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Quantum disordered systems with a direction
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and L.D. Landau Institute for Theoretical Physics, Moscow, Russia
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Models of disorder with a direction~constant imaginary vector potential! are considered. These non-
Hermitian models can appear as a result of computation for models of statistical physics using a transfer-matrix
technique, or they can describe nonequilibrium processes. Eigenenergies of non-Hermitian Hamiltonians are
not necessarily real, and a joint probability density function of complex eigenvalues can characterize basic
properties of the systems. This function is studied using the supersymmetry technique, and a supermatrixs
model is derived. Thes model differs from that already known by a new term. The zero-dimensional version
of the s model turns out to be the same as the one obtained recently for ensembles of random weakly
non-Hermitian or asymmetric real matrices. Using a new parametrization for the supermatrixQ, the density of
complex eigenvalues is calculated in zero dimension for both the unitary and orthogonal ensembles. The
function is drastically different in these two cases. It is everywhere smooth for the unitary ensemble but has a
d-functional contribution for the orthogonal one. This anomalous part means that a finite portion of eigenvalues
remains real at any degree of the non-Hermiticity. All details of the calculations are presented.
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I. INTRODUCTION

The physics of disordered metals and semiconductors
been attracting considerable attention for several deca
Various interesting phenomena were discovered experim
tally and given theoretical explanations. Rather simple m
els of a particle moving in a random potential can be use
describe such different effects as Anderson localization,1 me-
soscopic fluctuations,2,3 the integer quantum Hall effect,4 and
many others.

Although the phenomena can occur at a weak disorde
simple perturbation theory in the disorder potential is n
sufficient for their quantitative description. A proper theo
is often based on summing certain classes of diagrams~coop-
erons and diffusons!,5,6 but in more complicated cases on
has to use essentially nonperturbative methods like a su
symmetry technique7 based on mapping of the disorder mo
els onto a supermatrixs model~for a recent review, see Re
8 and references therein!. A disordered physical system ca
include a magnetic field, magnetic and spin-orbit impuriti
etc. However, these additional interactions are included
the calculational schemes without considerable difficulty.

Presently diagrammatic expansions and the supersym
try technique give the possibility of obtaining explicit resu
for most of the disorder problems. In addition, the supersy
metry method was applied for calculations with rando
matrices,9 which resulted in application of the method
nuclear physics and quantum chaos, where the random
trix theory had been the basic computational tool~for a re-
view see, e.g. Refs. 10–14!. Recently, a supermatrixs model
was derived for ballistic billiards averaging over either ra
impurities15 or energy.16 Thus the way of studying all thes
interesting problems appears quite clear, although in so
cases one can encounter certain technical difficulties.

The systems mentioned above are described by quan
mechanical Hermitian Hamiltonians. After averaging ov
560163-1829/97/56~15!/9630~19!/$10.00
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disorder, the systems involved are invariant with respec
inversion of coordinates. Sometimes, in order to describe
decay width of eigenstates, non-Hermitian Hamiltonians
used. This approach is popular in the study of quantum d
coupled to leads. Of course, the Hamiltonian of the wh
system of the dot with the leads is Hermitian, but it is oft
convenient to exclude the leads from the consideration
integrating out degrees of freedom related to them. A
result of such an integration one comes to an effective n
Hermitian Hamiltonian of the dot containing imagina
energies.17 This type of non-Hermiticity can be easily in
cluded into the scheme of the supersymmetry technique
well as into diagrammatic expansions, and many results h
been obtained explicitly.8

In a recent publication18 Hatano and Nelson considere
another type of non-Hermitian Hamiltonian with disorde
namely, Hamiltonians with a constant ‘‘imaginary vector p
tential.’’ In other words, the Hamiltonians contain not on
the second-order derivative over the space coordinate,
also the first-order derivative with a real coefficient. T
model appears as a result of mapping of flux lines in
(d11)-dimensional superconductor to the world lines
d-dimensional bosons. Columnar defects produced exp
mentally by energetic heavy ion radiation19 in order to pin
the flux lines lead to a random potential in the boson syst
whereas the component of the magnetic field perpendic
to the defects results in a constant imaginary vec
potential.20

Already, qualitative arguments18 indicate that the pres
ence of the imaginary vector potential can lead to new
fects. In particular, a one-dimensional chain of the bos
has to undergo a localization-delocalization transition; t
result was also checked by a numerical computation.
‘‘conventional’’ ~without the first-order derivative! disor-
dered systems, transitions in one dimension do not oc
and therefore the model with a direction belongs to a clas
9630 © 1997 The American Physical Society
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56 9631QUANTUM DISORDERED SYSTEMS WITH A DIRECTION
systems that has not yet been studied, to our knowledge.
argued that the localized states should have real eigene
gies, whereas eigenenergies of the extended eigenstates
have a nonzero imaginary part.

The importance of the investigation of such systems
comes even more evident if one recalls that, e.g., the e
tion for heat transfer with convection has a term with a fir
order derivative. One can imagine a situation when quan
hopping of a particle from site to site on a lattice has
different probability depending on direction. The presence
the first-order derivative in the Hamiltonian corresponds
introducing a certain direction. The nonequivalence of
directions can be provided by coupling to another subsyst
with broken inversion symmetry playing the role of a res
voir; this reservoir may be out of equilibrium. The classic
analog of the disordered models with a direction~so-called
directed percolation! has been discussed in the literature.21

Another problem, where one comes to a stochastic eq
tion containing first-order derivatives, is the problem of tu
bulence in flow dynamics. It is generally believed that t
most important features of the turbulence can be descr
by the so-called noisy Burgers equation,22 which is a nonlin-
ear equation with a white noise random force. Besides
application in flow dynamics, this equation is used as a
model by field theorists due to a striking analogy betwe
the constant flux states in turbulence and some anomalie
quantum field theories.23 The Burgers equation is equivale
to the Kardar-Parisi-Zhang equation introduced to desc
the crystal growth.24 The nonlinear Burgers equation can
reduced through a Hopf-Cole transformation to a line
(d11)-dimensional equation with a random potential, a
time playing the role of the additional dimension. This equ
tion has a first-order time derivative and there has alre
been an attempt to solve it using the replica method.25 The
noisy Burgers equation can also be reduced to a quan
spin model with a non-Hermitian Hamiltonian.26 Recently,
some interesting results have been obtained for the Bur
equation using an ‘‘instanton’’ approximation.27

Independently of the study of stochastic models with
direction, considerable attention has been paid in the
decade to an investigation of models of random real as
metric and complex non-Hermitian matrices. Eigenvalues
such matrices are, generally speaking, complex, and so t
models are quite different from models of random real sy
metric or Hermitian matrices. Starting from the first work
this direction,28 a number of publications29–32,14 contained
discussion of properties of these models. Complex rand
matrices appeared in studies of dissipative quan
maps,30,14 while real asymmetric random matrices ha
found applications in neural network dynamics.33,34 Many
interesting aspects of non-Hermitian matrices were discus
in the Refs. 35 and 36. Very recently, a regime of we
non-Hermiticity was found for complex random matrices37

In this regime, an explicit formula for the density of comple
eigenvalues was obtained by mapping the problem on
zero-dimensional supermatrixs model.

Although one may guess that models with non-Hermit
or real asymmetric matrices should be related to disorde
systems with non-Hermitian Hamiltonians, no convincing
guments have been given as yet. In fact, generally this is
true because, e.g., the models of open quantum dots
is
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scribed by non-Hermitian Hamiltonians can hardly cor
spond to the models of random non-Hermitian matrices d
cussed in the literature.28,32,14,37However, as will be shown
later, such a correspondence does exist in some limi
cases for disorder models with a direction.

The goal of the present paper is to develop a method
would allow one to make analytical calculations for the d
ordered problems with a direction. This goal is achieved
modifying the supersymmetry technique in a way so as
include in the nonlinear supermatrixs model terms corre-
sponding to the imaginary vector potential. Although
proper s model for the physical real vector potential wa
derived long ago,7 changing to the imaginary one is far from
trivial and, as a result, a completely new term in thes model
appears. If the time-reversal invariance is broken, the ze
dimensional version of thes model turns out to be exactly
the same as the one obtained in Ref. 37 for the mode
weakly non-Hermitian random matrices.

The supermatrixs model derived below is valid in any
dimension, and can be a proper tool for studying t
localization-delocalization transitions in one and two dime
sions proposed in Ref. 18. However, although one can
standard computational schemes,8 the presence of new term
in thes model make calculations with the known paramet
zations of the supermatrixQ more difficult. Therefore, a new
parametrization is suggested and corresponding Jacob
are calculated. To avoid ‘‘overloading’’ only the zero
dimensional case is considered in this paper. For the uni
ensemble the result of Ref. 37 for the joint probability de
sity of complex eigenvalues of weakly non-Hermitian ra
dom matrices is reproduced. The density function is
smooth function of the imaginary part of the eigenvalu
which shows that the probability of real eigenvalues is ze

In contrast, the density function for the orthogonal e
semble obtained below contains ad function, which shows
that the fraction of states with real eigenvalues is finite. T
is a very unusual and interesting result. The entire funct
of the density of complex eigenvalues is obtained for the fi
time, to our knowledge. In the limit of strong non
Hermiticity the joint probability functions for the both uni
tary and orthogonal ensembles correspond to the ‘‘ellip
law.’’ 28,29

The main results of this paper have been presented
short form elsewhere.38 The paper is organized as follows: I
Sec. II models of disorder with a direction are introduce
and their basic properties are discussed. Section III cont
the derivation of the supermatrixs model. In Section IV a
joint probability density of complex eigenvalues is calculat
for systems in a limited volume with broken time-revers
symmetry~unitary ensemble!. This is done by calculation o
integrals over a supermatrixQ for the unitary ensemble. A
new parametrization for the supermatricesQ is introduced.
In Sec. V similar calculations are carried out for the orthog
nal ensemble. The result for the density of complex eig
values proves to be qualitatively different from that for t
unitary ensemble. Section VI contains a discussion of
results obtained, and a comparison with some other works
the Appendixes the Jacobians corresponding to the new
rametrizations for the supermatrixQ are derived.
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II. THE MODEL AND ITS BASIC PROPERTIES

The initial classical model of vortices in
(d11)-dimensional superconductor with line defects cons
ered in Refs. 18 and 20 contains an interaction between
vortices. In the corresponding quantum model
d-dimensional bosons, this describes an interaction betw
the bosons. The interaction is, in principle, very importa
Its short-range part does not allow bosons to condense a
localized state. At the same time, if it is strong enough th
can be only one boson in a localized state, and the prob
maps onto the model of noninteracting fermions. Of cour
this is not true for extended states, for which one should
the model of interacting bosons.

It is clear that one should first understand when o
particle states are localized and when they are not. There
as in Refs. 18 and 20, it is reasonable to start with
d-dimensional HamiltonianH of noninteracting particles in
cluding a constant imaginary vector potentialih and a ran-
dom potential of impuritiesU(r ),

H5H01U~r !, H05
~ p̂1 ih!2

2m
, ~2.1!

where p̂52 i¹, and m is the mass of a particle~boson or
fermion!.

