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Quantum disordered systems with a direction
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Models of disorder with a directioriconstant imaginary vector potendiahre considered. These non-
Hermitian models can appear as a result of computation for models of statistical physics using a transfer-matrix
technique, or they can describe nonequilibrium processes. Eigenenergies of non-Hermitian Hamiltonians are
not necessarily real, and a joint probability density function of complex eigenvalues can characterize basic
properties of the systems. This function is studied using the supersymmetry technique, and a supermatrix
model is derived. Ther model differs from that already known by a new term. The zero-dimensional version
of the & model turns out to be the same as the one obtained recently for ensembles of random weakly
non-Hermitian or asymmetric real matrices. Using a new parametrization for the super@atini density of
complex eigenvalues is calculated in zero dimension for both the unitary and orthogonal ensembles. The
function is drastically different in these two cases. It is everywhere smooth for the unitary ensemble but has a
S&functional contribution for the orthogonal one. This anomalous part means that a finite portion of eigenvalues
remains real at any degree of the non-Hermiticity. All details of the calculations are presented.
[S0163-182697)01440-9

[. INTRODUCTION disorder, the systems involved are invariant with respect to
inversion of coordinates. Sometimes, in order to describe the
The physics of disordered metals and semiconductors hatecay width of eigenstates, non-Hermitian Hamiltonians are
been attracting considerable attention for several decadessed. This approach is popular in the study of quantum dots
Various interesting phenomena were discovered experimercoupled to leads. Of course, the Hamiltonian of the whole
tally and given theoretical explanations. Rather simple modsystem of the dot with the leads is Hermitian, but it is often
els of a particle moving in a random potential can be used t@éonvenient to exclude the leads from the consideration by
describe such different effects as Anderson localizatioe-  integrating out degrees of freedom related to them. As a
soscopic fluctuation? the integer quantum Hall effeéand  result of such an integration one comes to an effective non-
many others. Hermitian Hamiltonian of the dot containing imaginary
Although the phenomena can occur at a weak disorder, anergies’ This type of non-Hermiticity can be easily in-
simple perturbation theory in the disorder potential is notcluded into the scheme of the supersymmetry technique as
sufficient for their quantitative description. A proper theory well as into diagrammatic expansions, and many results have
is often based on summing certain classes of diagfaoap-  been obtained explicitl§.
erons and diffusons*® but in more complicated cases one In a recent publicatioff Hatano and Nelson considered
has to use essentially nonperturbative methods like a supeanother type of non-Hermitian Hamiltonian with disorder,
symmetry technigquebased on mapping of the disorder mod- namely, Hamiltonians with a constant “imaginary vector po-
els onto a supermatric model(for a recent review, see Ref. tential.” In other words, the Hamiltonians contain not only
8 and references thergim disordered physical system can the second-order derivative over the space coordinate, but
include a magnetic field, magnetic and spin-orbit impurities,also the first-order derivative with a real coefficient. The
etc. However, these additional interactions are included intonodel appears as a result of mapping of flux lines in a
the calculational schemes without considerable difficulty. (d+1)-dimensional superconductor to the world lines of
Presently diagrammatic expansions and the supersymme-dimensional bosons. Columnar defects produced experi-
try technique give the possibility of obtaining explicit results mentally by energetic heavy ion radiatiSrin order to pin
for most of the disorder problems. In addition, the supersymthe flux lines lead to a random potential in the boson system,
metry method was applied for calculations with randomwhereas the component of the magnetic field perpendicular
matrices’ which resulted in application of the method in to the defects results in a constant imaginary vector
nuclear physics and quantum chaos, where the random mpetential?
trix theory had been the basic computational tffol a re- Already, qualitative argumeritsindicate that the pres-
view see, e.g. Refs. 10—LRecently, a supermatrixmodel  ence of the imaginary vector potential can lead to new ef-
was derived for ballistic billiards averaging over either rarefects. In particular, a one-dimensional chain of the bosons
impurities® or energy!® Thus the way of studying all these has to undergo a localization-delocalization transition; this
interesting problems appears quite clear, although in someesult was also checked by a numerical computation. In
cases one can encounter certain technical difficulties. “conventional” (without the first-order derivatiyedisor-
The systems mentioned above are described by quanturdered systems, transitions in one dimension do not occur,
mechanical Hermitian Hamiltonians. After averaging overand therefore the model with a direction belongs to a class of
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systems that has not yet been studied, to our knowledge. It scribed by non-Hermitian Hamiltonians can hardly corre-
argued that the localized states should have real eigenenespond to the models of random non-Hermitian matrices dis-
gies, whereas eigenenergies of the extended eigenstates nmyssed in the literaturé:>2143’"However, as will be shown
have a nonzero imaginary part. later, such a correspondence does exist in some limiting
The importance of the investigation of such systems beeases for disorder models with a direction.
comes even more evident if one recalls that, e.g., the equa- The goal of the present paper is to develop a method that
tion for heat transfer with convection has a term with a first-would allow one to make analytical calculations for the dis-
order derivative. One can imagine a situation when quantunerdered problems with a direction. This goal is achieved by
hopping of a particle from site to site on a lattice has amodifying the supersymmetry technique in a way so as to
different probability depending on direction. The presence oinclude in the nonlinear supermatrix model terms corre-
the first-order derivative in the Hamiltonian corresponds tosponding to the imaginary vector potential. Although a
introducing a certain direction. The nonequivalence of theproper o model for the physical real vector potential was
directions can be provided by coupling to another subsystengerived long agd,changing to the imaginary one is far from
with broken inversion symmetry playing the role of a reser-trivial and, as a result, a completely new term in theodel
VOir; this reservoir may be out of equilibrium. The classical appears. If the time-reversal invariance is broken, the zero-
analog of the disordered models with a directi@o-called  gimensjonal version of the model turns out to be exactly
directed percolationhas been discussed in the literatéfe. the same as the one obtained in Ref. 37 for the model of
' Another probllem, where one comes to a stochastic €qU3zeakly non-Hermitian random matrices.
tion containing f|rst-ord_er derl\_/atlves, is the p_roblem of tur- The supermatrixr model derived below is valid in any
bulence in flow dynamics. It is generally believed that thedimension, and can be a proper tool for studying the

