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Aharanov-Bohm oscillations of conductance in two-dimensional rings
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Transport properties of mesoscopic rings with applied external magnetic field are considered numerically.
Rings have square and circular forms and a finite aspect ratiod/L whereL is the ring size andd is the width
of ring arms. The type of the Aharonov-Bohm oscillations~ABO’s! of the transmission substantially depends
on the number of channels participating in the electron transmission. Moreover the aspect ratio and the
geometrical form of the ring are important for the ABO’s. In square rings with a small aspect ratio (d/L51/10)
the transmission displays periodic ABO’s in the region of applied magnetic field defined by the inequality
`. l B5(\c/eB)1/2>d, while for rings with a large aspect ratio (d/L51/3) only the single-channel transmis-
sion has quasiperiodical ABO’s. For the circular rings with small aspect ratios the quasiperiodic ABO’s are
observed all over the region of the applied magnetic field while for the rings with moderate aspect ratios only
the multichannel transmission displays irregular ABO’s. The probability current flow patterns demonstrate fine
correspondence between the transmission and the vortex structure of current distributions in the rings. For
single-channel transmission, electron currents are laminar. For multichannel transport, current flow patterns
display a complicated convection pattern in the form of a vortex lattice. An elementary cell of the vortex lattice
consists of a few vortices and antivortices and has a size of;d/ f , where f is the number of channels of
electron transmission in the ring. Application of the flux distorts the vortex lattice enormously, partially
destroying it. Correspondingly the Aharonov-Bohm oscillations of the transmission become irregular.
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I. INTRODUCTION

Transport properties of mesoscopic structures and na
structures in the form of quantum wires, dots and wells, h
erostructures and so on attract much attention becaus
rapid development of nanotechnology with the use of me
ods of molecular beam epitaxy and lithography.1 These
methods can fabricate such perfect structures that the
served transport properties are defined mostly by
quantum-mechanical coherence of electrons over the w
structure. In these structures the magnetic field can tune
phase of the electronic wave function by the val
(e/\c)*drA . If an electron can pass two different traject
ries, at the place of crossing of the trajectories the phase
is given by 2pg, where

g̃5
F

F0
, ~1!

F5BS is the magnetic flux enclosed by these trajector
with areaS, andF052p\c/e is the flux quantum.2,3 There-
fore, in the case of the one-dimensional ring with two lea
the transport properties of electrons should be period
with the periodg51. This type of oscillation is referred to
as Aharonov-Bohm oscillations~ABO’s!.

Obviously, the backscattering processes which can t
place in the arms of the ring due to, for example, impurit
or geometry of the ring may change the type of the ABO’s
has been believed, that the ABO’s should vanish once
elastic mean free path of the electron is smaller than or of
order of the system’s size. However, Al’tshuleret al.4 pre-
dicted the ABO’s in highly disordered systems the ABO’s
560163-1829/97/56~15!/9662~12!/$10.00
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magnetoresistance with the period 1/2. This is believed to
the result of some kind of coherent backscattering associ
with localization. Later, in Refs. 5–7 the transmission pro
ability between two terminals of the one-dimensional ri
with two arbitrary scatterers was calculated exactly as
function of the flux. The period of the ABO’s was found t
be F0 , though for weak scattering higher harmonics m
develop. Gefenet al.6 found specific conditions on the pa
rameters of scatterers to enhance the effect of the sec
harmonic and produce the effective ABO’s periodF0/2.
Similar results were obtained in Ref. 8 where the proces
of elastic scattering of electron by phonons were modeled
the time-periodic flux. In Refs. 9 and 10 it was demonstra
with the help of modeled disorder that to observe only
F0/2 component of the ABO’s in the single ring experimen
it is necessary to perform ensemble disorder averag
Moreover, Büttiker et al.11 considered the the multichanne
conductance of the one-dimensional ring and obtained
dependence on channel numberN of the contributions to the
conductance. They found that the terms with periodF0 and
periodF0/2 vary with N as 1/N.