The random potentialU(r ) is assumed to be distribute
according to the Gaussiand-correlated law

^U~r !&50, ^U~r !U~r 8!&5
1

2pnt
d~r2r 8!, ~2.2!

wheret is the mean free time, andn is the density of states
of the HamiltonianH0 at h50 at the energye involved. It is
assumed that the disorder is weak, andh is small. As men-
tioned in Sec. I, the potentialU(r ) corresponds to the poten
tial of the line defects andh to the component of the mag
netic field perpendicular to the line defects for the model
the vortices. At the same time, the HamiltonianH, Eq. ~2.1!,
can describe other systems as well. So we may study p
erties of the HamiltonianH without recalling each time
where it comes from. Some of possible applications of
~2.1! were listed in Sec. I. The directed quantum hopp
appears to be a new interesting possibility. The Hamilton
HL of a lattice version of Eq.~2.1! can be written as follows

HL52
t

2 (
r

(
n51

d

~ehencr1en

1 cr1e2hencr
1cr1en

!

1(
r

U~r !cr
1cr , ~2.3!

wherec1 andc are creation and annihilation operators, a
$en% ’s are the unit lattice vectors.

Although Eq.~2.3! was used in Ref. 18 only for numerica
calculations, it has a clear physical application; that is
describes quantum hopping of a particle from site to site
the presence of a random potential. However, the hopp
probability alongh is higher than in the opposite direction
In other words, the HamiltonianHL describes a directed hop
ping in a random potential. The systems with the Hamil
niansH andHL , Eqs.~2.1! and~2.3!, are not invariant with
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respect to inversion of the coordinates even after averag
over impurities. At the same time, they are time, rever
invariant, and therefore essentially different from syste
with real magnetic fields.

If necessary the HamiltoniansH andHL can be general-
ized to include the vector potentialA corresponding to a
physical magnetic field. This can be done by the stand
replacement

p̂→p̂2
e

c
A ~2.4!

in Eq. ~2.1!. Proper changes can also be done in Eq.~2.3!.
Of course, the vortex model of Ref. 18 corresponds to

~2.1! with A50, but already the hopping model can be co
sidered in an arbitrary magnetic field. Changing the magn
field ~or, more precisely, the vector potentialA! results in a
crossover between ensembles with different symmetries
analogy with ‘‘conventional’’~nondirected! disordered sys-
tems, these ensembles will be called orthogonal and unit

Although the HamiltoniansH and HL , Eqs. ~2.1! and
~2.3!, are not Hermitian, this fact does not contradict fund
mental laws of nature. In the problem of the vortices in s
perconductors these Hamiltonians appear after a reductio
a (d11)-dimensional classical problem to ad-dimensional
quantum one using the transfer-matrix technique, which
formal trick. As concerns the directed hopping model t
vector h can appear as a result of a coupling with anoth
system~reservoir! that is not necessarily in equilibrium. Th
latter system can be subjected, e.g., to an electric field, th
can be nondecaying currents in it, etc. Integrating out
grees of freedom related to the reservoir one obtains an
fective Hamiltonian that does not need to be Hermitian.

In other words, non-Hermitian Hamiltonians appear at
termediate steps of calculations, and manipulations w
them should be considered merely as formal computatio
tricks. The corresponding wave functions and eigenener
are only formal objects as well. Of course, one should
derstand how to relate initial physical observables to qua
ties calculated with the non-Hermitian Hamiltonians.

It is relevant to mention that a classical directed mo
that can be considered the counterpart of the directed q
tum problem was introduced a long ago.21 This is the model
of a directed percolation that can describe, e.g., spreadin
infection or fire in a forest affected by wind. According t
the results of Ref. 21, the critical behavior near the perco
tion transition in the model of the directed percolation
different from that in an isotropic model. The analysis
Ref. 21 was based on a diagrammatic expansion. The
Green functionsG(0)(p) used in the expansion had the for

G~0!~p!5
1

p21 iap1r
, ~2.5!

with a constant vectora. Comparing Eq.~2.5! with Eq. ~2.1!,
we see thatG(0) is the Green function of the Hamiltonia
H0 , which demonstrates that both models are really clos
related to each other.

Now, let us discuss, following Ref. 18, basic properties
eigenstates of the HamiltonianH, Eq. ~2.1!. Due to the non-
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56 9633QUANTUM DISORDERED SYSTEMS WITH A DIRECTION
Hermiticity of the Hamiltonian, one should distinguish b
tween rightfk(r ) and left f̄k(r ) eigenfunctions. They obey
the equations

Hfk~r !5ekfk~r !, HTf̄k~r !5ekf̄k~r !, ~2.6!

whereHT is obtained by transposition of the HamiltonianH.
For spinless particles the operation of the transposi
means simply changing of the sign of the space derivat
The functionsf̄k(r ) are also considered conjugate tofk(r );
for each eigenfunction one can construct its conjugate.
scalar product (fk ,fk8) of two eigenfunctionsfk(r ) and
fk8(r ) is introduced as

~fk ,fk8!5E f̄k~r !fk8~r !dr . ~2.7!

Using Eq. ~2.7!, one can prove in a standard way the o
thogonality of eigenfunctions corresponding to differe
eigenenergies. Together with the normalization condit
this can be written as

E f̄k~r !fk8~r !dr5dkk8 ~2.8!

The eigenenergyek in both Eqs.~2.6! is the same. Equation
~2.8! enables us to reproduce basic properties of conv
tional ~Hermitian! quantum mechanics, replacing ever
where complex conjugatesfk* (r ) of the functionsfk(r ) by
the conjugatesf̄k(r ). However, the eigenenergiesek in the
non-Hermitian quantum mechanics are not necessarily r
They must be real only if the functionsfk* (r ) and f̄k(r )
coincide. In order to obtain well-defined wave functions
the thermodynamic limit, it is convenient to impose period
boundary conditions.

To understand better what the wave functions look like
different situations, it is instructive to consider a localiz
state with a localization center at a pointx0 , and extended
states in the absence of impurities~for simplicity we may
restrict ourselves with the purely one-dimensional case!. As-
sume that forh50 the eigenfunctionsfk

(0) and the eigenval-
uesek

(0) are known. Then the functions

fk~x!5ehxfk
~0!~x!, f̄k5e2hxfk

~0!~x! ~2.9!

are solutions of Eqs.~2.6! with the eigenenergyek
(0) .

At the same time, in order to satisfy the boundary con
tions, the functionsfk andf̄k may not grow. If the function
fk

(0)(x) is exponentially localized at a lengthl c , the function
fk(x) takes the form

fk~x!5C exp~h~x2x0!2 l c
21ux2x0u!. ~2.10!

The functionfk(x), Eq. ~2.10!, and the corresponding func
tion f̄k(x) does not grow atuxu→` only if uhu, l c

21 . The
point uhu5 l c

21 was identified18 with a localization-
delocalization transition.

In the regionuhu> l c
21 the functionsfk given by Eqs.

~2.9! and~2.10! are no longer eigenfunctions because they
not satisfy the boundary conditions. To get an idea what
eigenfunctions look like in this region, we may neglect t
disorder potential. Then the plane waves
n
e.

e

-
t
n

n-

al.

i-

o
e

fk5L21/2eikx, f̄k5L21/2e2 ikx, ~2.11!

whereL is the length of the sample, are proper solutions
Eqs. ~2.6! satisfying the boundary conditions. However,
this case the eigenvalueek is complex,

ek5
~k1 ih !2

2m
. ~2.12!

We see that the question about whether an eigenfunctio
the presence of the imaginary vector potential is localized
extended is closely related in the thermodynamic limit to
question of whether the corresponding eigenenergy is rea
complex. The arguments presented are qualitative but t
were confirmed by numerical calculations.18

It is clear from the previous discussion that it is ve
important to understand when eigenenergies are real
when they become complex. A convenient function char
terizing the system is the joint probability density of compl
eigenenergiesP(e,y), defined as

P~e,y!5
1

V K (
k

d~e2ek8!d~y2ek9!L , ~2.13!

where ek8 and ek9 are the real and imaginary parts of th
eigenenergyek , V is the volume, and the angular bracke
stand for averaging over impurities. If all states are localiz
such thatek950, the functionP(e,y) equals

P~e,y!5n~e!d~y!, ~2.14!

wheren~e! is the average density of states.
If all states are extended, the functionP(e,y) should be a

smooth function of both variables. In some cases phys
quantities can be expressed directly through the func
P(e,y), although other correlation functions are also of i
terest. The rest of this paper is devoted to a reduction of
function P(e,y), which is the simplest nontrivial function
characterizing the system, to a correlation function in a
persymmetrics model and to some calculations with th
model. To our knowledge, this is the first attempt at a qu
titative analytical study of disordered directed quantum s
tems.

III. DERIVATION OF s MODEL

According to the standard procedure of derivation of t
supermatrixs model,7,8 one should express the physic
quantity in terms of retardedGe

R and advancedGe
A Green

functions of the Hamiltonian. Usually the average density
states that can be expressed through the average of
Green function is not an interesting quantity, because it d
not distinguish between localized and extended states.
density of complex eigenvaluesP(e,y) is definitely more
interesting, but how to express it in terms of integrals ov
supervectors, which is the first step of derivation of thes
model?

The problem is that it is not clear how to write the fun
tion P(e,y) in terms of the functionsGe

R andGe
A . However,

even if this representation existed it would not help. T
spectral expansion of the functionsGR,A,
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Ge
R,A~r ,r 8!5(

k

fk~r !f̄k~r 8!

e2ek6 id
, ~3.1!

contains the eigenenergiesek ; some of them may be com
plex. But the very possibility to rewrite the Green functio
in terms of convergent Gaussian integrals over the super
tors was based on the assumption that the eigenenergies
real.

Another possibility is based on the relation

d~a!d~b!5
1

p
lim
g→0

g2

~a21b21g2!2 , ~3.2!

that holds for reala andb. With Eq. ~3.2! the density func-
tion P(e,y) can be rewritten as

P~e,y!5
g2

pV
lim
g→0

K (
k

@~e2ek8!21~y2ek9!21g2#22L .

~3.3!

Using the orthogonality of the eigenfunctionsfk , Eq. ~3.3!
can be also represented as

P~e,y!5
1

pV
lim
g→0

E B~r ,r 8!B~r 8,r !dr dr 8, ~3.4!

where the functionB(r ,r 8) has the form

B~r ,r 8!5(
k

gfk~r !f̄k~r 8!

~e2ek8!21~y2ek9!21g2 . ~3.5!

The representation of the density functionP(e,y) by Eq.
~3.4! is very convenient because it allows one to rewrite t
function in terms of a Gaussian integral over supervecto

In order to derive a proper expression, let us introduc
Hermitian operatorM̂

M̂5S H82e i ~H92y!

