainly applicable. The current flow patterns display rich
tance. vortex structures and show that the formation of the convec-
Similarly, in application to the quantum Hall effect it was tional vortex flow patterns is directly related to the complex-
shown that strong quantum fluctuations of the low-ity in flux dependence of the transmission. We show that the
temperature conductance arise because of resonant transmaminar flow of the electron takes place only in the very
sion of the electrons through the localized states of theestricted case of the rings with small and moderate aspect
samplet®=2%In the work of Shapir@! it was found that cor-  ratios, with the single-channel transport, and with zero flux.
rections to the quantum Hall effect in a straight electronApplication of the flux gives rise to the current vortex near

waveguide have a value of the ordel/lg)2, where the entrance of the ring. This vortex mixes inner and outer
paths of the electron transport in such a way that phase shifts

hc\ 2 induced by different fluxes enclosed by different trajectories

|B=(§> ) i) of the electron in the ring become equaled. As a result we

can observe the quasiregular ABO’s of the transmission in
is the magnetic length. Experimental investigations of thd'N9S W't.h small aspect ratios. With an increasing in the as-
pect ratio and the number of channels the ABO’s of the

guantum Hall effect in many-terminal mesoscopic rings iscion b X | d dinalv. th
show the deviation from exact quantization in the form of thel’@nSmission become irregular and, correspondingly, the cur-
rent flow patterns acquire a rather volatile form with com-

aperiodic fluctuations at low magnetic figiThe authors T .

conclude that these fluctuations arise from Aharonov-BohnP!€X distribution of vortices.

interference effects as the electrons are elastically scattered

by impurities or geometric features. Il. BASIC EQUATIONS
Dirac®® and later Hirschfeldeet al?*~?® have shown that

. - : We begin a consideration with the square two-terminal
guantum-mechanical probability currenfstreamlines can g d

. i ring. For simplicity we take a width of leads equaled to the
form vortices around the nodes of the wave functions. Re\'/vidth of the ring’s armsd. The Schidinger equation in the

cen_tly, an mtergst to_current vortices was resumed in t.h%ingle—electron approximation has the following form:
series of works in which the electron transport was consid-
ered numerically in two-dimensional quantum wires. Specifi-
cally, the vortical current flows were found in straight wires

1 ( eA
JES— p—_
with impurities?’~2° in a model crossbar structui®,in 2m\™ ¢

multiple-bend wires~*° two-dimensional structures with where a vector potential in the Landau gauge is defined as
curvilinear boundari€4>® and straight wires with potential

barrier inside them®3” The current vortices result in new A=(—By,0,0), (4)
peculiarities in the quantum Hall effect because they form ) . ] o )

edge states near the boundaries of the two-dimensional stru¥{X) is the potential confined electron inside the ring. The
tures. The edge states provide perfect transmission of ele€:ermi energy for the metal ring or the chemical potential for
trons in spite of impurities. Moreover, as it was found by the semiconductor one is supposed to be constant over the
Berggren and 3t the vortex structure of the current state is Whole structure including the gates. The magnetic field is
responsible for a change of the laminar regime of electrorfupposed to be applied normally to the whole structure with
transport to the convectional one in the quantum wire withthe gates included.

2
+V(X)

P(X)=Ep(x), ()

=€y, ®

two knees. Let us introduce the dimensionless coordinatesx/d.
A consideration of the conductance oscillations in the cir-Then Eq.(3) takes the following form:

cular quasi-one-dimensional ring with a small aspect ratio in

the ballistic regime was calculated by Sténal3® with the d 292

help of the scattering matrix. In this work we numerically '&J’ |- (9_y2

consider transport properties of square and circular rings

with finite aspect ratios connected with two leads in singlewith the dimensionless flux

electron approximation and in the ballistic regime. An exter-

nal magnetic field applied normally to the plane of the ring is y=27Bd% d,, (6)
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and the dimensionless energy ,