most important features of the turbulence can be descrlbeI%calization-delocalization transitions in one and two dimen-

by the so-called noisy Burgers equatiwhich is a nonlin- gions proposed in Ref. 18. However, although one can use

ear equation with a white noise random force. Besides it tandard tational scherfas ¢ ¢
application in flow dynamics, this equation is used as a to;? andard computational sche € presence ol new terms

model by field theorists due to a striking analogy betweer]" t_he‘f model make calc_:ulatlons ‘_N'_th the known parametri-
the constant flux states in turbulence and some anomalies #Rtions of the supermatri more difficult. Therefore, a new.
quantum field theorie® The Burgers equation is equivalent Parametrization is suggested and corresponding Jacobians
to the Kardar-Parisi-Zhang equation introduced to describ@'® calculated. To avoid “overloading” only the zero-
the Crysta| grow’[ﬁ“‘l The nonlinear Burgers equation can be dimensional case is considered in this paper. For the Unitary
reduced through a Hopf-Cole transformation to a linearensemble the result of Ref. 37 for the joint probability den-
(d+1)-dimensional equation with a random potential, andsity of complex eigenvalues of weakly non-Hermitian ran-
time playing the role of the additional dimension. This equa-dom matrices is reproduced. The density function is a
tion has a first-order time derivative and there has alreadgmooth function of the imaginary part of the eigenvalues,
been an attempt to solve it using the replica methiofhe  which shows that the probability of real eigenvalues is zero.
noisy Burgers equation can also be reduced to a quantum In contrast, the density function for the orthogonal en-
spin model with a non-Hermitian Hamiltonigh.Recently, semble obtained below containsdafunction, which shows
some interesting results have been obtained for the BurgetRat the fraction of states with real eigenvalues is finite. This
equation using an “instanton” approximatiéh. is a very unusual and interesting result. The entire function
~Independently of the study of stochastic models with aof the density of complex eigenvalues is obtained for the first
direction, cons_lderaple attention has been paid in the lagime, to our knowledge. In the limit of strong non-
decade to an investigation of models of random real asymgiermiticity the joint probability functions for the both uni-

metric anq complex non-Hermitian matrices. Eigenvalues Ofary and orthogonal ensembles correspond to the “elliptic
such matrices are, generally speaking, complex, and so theﬁﬁv n 28,29

models are quite different from models of random real sym-
metric or Hermitian matrices. Starting from the first work in
this direction?® a number of publicatiorfd~321 contained

discussion of properties of these models. Complex rando
matrices appeared in studies of dissipative quantu
3014 while real asymmetric random matrices have