2 i ~H92y! 2~H82e!
D , ~3.6!

where

H85
1

2
~H1H1!, H952

i

2
~H2H1!. ~3.7!

In Eq. ~3.7!, the symbol ‘‘1’’ means Hermitian conjugation
For real Hamiltonians this conjugation coincides with t
transposition ‘‘T. ’’ However, let us write formulas in a gen
eral form such that the HamiltonianH may include magnetic
interactions and be complex.

Instead of manipulating the non-Hermitian operatorH,
one can try to use the Hermitian operatorM̂ . To follow the
standard procedure of the supersymmetry technique
should find first the eigenstates of this operator. For the c
plex non-Hermitian operatorH, one can write four equation
for the eigenstates:

Hfk5ekfk , HTf̄k5ekf̄k , ~3.8!

H* fk* 5ek* fk* , H1f̄k* 5ek* f̄k* . ~3.9!

Equations~3.9! are merely complex conjugates of Eqs.~3.8!.
c-
ere

s
.
a

ne
-

Now let us introduce two sets of two-component vecto
uk andvk ,

uk5
1

2 S fk1f̄k*

fk2f̄k*
D , vk5

1

2 S fk2f̄k*

fk1f̄k*
D ,

~3.10!

ūk5 1
2 ~f̄k1fk* f̄k2fk* !, v̄k5 1

2 ~f̄k2fk* f̄k1fk* !.

Using the orthogonality of the eigenfunctionsfk , Eq. ~2.8!,
one can prove the orthogonality of the vectorsuk andvk :

E ūk~r !uk8~r !dr5E v̄k~r !vk8~r !dr5dkk8 ,
~3.11!

E ūk~r !vk8~r !dr5E v̄k~r !uk8~r !dr50.

It is not difficult to see that vectorsuk(r ) and vk(r ) are
eigenvectors of the matrix operatorM̂ satisfying the equa-
tions

M̂uk5Mkuk , M̄vk5Mkvk , ~3.12!

where the matrixMk equals

Mk5S ek82e i ~ek92y!

2 i ~ek92y! 2~ek82e!
D , ~3.13!

and ek8 and ek9 are the real and imaginary parts of th
eigenenergiesek .

Using the identity

i

2
Tr~Mk1 ig!215

g

~ek82e!21~ek92y!21g2 , ~3.14!

one can see that functionsB(r ,r 8), Eq. ~3.5!, are closely
related to the operatorM̂ . The only thing that remains to b
done is to express the matrix (Mk1 ig)21 and then the op-
erator (M̂1 ig)21 in terms of a Gaussian integral over s
pervectors.

The operatorM̂ is Hermititian, and its eigenvectorsuk
andvk , Eqs.~3.10!, are known, and therefore we can follo
the standard procedure of the derivation. Changing from
HamiltonianH to the operatorM̂ , we have to double the siz
of the relevant matrices. This means that in order to w
proper Gaussian integrals we should use, as usual, e
component supervectorsc~r !. In fact, one comes to super
vectorsc with exactly the same structure as previously,7,8

cm5S qm

r m D , qm5
1

&
S xm*

xm D , r m5
1

&
S Sm*

Sm D .

~3.15!

m51, 2; andxm andSm are anticommuting and commutin
variables, respectively.

Let us present several important intermediate steps of
reduction of the operator (M̂1 ig)21, to the functional inte-
gral overc~r !. First, we have
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~ ig1Mk!
2152 i E ~akak* 1bkbk* !exp~2Lk!dRk

52 i E ~sksk* 1rkrk* !exp~2Lk!dRk ,

~3.16!

whereak ,bk and sk ,rk are commuting and anticommutin
variables, respectively, anddRk stands for the elementar
volume in the space of these variables. The functionLk in
Eq. ~3.16! equals

Lk52 i ~ak* bk* !~ ig1Mk!S ak

bk
D

2 i ~sk* rk* !~ ig1Mk!S sk

rk
D . ~3.17!

The vector fieldsxW (r ) andSW (r ) are introduced as

xW ~r !5S x1~r !

x2~r ! D5(
k

@akuk~r !1bkvk~r !#,

~3.18!

SW ~r !5S S1~r !

S2~r ! D5(
k

@skuk~r !1rkvk~r !#,

where the vectorsuk andvk are defined in Eqs.~3.10!.
With these definitions, one can express the functio

B(r ,r 8), Eq. ~3.5!, in terms of Gaussian integrals over th
vector fieldsxW (r ) andSW (r ). The derivation is based on th
identity

E SW * ~r !M̂SW ~r !dr5(
k

~ak* bk* !M̂ kS ak

bk
D , ~3.19!

that can be proved using Eqs.~2.8! and~3.10! @the same for
xW (r )#. Less trivial is the expression

igE SW * ~r !SW ~r !dr . ~3.20!

Using the expansion, Eq.~3.18!, we can see that the integra
Eq. ~3.20!, contains nondiagonal terms with respect tok,k8.
For example, there is the following term:

ig

2 (
k,k8

ak8
* akE fk8

* ~r !fk~r !dr . ~3.21!

For Hermitian Hamiltonians the integral in Eq.~3.21! would
give dkk8 . However, generally it is not zero for arbitraryk
andk8 because the orthogonality relation, Eq.~2.8!, contains
f̄k but notfk* . Fortunately, this does not create the difficu
ties in the limit of small ‘‘vector potential’’h that are the
main focus of interest in the present work, because the
ference betweenf̄k and fk* is small. ~Moreover, we are
interested in the limitg→0!. This allows us to write

(
k

Lk5E @xW * ~r !~ ig1M̂ !xW ~r !1SW * ~r !~ ig1M̂ !SW ~r !#dr .

~3.22!

Although one can use Eq.~3.22! as an effective Lagrangian
it is convenient to unify all components of the vectorsxW , xW * ,
s

if-

SW , andSW * into the supervectorc of the form, Eq.~3.15!. As
a result, one comes to integration with the weight exp(2L),
where the LagrangianL takes the form

L52 i E c̄~r !@H01U~r !#c~r !dr , ~3.23!

and the ‘‘charge-conjugate’’ supervectorc̄(r ) is the same as
in Refs. 7 and 8. The 838 matrix operatorH0 can be written
as

H05H001H01,

H005H082e1 igL, H015 iL1~H91yt3! . ~3.24!

In the continuum model, the ‘‘imaginary’’ partH9 of the
HamiltonianH, Eqs.~2.1! and ~3.7!, has the form

H952 i
h¹

m
. ~3.25!

The diagonal matricesL and t3 are the same as in Refs.
and 8. The matrixL1 anticommutes with the matrixL and
consists of unit 434 blocks as well. The explicit forms o
these matrices are

L5S 1 0

0 21D , L15S 0 1

1 0D . ~3.26!

Equation~3.23! is similar to the corresponding equation fo
localization problems,7,8 and in the absence ofH01 these
equations would coincide. All new physics comes from t
operatorH01. A magnetic field can be included intoH00 in a
standard way.

All subsequent manipulations are the same as in Ref
and 8. First, one averages over the random potentialU(r )
using Eq.~2.2! and comes, instead of Eq.~3.23!, to a regular
LagrangianL

L5E F2 i c̄~r !H0c~r !1
1

4pnt
@c̄~r !c~r !#2Gdr .

~3.27!

Then one decouples the interaction term in Eq.~3.27! by
integration over a supermatrixQ, and integrates over the
supervectorc, assuming that the supermatrixQ varies in
space slowly. After that one comes to an integral overQ
with the weight exp(2F@Q#). The functional integral overQ
is calculated using a saddle point approximation. At t
saddle point the supermatrixQ does not depend on coord
nates, and in the limit of smallH01 and g one obtains the
standard equation

Q~r !5
1

pn S F2 iH001
Q~r !

2t G21D
rr

, ~3.28!

which leads to the constraintQ251 and to the form
Q5VLV̄, VV̄51. Now, one has to expand the free-ener
functionalF@Q# near the saddle point inH01, g and¹Q. As
a result, the functionalF@Q# acquires the form of as model,
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F@Q#5
pn

8 E STr$D0~¹Q1h@Q,L1# !2

24~gL1yL1t3!Q%dr , ~3.29!

whereD0 is the classical diffusion coefficient,@.,.# is com-
mutator, andSTr stands for a supertrace. Equation~3.29! is
written in the absence of a magnetic field. The expans
near the saddle point leading to Eq.~3.29! is justified pro-
vided y!t21 and h! l 21, where l is the mean free path
The supermatricesQ are the same as those for the orthogo
ensemble.7,8 This case corresponds, in particular, to the pro
lem of vortices in superconductors with line defects.18 If for
some other problems one has to include in the Hamiltoni
H andHL the physical vector-potentialA corresponding to a
magnetic field, the standard derivation shows that the pro
s-model is obtained from Eq.~3.29! by the replacement

¹Q→¹Q2
ie

c
A@Q,t3#. ~3.30!

In the limit of a strong magnetic field one can neglect flu
tuations of a certain symmetry~cooperons!. Then Eq.~3.29!
is still valid, but the supermatricesQ should have a symme
try corresponding to the unitary ensemble.

The free-energy functionalF@Q#, Eq. ~3.29!, has two ad-
ditional with respect to the functional used for ‘‘conve
tional’’ disorder problems terms. These terms contain
matrix L1 and serve as new effective ‘‘external fields’’ in th
free energy. We see from Eqs.~3.29! and~3.30! thath andA
enterF@Q# in a different way. A simple replacementA→ ih
in the s model of Refs. 7 and 8 would give a wrong resu
This reflects the fact that a nonzeroA violates the time-
reversal symmetry, whileh can break only the symmetr
with respect to inversion of coordinates.

In order to express the density functionP(e,y), Eqs.~3.4!
and ~3.5!, in terms of a functional integral overQ, one
should know not only the weight exp(2F@Q#) but also a
pre-exponential functionalA@Q#. This can be derived from
Eqs.~3.4! and ~3.5! in a standard way. One of the function
B can be written using the first line of Eq.~3.16!, and the
other using the second one. As a result, one obtains in
pre-exponential a product of four different components
the supervectorc; two of them are at the pointr , while the
other two at the pointr 8. After averaging over the random
potentialU(r ) and decoupling of the effective interaction
Eq. ~3.27! by integration over the supermatrixQ, one has to
compute Gaussian integrals overC. This can be done using
the Wick theorem. In the limitt21@(nV)21 one may take
into account only pairing of twoc at coinciding points. The
rest of the calculation is simple, and one obtains

P~e,y!52
pn2

4V
lim
g→0

E A@Q#exp~2F@Q# !dQ,

~3.31!

where

A@Q#5E $@Q42
11~r !1Q42

22~r !#@Q24
11~r 8!1Q24

22~r 8!#2@Q42
21~r !