Pous(XY) =2 brie” " e(y). (15

e=2mdPE/h2. 7 f
. - _ _ Then using Landauer's formufa* the conductance can be

The transmission probability which defines the conduc-itten as follows:

tance of the structure in accordance with the Landauer-

Buttiker formula®®*® can be found by different e?

ways?*23138:4344ere we consider the solution in the input G= Fz (k¢lx;)|bg % (16)

lead as follows: i

_ _ Next, we calculate the current distributions
wm(x,y)=e'“xd>1(y)+Ef aie “i(y), (8

ief e?
JOY) =5 (Vg =g V) ——Alyl>. (17
where they axis is assumed to be orthogonal to the lead, and 2m mc i

¢1(y) are solutions of one-dimensional equation, In computer simulations formulél4) takes the following
) form taking into account gaugé):
(k1 9Y)= —5| di(Y) =N ds(Y), ©) LX)
&y J m,n

io = i[‘ﬂ’r;\,nei 7n¢m+l|n_ c.cl,

e= K2\ (10 LLY
f f- jO :|[¢m,n¢m,n+l_c-CJ1 (18)

with zero boundary condition on walls of the lead.

All wave numbersk, x,, are dimensionless via the width of
the lead. The outgoing solution can be presented as followgvhere

i . eh
YoulX,y) = 25 bre” Xy(y). (1 fo=5mc

Inside the ring we solve numerically the two-dimensional  In the circular ring we use the same equations as for the
Schradinger equation: square ring except for boundaries. The boundary conditions

_ _ for the circular ring have the following form:
(4—¢) ‘!’m,n_ e yn(/’m-%—l,n_ e7Wn';bm—1,n_ ‘//m,n+l_ '//m,n—l

y(mn)=0 if RZ=n’+m?=R3. (19
=0, (12
wherem andn run from 1 toN. This numerical Schidinger Ill. NUMERICAL RESULTS. AHARONOV-BOHM
equation is equivalent to the two-dimensional tight-binding OSCILLATIONS OF THE CONDUCTANCE

model used in Ref. 17 for describing of magnetotransport in
stripes. However, we are restricted by the flux region and
sizes of the numerical lattices for which lattice effects are First, we consider the rings with small aspect ratied.
considered to be not important. The solution of Efj2) Specifically, in terms of numerical lattice we chose three
starts from the boundary between the lead and the ring whettgpes of the aspect ratiod/L=1/10, d/L=1/5, and
#(m,0)= ¢in(Xm,0), or top the edge points of the ring where d/L=1/3. Magnetic flux dependences of the total transmis-
#(m,0)=0, then continues inside the ring and terminates asion defined by formul&l4) and the conductance defined by
the boundary between the ring and the output lead wherformula (16) are given in Figs. 1-3 for different energies of
Yp(m,N+1)=¢o,{Xm,L), or down the edge points of the the incident electror. The values of the energy correspond
ring wherey(m,N+1)=0. As a result, we obtain a system consequently to the one-, two-, and three-channel electron
of equations for the coefficients ,b; which determine the transport in the leads with=1,2,3. In the dimensional units
transmission and reflection probabilities as follows: in accordance with formuléb) the energye= 20 (the single-
Re(x;) Re(x;) channel transmissigrior the metal ring can be achieved for
_ Ki 2 _ Kt 2 d~1 nm provided that the Fermi energy is of order of 1 eV,
T_;::l [fl%, R_;::l K ail® (13 while an electron transmitting in the lead with the width
d~10 nm has the energy~200. For the semiconductor
An accuracy of calculation was controlled by a condition thatstructure on the basis of GaAs where the Fermi energy is of
T+R=1 which was satisfied within computer error I8. an order of 50 meV and the effective mass of the electron
To consider the multichannel conductance of the two-m* ~10-284546\ye obtain that the width of the semiconduc-
terminal ring we rewrite the input wave functi¢8) of elec-  tor waveguides may range fromd~10 nm (the single-
tron incident in Channq.l and the output wave fUnCtldﬂl) channel transmissidnto d~100 nm (three_ and multi-
as follows?*** channel transmissions
To show the ABO'’s period we have introduced the di-
. — AKX g a—iKex mensionless flux as a ratio of the flux through the mean area
Yinj(x.y) =€ ¢](y)+2f e iy, (14 of the ring to the flux quantum,