The main results of this paper have been presented in a
short form elsewher& The paper is organized as follows: In
n§ec. Il models of disorder with a direction are introduced,
nd their basic properties are discussed. Section Ill contains
maps’ jth.e derivatiqp of the_supermatrirx mpdel. In Segtion IV a
found applications in neural network dynamics* Many joint probabll!ty densfny of complex glgenvalues_ls calculated
interesting aspects of non-Hermitian matrices were discussd@’ Systéms in a limited volume with broken time-reversal
in the Refs. 35 and 36. Very recently, a regime of weakSymmetry(unitary ensemble This is done by calculation of
non-Hermiticity was found for complex random matricés. integrals over a supermatr@ for the unitary ensemble. A
In this regime, an explicit formula for the density of complex New parametrization for the supermatrid@sis introduced.
eigenvalues was obtained by mapping the problem onto i Sec. V similar calculations are carried out for the orthogo-
zero-dimensional supermatrix model. nal ensemble. The result for the density of complex eigen-
Although one may guess that models with non-Hermitianvalues proves to be qualitatively different from that for the
or real asymmetric matrices should be related to disorderednitary ensemble. Section VI contains a discussion of the
systems with non-Hermitian Hamiltonians, no convincing ar-results obtained, and a comparison with some other works. In
guments have been given as yet. In fact, generally this is ndhe Appendixes the Jacobians corresponding to the new pa-
true because, e.g., the models of open quantum dots deametrizations for the supermatr are derived.
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[l. THE MODEL AND ITS BASIC PROPERTIES respect to inversion of the coordinates even after averaging
The initial classical model of vortices in a °CVE' impurities. At the same time, they are time, reversal

. . o . invariant, and therefore essentially different from systems
(d+ 1)-dimensional superconductor with line defects consid- . o
ered in Refs. 18 and 20 contains an interaction between thvé”th real magnetic fields.
vortices In. the correspondin uantum  model  of If necessary the Hamiltoniartd andH, can be general-
d-dimen.sional bosons thispdescrigesqan interaction betweeized to include the vector potentil corresponding to a

; TR > < ) ysical magnetic field. This can be done by the standard
the bosons. The interaction is, in principle, very important.
replacement

Its short-range part does not allow bosons to condense at oné
localized state. At the same time, if it is strong enough there
can be only one boson in a localized state, and the problem
maps onto the model of noninteracting fermions. Of course,
this is not true for extended states, for which one should use
the model of interacting bosons. in Eq. (2.1). Proper changes can also be done in f).

It is clear that one should first understand when one- Of course, the vortex model of Ref. 18 corresponds to Eq.
particle states are localized and when they are not. Therefor€2.1) with A=0, but already the hopping model can be con-
as in Refs. 18 and 20, it is reasonable to start with aidered in an arbitrary magnetic field. Changing the magnetic
d-dimensional Hamiltoniamid of noninteracting particles in- field (or, more precisely, the vector potenti@) results in a

cluding a constant imaginary vector potentibland a ran- crossover between ensembles with different symmetries. In

D—p eA 2.4
P—P—¢ (2.4

dom potential of impuritiesJ(r), analogy with “conventional”(nondirected disordered sys-
S tems, these ensembles will be called orthogonal and unitary.
HoHo+U(H), H _(p+ih) 2.1 Although the Hamiltoniandd and H,, Egs. (2.1) and
0 ! 0 o2m ' ) (2.3), are not Hermitian, this fact does not contradict funda-

. _ ) _ mental laws of nature. In the problem of the vortices in su-
wherep=—iV, andm is the mass of a particlboson or  perconductors these Hamiltonians appear after a reduction of

fermion). _ _ o a (d+1)-dimensional classical problem todadimensional
The random potentiall (r) is assumed to be distributed guantum one using the transfer-matrix technique, which is a
according to the Gaussiakcorrelated law formal trick. As concerns the directed hopping model the

1 vectorh can appear as a result of a coupling with another
_ NN — e system(reservoij that is not necessarily in equilibrium. The

(U(r))=0, {UINU(r") 27-rv7-5(r M, (22 latter system can be subjected, e.g., to an electric field, there
can be nondecaying currents in it, etc. Integrating out de-
grees of freedom related to the reservoir one obtains an ef-
fective Hamiltonian that does not need to be Hermitian.
. . . In other words, non-Hermitian Hamiltonians appear at in-
tioned in Sec. |, the potenti&l (r) corresponds to the poten- yoeqiate steps of calculations, and manipulations with
tial of the line defects andl to the component of the mag- e should be considered merely as formal computational
netic field perpendicular to the line defects for the model Ofyjcis The corresponding wave functions and eigenenergies
the vortices. At the same time, the Hamiltonidn Eq. (2.1), are only formal objects as well. Of course, one should un-
can describe other_sysFems as well. So we may stud_y PrORferstand how to relate initial physical observables to quanti-
erties of the HamiltoniarH without recalling each time yjeg calculated with the non-Hermitian Hamiltonians.
where it comes from. Some of possible applications of EqQ. | js relevant to mention that a classical directed model