1Q42
12~r !#@Q24

21~r 8!1Q24
12~r 8!#%dr dr 8. ~3.32!
n

l
-

s

er

-

e

he
f

Numeration of the matrix elements in Eq.~3.32! is
standard.7,8

Equations~3.29!–~3.32! solve the problem of mapping o
the density of complex eigenvalues for disorder models w
a direction onto a supermatrixs model. The density function
P(e,y) depends on the real parte of the eigenenergies
through the parametersn and D0 that are dependent one.
The dependence on the imaginary party is more compli-
cated. Remarkably, thes model derived differs from thes
model for localization problems by additional ‘‘extern
fields’’ only. This simplifies calculations because one c
use well-developed computational schemes.

The s model, Eqs.~3.29!–~3.32! can be used in any di
mension. The one-dimensional version describes ‘‘quan
wires’’ or, in the language of the superconductor model,
vortices in a slab. According to a discussion of Ref. 18,
one-dimensional models there has to be a localizati
delocalization transition. If this is true for thick wires th
one-dimensionals model should undergo a phase transiti
when changing the value ofh. However, study of the one
dimensional model is more difficult than of the zer
dimensional one. Leaving higher-dimensional problems
future investigation let us concentrate in Sec. IV on calcu
ing the density functionP(e,y) for a sample with a finite
volume. This situation is described by the zero-dimensio
s model.

IV. DENSITY OF COMPLEX EIGENVALUES
IN A LIMITED VOLUME: UNITARY ENSEMBLE

If disorder is not very strong, there is a regime wh
physical quantities can be obtained from the ze
dimensional~0D! s model. This is the limiting case whe
one considers only supermatricesQ that do not vary in
space. For the problem of level statistics in Hermitian mo
els the 0Ds model is obtained in the limitv!Ec , where
Ec5p2D0 /L2 is the Thouless energy~L is the sample
size!.7,8 If the sample is connected with leads and the ene
levels are smeared, the 0D case is possible, provided
level width does not exceedEc . If the disorder is strong or
the sample has one- or two-dimensional geometry, such
the localization lengthLc is smaller than the sample size, th
0D limit cannot be achieved.

It is clear that the situation with the directed problem
involved should be similar, and one can come to the 0Ds
model providedh, y, andg in Eq. ~3.29! are not very large
and disorder is not very strong. For the model of vortices
a superconductor the 0D limit for thes model would corre-
spond to a sample with a finite cross section perpendicula
the line defects.

Neglecting all nonzero space harmonics in the free-ene
functionalF@Q#, one can rewrite Eq.~3.29! as follows:

F@Q#5STrS a2

16
@Q,L1#22

x

4
L1t3Q2

g̃

4
LQD , ~4.1!

where

a25
2pD0h2

D
, x5

2py

D
, g̃5

2pg

D
, ~4.2!

andD5(nV)21 is the mean level spacing.
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56 9637QUANTUM DISORDERED SYSTEMS WITH A DIRECTION
Although obtaining the 0D limit of thes model is trivial
in the absence of the vector potential, the derivation ne
some care forhÞ0. In case of a real magnetic field one c
neglect all nonzero harmonics, provided the London ga
for the vector potential is chosen.8 The same is correct forh.
One can come to the London gauge considering nonz
harmonics perturbatively. The free-energy functional
fields describing deviations from the 0Ds model contains
both linear and quadratic terms. In order to obtain a go
perturbation theory near the 0Ds model, one should get rid
of the linear terms. This can be done for an arbitrary funct
h ~r ! if the following equations are satisfied:

divh ~r !50, huS50, ~4.3!

where huS is the component perpendicular to the surfa
Equation~4.3! is the London gauge forh.

It is clear that the second condition in Eq.~4.3! cannot be
fulfilled for a closed sample, andh5const. But this is not an
interesting case because, as follows from the general con
eration of Sec. II, in such a situationh can be removed by the
transformation, Eq.~2.9! ~if the sample is confined by har
walls!, and one obtains the standard 0Ds model without the
first term in Eq.~4.1!.

Equations~4.3! can be satisfied if the sample has a ri
geometry, andh ~r ! is directed along the circumference~this
corresponds to the periodic boundary conditions of Ref. 1!.
Then,h is approximately constant if the radius of the ring
large. Thus Eqs.~4.1! and ~4.2! are applicable to sample
with a ring geometry. Of course, one can also use these e
tions for an arbitrary geometry, but the functionh ~r ! must
obey Eqs.~4.3! and the quantityh2V entering Eq.~4.2!
should be replaced by*h2(r )dr .

Removing, with the help of Eqs.~4.3!, terms in the free-
energy functional linear in the deviations from the 0Ds
model, and evaluating the contribution of the quadratic on
one comes to the conclusion that the nonzero space harm
ics can be neglected in the limits

y!Ec , g̃!Ec , h!L21, ~4.4!

whereL is the sample size.
The density functionP(e,y), Eqs.~3.31! and~3.32!, takes

the forms

P~e,y!52
pn

4D
lim
g̃→0

E A@Q#exp~2F@Q# !dQ,

~4.5!

A@Q#5~Q42
111Q42

22!~Q24
111Q24

22!2~Q42
211Q42

12!~Q24
211Q24

12!,

with F@Q# determined by Eq.~4.1!.
To obtain the functionP(e,y) one should calculate in Eq

~4.5! a definite integral over the supermatricesQ. The struc-
ture of supermatricesQ is the same as in Refs. 7 and 8 an
in principle, the way how to compute the integral is clear.
usual, all manipulations are simpler for the unitary ensem
and therefore let us start with this case.

However, before an explicit calculation of the integral
Eq. ~4.5!, an interesting observation can be made. We kn
that the 0D version of thes model for Hermitian disordered
systems can also be derived from random matrix models9 In
fact, this is the way the equivalence between disordered
ds
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tems in a limited volume and random matrix theory~RMT!
was finally established. Now, a natural question arises:
the random models with a direction considered in the pres
work correspond to RMT?

Of course, this cannot be a model of Hermitian or re
symmetric matrices, because in this case all eigenva
must be real. Thus, one should think of ensembles of rand
real asymmetric or complex non-Hermitian matrices. Stu
of random complex matrices without the requirement of H
miticity has started quite long ago28 and since then models o
non-Hermitian or real asymmetric random matrices ha
been considered in a number of publications.13,14,29,30,32–34

The ensembles of real symmetric random matrices h
found applications in, e.g., neural network dynamics,33,34

while the ensembles of complex random matrices appea
study of dissipative quantum maps.30,14 One of results ob-
tained is that, for Gaussian ensembles in the limit of a la
sizeN of the matrices, the eigenvalues are uniformly distr
uted inside an ellipse.29,32,31

Recently, an ensemble of ‘‘weakly non-Hermitian’’ ran
dom matricesX was introduced.37 These matrices have th
form

X̂5Â1 iaN21/2B̂, ~4.6!

with N3N statistically independent Hermitian matricesA
andB, and a numbera of the order of unity. The matricesÂ
and B̂ obeyed Gaussian distributions with the probabil
densities

P~Â!}expS 2
N

2J2 TrÂ2D , P~B̂!}expS 2
N

2J2 TrB̂2D
~4.7!

whereJ has the order of unity.
The parameteraN21/2 is a measure of the non

Hermiticity, and is always small forN→` anda finite. The
authors of Ref. 37 calculated a density of complex eigenv
ues similar to the functionP(e,y), Eq. ~2.13!, and demon-
strated that this function has a finite limit whenN→`. At
the same time they did not point out any direct physi
applications. For computation of the functionP(e,y), they
used the supersymmetry technique. Remarkably, thes model
derived in Ref. 37 is exactly the same~although numeration
of elements of the matrixQ is somewhat different! as the
unitary version of 0Ds model, Eq.~4.1!. The preexponentia
is different, but this is natural because another~less direct!
way of calculating the functionP(e,y) was used.

The same form of thes model obtained for these two
different models shows that the directed disordered mo
with broken time-reversal invariance in a finite volume
equivalent to the model of weakly non-Hermitian matrice
Apparently, the same equivalence holds between the ti
reversal-invariant model of disorder and models of wea
nonsymmetric real matrices. However, it is relevant to e
phasize that not every non-Hermitian Hamiltonian cor
sponds to the models of non-Hermitian or nonsymmetric r
matrices. For example, models of open chaotic billiards
described by Hamiltonians with additional imaginary term
~see, e.g., Refs. 8 and 9!. These Hamiltonians do not seem
be equivalent to the random matrix models of Ref. 37.
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9638 56K. B. EFETOV
Now, let us show how explicit calculations in Eqs.~4.1!
and~4.5! can be performed. First of all one should choos
proper parametrization of the supermatricesQ. The authors
of Ref. 37 used the parametrization of Ref. 7~‘‘standard
parametrization’’ in the terminology of Ref. 8!. This param-
etrization has been used for solving many interesting pr
lems. However, due to the presence of new terms in the
energyF@Q#, Eq. ~4.1!, this parametrization is not as con
venient as before,8 because nowF@Q# contains not only the
‘‘eigenvalues’’ û but also many other variables.

As concerns the unitary ensemble, the computation of
functionP(e,y), although very lengthy, is still feasible.37 At
the same time, calculations for the orthogonal case using
standard parametrization do not seem to be possible a
due to unsurmountable technical problems.

Fortunately, one more parametrization is possible tha
perfectly suitable for the present problem. To some exten
resembles the parametrization used to study the cross
between the orthogonal and unitary ensembles.39,8 Of course,
it should be written for the orthogonal and unitary ensemb
in a different way, but the main structure is the same. Le
show in this section how the functionP(e,y) can be ob-
tained for the unitary ensemble using this new parametr
tion ~it can be called ‘‘non-Hermitian parametrization’’!. The
orthogonal ensemble will be considered in Sec. V.

The supermatrixQ in the non-Hermitian parametrizatio
is written in the form

Q5TQ0T̄, ~4.8!

whereT should be chosen to satisfy the relations@T,L1#50
and T̄T51. The bar stands for the ‘‘charge conjugation
defined in Refs. 7 and 8. It is clear that with such a choice
functionF@Q# depends onQ0 only ~for the unitary ensemble
one has also@Q0 ,t3#50!.

The central partQ0 in Eq. ~4.8! is taken in the form
to
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Q05S cosŵ 2t3sinŵ

2t3sinŵ 2cosŵ D , ŵ5S w 0

0 ix D , ~4.9!

while the supermatrixT can be chosen as

T5S u 0

0 uD S cos~ û/2! 2 i sin~ û/2!

2 i sin~ û/2! cos~ û/2!
D S v 0

0 v D .

~4.10!

The supermatricesû, u, andv are equal to

û5S u 0

0 iu1
D ,

~4.11!

u5S 122hh̄ 2h

22h̄ 122h̄h D , v5S 122kk̄ 2k

22k̄ 122k̄k D .