A. Square ring

K
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Square ring 16x160
E=20 T T ] T

©0o0.5 b
FIG. 1. The Aharonov-Bohm oscillations

(ABO's) of the conductanceG through the

0 5 10 15 20 25 square ring with small aspect ratid/L=1/10

(16X 160 in lattice scale NotationmXn means
£=50 thatm is numerical width of arms of the ring and

i n is the ring’s size. The fluy defined by formula

(20) is a ratio of the magnetic flux through the

L i mean area of the ring to the flux quantu@. The

. ) ) . transmission with the energy=20 which coin-

0 5 10 15 20 25 cides with the conductance in this cask) the

. . . ; transmission and the two-channel conductance

| &=100 ] with e=50; (c) the transmission and the three-
channel conductance wité= 100.
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®y B(L—d)2 Y(L-d)? sr_naII aspect ratio. The metal ring measured by Wethél 12
o o = I (200  with L~282 nm,d=37 nm approxmat(_aly bglon_gs to the_

0 0 d type of rings with a moderate aspect ratio which is shown in
~ . . . . Fig. 2 (d/L=24/120=1/5). As it is seen from Figs. 1-3 the
where y is defined in Eq(1). In the limit d—0 the ABO  gjngle-channel transport display only the periodic ABO's for
period y—1. the ring with a small aspect ratio while for the ring with a

The single-channel transmissiowe begin by consider- moderate aspect ratio there are three characteristic regions of
ing the single-channel input wave functi¢8). In Fig. 1 the  the ABO’s of the transmission which depend on the aspect
ABO'’s of the transmission coinciding with the conductanceratio.
are shown for the case of small aspect ratio The region of periodic sinusoidal ABO's is the first. The
d/L=16/160=1/10. Numbers 16 and 160 mean numericalsmaller the aspect ratio and the less the number of channels,
lattice sizes of the ring. These numbers were optimized inhe wider the region of periodic sinusoidal ABO’s. Also for
such a way that an increase in the lattice sizes does not givswme values of the energy of an incident electron the ABO’s
any visible changes in the transmission. The metal ringgan contain the second harmonic as is shown in Fig. 10 for
measured by Webbt all? with L=825 nm,d=41 nm, and the circular ring. A discussion of this phenomenon is given
In,Ga, _,As/InP rings measured by Appenzeliral*’ with  in subsection B. For the single-channel transmission and for
L=700 nm,d=85 nm belong to this type of ring with a any aspect ratio this region shown in Figs. 1-3 can be ap-

Square ring 20x100
1 T W

e=20

N?/\AAW\W I | |

0 10 20 30 40 50

FIG. 2. The same as in Fig. 1 for the aspect
ratio d/L=1/5 (20x 100 for e=20 and 24120
. for e=50, 100).
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Square ring 30x90

1 T T ~—=T T
e=20 W

VO0.5F J

A\NUANV/AL T A

=50

FIG. 3. The same as in Fig. 1 for the aspect
ratio d/L=1/3 (30x 90 ring.

proximately defined in terms of the magnetic leng#h as  we tuned to the resonant value of the energy maxima of the
d/\2<lg, where it is convenient to expreksvia magnetic ABO’s of the single-channel transmission it would be near

flux y as follows: unity. _ o _
Exact zeroes of the single-channel transmission at points