In reality, in experiments on very small rings of gold wit
circumference;1002500 nm and width'40 nm no strictly
periodic behavior of any kind was observed.12–15 Basically
magnetoresistance oscillations have the ABO’s periodF0
and the periodF0/2 as a harmonic. Besides, the Fouri
transformation of the flux dependence of the magnetore
tance reveals the contribution of the aperiodic fluctuatio
The detailed structure of theF0 peak in the power spectrum
is, as it was suggested by Stone,16 the result of mixing of the
field scales corresponding to the area of the hole in the
and the area of the arms of the ring. Actually, with decre
9662 © 1997 The American Physical Society



ic
f
w
e

n
op
e

p
as
as
e
cta
du

s
w
sm
th

on

th
gs
he

hm
er

e
th
id
ifi
es

l

rm
tru
le

by
is
ro
it

ir
i

lly
ng
gl
er
is

ture
xi-
his
ort
he

m-
g
ls.

to
ow
ion
ess

ch
ec-
x-
the
ry
pect
ux.
ar
ter
hifts
ies
we
in

as-
he
cur-

-

nal
he

as

he
for
r the

is
ith

56 9663AHARANOV-BOHM OSCILLATIONS OF CONDUCTANCE . . .
ing of the aspect ratiod/L, whered is a width of the arms
andL is a size of the ring, the contribution of the aperiod
fluctuations increases.12,13 The first numerical analysis o
quantum fluctuations of the magnetoresistence of the t
dimensional strip in the framework of the hopping mod
with random site energies was performed by Stone.16 It was
shown that the stationary fluctuations of the magnetotra
port of electrons are a direct consequence of the microsc
quantum states in specific samples. These fluctuations
hance much if the states become localized. Magnetotrans
in the two-dimensional tight-binding model of a strip w
also numerically considered recently in Ref. 17. It w
shown that the ‘‘Hofstadter’s butterfly’’ structure of th
spectrum of energy levels of the strip gives rise to the fra
structure in the field and energy dependence of the con
tance.

Similarly, in application to the quantum Hall effect it wa
shown that strong quantum fluctuations of the lo
temperature conductance arise because of resonant tran
sion of the electrons through the localized states of
sample.18–20 In the work of Shapiro,21 it was found that cor-
rections to the quantum Hall effect in a straight electr
waveguide have a value of the order (d/ l B)2, where

l B5S \c

eBD 1/2

, ~2!

is the magnetic length. Experimental investigations of
quantum Hall effect in many-terminal mesoscopic rin
show the deviation from exact quantization in the form of t
aperiodic fluctuations at low magnetic field.22 The authors
conclude that these fluctuations arise from Aharonov-Bo
interference effects as the electrons are elastically scatt
by impurities or geometric features.

Dirac23 and later Hirschfelderet al.24–26 have shown that
quantum-mechanical probability currents~streamlines! can
form vortices around the nodes of the wave functions. R
cently, an interest to current vortices was resumed in
series of works in which the electron transport was cons
ered numerically in two-dimensional quantum wires. Spec
cally, the vortical current flows were found in straight wir
with impurities,27–29 in a model crossbar structure,30 in
multiple-bend wires,31–33 two-dimensional structures with
curvilinear boundaries34,35 and straight wires with potentia
barrier inside them.36,37 The current vortices result in new
peculiarities in the quantum Hall effect because they fo
edge states near the boundaries of the two-dimensional s
tures. The edge states provide perfect transmission of e
trons in spite of impurities. Moreover, as it was found
Berggren and Ji31 the vortex structure of the current state
responsible for a change of the laminar regime of elect
transport to the convectional one in the quantum wire w
two knees.

A consideration of the conductance oscillations in the c
cular quasi-one-dimensional ring with a small aspect ratio
the ballistic regime was calculated by Shinet al.38 with the
help of the scattering matrix. In this work we numerica
consider transport properties of square and circular ri
with finite aspect ratios connected with two leads in sin
electron approximation and in the ballistic regime. An ext
nal magnetic field applied normally to the plane of the ring
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considered to be homogeneous over the whole ring struc
plus leads. Similar to Ref. 38, we use the hard-wall appro
mation for the electron confinement inside the structure. T
approximation is justified if the Fermi energy of the transp
electron is much smaller than the confinement potential. T
main attention is given ABO’s of the transmission to de
onstrate how the ABO’s are ‘‘deteriorated’’ with increasin
aspect ratiod/L and a number of electron transport channe

We solve the Schro¨dinger equation numerically in the
framework of the two-dimensional tight-binding model
find the ABO’s of the conductance and detailed current fl
distributions. However, we are restricted by the field reg
where one flux quantum per lattice plaquette is much l
than unity, which makes the continual Schro¨dinger equation
certainly applicable. The current flow patterns display ri
vortex structures and show that the formation of the conv
tional vortex flow patterns is directly related to the comple
ity in flux dependence of the transmission. We show that
laminar flow of the electron takes place only in the ve
restricted case of the rings with small and moderate as
ratios, with the single-channel transport, and with zero fl
Application of the flux gives rise to the current vortex ne
the entrance of the ring. This vortex mixes inner and ou
paths of the electron transport in such a way that phase s
induced by different fluxes enclosed by different trajector
of the electron in the ring become equaled. As a result
can observe the quasiregular ABO’s of the transmission
rings with small aspect ratios. With an increasing in the
pect ratio and the number of channels the ABO’s of t
transmission become irregular and, correspondingly, the
rent flow patterns acquire a rather volatile form with com
plex distribution of vortices.