The 232 matricesw, x, u, andu1 are proportional to the uni
matrix, the matricesh, k are

h5S h 0

0 2h* D , k5S k 0

0 2k* D ~4.12!

whereh, h* , k, and k* are anticommuting variables. Th
conjugate matricesh̄ andk̄ are the same as in Refs. 7 and
To understand better the structure of the supermatrixQ given
by Eqs.~4.8!–~4.12! it is instructive to write it neglecting all
Grassmann variables. Then, one can write separately
compact and noncompact sectors. The compact sector t
the form

S cosu cosw 2t3sinw1 i sinu cosw

2t3sinw2 i sinucosw 2cosu cosw D ,

~4.13!

whereas the noncompact sector is written as
S coshu1coshx 2 i t3sinhx2sinhu1coshx

2 i t3sinhx1sinhu1coshx 2coshu1coshx D . ~4.14!
u-
not
Comparing Eqs.~4.13! and ~4.14! with the corresponding
expressions for the supermatrixQ in the standard
parametrization,7,8 one can understand that in order
specify the supermatrixQ unambiguously the following in-
equalities should be imposed:

2`,x,`, 2`,u1,`, 2p,u,p,

2p/2,w,p/2. ~4.15!

To start the computation with the parametrization, E
~4.8!–~4.12!, one should first derive the proper Jacobian. T
derivation is presented in the Appendixes. The final result
the elementary volume@dQ# reads

@dQ#5JwJudRBdRF , dRB5du du1dw dx,

dRF5dh dh* dk dk* ~4.16!
.
e
r

where

Jw5
1

8p

cosw coshx

~sinhx1 i sinw!2 , ~4.17!

Ju5
1

32p

1

sinh2
1

2
~u11 iu!

. ~4.18!

Substututing Eqs.~4.8!–~4.12! for Q in Eq. ~4.1!, one can
rewrite the functionF@Q# in the limit g̃→0 as

F@Q#5a2~sinh2x1sin2w!2 ix~sinhx1 i sinw!
~4.19!

~the limit g̃→0 can be taken in the beginning of the calc
lations, because in the present parametrization this does
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56 9639QUANTUM DISORDERED SYSTEMS WITH A DIRECTION
lead to additional convergence problems!. The function
F@Q#, Eq. ~4.19!, does not contain the anticommuting va
ables, and therefore one can easily integrate over the su
matrix u. Writing in Eq. ~4.5! the supermatrixQ, Eqs.
~4.8!–~4.10!, as

Q5uQ̃ū, ~4.20!

with u from Eq. ~4.11!, and integrating overh andh* , one
obtains

P~e,y!5
pn

4D E @STr~t3L1Q̃!#2exp~2F@Q̃# !dQ̃

5
4pn

D

d2

dx2 E exp~2F@Q# !dQ̃, ~4.21!

where the elementary volume@dQ̃# differs from@dQ# by the
replacementdRF→dR̃F5dk dk* , and F@Q# is given by
Eq. ~4.19!. Although Eq. ~4.21! is quite simple, one more
difficulty should be overcome. The problem is that the in
grand in Eq.~4.21! does not contain the variablesk andk*
and, at first glance, the integral must turn to zero. Howev
the JacobianJu , Eq. ~4.18!, is singular foru, u1→0 and this
singularity is not compensated for by the integrand. So
obtains an expression of the type 03`, which is an usual
phenomenon for the supersymmetry technique. Differ
procedures for how to make the integral well defined ha
been worked out~for a detailed discussion, see Ref. 8!. The
simplest way is to rewrite Eq.~4.5! as

P~e,y!5Pm~e,y!2
pn

4D E A@Q#@exp~2F@Q# !

2exp~2Fm@Q# !#dQ, ~4.22!

where

Pm~e,y!52
pn

4D E A@Q#exp~2Fm@Q# !dQ,
~4.23!

Fm@Q#2F@Q#52mSTr~TLT̄L![2mSTr~VL!.

The supermatrixV in Eq. ~4.23! can be chosen as

V5T̃L T̃̄, T5uT̃. ~4.24!

The parameterm in Eqs.~4.22! and~4.23! is arbitrary. Using
Eq. ~4.10!, we see that

2STr~TLT̄L!54~coshu12cosu!, ~4.25!

and, thus, the singularity atu15u50 coming from the Jaco
bian in Eq.~4.22! is compensated for by the integrand. Aft
integration overh andh* , the integrand does not contain th
anticommuting variablesk and k* , and the integral van-
ishes. Therefore, the functionPm(e,y), Eq. ~4.23!, does not
depend onm, and one can calculate the integral in the lim
m→`. In this limit only small deviations of the supermatr
V from L are essential. Using the representation

V5L~11 iW!~12 iW!21, W5S 0 B

B 0 D , B5S a s

s̄ ib D
~4.26!
er-

-

r,

e

t
e

expandingV in W up to quadratic terms and calculating th
Jacobian in this approximation one can see that, in the li
m→`,

E exp@mSTr~VL!#dV51 . ~4.27!

The supermatrixT̃ can also be represented throughW, and
calculating the corresponding Jacobian one may expand
to quadratic inW terms only. As concernsQ in the other
terms in the integrand in Eq.~4.23!, one should replace in the
limit m→` the supermatricesT̃ by 1. One can also chec
that now the Jacobian of the transformation from the ma
cesT̃ andu to T equals21 and notJu , as it did with the
initial parametrization forT, Eq. ~4.10!. So, calculating the
elementary volume@dQ#, one should omit in Eq.~4.16! the
multiplier Judkdk* and change the sign of the rest.

As a result of all these manipulations one comes to
following expression for the functionP(e,y):

P~e,y!52
pn

4D E @STr~t3L1Q0!#2

3exp~2F@Q0# !Jwdw dx, ~4.28!

with Q0 from Eq.~4.9! andJw from Eq.~4.17!. The function
F@Q0# is given by the right-hand side of Eq.~4.19!. The
limits of integration overw and x are determined in Eqs
~4.15!.

The further calculation in Eq.~4.28! is very simple be-
cause the function in the preexponential is proportional
Jw

21 . Changing the variables of integrationz5sinhx and
t5sinw, one calculates a Gaussian integral overz, and the
final expression takes the form

P~e,y!5
nAp

aD
expS 2

x2

4a2D E
0

1

coshxt exp~2a2t2!dt.

~4.29!

The function P(e,y) is properly normalized, and one ob
tains, using Eq.~4.2!,

E P~e,y!dy51. ~4.30!

The density of complex eigenvaluesP(e,y), Eq. ~4.29!,
agrees precisely with the corresponding function for wea
non-Hermitian random matrices obtained in Ref. 37 in t
limit N→`. The parametersa andD are related in this case
to the parameters in Eq.~4.6! and ~4.7! as

a5&pJn~e!a, D5@n~e!N#21,

n~e!5~2pJ!21A42~e/J!2, ~4.31!

andx52pn(e)yN.
The agreement can serve as a proof of the equivale

between the directed disorder models in a finite volume~with
broken time-reversal invariance! and the models of non
Hermitian matrices defined by Eqs.~4.6! and~4.7!. The func-
tion P(e,y) is represented in Fig. 1, and let us discuss
basic properties following Ref. 37.

The density of complex eigenvalues is a smooth funct
at any finitea, which means that any finite non-Hermiticit
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smears all eigenenergies, making them complex. The p
ability of strictly real eigenvalues is negligible. Fora@1 the
integral in Eq.~4.29! can be calculated analytically using th
saddle-point method. In the intervaluxu,2a2 the integrand
as a function oft has a sharp maximum in the domain of t
integration, and the integral can be extended to infinity.
uxu.2a2 the function P decays quickly. As a result, on
obtains

P~e,y!.
pn~e!

2a2D H 1, uxu,2a2

0, uxu.2a2 .
~4.32!

Equation~4.32! shows that fora@1 the density of imaginary
partsy of eigenvalues at a fixed real part is homogeneou
the intervalxP(22a2,2a2). Using Eq.~4.31! for n~e! and
a, we can rewrite the result expressed by Eq.~4.32! in terms
of a distribution of eigenvalues in the complex plane. In su
a formulation, Eq.~4.32! means that the complex eigenva
ues are distributed homogeneously within the ellipse

S e

2JD 2

1S y

2Jv D 2

51, v5aN21/2. ~4.33!

This is the ‘‘elliptic law’’ found in Refs. 29 and 31; the
agreement is natural because the limita@1 should corre-
spond to a ‘‘strong’’ non-Hermiticity. At the same time, th
elliptic law is model dependent. For the models of disord
considered in the present paper the density of complex s
essentially depends ony only.

In the opposite limita!1, the density of complex state
P(e,y) takes the form

P~e,y!.
nAp

aD
expS 2

x2

4a2D . ~4.34!

The Gaussian form of the functionP can be easily under
stood starting from the random matrix model, Eqs.~4.6! and
~4.7!. The functionP(e,y) can be written as

FIG. 1. The density of complex eigenenergiesP(e,y) for the
unitary ensemble as a function of the imaginary partx52py/D for
a51,2,3.
b-

r

in

h

r
tes

P~e,y!5N21(
n51

N

^d~e2en8!d~y2en9!&

5
1

2pN (
n51

N E
2`

`

dk eiky^d~e2en8!exp~2 iken9!&,

~4.35!

where the angular brackets^•••& stand for the averaging ove
the matricesÂ and B̂, Eq. ~4.7!. In the limit of smalla the
imaginary parten9 can be obtained using the standard pert
bation theory. In first order, one has

em9 5fW m* B̂fW m , ~4.36!

wherefW m is the eigenvector of the matrixÂ corresponding
to the eigenvalueem8 . Substituting Eq.~4.36! into Eq.~4.35!,
one can immediately average over the matrixB̂. Using the
orthogonality of the eigenvectorsfW m , one can write the re-
sult of the averaging as

P~e,y!5
1

2pN (
n51

N E
2`

`

dk eikyK d~e2en8!

3expF2
1

2 S akJ

N D 2G L
A

~4.37!

where^•••&A stands for averaging overÂ. Integrating overk
and using Eq.~4.31!, one comes to Eq.~4.34!. As concerns
the models of disorder, Eqs.~2.1!–~2.3!, even the asymptot-
ics, Eqs.~4.32! and~4.37!, have not been known before, an
it not clear how to reproduce them using simple argumen

Are the results obtained in this section general, can
expect anything new for the orthogonal ensemble?
course, there is no reason to hope that Eq.~4.29! also de-
scribes the orthogonal ensemble, but are the asymptotic
the limits a@1 anda!1, Eqs.~4.32!–~4.34!, still correct?

The orthogonal ensemble of random matrices can ag
be introduced by Eqs.~4.6! and~4.7! but now the matricesÂ
and B̂ should be real symmetric and antisymmetric, resp
tively. One should also make the replacementa→2 ia in
Eq. ~4.6!. As concerns the asymptotics in the limita@1, the
same elliptic law as in Eq.~4.33! has been recovered.32 At
the same time, one can expect a completely different beh
ior for a!1. This can be seen easily from the fact that t
first order of the perturbation theory corresponding to E
~4.36! gives zero, and one cannot derive Eq.~4.34! as before.
In fact, the density of complex eigenvaluesP(e,y) is singu-
lar at y50. A study of the orthogonal ensemble is presen
in Sec. V.