vy=m+1/2,m=0,1,2 ... are thenext peculiarity in the re-
1 [ 1 (L—d) gion of regular sinusoidal ABO’s. The electrons traversing
lg=d \ﬁ:d mT (2 the inner and outer perimeters acquire different phases from
Y the magnetic field because the trajectories enclose different
amounts of the fluX® It would mean that there would be no
The first peculiarity, which can be seen from Figs. 1-3, iscompleter interference in the ring with a finite aspect ratio.
that the maxima of the single-channel transmission are lesActually, these arguments are correct provided that the elec-
than unit in the first flux region. The reason for this is reso-tron trajectories are completely laminar. But current flow
nant transmission through the ring as it is shown in Fi@).4 patterns for different fluxes over the ABO’s period reveal
Peaks of the transmission are caused by a packing of wavehat the electron trajectories are laminar only fgrem,
lengths inside the ring. Because of complicated geometry ofn=0,1,2 . .. [see Fig. 5(the first subplof]. With a devia-
the square ring this packing is not so simple in comparisonion of the flux y from the integer near the entrance to the
with the case of the circular rinldrig. 4(b)]. It is clear that if  ring a vortex appearéFig. 5. As a result, the trajectories

Square ring 20x100
l T T T T

10 15 20 25 30 35 40 FIG. 4. The energy dependence of the trans-
mission in the 2& 100 square ring for the=0
1 . . T . (a) and y=0.08 (b).

%_O 15 20 25 30 35 40
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) the current distribution was found by Berggren arid idi the
Square ring 20x100 electron waveguides with circular bends just below the con-
£=20 ductance dip without external magnetic field. While the cur-
‘ rent flow undergoes dramatic changes over the ABO'’s period
the structure of wave functiong/(x,y)| performs small pe-
riodical displacements near the electrodes of the ing.

The second flux region is the region of the nonsinusoidal
ABO’s of the single-channel transmission where the mag-
netic length becomes less than the width of the ring’s arms.
In this region the maxima of the ABO’s increase with a
decrease in the magnetic length and reach unity for the trans-
mission. At last, in the third region whetg<d the trans-
mission is close to saturation everywhere over the flux ex-
cept extremely narrow regions where the transmission falls
to zero. As it is shown in Fig. 6 we observe semiclassical
current distributions and the wave functions in the form of
edge states. Note, that the aspect ratio of the ring has no
noticeable influence on the estimations for the single-channel
transmission, therefore they are universal.

Multichannel transmissiorOne can see that for the mul-
tichannel transmission the flux region of regular sinusoidal

FIG. 5. Flux evolution of probability current distributions over ABO’s dissappears for the moderate and large aspect ratios,
the first sinusoidal ABO period for the single-channel transmissionas it is seen from Figs. 2 and 3. Moreover, the multichannel
through the 26 100 square ring. The flux dependence of the trans-conductance in these rings becomes practically irregular. The
mission for this ring is shown in Fig. @op subplo}. Fourier spectra of the ABO’s of the conductance demonstrate

how with an increase in the number of channels every Fou-
included into the vortex state enclose the small amount ofier peak acquires quasicontinual componéfig. 7). It in-
flux opposite to the trajectories along the ring’s arm. Thedicates that the ABO of the multichannel transmission in the
chirality of the vortex chooses the ring’s arm along whichrings with a moderate aspect ratio becomes irregular.
the prevailing current flows in such a way that the vortex The quantum-mechanical streamline patterns presented in
trajectories and the trajectories along the ring’s arms alwaysubplots of Fig. 8 show a substantial difference between the
have opposite captured fluxes. Moreover the greater the vosingle-channel transport of the electron and the multichannel
tex currents the smaller the arm’s ones. Finally, at the pointsne in the ring. The streamlines are analogous to the classical
y~m-+1/2 the vortex completely suppresses the arm’s curirajectorieé*?° and are lines tangential to the current flows.
rent to switch off the electron transmission through the ring.For the multichannel transition there are nodal lines of the
For this flux the current flow becomes degenerate relative tavave function which are both orthogonal and parallel to the
the direction of the flow and the vortex chirality changesring’s arms. Consequently, we obtain the current flows
sign. The phenomenon of a swift reversal of the vortices inwhich form a convectional picture. The flow patterns form a

T

Square ring 20x100

1 © e=20
0.8 a b
0.6
0.4
0.2 FIG. 6. Flux evolution of probability current
distributions and the electron wave function

O27 28 29 |4(x,y)| in the flux region where the magnetic
lengthlg is less than the ring widtd. The flux
values shown in subplots are indicated by open
circles in(a).