II. BASIC EQUATIONS

We begin a consideration with the square two-termi
ring. For simplicity we take a width of leads equaled to t
width of the ring’s armsd. The Schro¨dinger equation in the
single-electron approximation has the following form:

F 1

2mS p2
e

c
AD 2

1V~x!Gc~x!5Ec~x!, ~3!

where a vector potential in the Landau gauge is defined

A5~2By,0,0!, ~4!

V(x) is the potential confined electron inside the ring. T
Fermi energy for the metal ring or the chemical potential
the semiconductor one is supposed to be constant ove
whole structure including the gates. The magnetic field
supposed to be applied normally to the whole structure w
the gates included.

Let us introduce the dimensionless coordinatesx→x/d.
Then Eq.~3! takes the following form:

F S i
]

]x
1gyD 2

2
]2

]y2Gc5ec, ~5!

with the dimensionless flux

g52pBd2/F0 , ~6!
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9664 56KONSTANTIN N. PICHUGIN AND ALMAS F. SADREEV
and the dimensionless energy

e52md2E/\2. ~7!

The transmission probability which defines the cond
tance of the structure in accordance with the Landau
Buttiker formula,39,40 can be found by differen
ways.42,31,38,43,44Here we consider the solution in the inp
lead as follows:

c in~x,y!5eikxf1~y!1(
f

afe
2 ik f xf f~y!, ~8!

where they axis is assumed to be orthogonal to the lead, a
f f(y) are solutions of one-dimensional equation,

F ~k f1gy!22
]2

]y2Gf f~y!5l ff f~y!, ~9!

with zero boundary condition on walls of the lead.

e5k f
21l f . ~10!

All wave numbersk,kn are dimensionless via the width o
the lead. The outgoing solution can be presented as follo

cout~x,y!5(
f

bfe
2 ik f xf f~y!. ~11!

Inside the ring we solve numerically the two-dimension
Schrödinger equation:

~42e!cm,n2eigncm11,n2e2 igncm21,n2cm,n112cm,n21

50, ~12!

wherem andn run from 1 toN. This numerical Schro¨dinger
equation is equivalent to the two-dimensional tight-bindi
model used in Ref. 17 for describing of magnetotranspor
stripes. However, we are restricted by the flux region a
sizes of the numerical lattices for which lattice effects a
considered to be not important. The solution of Eq.~12!
starts from the boundary between the lead and the ring w
c(m,0)5c in(xm,0), or top the edge points of the ring whe
c(m,0)50, then continues inside the ring and terminates
the boundary between the ring and the output lead wh
c(m,N11)5cout(xm ,L), or down the edge points of th
ring wherec(m,N11)50. As a result, we obtain a syste
of equations for the coefficientsaf ,bf which determine the
transmission and reflection probabilities as follows:

T5(
f 51

Re~k f !

k
ubf u2, R5(

f 51

Re~k f !

k
uaf u2. ~13!

An accuracy of calculation was controlled by a condition th
T1R51 which was satisfied within computer error 10215.

To consider the multichannel conductance of the tw
terminal ring we rewrite the input wave function~8! of elec-
tron incident in channelj and the output wave function~11!
as follows:40,41

c in, j~x,y!5eik j xf j~y!1(
f

af je
2 ik f xf f~y!, ~14!
-
r-

d

s:
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e
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-

cout,j~x,y!5(
f

bf je
2 ik f xf f~y!. ~15!

Then using Landauer’s formula39,40 the conductance can b
written as follows:

G5
e2

h (
f , j

~k f /k j !ubf j u2. ~16!

Next, we calculate the current distributions

j ~x,y!5
ie\

2m
~c¹c* 2c* ¹c!2

e2

mc
Aucu2. ~17!

In computer simulations formula~14! takes the following
form taking into account gauge~5!:

j m,n
~x!

j 0
5 i @cm,n* eigncm11,n2c.c.#,

j m,n
~y!

j 0
5 i @cm,n* cm,n112c.c.#, ~18!

where

j 05
e\

2md
.

In the circular ring we use the same equations as for
square ring except for boundaries. The boundary conditi
for the circular ring have the following form:

c~m,n!50 if R1
2>n21m2>R2

2 . ~19!