V. DENSITY OF COMPLEX EIGENVALUES IN A
LIMITED VOLUME: ORTHOGONAL ENSEMBLE

To compute the density of complex eigenvaluesP(e,y)
for the orthogonal ensemble, one can start, as previou
from Eqs.~4.1!–~4.4!, but now one should use supermatric
Q with the structure corresponding to this case. As m
tioned, the presence in Eq.~4.1! of the new term with the
matrix L1 makes the calculation very difficult even for th
unitary ensemble, and hardly feasible at all for the ortho
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nal one. So, as in Sec. IV, a new parametrization forQ
should be designed.

Let us write the supermatrixQ in the forms

Q5ZQ0Z̄, Z5TY, ~5.1!

with the supermatricesQ0 and T specified by Eqs.~4.9!–
~4.12!, and choose the supermatrixY as follows:

Y5Y0RS, Y05Y3Y2Y1. ~5.2!

The supermatrixY1 entering Eq.~5.2! is

Y15S ŵ 0

0 ŵD , ŵ5S w 0

0 1D ,

w5S cos~m/2! 2sin~m/2!

sin~m/2! cos~m/2!
D . ~5.3!

The supermatrixY2 is equal to

Y25S cos~ û2/2! 2 i sin~ û2/2!

2 i sin~ û2/2! cos~ û2/2!
D ,

û25S 0 0

0 iu2t1
D , t15S 0 1

1 0D . ~5.4!

The supermatrixY3 is

Y35S exp~ i b̂/2! 0

0 exp~ i b̂/2!
D , b̂5S bt3 0

0 b1t3
D ,

t35S 1 0

0 21D . ~5.5!

The supermatricesR and S contain remaining Grassman
variables, and are written as

R5S R̂ 0

0 R̂
D , R̂5S 122rr̄ 2r

22r̄ 112rr̄
D ,

r5S r 0

0 2r* D ~5.6!

and

S5S 122ŝ2 2i ŝ

2i ŝ 122ŝ2D , ŝ5S 0 s

s̄ 0 D ,

s5S s 0

0 2s* D ~5.7!

wherer̄ and s̄ are conjugate tor ands.
The parametrization forY, Eqs.~5.2!–~5.7!, is chosen in

such a way that@Y,L1#50. To specify the supermatrixQ
unambiguously, one should restrict variations of the va
ables by certain intervals. This can be done as in Sec. IV
comparing the bosonic ‘‘skeleton’’ ofQ written in the pa-
rametrization, Eqs.~5.1!–~5.7! ~let us call it ‘‘nonsymmetric
parametrization’’! with the standard parametrization of Ref
7 and 8. As a result, one can write the following inequaliti
i-
y

:

0,x,`, 2p/2,w,p/2, 2`,u1,`,

2p,u,p,
~5.8!

0,u2,`, 0,m,p, 0,b,p, 0,b1,2p.

The next step is to calculate the Jacobian. The derivatio
presented in Appendixes, and the final result for the elem
tary volume@dQ# is

@dQ#5JwJuJmJcdRBdRFdR1BdR1F . ~5.9!

In Eq. ~5.9!, Jw , Ju , dRB , and dRF are given by Eqs.
~4.16!–~4.18!. The additional quantities entering Eq.~5.9!
are equal to

Jm5
1

28p2

sinhu2sinm

~coshu22cosm!2 , ~5.10!

Jc5
4 sin2w

~sinhx2 i sinw!2 , ~5.11!

and

dR1B5dm du2db db1 , dR1F5ds ds* dr dr* .
~5.12!

The free energyF@Q#, Eq. ~4.1!, takes, in the limitg→0,
the following form:

F@Q#5a2~sin2w1sinh2x!1x@~cosm sinw

2 i coshu2 sinhx!14~ss* 1rr* !~coshu22cosm!

3~sinw2 i sinhx!#. ~5.13!

The nonsymmetric parametrization given by Eqs.~5.1!–
~5.12! looks rather complicated. The calculation of the Jac
bian is most lengthy, but this has to be done only once.
the same time, the Jacobian does not contain Grassm
variables, and the free energyF@Q#, Eq. ~5.13!, is simple
enough. Moreover, the supermatrixQ can be written as in
Sec. IV in the form of Eq.~4.20! ~although the supermatrix
Q̃ is now different from that for the unitary ensemble!. This
allows one to integrate first over the matrixu and obtain Eq.
~4.21!.

Further simplifications come from the fact that, as pre
ously, one obtains an uncertainty of the type 03` because
the integrand in Eq.~4.21! does not contain the variablesk
andk* , whereas the JacobiansJu , Eq. ~4.18!, andJm , Eq.
~5.10!, are singular atu, u1 , u2 , m→0. We saw in Sec. IV
that the uncertainties can be rather easily avoided and,
result, one obtains a more simple integral. The ‘‘regulari
tion’’ procedure, Eqs.~4.22!–~4.27!, led to the integral, Eq.
~4.28!, that contained the variablesw andx only.

Similar transformations can be performed for the orthog
nal ensemble. Proceeding as for the unitary ensemble, le
introduce the functionFmn@Q#,

Fmn5F@Q#2mSTr~LTLT̄!2nSTr~t3Yt3Ȳ!.
~5.14!

The second term in Eq.~5.14! can also be written in the form
of Eq. ~4.25!. Using Eqs.~5.2!–~5.7! we can write the third
term as
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2nSTr~t3Yt3Ȳ!54n~coshu22cosm!. ~5.15!

In analogy with the transformation of the integrand in Eq
~4.22! and ~4.23!, we represent exp(2F@Q#) as follows:

e2F5e2Fmn1e2Fm0~12e2F~n!
!1e2F0n~12e2F~m!

!

1e2F~12e2F~m!
!~12e2F~n!

!, ~5.16!

where

F ~m!5Fmn2F0n , F ~n!5Fmn2Fm0.

The parametersm andn in Eqs. ~5.15! and ~5.16! are arbi-
trary. Therefore, substituting Eq.~5.16! into Eq. ~4.5!, we
can take the limitm, n→`. The contribution coming from
the last term in Eq.~5.16! vanishes because all singularitie
are compensated for anym andn, but the integrand does no
contain the anticommuting variablesk and k* . The limit
m→` allows one to expand the supermatrixT̃, Eq. ~4.24!,
near 1~and the supermatrixV nearL!. As explained in Sec
IV, in the limit m→` one can replaceT̃→1 everywhere in
the integrand omitting simultaneouslyJudk k* in the el-
ementary volume@dQ#. The same is correct now and on
should removeJudk dk* from @dQ#, Eq. ~5.9! ~changing
the sign!.

The other singularity atu2 , m→0 in the first and third
terms in Eq.~5.16! can be avoided in a similar way. In th
limit n→` the supermatrixY, Eqs.~5.2!–~5.7!, is also close
to 1. To make an expansion in small deviationsY from 1 one
can use the following parametrization:

Y5~12 iX !~11 iX !21, X5S iÂ L̂

L̂ iÂ
D . ~5.17!

The blocksÂ and L̂ satisfy the constraintsĀ52A, L̄5L,
$A,t3%50, and$L,t3%50, where$•••% is an anticommutator
These blocks can be written in an explicit form as

Â5S f j

2 j̄ 0D , L̂5S 0 z

z̄ i l D , ~5.18!

where the 232 matricesf and l contain conventional com
plex numbersf and l , whereasj and z consist of anticom-
muting variablesj andz. The explicit forms of these matri
ces are

f 5S 0 2 f

f * 0 D , l 5S 0 l

l * 0D , z5S 0 z

2z* 0D .

~5.19!

In Eq. ~5.19!, l is an arbitrary complex number, while forf
one should integrate over the domain Imf.0. The structure
of j is the same as ofz.

Substituting Eqs.~5.17!–~5.19! into Eq. ~5.14!, one
should expand the termSTr(t3Yt3Ȳ) up to quadratic terms
in X and replaceY by 1 everywhere else in the integran
Calculating the Jacobian we can see that the fa
JmdR1BdR1F should be replaced by 1. Of course, this co
cerns only the first and the third terms in Eq.~5.16! because
the second term does not lead to any singularity in the in
grand atu25m50. In fact, the contribution from the third
.

r
-

-

term in Eq. ~5.16! is zero because it is not singular
u5u150 and does not contain the variablesk and k* . At
the same time, the singularity atu25m50 is avoided by
using the parametrization, Eqs.~5.17!–~5.19!.

As a result of these manipulations one should replace
nally Eq. ~4.5! by

P~e,y!5P~1!~e,y!1P~2!~e,y!, ~5.20!

P~1!~e,y!52
pn

4D
lim

m,n→`
E A@Q#exp~2Fmn@Q# !dQ,

~5.21!

P~2!~e,y!52
pn

4D
lim

m,n→`
E A@Q#@exp~2Fm0!

2exp~2Fmn!#dQ. ~5.22!

The integrand in Eq.~5.21! has both singularities. Therefore
one has to replaceT̃ andY by 1 simultaneously everywher
in the integrand, replacingJuJmdkdk* dR1BdR1F in the el-
ementary volume@dQ#, Eq. ~5.9!, by 21. As concerns Eq.
~5.22!, the integrand has only the singularity atu5u150,
and one should replace by 1 the supermatrixT̃ only. In the
elementary volumeJudkdk* should be replaced by21.

The subsequent manipulations are rather straightforw
Integrating over the supermatrixu, one obtains for
P(1)(e,y) and P(2)(e,y) analogs of Eq.~4.21!. Then the
function P(1)(e,y) is expressed in terms of the integral ov
the variablest5sinw andz5sinhx,

P~1!~e,y!5
n

4D

d2

dx2 E e2a2~ t21z2!2x~ t2 iz!
4t2dt dz

~ t21z2!2 .

~5.23!

In the integral in Eq.~5.22!, one has to integrate first over th
variables r, r* , s, and s* , and then, the function
P(2)(e,y) reduces to

P~2!~e,y!5
n

4D

d2

dx2 E e2a2~ t21z2!2x~ tv2 ilz!

3
~ t2 iz!2x2t2

~ t21z2!2 dt dz dv dl ~5.24!

where v5cosm, and l5coshu2. The integration in Eqs.
~5.23! and ~5.24! is performed overt and z in the intervals
21,t,1 and2`,z,`, and overv andl in the intervals
21,v,1 and 1,l,`.

The integration overv andl in Eq. ~5.24! can be carried
out immediately. However, to provide the convergence
the integral overl one should shift the contour of integratio
over z into the complex planez→z1 id sgn(x), whered is
an infinitesimal positive number and

sgn~x!5H 1, x.0

21, x,0 .

Integrating overv andl and adding Eqs.~5.23! and ~5.24!,
we obtain, forP(e,y), Eq. ~5.20!,
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P~e,y!5
n

4D

d2I ~x!

dx2 , ~5.25!