¥=28.37
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Square ring 20x100
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FIG. 7. The Fourier spectra of the flux depen-
dence of the conductance in the square ring with
the aspect ratio 1/5.

o

Fourier spectra (arb. units)
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vortical lattice with an elementary cell consisting of a pair of Similar to the square ring it is convenient to introduce a
vortices and one antivortex far=0. Application of the flux  dimensionless flux as a ratio of the flux through the mean
drastically deforms the vortical lattice as it is shown in sub-area of the ring to the flux quantum,

plots of Fig. 8. A small variation of the flux from zero to

vy=0.066 practically destroys the convectional lattice to give ®ge Bm(R,—d2)2 Fm(R,—d/2)?
the transmission equal unity. The further increase in the flux YT o, D, = 12

to y=0.13 again gives rise to the convectional structure of

the streamlines, which however, flow mostly inside the ring
(the fourth subplot in Fig. B As a result the transmission
becomes equal zero.

. (22

where’y is defined in Eq(1) andd=R,—R;.

As the circular ring has no rectangular corners in contrast
to the square ring, we have smooth potential releif inside the
ring. Actually the energy dependence of the transmission
(Fig. 9 shows almost periodical oscillations up to the ener-

In the forthcoming figures the results of computer simu-gies not exceeding#? (/3 in terms of the wave numbgr
lations of the transmission through the circular ring are preEach peak of the transmisison corresponds to a packing of an
sented. They are based on the the same equations as for théeger number of wavelengths inside the arms of the circular
square ring except boundary conditions given by Bd). ring. However, in the range of the energies where the second

B. Circular rings

Square ring 20x100

e=50

FIG. 8. Flux evolution of probability current
0 . WA distributions over the first ABO period for the
two-channel transmission through the >X2000
square ring. The flux values shown in subplots
are indicated by open circles in the first subplot.
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Circular ring 20x50

l T T T T T
a
0.8F
0.6F
©
0.4F 7
0.2F J b
0 L ) L . \ FIG. 9. The energy dependence of the trans-
0 1 2 3 4 > 6 mission in the 2& 50 circular ring for they=0

(@) and y=0.08 (b). NotationmXn is the nu-
merical width of the ring’s arms and the outside

1 T T T T T
b radius correspondingly.
0.8
0.6
o

0.4 ) :
0.2F

0 ] 1 1 L

4 5 6

1
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k

channel of transmission participates, the energy dependenpends on coupling of the resonant cavity with the leads. Po-
of the transmission becomes complex. This is due to the faditions of quasienergies are given by eigenvalues of the reso-
that the radial packing of the wave function inside the ringnant cavity. A half of the corresponding eigenfunctions is
gives rise to new additional peaks of the transmission, thgymmetric with respect tgy— —y and the other half of the
energy position of which is incommensurate to the peaks ogigenvalues is antisymmetric, where thaxis is orthogonal
the transmission due to the azimuthal packing. As a resulfg the leads. So, if the incident wave function is symmetric
we see quite irregular behavior of the transmission peaks iQith respect toy— —y as it takes place for the first-channel
Fig. %a) for high energies of the incident electron. An in- transmission and the flux equaling zero, only the quasienergy
volvment of new channels of the electron transmission inSid%tates with the same symmetry are transparent for the inci-
the rings gives rise to a further complication of the transmisent electron. It is a case of the transmission, which is shown
sion peaks. Correspondingly, the ABO's of the transmissionn Fig. 9(a). Application of the flux violates the symmetry of
are extremely dependent on the number of channels of th@ye incident wave function to give rise to new peaks of the
electron transmission. resonant transmission through the antisymmetric states of the
In the second subplot of Fig(19 we see that an applica- cavity. This phenomenon is shown in Figh® Since for the
tion of the flux induces new peaks of the transmission, themall flux a distortion of the incident wave function can be
form of which, however, differs from the peaks shown in considered by the perturbation theory and as proportional to
Fig. 9a). Similar behavior of the energy dependence takes,2 correspondingly, the width of the flux induced peaks of

place for the square ring&ig. 4). This phenomenon of the the resonant transmission is also proportionahfo as is
flux induced resonant transmission through the ring was firs§een from formulad23).