(2.1 were listed in Sec. I. The directed quantum hoppingihat can be considered the counterpart of the directed quan-
appears to_be a new interesting p033|b|llty. The Hamﬂtomaqum problem was introduced a long agoThis is the model
H, of a lattice version of Eq(2.1) can be written as follows: ¢ 5 directed percolation that can describe, e.g., spreading of

where 7 is the mean free time, andis the density of states
of the HamiltoniarH, ath=0 at the energy involved. It is
assumed that the disorder is weak, dng small. As men-

) d infection or fire in a forest affected by wind. According to
H o=—— ehect o e Mecte the results of Ref. 21, the critical behawor near the pgrco_la—
L2 Zr 1/21( et r Crte,) tion transition in the model of the directed percolation is

different from that in an isotropic model. The analysis of
Ref. 21 was based on a diagrammatic expansion. The bare
+> U(rc'c,, 2.3 _ . )
T (rer ¢ 23 Green functionsz(®)(p) used in the expansion had the form

wherec* andc are creation and annihilation operators, and

{e,}'s are the unit lattice vectors. GO(p)= _ ' (2.5
Although Eq.(2.3) was used in Ref. 18 only for numerical p=+iap+r

calculations, it has a clear physical application; that is, it

describes quantum hopping of a particle from site to site irwith a constant vectca. Comparing Eq(2.5) with Eqg. (2.1),

the presence of a random potential. However, the hoppinwe see thaG(® is the Green function of the Hamiltonian

probability alongh is higher than in the opposite direction. Hy, which demonstrates that both models are really closely

In other words, the HamiltoniaH, describes a directed hop- related to each other.

ping in a random potential. The systems with the Hamilto- Now, let us discuss, following Ref. 18, basic properties of

niansH andH_, Egs.(2.1) and(2.3), are not invariant with  eigenstates of the Hamiltonidh, Eq.(2.1). Due to the non-
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Hermiticity of the Hamiltonian, one should distinguish be- b =L~ VZgikx, E:LflIZefikx, 2.11
tween righte,(r) and left ¢, (r) eigenfunctions. They obey
the equations wherelL is the length of the sample, are proper solutions of

. o Egs. (2.6) satisfying the boundary conditions. However, in
Hou(r)=ecdi(r), HTdp(r)=exe(r), (2.6)  this case the eigenvalug is complex,

whereH " is obtained by transposition of the Hamiltoniln (k+ih)2
For spinless particles the operation of the transposition §=—"s—".
means simply changing of the sign of the space derivative.

The functionsg,(r) are also considered conjugated(r); e see that the question about whether an eigenfunction in
for each eigenfunction one can construct its conjugate. Thge presence of the imaginary vector potential is localized or
scalar product ¢ ,¢) of two eigenfunctions¢y(r) and  extended is closely related in the thermodynamic limit to the

(2.12

2m

¢w(r) is introduced as question of whether the corresponding eigenenergy is real or
complex. The arguments presented are qualitative but they
(dx,bw)= f (1) o (r)dr. (2.77  were confirmed by numerical calculatiots.
It is clear from the previous discussion that it is very

Using Eq. (2.7), one can prove in a standard way the or-important to understand when eigenenergies are real and
thogonality of eigenfunctions corresponding to different'When they become complex. A convenient function charac-
eigenenergies. Together with the normalization conditiorf€"Zing the system is the joint probability density of complex
this can be written as eigenenergie®(e,y), defined as

— 1
| 0 semar=su 29 Pley)=y | 2 se—esly-e), (213

The eigenenergy, in both Egs.(2.6) is the same. Equation \ypere €, and ] are the real and imaginary parts of the

(2.8) enables us to reproduce basic properties of Conve”éigenenergysk, V is the volume, and the angular brackets

tional (Hermitian) q_uanturrl mechanics, r(_aplacing EVerY- stand for averaging over impurities. If all states are localized,
where complex conjugates; (r) of the functionséy(r) by ¢ ,ch thate] =0, the functionP(e,y) equals

the conjugatesp,(r). However, the eigenenergies in the

non-Hermitian quantum mechanlcs are not necessarily real. P(ey)=v(e)d(y), (2.14

They must be real only if the functiong; (r) and ¢(r) _ _

coincide. In order to obtain well-defined wave functions inWherev(e) is the average density of states.