I ~x!5E
21

1 E
2`

`

e2a2~ t21z2
2

!@e2x~ t2 iz2!~ t1 iz2!2

2ex~ t1 iz2!~ t2 iz2!2#
t

iz2

dt dz

~ t21z2
2 !2 , ~5.26!

wherez25z1 id sgn(x).
As is clear from the form of the functionI (x), it is con-

venient to differentiate first overx and then calculate the
integral. However, one should be careful performing this
first glance trivial, manipulation. The problem is thatz2 con-
tainsx, which can result in an additional contribution.

To avoid lengthy calculations let us consider first the c
when x is finite nonzero number. Then, the derivativ
dz2 /dx and d2z2 /dx2 vanish, and one has to differentia
the exponentials only. Shifting the contour of integrati
z→z1 ( ix/2a2), which can be done without crossing sing
larities in the complex plane and changing the new variabz
asz→z/a, one obtains

Pc~e,y!5
n

aD
expS 2

x2

4a2D E
0

1

xt sinhxt

3exp~2a2t2!dtE
0

` exp~2z2!dz

z21
x2

4a2

~5.27!

@the variablesx andy are related to each other through E
~4.2!#.

Equation~5.27! holds for any finitex, but is it the final
result? It would be the final result if the density functio
were continuous atx50. As concerns the unitary ensemb
we already know that the functionP(e,y) is continuous@see
Eq. ~4.29!#, but does the continuity follow from a physica
principle? In fact, it does not and the functionP(e,y) for the
orthogonal ensemble contains ad function atx50.

To extract thed function let us expand the exponentials
the integrand in Eq.~5.26!. In the first two orders one obtain

P~e,y!.
n

2D

d2

dx2 F E
21

1 E
2`

`

t2e2a2~ t21z2
2

!F 2

~ t21z2
2 !2

2
x

iz2

1

t21z2
2 Gdt dzG . ~5.28!

The first term in the integrand in Eq.~5.28! has no singulari-
ties, and one can shift the contour of the integration ovez
such that the variablesz2 are replaced byz. Then this part of
the integrand does not containx, and the differentiation
gives zero. The contribution involved comes from the seco
term in the integrand. Writingz2

21 as

1

z2
5

z2 id sgn~x!

z21d2 ,

one can represent the functionP(e,y) for x→0 as
t

e

.

d

P~e,y!x→05
n

2D

d2

dx2 lim
d→0

E
21

1 E
2`

`

e2a2~ t21z2!

3
t2uxu

t21z2

d

z21d2 dt dz.

The integration overz in the limit d→0 is elementary, and
for the anomalous contributionPr(e,y) one obtains the fol-
lowing expression:

Pr~e,y!5
2pn

D
d~x!E

0

1

exp~2a2t2!dt. ~5.29!

By making simple transformations in Eq.~5.27!, the final
result for the density of complex eigenvaluesP(e,y) can be
written as

P~e,y!5Pr~e,y!1Pc~e,y!, ~5.30!

wherePr(e,y) is given by Eq.~5.29!, andPc(e,y) equals

Pc~e,y!5
2pn

D

1

2
FS uxu

2aD E
0

1

t sinh~ uxut !exp~2a2t2!dt

~5.31!

where F(v)5(2/Ap)*v
` exp(2u2)du. It is not difficult to

check that the functionP(e,y), Eqs.~5.29!–~5.31!, satisfies
the normalization condition, Eq.~4.30!, and the singular par
Pr(e,y) gives an essential contribution that becomes sm
only in the limit a→`. The functionPc(e,y) is represented
in Fig. 2.

The existence of the anomalous partPr(e,y), Eq. ~4.33!,
means that a finite fraction of all eigenvalues remains real
any imaginary vector potentialh in the models of disorder
Eqs. ~2.1! and ~2.3!, or degree of asymmetrya for the real
random matrix models. At the same time, the functi
Pc(e,y) decays wheny→0, which corresponds to a vanish
ing probability of eigenstates with small but nonzero ima
nary parts.

In contrast to the unitary ensemble, the functionP(e,y)
for a!1 can hardly be obtained from a perturbation theo
Most of the eigenvalues are in this case real. In the oppo

FIG. 2. The density of complex eigenenergies~with nonzero
imaginary part! Pc(e,y) for the orthogonal ensemble as a functio
of the imaginary partx52py/D for a53,5,7.
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limit a@1 one should distinguish between several regio
In the limit uxu!a the asymptotics is determined by the e
pression

Pc~e,y!.
pn

2a2D

Apuxu
2a

, ~5.32!

showing a linear decay of the density asuxu→`.
In the regionuxu@2a the density of complex eigenvalue

is constant foruxu,2a2, and falls off outside this interval. Its
value in this region is the same as in the unitary case,
~4.32!. This corresponds to the elliptic law, Eq.~4.33!. For
an ensemble of strongly asymmetric real random matr
with a Gaussian distribution, this law was proven in Refs.
and 32. The authors of this paper have also found num
cally that the portion of real eigenvalues for their ensem
decays asN21/2, whereN is the size of the matrices. Appa
ently, this behavior corresponds to thed-functional part
Pr(e,y), Eq. ~5.29!, in the eigenvalue density for the case
weak asymmetry@the orthogonal analog of Eqs.~4.7!#.

VI. DISCUSSION

The results presented in the previous sections demons
that disorder models with a direction are interesting, and
be efficiently studied using the supersymmetry techniq
The s model derived, Eq.~3.29!, can be used in any dimen
sion. It is relevant to emphasize that, as usual,7,8 the dimen-
sionality is determined by the geometry of the sample. So
one-dimensional version of thes model corresponds to
thick wire with a directed hopping. In the language of vor
ces in a superconductor,18 the 1D model can describe th
vortices in a slab with line defects and the magnetic fi
parallel to the surface. Such a model is somewhat more
alistic than the purely 1D model of Ref. 18. The 2Ds model
is supposed to describe the vortices in a bulk supercondu
with line defects. In addition, one can imagine a situat
when the sample is long but has a small cross section. If
line defects are aligned in the longitudinal direction, o
comes to the 0Ds model considered in the present paper

Of course, the directed non-Hermitian Hamiltonians c
arise not only from the vortex model but also correspond
nonequilibrium processes. A very interesting possibility
the directed hopping model, Eq.~2.3!, that can be considere
as a quantum counterpart of the directed percolation mod21

Applications to other physical systems that can be reduce
models of a disorder with a direction also deserve an at
tion. The problem of turbulence is one of most famous. T
main features of the turbulence are believed to be descr
by the Burgers equation.22,23,40 Reduction of the Burgers
equation to a linear equation allows one to use w
developed methods of disorder physics. A similarity of t
linear equation to equations used in a study of problems
directed polymers have already inspired application of
replica method to study the problem of turbulence.25 Use of
supersymmetry for the problems of the turbulence might
one more interesting direction of research.

Leaving these interesting problems for future study, let
summarize the results obtained in the present work. Ths
model, Eq.~3.29!, differs from thes models used in the
localization and mesoscopic problems7,8 by the term with the
s.
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matrix L1 . Although the Hamiltonians with the direction o
Eqs.~2.1! and~2.3! can be obtained from conventional He
mitian Hamiltonians in a magnetic field by the formal r
placementA→ ih, the same replacement in the convention
s models would not lead to Eq.~3.29!. This reflects an es-
sential symmetry difference between systems in a magn
field where the time-reversal invariance is broken, and
models with direction that are time reversal invariant.

In contrast to average density of states for Hermitian d
order problems which is always smooth, the joint probabil
density of complex eigenenergies considered in the prev
sections is a nontrivial quantity. Thes model was derived to
describe this quantity, and it is expected to be sensitive
localization-delocalization transitions in one- and high
dimensional systems.18

The form of the 0D version of thes model obtained
above demonstrates the equivalence between the dire
disorder models in a limited volume and ensembles of r
dom weakly non-Hermitian or weakly asymmetric real m
trices that have been mapped onto the 0Ds model
previously.37 Complex random non-Hermitian matrices a
pear in a study of dissipative quantum maps,30,14 whereas
random real asymmetric matrices have applications in ne
network dynamics.33,34 Thus thes model can describe com
pletely different phenomena in an unified manner.

The supermatrixs model can serve as a useful calcul
tional tool for all these non-Hermiatian problems. Althoug
the new term with the matrixL1 in thes model, Eq.~3.29!,
makes the use of previous parametrizations8 difficult, the
new parametrization suggested in the present paper al
one to circumvent the difficulties and obtain explicit resu
for the 0D case in a straightforward manner. Weakly no
Hermitian random matrices can also be studied using m
traditional methods of orthogonal polynomials.41 However, a
study of weakly non-symmetric real matrices with th
method seems be more difficult and the density of comp
eigenvalues, Eqs.~5.29!–~5.31!, has been calculated for th
first time. In addition, thes model approach is not depende
on details of the model considered, and can be applied
only to Gaussian models. It can also be used to study
directed models in one and higher dimensions, where
can expect localization-delocalization transitions.

Equations~5.29!–~5.31! demonstrate that at any finite dis
order and ‘‘imaginary vector potential’’ a finite portion o
eigenvalues remain real, whereas this does not occur if
time-reversal invariance is broken@Eq. ~4.29!#. This phe-
nomenon has manifested itself in numerical study of diff
ent models. In Refs. 31 and 32 ensembles of random stro
asymmetric matrices~symmetric and antisymmetric part
had the same order of magnitude! were considered. It was
found that the fraction of real eigenvalues decayed asN21/2

for large matrix sizesN. Apparently, this corresponds to th
finite fraction of the real eigenvaluesPr(e,y), Eq. ~5.29!,
because in the ensemble of weakly nonsymmetric matr
involved the magnitude of the antisymmetric part of the ra
dom matrices isN1/2 times smaller than that of the symmetr
one.

A finite fraction of real eigenenergies was found in a n
merical study of the 2D model, Eq.~2.3!, ~without magnetic
interactions! near the center of the band.18 Although the 2D
case was not considered in the present paper, and not



te
pe
d
liz
ll
rr
th
ve

ue
i

th
o-

s i
th
d

f

c

56 9645QUANTUM DISORDERED SYSTEMS WITH A DIRECTION
can be said about a possibility of a mixture of eigensta
with real and complex eigenvalues, one can argue that
haps the parameters of the model of Ref. 18 corresponde
the 0D case. This might easily happen because the loca
tion length in weakly disordered 2D systems is exponentia
large and can exceed the sample size, which would co
spond to the 0D regime. If this is really so, the results of
present study are in an agreement with the numerical in
tigation.

The phenomenon that some finite portion of eigenval
lies on a certain line in the complex plane occurs also
other models with a randomness. Recently, it was found
a finite fraction of all roots of random self-inversive polyn
mials lies on the unit circle.42 At the same time, if the poly-
nomials are not self-inversive the density of complex root
smooth everywhere in the complex plane. It is clear from
preceding discussion that the directed disorder models
serve further investigation.