III. NUMERICAL RESULTS. AHARONOV-BOHM
OSCILLATIONS OF THE CONDUCTANCE

A. Square ring

First, we consider the rings with small aspect ratioL@d.
Specifically, in terms of numerical lattice we chose thr
types of the aspect ratio:d/L51/10, d/L51/5, and
d/L51/3. Magnetic flux dependences of the total transm
sion defined by formula~14! and the conductance defined b
formula ~16! are given in Figs. 1–3 for different energies
the incident electrone. The values of the energy correspon
consequently to the one-, two-, and three-channel elec
transport in the leads withf 51,2,3. In the dimensional units
in accordance with formula~6! the energye520 ~the single-
channel transmission! for the metal ring can be achieved fo
d;1 nm provided that the Fermi energy is of order of 1 e
while an electron transmitting in the lead with the wid
d;10 nm has the energye;200. For the semiconducto
structure on the basis of GaAs where the Fermi energy i
an order of 50 meV and the effective mass of the elect
m* '10228,45,46we obtain that the width of the semicondu
tor waveguides may range fromd;10 nm ~the single-
channel transmission! to d;100 nm ~three- and multi-
channel transmissions!.

To show the ABO’s period we have introduced the d
mensionless flux as a ratio of the flux through the mean a
of the ring to the flux quantum,
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FIG. 1. The Aharonov-Bohm oscillation
~ABO’s! of the conductanceG through the
square ring with small aspect ratiod/L51/10
(163160 in lattice scale!. Notationm3n means
thatm is numerical width of arms of the ring an
n is the ring’s size. The fluxg defined by formula
~20! is a ratio of the magnetic flux through th
mean area of the ring to the flux quantum.~a! The
transmission with the energye520 which coin-
cides with the conductance in this case;~b! the
transmission and the two-channel conductan
with e550; ~c! the transmission and the three
channel conductance withe5100.
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B~L2d!2

F0
5

g̃ ~L2d!2

d2
, ~20!

where g̃ is defined in Eq.~1!. In the limit d→0 the ABO
period g̃→1.

The single-channel transmission.We begin by consider-
ing the single-channel input wave function~8!. In Fig. 1 the
ABO’s of the transmission coinciding with the conductan
are shown for the case of small aspect ra
d/L516/16051/10. Numbers 16 and 160 mean numeric
lattice sizes of the ring. These numbers were optimized
such a way that an increase in the lattice sizes does not
any visible changes in the transmission. The metal ri
measured by Webbet al.12 with L5825 nm,d541 nm, and
InxGa12xAs/InP rings measured by Appenzelleret al.47 with
L5700 nm, d585 nm belong to this type of ring with a
l
in
ve
s

small aspect ratio. The metal ring measured by Webbet al.12

with L'282 nm, d537 nm approximately belongs to th
type of rings with a moderate aspect ratio which is shown
Fig. 2 (d/L524/12051/5). As it is seen from Figs. 1–3 th
single-channel transport display only the periodic ABO’s f
the ring with a small aspect ratio while for the ring with
moderate aspect ratio there are three characteristic regio
the ABO’s of the transmission which depend on the asp
ratio.

The region of periodic sinusoidal ABO’s is the first. Th
smaller the aspect ratio and the less the number of chan
the wider the region of periodic sinusoidal ABO’s. Also fo
some values of the energy of an incident electron the AB
can contain the second harmonic as is shown in Fig. 10
the circular ring. A discussion of this phenomenon is giv
in subsection B. For the single-channel transmission and
any aspect ratio this region shown in Figs. 1–3 can be
ct
FIG. 2. The same as in Fig. 1 for the aspe
ratio d/L51/5 (203100 for e520 and 243120
for e550, 100).
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FIG. 3. The same as in Fig. 1 for the aspe
ratio d/L51/3 (30390 ring!.
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proximately defined in terms of the magnetic length~2! as
d/A2< l B , where it is convenient to expressl B via magnetic
flux g as follows:

l B5dA1

g̃
5dA 1

2pg

~L2d!

d
. ~21!

The first peculiarity, which can be seen from Figs. 1–3
that the maxima of the single-channel transmission are
than unit in the first flux region. The reason for this is res
nant transmission through the ring as it is shown in Fig. 4~a!.
Peaks of the transmission are caused by a packing of w
lengths inside the ring. Because of complicated geometr
the square ring this packing is not so simple in compari
with the case of the circular ring@Fig. 4~b!#. It is clear that if
s
ss
-

e-
of
n

we tuned to the resonant value of the energy maxima of
ABO’s of the single-channel transmission it would be ne
unity.