the thermodynamic limit, it is convenient to impose periodic  If all states are extended, the functiBe,y) should be a

boundary conditions. smooth function of both variables. In some cases physical
To understand better what the wave functions look like inquantities can be expressed directly through the function

different situations, it is instructive to consider a localizedP(€,y), although other correlation functions are also of in-

state with a localization center at a poiy, and extended terest. The rest of this paper is devoted to a reduction of the

states in the absence of impuritiéfer simplicity we may ~ function P(e,y), which is the simplest nontrivial function

restrict ourselves with the purely one-dimensional tags-  characterizing the system, to a correlation function in a su-

sume that foh=0 the eigenfunctionas(ko) and the eigenval- persymmetricc model and to some calculations with this

uesel® are known. Then the functions model. To our knowledge, this is the first attempt at a quan-

titative analytical study of disordered directed quantum sys-

h(0)=e"30(x), H=esP(x) (29 tems.

are solutions of Eqg2.6) with the eigenenergy(ko). _ L. DERIVATION OF o MODEL
At the same time, in order to satisfy the boundary condi-
tions, the functionsp, and ¢, may not grow. If the function According to the standard procedure of derivation of the
) (x) is exponentially localized at a lengtp, the function ~ SuPeérmatrixc model,™ one 52°“|d express thf physical
#(x) takes the form quantity in terms of retarde; and advanceds_ Green
functions of the Hamiltonian. Usually the average density of
d(x)=C exp(h(x—xo)—lgllx—xol). (2.10 states that can be expressed through the average of one

Green function is not an interesting quantity, because it does
The functiongy(x), Eg.(2.10, and the corresponding func- not distinguish between localized and extended states. The
tion ¢ (x) does not grow atx|—o only if [h|<I;*. The  density of complex eigenvalueB(e,y) is definitely more
point |h|=|c_1 was identified® with a localization- interesting, but how to express it in terms of integrals over
delocalization transition. supervectors, which is the first step of derivation of the

In the region|h|=1_" the functions¢, given by Egs. model?

(2.9) and(2.10 are no longer eigenfunctions because they do The problem is that it is not clear how to write the func-
not satisfy the boundary conditions. To get an idea what th&on P(e,y) in terms of the function@eR and G’:. However,
eigenfunctions look like in this region, we may neglect theeven if this representation existed it would not help. The
disorder potential. Then the plane waves spectral expansion of the functio@*,
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¢k(r)ﬁ(r’> Now let us introduce two sets of two-component vectors
R,A 1y —
GRA(r,r") Ek s (3.)  ug anduy,
contains the eigenenergieg; some of them may be com- 1 ¢k+§ 1 ¢k—§
plex. But the very possibility to rewrite the Green functions Uk=35 b— bt ) k=5 bt bt
in terms of convergent Gaussian integrals over the supervec- (3.10
tors was based on the assumption that the eigenenergies were . | — = — =  —  —
real. Ue=32(dt i b= i), vk=2(de— bk Pt dic)-

Another possibility is based on the relation Using the orthogonality of the eigenfunctiogg, Eq.(2.8),

2 one can prove the orthogonality of the vectagsandv:

4 3.2

1
ABOO= L I @ b7

U (DU (Ndr= | v(Noe(rdr= e,
that holds for reah andb. With Eq. (3.2) the density func- f UM (r)dr j oo (r) Kk

tion P(e€,y) can be rewritten as 313
2 U ’ d = Dl ’ d :O.
Pley)= >y "m<§ [<e—ea>2+(y—e'k'>2+yz]-2>. f Hd D mdr f“k(”“k(” r
y—0

(3.3 It is not difficult to see that vectorsi(r) and v,(r) are
eigenvectors of the matrix operatt satisfying the equa-

Using the orthogonality of the eigenfunctiodsg, Eq. (3.3 tions

can be also represented as
1 MU=M iy, Mo=Moy, (3.12
P(e,y)=w lim J B(r,r")B(r’,r)dr dr’, (3.9

y—0 where the matrixM, equals

where the functiorB(r,r’) has the form

Y1) i1
(e— e+ (y— )2ty

€€ i(eg—Y)