considered_ for the one-dimensional rif§ghe gxplicit fqrm If to draw the transmission probability through the two-
of the flux induced resonant peaks was obtained which neafimensional circular ring as a function of the flux and the
the nth peak has the following form: energy(Fig. 10, first subplot we can observe a good coin-
cidence of the plot with the energy levels of the resonant
G . 1 23 cavity consisting of the ring plus two bat3Also one can
(€,7)= 22 2 23 see from Fig. 10 that a choice of the energy of the incident
1+ En_e—zr] electron defines the type of the ABO’s. Specifically, if to

take the energy slightly exceeding the symmetrical quasien-
wherel is a parameter defined by contact of the ring withergies, the transmission decreases with the application of the
the leads. flux [(8G/8y)<0], and we obtain the almost sinusoidal
The nature of the flux induced resonant transmission ilABO’s. Otherwise, for the energies of the incident electron,
the two-dimensional rings was discussed in Ref. 50. Confor which 6G/éy>0, we obtain the ABO’s consisting of
sider the transmission of the incident electron through théwo harmonics. Particular behavior of the derivatd®/dy
ring with the leads as the transmission through a resonari$ shown in the second subplot of Fig. 10, where two vertical
cavity, consisting of the ring plus two symmetrical bars aslines indicate the cases of the negatiee=(15) and positive
contacts. For a weak coupling of this resonant cavity with thg e=16) derivative. Therefore, the number of harmonics in
leads the transmission is resonant and takes place if the etihe ABO’s for the first-channel transmission is defined by the
ergy of the incident electron is close to the quasienergies agénergy of the incident electron. If the energy is above the
the resonant cavity. The width of the resonant transmission isven quasienergy, the ABO’s contains one harmonic. If the
defined by the width of the quasienergy which in turn de-the energy of the incident electron is spaced between the
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FIG. 10. The transmission probability through
the 20x 50 circular ring as a function of the flux
and the energy plotted in the form of contour
lines in the first subplot. The second subplot
shows the energy dependence of derivative
8G/ 8y for y=0.02, the sign of which defines the
number of harmonics in the ABO'’s for the first-
channel transmission presented in the third and
fourth subplots.

even quasienergy and odd one the ABO’s contains at leashation of the azimuthal vortex lattice with an increase in
two harmonics. Both types of the ABO’s are shown in theenergy of the incident electron. F&r=4.89 there are only
next subplots of Fig. 10. The origin of the high harmonics invortices near the entrance to the ring while kot 6.32 the

the ABO’s was discussed in many works for the one-convectional lattice of the vortices forms inside the ring. In
dimensional and quasi-one-dimensional rmg&'38%1-5%  Ref. 54 similar convectional structures were demonstrated
using different approaches. Present consideration of th#or circular billiard. As a result, the electron trajectories for
transmission through the two-dimensional rings revealshe multichannel transport become rather volatile provided
purely geometrical origin of the other periodicity of the that the magnetic length exceeds the arm’s width. It leads to
ABO’s based on symmetry arguments of the structfire. an enormous phase shift by the external flux for these trajec-

The flux dependence of the quasienergies, which approxiories which pass between the vortex cells. Correspondingly,
mately coincides with the plot of the transmission given inat the moment of meeting of the trajectories in the down
the first subplot of Fig. 10 governs the behavior of the cur-electrode the phase difference can be rather unpredictable
rent flows in the ring by formulg~ — de/dy. These current
flow patterns are shown in Fig. 11. In the first subplot for
e=15.2 the derivative is negative, and the current flows
mostly in the left arm of the ring. In the fourth subplot for
e=15.4 the derivative is positive, and the current flows
mostly in the right arm. The second and third subplots dem-
onstrate current flow patterns for the ca8e0 andG=1,
respectively.