Exact zeroes of the single-channel transmission at po
g'm11/2, m50,1,2, . . . are thenext peculiarity in the re-
gion of regular sinusoidal ABO’s. The electrons traversi
the inner and outer perimeters acquire different phases f
the magnetic field because the trajectories enclose diffe
amounts of the flux.16 It would mean that there would be n
completep interference in the ring with a finite aspect rati
Actually, these arguments are correct provided that the e
tron trajectories are completely laminar. But current flo
patterns for different fluxes over the ABO’s period reve
that the electron trajectories are laminar only forg'm,
m50,1,2, . . . @see Fig. 5~the first subplot!#. With a devia-
tion of the flux g from the integer near the entrance to t
ring a vortex appears~Fig. 5!. As a result, the trajectorie
-
FIG. 4. The energye dependence of the trans
mission in the 203100 square ring for theg50
~a! andg50.08 ~b!.
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56 9667AHARANOV-BOHM OSCILLATIONS OF CONDUCTANCE . . .
included into the vortex state enclose the small amoun
flux opposite to the trajectories along the ring’s arm. T
chirality of the vortex chooses the ring’s arm along whi
the prevailing current flows in such a way that the vort
trajectories and the trajectories along the ring’s arms alw
have opposite captured fluxes. Moreover the greater the
tex currents the smaller the arm’s ones. Finally, at the po
g'm11/2 the vortex completely suppresses the arm’s c
rent to switch off the electron transmission through the ri
For this flux the current flow becomes degenerate relativ
the direction of the flow and the vortex chirality chang
sign. The phenomenon of a swift reversal of the vortices

FIG. 5. Flux evolution of probability current distributions ove
the first sinusoidal ABO period for the single-channel transmiss
through the 203100 square ring. The flux dependence of the tra
mission for this ring is shown in Fig. 2~top subplot!.
f
e

s
r-

ts
r-
.
to

n

the current distribution was found by Berggren and Ji31 in the
electron waveguides with circular bends just below the c
ductance dip without external magnetic field. While the c
rent flow undergoes dramatic changes over the ABO’s pe
the structure of wave functionsuc(x,y)u performs small pe-
riodical displacements near the electrodes of the ring.48

The second flux region is the region of the nonsinusoi
ABO’s of the single-channel transmission where the m
netic length becomes less than the width of the ring’s ar
In this region the maxima of the ABO’s increase with
decrease in the magnetic length and reach unity for the tr
mission. At last, in the third region wherel B!d the trans-
mission is close to saturation everywhere over the flux
cept extremely narrow regions where the transmission f
to zero. As it is shown in Fig. 6 we observe semiclassi
current distributions and the wave functions in the form
edge states. Note, that the aspect ratio of the ring has
noticeable influence on the estimations for the single-chan
transmission, therefore they are universal.

Multichannel transmission.One can see that for the mu
tichannel transmission the flux region of regular sinusoi
ABO’s dissappears for the moderate and large aspect ra
as it is seen from Figs. 2 and 3. Moreover, the multichan
conductance in these rings becomes practically irregular.
Fourier spectra of the ABO’s of the conductance demonst
how with an increase in the number of channels every F
rier peak acquires quasicontinual components~Fig. 7!. It in-
dicates that the ABO of the multichannel transmission in
rings with a moderate aspect ratio becomes irregular.

The quantum-mechanical streamline patterns presente
subplots of Fig. 8 show a substantial difference between
single-channel transport of the electron and the multichan
one in the ring. The streamlines are analogous to the clas
trajectories24,26 and are lines tangential to the current flow
For the multichannel transition there are nodal lines of
wave function which are both orthogonal and parallel to
ring’s arms. Consequently, we obtain the current flo
which form a convectional picture. The flow patterns form

n
-

t
n
c

en
FIG. 6. Flux evolution of probability curren
distributions and the electron wave functio
uc(x,y)u in the flux region where the magneti
length l B is less than the ring widthd. The flux
values shown in subplots are indicated by op
circles in ~a!.
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FIG. 7. The Fourier spectra of the flux depe
dence of the conductance in the square ring w
the aspect ratio 1/5.
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vortical lattice with an elementary cell consisting of a pair
vortices and one antivortex forg50. Application of the flux
drastically deforms the vortical lattice as it is shown in su
plots of Fig. 8. A small variation of the flux from zero t
g50.066 practically destroys the convectional lattice to g
the transmission equal unity. The further increase in the
to g50.13 again gives rise to the convectional structure
the streamlines, which however, flow mostly inside the r
~the fourth subplot in Fig. 8!. As a result the transmissio
becomes equal zero.