APPENDIX A: NON-HERMITIAN PARAMETRIZATION
„UNITARY ENSEMBLE …

Let us calculate for the unitary ensemble the Jacobian
the parametrization given by Eqs.~4.8!–~4.12! ~it was sug-
gested to call it ‘‘non-Hermitian parametrization’’!. As
usual,7,8 it is convenient to consider the lengthSTr(dQ)2.
With Eq. ~4.8!, it can be written as

STr~dQ!25STr$~dQ0!21@dT,Q0#214dTdQ0%,
~A1!

wheredT5T̄ dT, dQ05Q0dQ0 and @•••# is the commuta-
tor.

It is easy to see from Eq.~4.9! that

dQ05S 0 2t3dŵ

t3dŵ 0 D , ~A2!

and hence

$dQ0 ,L1%50 ~A3!

where$•••% is the anticommutator.
Then, using the relation@dT,L1#50 and Eq.~A3! we

obtain

STr~dTdQ0!5STr~L1dTdQ0L1!52STr~dTdQ0!50
~A4!

which shows that Jacobians are the product of Jacobians
responding todQ0 anddT. As concernsdQ0 , we have

STr~dQ0!254@~dw!21~dx!2#. ~A5!

Writing Eq. ~4.10! as

T5uT0v, ~A6!

one obtains

dT5 v̄T̄0duT0v1 v̄dT0v1dv, ~A7!

where, with Eq.~4.11! and ~4.12!

dT052
i

2 S 0 dû

dû 0
D , ~A8!
s
r-
to
a-
y
e-
e
s-

s
n
at

s
e
e-

or

or-

du5dui1du' ,

dui52t3~h dh* 2dh h* !, du'52S 0 dh

2dh̄ 0 D ,

and similar equations can be written fordv.
Substituting Eqs.~4.11!, ~4.12!, and ~A8! into Eq. ~A7!

one can represent the supermatrixdT as

dT5dTi1dT', ~A9!

dTi52 cos
u2 iu1

2 S 0 dh

2dh̄ 0 D 12S 0 dk

2dk̄ 0 D
12t3~h dh* 2dh h* 1k dk* 2dk k* !

14t3cos
u2 iu1

2
~k* dh2dh* k!, ~A10!

dT'5 iL1F2 sin
u2 iu1

2 S 0 dh

dh̄ 0 D 2~du2 idu1!S 0 k

k̄ 0D
2

1

2 S du~124kk* ! 0

0 idu1~114kk* !
D

14 sin
u2 iu1

2
~k* dh1dh* k!G . ~A11!

In Eqs. ~A9!–~A11!, dTi commutes withL, anddT' anti-
commutes withL. The second line in Eq.~A10! does not
contribute to@dT,Q0# in Eq. ~A1!. In Eqs.~A10! and~A11!,
one can change the variables

du~124kk* !→du, du1~114kk* !→du1 ,
~A12!

and make the shifts

1

2 S du 0

0 idu1
D→ 1

2 S du 0

0 idu1
D 14~k* dh1dh* k!

3sin
u2 iu1

2
, ~A13!

2 sin
u2 iu1

2
dh→2 sin

u2 iu1

2
dh1~du2 idu1!k,

~A14!

dk→dk2cos
u2 iu1

2
dh. ~A15!

The transformations, Eqs.~A12!–~A15!, do not change
the Jacobian, anddTi anddT' take more simple forms,

dTi51F i t3S dc 0

0 dcD 12S 0 dk

2dk̄ 0 D G , ~A16!



c

e

q
re

-

al

9646 56K. B. EFETOV
dT'5 iL1F2
1

2 S du 0

0 idu1
D 12 sin

u2 iu1

2 S 0 dh

dh̄ 0 D G ,
~A17!

wherei t3dc is the second line of Eq.~A10!, and1 is the unit
838 matrix.

Further computation is already simple. Changing on
more

sin
u2u1

2
dh→dh, ~A18!

one obtains a contribution to the Jacobian proportional toJu ,
Eq. ~4.18!. Writing the second term in Eq.~A1! through the
new variables we have

STr@dT,Q0#254@~du!2cos2w1~du1!2cosh2x#

1128S cos2
w1 ix

2
dh dh*

1sin2
w2 ix

2
dk dk* D . ~A19!

Equations~A5! and ~A19! lead to the elementary volum
@dQ#, Eq. ~4.16!.

APPENDIX B: NONSYMMETRIC PARAMETRIZATION
„ORTHOGONAL ENSEMBLE …

To calculate the Jacobian of the parametrization, E
~5.1!–~5.7!, for the orthogonal ensemble we can use the
sults obtained for the unitary ensemble, because Eq.~5.1!
contains the same supermatricesQ0 and T, as previously.
However, the presence of the supermatrixY makes the com-
putation quite lengthy. The lengthSTr(dQ)2 is written as in
Appendix A,

STr~dQ!25STr@~dQ0!21@dZ,Q0#214dZdQ0#,
~B1!

wheredZ5Z̄ dZ can be written as

dZ5S̄ R̄~Ȳ0dTY01dY01dR R̄1R dS S̄R̄!RS.
~B2!

The last term in Eq.~B1! is equal to zero@see Eq.~7.4!#. As
concerns the supermatrixdT, it can be written after the re
placements, Eqs.~A12!–~A15!, in the form of Eqs.~A16!
and ~A17!. So, one has to calculate the other differenti
entering Eq.~B2!. Using Eq.~5.7! one can rewritedS S̄in
the form

dS S̄5~dS S̄! i1~dS S̄!' ,
~B3!

~dS S̄! i52t31~ds s* 2s ds* !, ~dS S̄!'52iL1dŝ.

Taking the supermatrixR from Eq. ~5.6!, one can derive

R dS S̄R̄5R~dS S̄!'R̄1~dS S̄! i , ~B4!

R~dS S̄!'R̄52iL1dŝ14iL1~ds r* 1r ds* !, ~B5!

and
e

s.
-

s

dR R̄51F2S 0 dr

2dr̄ 0 D 12t3~dr r* 2r dr* !G .
~B6!

Now we have to calculatedY0 . Using Eqs.~5.3!–~5.5! one
can represent this differential in the form

dY05dY11dY21Ȳ1Ȳ2dY3Y2Y1 . ~B7!

Calculating the matricesdY1 , dY2 , anddY3 we rewritedY0
as follows

dY051
i

2 F S db w̄t3w 0

0 db1t3coshu2
D 2dmS t2 0

0 0D G
1L1

1

2 F2S 0 0

0 t2db1sinhu2
D 1du2S 0 0

0 t1
D G ,

~B8!

where

t25S 0 2 i

i 0 D , w̄t3w5S cosm 2sinm

2sinm 2cosm D .

Making the replacement

dk→dk exp
i ~b2b1!

2
, dk*→dk* exp

i ~b2b1!

2
,

and the same fordh anddh* , one can derive

Ȳ0dTY05132Fcosh
u2

2 S 0 dk8

2dk8 0 D
1 i sinh

u2

2 S 0 dh8t1

2t1dh̄8 0 D G
12iL1S cos

u2

2 S 0 dh8

dh̄8 0 D
2 i sinh

u2

2 S 0 dk8t1

t1dk̄8 0 D 2
i

2
dû D ,

~B9!

wheredh85w̄ dh and dh̄85dh̄ w, and the same fordk8
anddk̄. The contribution fromi t2dc, Eq.~A16!, is not writ-
ten because it can be removed by a proper shift ofdb̂ and
dm.

Substituting Eqs.~B3!–~B6! into Eqs.~B2! and ~B1!, we
see that the second terms of Eq.~B4! and ~B6! do not con-
tribute. After making the replacement indT, Eq. ~A18!, and
shifting

ds5ds12S cosh
u2

2
cos

m

2
dh1 i sinh

u2

2
sin

m

2
dk* D ,

~B10!

dr5dr12S cosh
u2

2
cos

m

2
dk2 i sinh

u2

2
sin

m

2
dh* D ,

it is convenient to introduce the matrix differentials
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ds5S ds1 ds2

2ds2* 2ds1*
D , dr5S dr1 dr2

2dr2* 2dr1*
D ,

~B11!

where

ds252cosh
u2

2
sin

m

2
dh* 2 i sinh

u2

2
cos

m

2
dk,

ds2* 5cosh
u2

2
sin

m

2
dh2 i sinh

u2

2
cos

m

2
dk* ,

~B12!

dr252cosh
u2

2
sin

m

2
dk* 1 i sinh

u2

2
cos

m

2
dh,

dr2* 5cosh
u2

2
sin

m

2
dk1 i sinh

u2

2
cos

m

2
dh* .

The JacobianJ̃m of the transformation, Eqs.~B12!, equals

J̃m5
4

~coshu22cosm!2 . ~B13!

Then Eq.~B2! can be written as

dZ5S̄R̄dURS, ~B14!

dU5dY01 iL1S 2 dŝ2
i

2
dû D12k dr̂ 1, ~B15!

where the matricesds and dr entering dŝ and dr̂, Eq.
~5.7!, have the structure of Eq.~B11!, and

k5S 1 0

0 21D .

One can obtaindZ, Eq. ~B14! calculating firstR̄dUR and
then dZ. The corresponding manipulations are still qu
lengthy. One should again make different replacements
do not change the Jacobian. Alternatively, one might w
the final result using general symmetry properties ofdZ.
Finally, one obtains
.

lo
J.

-

at
e

dZ5dY081 iL1~2dŝ2 1
2 dû !12k dr̂ 1. ~B16!

The supermatrixdY08 entering Eq.~B16! equals

dY08521
i

2 Fdb sinmS t1 0

0 0D G1dmS t2 0

0 0D
1L1

1

2 F2sinhu2db1S 0 0

0 t2
D 1du2S 0 0

0 t1
D G .
~B17!

Using Eq.~B16! we can calculateSTr@dZ,Q0#2. The anti-
commuting partdZ' decouples from the commuting on
dZi , and one obtains

STr@dZ' ,Q0#2564$ds1ds1* @11cos~w1 ix!#1ds2ds2* @1

1cos~w2 ix!#

1dr1dr1* @12cos~w2 ix!#

1dr2dr2* @12cos~w1 ix!#%. ~B18!

The JacobianJwx corresponding to the length, Eq.~B18!
equals

Jwx5
1

224

1

~sin2w1sinh2x!2 . ~B19!

The commuting partdZi contributes to the elementary leng
as

STr@dZi ,Q0#254$@~dm!21~db!2sin2m#sin2w

1~du!2cos2w1~du1!2cosh2x

1~du2!21~db1!2sinh2u2%. ~B20!

Combining the contribution to the Jacobian from Eqs.~A5!
and ~B20! with those written in Eqs.~B13! and ~B19!, and
recalling that the replacement, Eq.~A18!, results in an addi-
tional multiplier proportional toJu one obtains finally the
elementary volume@dQ#, Eqs. ~5.9!–~5.12! and ~4.16!–
~4.18!.
.
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