As it was discussed above, whether or not the ABO’s of
the conductance are regular is defined by the aspect ratio and
the number of channels of the transmission inside the ring.
For the single-channel transmission the periodic ABO’s in
the circular ring take place for the small and moderate aspect
ratios. For the ring with a small aspect rafigig. 12 the
two- and three-channel conductance displays many sets of
the periodical ABO’s. However, for the circular ring with a
large aspect ratiod/R=0.5, Fig. 13 even the two-channel
transmission reveals practically irregular ABO’s of the con-
ductance. The Fourier spectra of the ABO’s of the conduc-
tance of the circular ring have the form similar to that in the
square ring[Fig. 7), so they are not shown here. Therefore,
the phenomenon of irregularity in the ABO’s of the trans-
mission of the electron through the rings with the finite as-  F|G. 11. The energy evolution of probability current distribu-
pect ratio is universal and does not depend on the geometiyyns for the first-channel transmission through the<30 circular
of rings. ring is shown. The first subplds) 6G/5y<0. The second subplot

Figure 14 demonstrates a transition of the current distri{b) G=0. The third subplot(c) G=1. The fourth subplot(d)
bution from laminar to the convectional regime with the for- §G5y>0.

Circular ring 20x50

=0.04
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) Circular ring 12x60 £=20
1 T T T

©0.5

FIG. 12. The Aharonov-Bohm oscillations
(ABO) of the transmission through the circular
ring with the small aspect ratid/L=0.1 (12< 60
ring in lattice scalg The flux y defined by for-
mula (22) is a ratio of the magnetic flux through
the mean area of the ring to the flux quantua).
The single-channel transmission with the energy
€=20; (b) the two-channel transmission with
€=50; (c) the three-channel transmission with
e=100.

depending on the place of meeting, leading to nonregulahave square and circular forms with two terminals. The re-
oscillations of conductance as a function of the flux. In ordersults show that taking into account of the second dimension
to demostrate this instability of incident trajectories insideplays the principal role in the electron transport, indepen-
the ring in Fig. 15 we show the streamlines. At the left of dently of the ring’s aspect ratio defined as a ratio between the
Fig. 15 one can see that for the single-channel transmissiowidth of the ring’s arms and its size/L. This conclusion
the trajectories which are numerically closéie horizontal was also made for the closed two-dimensional ritrgS.
distance between them is taken as equal to the latticginnit Only for very low energies of an incident electron when the
the input lead are stable inside the ring. However, for thesingle-channel transmission takes place, the electron trans-
four-channel transmission the two closest incident streamport is laminar provided that the flux is zero. If the electron
lines acquire finite phase differences of an orderf&,  transport in the two-dimensional structure remained laminar
wheref is the number of channels. with increasing energy or application of the flux, the second
dimension would lead to the fluctuation of the phase of the
electron trajectories, in dependence of what flux is enclosed
by these trajectories in the ring. Consequently, we obtained
We presented results of computer simulations for the electhe aperiodical ABO’s of the transmission with aperiodicity
tron transmission through the two-dimensional rings whichproportional to the width of the ring’s armi§.n reality, our

IV. CONCLUDING REMARKS

Circular ring 20x50 =20
1 T
H MMMT §
OO0.5F N
0 1 1
2
(U
0 FIG. 13. The same as in Fig. 12 with a mod-
30 > 10 15 20 erate aspect ratid/L = 0.25 (the 20< 50 circular
' ' ' ring).
2
O
1r i
0 L 1 | =100
0 5 10 15. 20
3 T T T
2
o
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Circular ring 20x50 Circular ring 30x75

y:()
I 1] |
FIG. 14. Evolution of probability current distributions from the

laminar regime to a convectional one with an increase in energy of FIG. 15. The quantum-mechanical streamlines which are analo-

incident electron in the circular ring. gous to the classical trajectories for the single-chariledt) and
four-channel transmissiongight). In both cases the numerically

computer simulations of the current flow patterns reveal thatlosest incident trajectories are taken in the input lead.