M,=
“l-itg-y) —(e—o

, (3.13

B(r,r’)=; (3.5
and €, and ¢, are the real and imaginary parts of the
The representation of the density functi®{e,y) by Eq. eigenenergies, .
(3.4) is very convenient because it allows one to rewrite this Using the identity
function in terms of a Gaussian integral over supervectors.
In order to derive a proper expression, let us introduce a i ¥

Hermitian operatoiM ETr(Mk‘*'i7)_12(6((_6)24_(6&_)/)24_ vl (3.19

~ [ H-e i(H"—y) (3.6 ©one can see that functiorB(r,r'), Eq. (3.5, are closely

M= . )
—i(H"=y) —(H'—¢) related to the operatdvl. The only thing that remains to be
done is to express the matriM(+ivy) ! and then the op-

where o o
erator M+ivy)™~ in terms of a Gaussian integral over su-
1 N i N pervectors. R
H'=5(H+H"), H'=—35H-H"). @37 The operatoM is Hermititian, and its eigenvectons,

andv,, Egs.(3.10, are known, and therefore we can follow
In Eq. (3.7), the symbol “+” means Hermitian conjugation. the standard procedure of the derivation. Changing from the
For real Hamiltonians this conjugation coincides with the yamiltonianH to the operatoM, we have to double the size
transposition T.” However, let us write formulas in a gen- of the relevant matrices. This means that in order to write
_eral fOI’m such that the Hamiltoniah may include magnetic proper Gaussian integra|s we should use, as usuaL e|ght_
interactions and be complex. component supervectorgr). In fact, one comes to super-

Instead of manipulating the non-Hermitian operakdr  yectorsy with exactly the same structure as previously,

one can try to use the Hermitian operabhdr To follow the
standard procedure of the supersymmetry technique one 9m 1 [ ™ 1 [gm
should find first the eigenstates of this operator. For the com- ¢m=( ) 9MN=— ( m ) M= _— ( m )
plex non-Hermitian operatdd, one can write four equations V21X vz!S
for the eigenstates: (3.1

rm

— — — . m m H ; ;
H b= . HT gy = , 38 m= 1, 2; andy ar_1dS are anticommuting and commuting
Pr= e P= € S variables, respectively.
= = Let us present several important intermediate steps of the
H* * _ % g% , H + gk Kk gk . 39 } . - i i
Pic = €ic bi Pic = € i @9 eduction of the operatoM +iy) "%, to the functional inte-
Equationg3.9) are merely complex conjugates of E€3.8).  gral overy(r). First, we have



(v +M0 =i [ (@ad +bybiex~LodR,

=—if (oot + pept )exp — LOdRy,

(3.19

wherea, b, and o, py are commuting and anticommuting
variables, respectively, andR, stands for the elementary
volume in the space of these variables. The functiQrin
Eq. (3.16 equals

Li=—i(ax bi)(W*‘Mk)(EE)
. * *\ - Ok
—i(ox  px)(iy+My ) (3.19
Px
The vector fieldsy(r) and §(r) are introduced as
1
f(r):("z(” = @)+ b)),
x“(r)) =%
(3.18
1
S(r)= =2 [owdn) +pawin)],

where the vectors, andv, are defined in Eqg3.10.

With these definitions, one can express the functions

B(r,r'), Eq. (3.5, in terms of Gaussian integrals over the

vector fieldsy(r) and §(r). The derivation is based on the
identity

ay

by’ (3.19

j S (NMS( dr—E (a ;)Mk(

that can be proved using Eq2.8) and(3.10 [the same for
x(r)]. Less trivial is the expression

iyf S*(r)S(r)dr.

Using the expansion, E@3.18), we can see that the integral,
Eq. (3.20, contains nondiagonal terms with respeckik’.
For example, there is the following term:

|’)’
Z akrak
k.k'

(3.20

f bie (1) y(r)dr . (3.2
For Hermitian Hamiltonians the integral in E@.21) would
give 6, - However, generally it is not zero for arbitraky
andk’ because the orthogonality relation, £g.8), contains
¢ but not gy . Fortunately, this does not create the difficul-
ties in the limit of small “vector potential’h that are the
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S, andS* into the supervectoy of the form, Eq.(3.15. As
a result, one comes to integration with the weight exgj,
where the Lagrangiad takes the form

(3.23

—if%r)[How(r)]w(r)dr,

and the “charge-conjugate” supervectﬁr) is the same as
in Refs. 7 and 8. The 8 8 matrix operatof{, can be written
as

Ho=Hoo+ Hon,

E+i’)/A, H01:iA1(H,,+yT3) . (324)

In the continuum model, the “imaginary” pait” of the
HamiltonianH, Egs.(2.1) and(3.7), has the form

Hoo=Ho—

hv
HY=—i—.
m

(3.29

The diagonal matriceA and 73 are the same as in Refs. 7
and 8. The matrixA; anticommutes with the matriA and
consists of unit &4 blocks as well. The explicit forms of

these matrices are
0 0 1
—1) M7l o)

.