B. Circular rings

In the forthcoming figures the results of computer sim
lations of the transmission through the circular ring are p
sented. They are based on the the same equations as fo
square ring except boundary conditions given by Eq.~19!.
f

-

e
x
f

-
-
the

Similar to the square ring it is convenient to introduce
dimensionless flux as a ratio of the flux through the me
area of the ring to the flux quantum,

g5
Fcirc

F0
5

Bp~R22d/2!2

F0
5

g̃p~R22d/2!2

d2
, ~22!

where g̃ is defined in Eq.~1! andd5R22R1.
As the circular ring has no rectangular corners in contr

to the square ring, we have smooth potential releif inside
ring. Actually the energy dependence of the transmiss
~Fig. 9! shows almost periodical oscillations up to the en
gies not exceeding 4p2 (A3p in terms of the wave number!.
Each peak of the transmisison corresponds to a packing o
integer number of wavelengths inside the arms of the circu
ring. However, in the range of the energies where the sec
t

ts
t.
FIG. 8. Flux evolution of probability curren
distributions over the first ABO period for the
two-channel transmission through the 203100
square ring. The flux values shown in subplo
are indicated by open circles in the first subplo



-

e

56 9669AHARANOV-BOHM OSCILLATIONS OF CONDUCTANCE . . .
FIG. 9. The energye dependence of the trans
mission in the 20350 circular ring for theg50
~a! and g50.08 ~b!. Notation m3n is the nu-
merical width of the ring’s arms and the outsid
radius correspondingly.
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channel of transmission participates, the energy depend
of the transmission becomes complex. This is due to the
that the radial packing of the wave function inside the ri
gives rise to new additional peaks of the transmission,
energy position of which is incommensurate to the peaks
the transmission due to the azimuthal packing. As a res
we see quite irregular behavior of the transmission peak
Fig. 9~a! for high energies of the incident electron. An in
volvment of new channels of the electron transmission ins
the rings gives rise to a further complication of the transm
sion peaks. Correspondingly, the ABO’s of the transmiss
are extremely dependent on the number of channels of
electron transmission.

In the second subplot of Fig. 9~b! we see that an applica
tion of the flux induces new peaks of the transmission,
form of which, however, differs from the peaks shown
Fig. 9~a!. Similar behavior of the energy dependence ta
place for the square rings~Fig. 4!. This phenomenon of the
flux induced resonant transmission through the ring was
considered for the one-dimensional rings.49 The explicit form
of the flux induced resonant peaks was obtained which n
the nth peak has the following form:

G~e,g!5
1

11H p2g2

en2e
22GJ 2 , ~23!

whereG is a parameter defined by contact of the ring w
the leads.

The nature of the flux induced resonant transmission
the two-dimensional rings was discussed in Ref. 50. C
sider the transmission of the incident electron through
ring with the leads as the transmission through a reson
cavity, consisting of the ring plus two symmetrical bars
contacts. For a weak coupling of this resonant cavity with
leads the transmission is resonant and takes place if the
ergy of the incident electron is close to the quasienergie
the resonant cavity. The width of the resonant transmissio
defined by the width of the quasienergy which in turn d
ce
ct

e
f

lt,
in

e
-
n
he

e

s

st

ar

n
-
e
nt
s
e
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of
is
-

pends on coupling of the resonant cavity with the leads.
sitions of quasienergies are given by eigenvalues of the r
nant cavity. A half of the corresponding eigenfunctions
symmetric with respect toy→2y and the other half of the
eigenvalues is antisymmetric, where they axis is orthogonal
to the leads. So, if the incident wave function is symmet
with respect toy→2y as it takes place for the first-chann
transmission and the flux equaling zero, only the quasiene
states with the same symmetry are transparent for the i
dent electron. It is a case of the transmission, which is sho
in Fig. 9~a!. Application of the flux violates the symmetry o
the incident wave function to give rise to new peaks of t
resonant transmission through the antisymmetric states o
cavity. This phenomenon is shown in Fig. 9~b!. Since for the
small flux a distortion of the incident wave function can
considered by the perturbation theory and as proportiona
g2, correspondingly, the width of the flux induced peaks
the resonant transmission is also proportional tog2, as is
seen from formula~23!.

If to draw the transmission probability through the tw
dimensional circular ring as a function of the flux and t
energy~Fig. 10, first subplot!, we can observe a good coin
cidence of the plot with the energy levels of the reson
cavity consisting of the ring plus two bars.50 Also one can
see from Fig. 10 that a choice of the energy of the incid
electron defines the type of the ABO’s. Specifically, if
take the energy slightly exceeding the symmetrical quas
ergies, the transmission decreases with the application o
flux @(dG/dg),0#, and we obtain the almost sinusoid
ABO’s. Otherwise, for the energies of the incident electro
for which dG/dg.0, we obtain the ABO’s consisting o
two harmonics. Particular behavior of the derivativedG/dg
is shown in the second subplot of Fig. 10, where two verti
lines indicate the cases of the negative (e515) and positive
(e516) derivative. Therefore, the number of harmonics
the ABO’s for the first-channel transmission is defined by
energy of the incident electron. If the energy is above
even quasienergy, the ABO’s contains one harmonic. If
the energy of the incident electron is spaced between
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FIG. 10. The transmission probability throug
the 20350 circular ring as a function of the flux
and the energy plotted in the form of contou
lines in the first subplot. The second subpl
shows the energy dependence of derivat
dG/dg for g50.02, the sign of which defines th
number of harmonics in the ABO’s for the first
channel transmission presented in the third a
fourth subplots.
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even quasienergy and odd one the ABO’s contains at l
two harmonics. Both types of the ABO’s are shown in t
next subplots of Fig. 10. The origin of the high harmonics
the ABO’s was discussed in many works for the on
dimensional and quasi-one-dimensional rings5–10,16,38,51–53