as soon as the flux is applied or the energy of the incident. . . :

electron increases, the electron trajectories may form the v0|qlfferent ele;ctron_ trajectories. In this case even the closest

tex structure. For the single-channel transmission a singl lectron trajectories at the entrance of the ring may get the

vortex forms near the entrance to the rifge Figs. 5, 11 inite phase shift difference as it is shown in Fig. 15. If the
and 14 which equalizes the flux induced phaseg fbr {he (’jif_distance between entrance trajectories is equal to the numeri-

ferent electron trajectories. As a result, we have the regula(let L?]télceh::ét, dﬁ;;:‘;goé?%?;g ?’\)l(rlltet:;?_s?s t;aéﬁ(;tgé?;_can
quasiperiodical ABO’s in the flux region determined by the?ti FI) f the structure arfdi tP’1 hannel's number. A
aspect ratio of the ringsee Figs. 1-3, 12, and 18ith a Stic scale ot the Structiure ards the channel s NUMBET. AS

periodical set of zeroes of the transmission. That result do result, the ABO's of the transmission or the conductance

not depend on the geometrical form of the rings. However ecome irregular as one can see from Figs. 1-3, 12, and 13.

the character of the ABO’s in the case of the single-channeThus the current and streamline patterns illustrate the origin

transmission substantially depends on the energy of the inchfrt%ebré?Quan\;iﬁﬁ Cig?;?:rt:r?gg gg(égjl?stfg? V;héCh g‘?ért; t
dent electron. If the ene of the incident electron slightl . . ? eI
ray inc! S'g y%ackscatterlng and the particular geometry of the tthg.

exceeds the even quasienergies of the ring, the eigenfung- .
tions of which have the same symmetry as the symmetry o vel of backscattering processes strongly depends on energy

the incident wave function with respect o~ —y for zero o ?’EJZCI?h(ZnLSL?g;zO;ﬁd streamline patterns shown in Figs
flux, we obtain the almost sinusoidal ABO{&ig. 10, the ' P gs.

1 subpl) Othense, e ABO' conta i s 5, L% 14, 7415 s he imprant e o e conee
(Fig. 10, the fourth subplot 9

In a real semiconductor and especially in metal ring struc-make the phase differences many times as large as the ring

tures we deal with the multichannel transport of electronsscaIeL. That may serve as an interpretation of irregularity of

The nodal lines of the wave function inside the ring are dethe Aharonov-Bohm oscillations for multichannel electron

fined both by azimuthal and radial quantum numbers. Corret_ransport. The reason for this is complicated packing of

spondingly, the current distribution pattern becomes convecnOdaI I_me_s and points inside the ring for the multichannel
tional. These convectional patterns look like a quasiregula ansmission.
vortex lattice with the period strongly dependent on the en-
ergy of the incident electrofor on the number of channgls R
provided that the flux is zero. The elementary cell of the The authors wish to express their gratitude to Pételia
vortex lattice may be simply vortex or may be very compli- for stimulating discussions and Karl-Fredrik Berggren for
cated consisting of a few vortices and antivortices as it igroviding original results of his investigations. Also we are
shown in Fig. 14 for the circular ring. indebted to our collegues from Laboratory of Theory Non-

Application of the flux strongly distorts the convectional linear Processes Kirill Alekseev, Andrey Kolovskii and es-
current flow patterns partially destroyng the vortex lattice.pecially Evgeny Bulgakov for many helpful discussions.
Moreover, the lattice elementary cell may undergo enormouSupport of INTAS-RFBR Grant No. 95-657 and RFFI Grant
changes. It leads to strong flux phase shift differences foNo. 97-02-16305 is acknowledged.
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