Equation(3.23 is similar to the corresponding equation for
localization problemé? and in the absence df{,; these
equations would coincide. All new physics comes from the
operatorHy; . A magnetic field can be included infdy in a
standard way.

All subsequent manipulations are the same as in Refs. 7
and 8. First, one averages over the random potehk{al
using Eq.(2.2) and comes, instead of E.23, to a regular
Lagrangianl

1

0 (3.26

L

_ 1 —
J[—ilﬂ(r)Holﬂ(rHm[lﬂ(r)w(r)]z}dr-
(3.27

Then one decouples the interaction term in E827 by
integration over a supermatri®, and integrates over the
supervectory, assuming that the supermatr} varies in
space slowly. After that one comes to an integral o@er
with the weight exp{-F[Q]). The functional integral ove®

is calculated using a saddle point approximation. At the
saddle point the supermatr@ does not depend on coordi-
nates, and in the limit of smally; and v one obtains the

main focus of interest in the present work, because the d'fstandard equation

ference betweenp, and ¢; is small. (Moreover, we are
interested in the limity—0). This allows us to write

E Lk_f[ * () y+ MR+ S (N y+M)S(r)]dr.
(3.22

Although one can use E@3.22 as an effective Lagrangian,
it is convenient to unify all components of the vectgrsy*,

1
Q(r)= p— ( —iHgot

) -1
P } ) : (3.28

18
which leads to the constrain@?=1 and to the form
Q=VAV, VV=1. Now, one has to expand the free-energy
functionalF[ Q] near the saddle pointidy;, yandVQ. As
a result, the functiond[ Q] acquires the form of a model,
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Numeration of the matrix elements in Eq3.32 is
standard:®

Equations(3.29—(3.32 solve the problem of mapping of
the density of complex eigenvalues for disorder models with
) _ e . . ) a direction onto a supermatrixmodel. The density function
whereDy is the classical diffusion coefficient,,.] is com- P(e,y) depends on the real paet of the eigenenergies
mutator, andSTr stands for a supertrace. Equatig29 is through the parameters and D, that are dependent o

written in the abse_nce of a magnetic fie_ld._ The_ expansioRpq dependence on the imaginary pgris more compli-
near the saddle point leading to E®.29 is justified pro-  c5teq Remarkably, the model derived differs from ther
vided y<7 1 a_nd h<I~1, wherel is the mean free path. model for localization problems by additional “external
The supermatrice® are the same as those for the orthogonakie|gs only. This simplifies calculations because one can
ensembl€:® This case corresponds, in particular, to the prob-,se well-developed computational schemes.

lem of vortices in superconductors with line defettsf for The o model, Eqs.(3.29—(3.32 can be used in any di-

some other problems one has to include in the Hamiltoniang,ension. The one-dimensional version describes “quantum
H andH,_ the physical vector-potentidl corresponding to a \yires” or, in the language of the superconductor model, to
magnetic field, the standard derivation shows that the propgfortices in a slab. According to a discussion of Ref. 18, in

av
FIQI=45 f STH{Do(VQ+h[Q,A;])?

o-model is obtained from Eq3.29 by the replacement

VQ—>VQ—§A[Q,T3]. (3.30

In the limit of a strong magnetic field one can neglect fluc-

tuations of a certain symmetfgooperons Then Eq.(3.29
is still valid, but the supermatrice3 should have a symme-
try corresponding to the unitary ensemble.

The free-energy function&[ Q], Eq.(3.29, has two ad-
ditional with respect to the functional used for “conven-

one-dimensional models there has to be a localization-
delocalization transition. If this is true for thick wires the
one-dimensionatr model should undergo a phase transition
when changing the value &f. However, study of the one-
dimensional model is more difficult than of the zero-
dimensional one. Leaving higher-dimensional problems for
future investigation let us concentrate in Sec. IV on calculat-
ing the density functiorP(e,y) for a sample with a finite
volume. This situation is described by the zero-dimensional
o model.

tional” disorder problems terms. These terms contain the

matrix A ; and serve as new effective “external fields” in the
free energy. We see from E¢8.29 and(3.30 thath andA
enterF[ Q] in a different way. A simple replacemeAt—ih

in the ¢ model of Refs. 7 and 8 would give a wrong result.
This reflects the fact that a nonzero violates the time-
reversal symmetry, whildr can break only the symmetry
with respect to inversion of coordinates.