using different approaches. Present consideration of
transmission through the two-dimensional rings reve
purely geometrical origin of the other periodicity of th
ABO’s based on symmetry arguments of the structure.50

The flux dependence of the quasienergies, which appr
mately coincides with the plot of the transmission given
the first subplot of Fig. 10 governs the behavior of the c
rent flows in the ring by formulaj ;2]e/]g. These current
flow patterns are shown in Fig. 11. In the first subplot
e515.2 the derivative is negative, and the current flo
mostly in the left arm of the ring. In the fourth subplot fo
e515.4 the derivative is positive, and the current flo
mostly in the right arm. The second and third subplots de
onstrate current flow patterns for the caseG50 andG51,
respectively.

As it was discussed above, whether or not the ABO’s
the conductance are regular is defined by the aspect ratio
the number of channels of the transmission inside the r
For the single-channel transmission the periodic ABO’s
the circular ring take place for the small and moderate as
ratios. For the ring with a small aspect ratio~Fig. 12! the
two- and three-channel conductance displays many set
the periodical ABO’s. However, for the circular ring with
large aspect ratio (d/R50.5, Fig. 13! even the two-channe
transmission reveals practically irregular ABO’s of the co
ductance. The Fourier spectra of the ABO’s of the cond
tance of the circular ring have the form similar to that in t
square ring~Fig. 7!, so they are not shown here. Therefo
the phenomenon of irregularity in the ABO’s of the tran
mission of the electron through the rings with the finite a
pect ratio is universal and does not depend on the geom
of rings.

Figure 14 demonstrates a transition of the current dis
bution from laminar to the convectional regime with the fo
st
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ct
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mation of the azimuthal vortex lattice with an increase
energy of the incident electron. Fork54.89 there are only
vortices near the entrance to the ring while fork56.32 the
convectional lattice of the vortices forms inside the ring.
Ref. 54 similar convectional structures were demonstra
for circular billiard. As a result, the electron trajectories f
the multichannel transport become rather volatile provid
that the magnetic length exceeds the arm’s width. It lead
an enormous phase shift by the external flux for these tra
tories which pass between the vortex cells. Correspondin
at the moment of meeting of the trajectories in the do
electrode the phase difference can be rather unpredict

FIG. 11. The energy evolution of probability current distrib
tions for the first-channel transmission through the 20350 circular
ring is shown. The first subplot~a! dG/dg,0. The second subplo
~b! G50. The third subplot~c! G51. The fourth subplot~d!
dGdg.0.
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FIG. 12. The Aharonov-Bohm oscillation
~ABO! of the transmission through the circula
ring with the small aspect ratiod/L50.1 (12360
ring in lattice scale!. The flux g defined by for-
mula ~22! is a ratio of the magnetic flux through
the mean area of the ring to the flux quantum.~a!
The single-channel transmission with the ener
e520; ~b! the two-channel transmission wit
e550; ~c! the three-channel transmission wit
e5100.
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depending on the place of meeting, leading to nonreg
oscillations of conductance as a function of the flux. In ord
to demostrate this instability of incident trajectories insi
the ring in Fig. 15 we show the streamlines. At the left
Fig. 15 one can see that for the single-channel transmis
the trajectories which are numerically closest~the horizontal
distance between them is taken as equal to the lattice un! in
the input lead are stable inside the ring. However, for
four-channel transmission the two closest incident stre
lines acquire finite phase differences of an order off R,
where f is the number of channels.

IV. CONCLUDING REMARKS

We presented results of computer simulations for the e
tron transmission through the two-dimensional rings wh
ar
r

f
on

e
-

c-
h

have square and circular forms with two terminals. The
sults show that taking into account of the second dimens
plays the principal role in the electron transport, indepe
dently of the ring’s aspect ratio defined as a ratio between
width of the ring’s arms and its sized/L. This conclusion
was also made for the closed two-dimensional rings.55,56

Only for very low energies of an incident electron when t
single-channel transmission takes place, the electron tr
port is laminar provided that the flux is zero. If the electr
transport in the two-dimensional structure remained lami
with increasing energy or application of the flux, the seco
dimension would lead to the fluctuation of the phase of
electron trajectories, in dependence of what flux is enclo
by these trajectories in the ring. Consequently, we obtai
the aperiodical ABO’s of the transmission with aperiodic
proportional to the width of the ring’s arms.16 In reality, our
-
FIG. 13. The same as in Fig. 12 with a mod
erate aspect ratiod/L50.25 ~the 20350 circular
ring!.



v

u

u

u

r

a

o

est
the
e
eri-
an

ce
13.

igin
be
rent

ergy

igs.
ec-
ch
ring
of
n
of
el

or
re
n-
s-
s.
nt

y alo-

9672 56KONSTANTIN N. PICHUGIN AND ALMAS F. SADREEV
computer simulations of the current flow patterns reveal t
as soon as the flux is applied or the energy of the incid
electron increases, the electron trajectories may form the
tex structure. For the single-channel transmission a sin
vortex forms near the entrance to the ring~see Figs. 5, 11,
and 14! which equalizes the flux induced phases for the d
ferent electron trajectories. As a result, we have the reg
quasiperiodical ABO’s in the flux region determined by th
aspect ratio of the ring~see Figs. 1–3, 12, and 13! with a
periodical set of zeroes of the transmission. That result d
not depend on the geometrical form of the rings. Howev
the character of the ABO’s in the case of the single-chan
transmission substantially depends on the energy of the i
dent electron. If the energy of the incident electron sligh
exceeds the even quasienergies of the ring, the eigenf
tions of which have the same symmetry as the symmetry
the incident wave function with respect toy→2y for zero
flux, we obtain the almost sinusoidal ABO’s~Fig. 10, the
third subplot!. Otherwise, the ABO’s contain two harmonic
~Fig. 10, the fourth subplot!.

In a real semiconductor and especially in metal ring str
tures we deal with the multichannel transport of electro
The nodal lines of the wave function inside the ring are d
fined both by azimuthal and radial quantum numbers. Co
spondingly, the current distribution pattern becomes conv
tional. These convectional patterns look like a quasiregu
vortex lattice with the period strongly dependent on the e
ergy of the incident electron~or on the number of channels!
provided that the flux is zero. The elementary cell of t
vortex lattice may be simply vortex or may be very comp
cated consisting of a few vortices and antivortices as it
shown in Fig. 14 for the circular ring.

Application of the flux strongly distorts the convection
current flow patterns partially destroyng the vortex lattic
Moreover, the lattice elementary cell may undergo enorm
changes. It leads to strong flux phase shift differences

FIG. 14. Evolution of probability current distributions from th
laminar regime to a convectional one with an increase in energ
incident electron in the circular ring.
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different electron trajectories. In this case even the clos
electron trajectories at the entrance of the ring may get
finite phase shift difference as it is shown in Fig. 15. If th
distance between entrance trajectories is equal to the num
cal lattice unit, at the moment of exit these trajectories c
get the phase difference of orderf L, whereL is a character-
istic scale of the structure andf is the channel’s number. As
a result, the ABO’s of the transmission or the conductan
become irregular as one can see from Figs. 1–3, 12, and
Thus the current and streamline patterns illustrate the or
of large nonuniversal conductance fluctuations which may
due to both quantum interference because of, e.g., cohe
backscattering and the particular geometry of the ring.54 A
level of backscattering processes strongly depends on en
of an incident electron.

Thus, the current and streamline patterns shown in F
5, 6, 11, 14, and 15 reveal the important role of the conv
tional regime and vortices in the electron current flow whi
make the phase differences many times as large as the
scaleL. That may serve as an interpretation of irregularity
the Aharonov-Bohm oscillations for multichannel electro
transport. The reason for this is complicated packing
nodal lines and points inside the ring for the multichann
transmission.
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51M. Büttiker, Y. Imry, and M.Ya. Azbel, Phys. Rev. A30, 1982
~1984!.

52E.A. Jagla and C.A. Balseiro, Phys. Rev. Lett.70, 639 ~1993!.
53M. Di Ventra, F. Gagel, and K. Maschke, Phys. Rev. B55, 1353

~1997!.
54Zhen-Li Ji and K.-F. Berggren, Phys. Rev. B52, 1745~1995!.
55W.-C. Tan and J.C. Inkson, Phys. Rev. B53, 6947~1996!.
56I. Tomita and A. Suzuki, Phys. Rev. B53, 9536~1996!.