In order to express the density functiBie,y), Eqgs.(3.4)
and (3.5, in terms of a functional integral ove®, one
should know not only the weight expf[Q]) but also a
pre-exponential functionah[ Q]. This can be derived from
Egs.(3.4) and (3.5 in a standard way. One of the functions
B can be written using the first line of E¢3.16), and the

IV. DENSITY OF COMPLEX EIGENVALUES
IN A LIMITED VOLUME: UNITARY ENSEMBLE

If disorder is not very strong, there is a regime when
physical quantities can be obtained from the zero-
dimensional(0D) o model. This is the limiting case when
one considers only supermatric€¥ that do not vary in
space. For the problem of level statistics in Hermitian mod-
els the ODo model is obtained in the limitv<E., where
E.=m?Dy/L? is the Thouless energyL is the sample
size).”® If the sample is connected with leads and the energy
levels are smeared, the OD case is possible, provided the
level width does not exceel.. . If the disorder is strong or

other using the second one. As a result, one obtains in th&e sample has one- or two-dimensional geometry, such that
pre-exponential a product of four different components ofthe localization length. is smaller than the sample size, the

the supervectory; two of them are at the point, while the
other two at the point’. After averaging over the random
potentialU(r) and decoupling of the effective interaction in
Eq. (3.27) by integration over the supermati@}, one has to
compute Gaussian integrals owr This can be done using
the Wick theorem. In the limit—1>(»V) ! one may take
into account only pairing of twa) at coinciding points. The
rest of the calculation is simple, and one obtains

P .
— —— |im

P(ey)= v,

J ALQ]exp(—F[Q]dQ,
(3.3)

y—0
where
A[Q]=J {[QIN + QAN QAT ) +Q2Ar" )] —[Q2Xr)

+QIANIIQZHr ) +Q35(r" ) 1ydr dr'. (3.32

0D limit cannot be achieved.

It is clear that the situation with the directed problems
involved should be similar, and one can come to thed®D
model providedh, y, andy in Eq. (3.29 are not very large
and disorder is not very strong. For the model of vortices in
a superconductor the 0D limit for the model would corre-
spond to a sample with a finite cross section perpendicular to
the line defects.

Neglecting all nonzero space harmonics in the free-energy
functional F[Q], one can rewrite Eq3.29 as follows:

a® , X Y
FIQI=STr| 15[Q.A 1~ 7A17Q - 7AQ|, (4D
where

27y

271'D0h2 2wy
- =3 Y

A A

andA=(»V) ! is the mean level spacing.

2

a 4.2
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Although obtaining the OD limit of ther model is trivial  tems in a limited volume and random matrix thedRMT)
in the absence of the vector potential, the derivation needwas finally established. Now, a natural question arises: do
some care foh+0. In case of a real magnetic field one canthe random models with a direction considered in the present
neglect all nonzero harmonics, provided the London gaug&ork correspond to RMT?
for the vector potential is choséhe same is correct fdr. Of course, this cannot be a model of Hermitian or real
One can come to the London gauge considering nonzersymmetric matrices, because in this case all eigenvalues
harmonics perturbatively. The free-energy functional ofmust be real. Thus, one should think of ensembles of random
fields describing deviations from the 0@ model contains real asymmetric or complex non-Hermitian matrices. Study
both linear and quadratic terms. In order to obtain a goodf random complex matrices without the requirement of Her-
perturbation theory near the 0 model, one should get rid miticity has started quite long agftand since then models of
of the linear terms. This can be done for an arbitrary functiomon-Hermitian or real asymmetric random matrices have

h (r) if the following equations are satisfied: been considered in a number of publicatiohg}29:30-32-34
. The ensembles of real symmetric random matrices have
divh (r)=0, h[s=0, (4.3 found applications in, e.g., neural network dynaniit¥:

where h|s is the component perpendicular to the surface.Wh”e the ensembles of complex random matrices appear in

Equation(4.3) is the London gauge fdn study of dissipative quantum maffs:* One of results ob-
Itis clea'r that the second condition in Hd.3) cannot be tained is that, for Gaussian ensembles in the limit of a large
fulfilled for a closed sample, arti=const But- this is not an sizeN of the matrices, the eigenvalues are uniformly distrib-

i ; 132,31
interesting case because, as follows from the general consi%f:[e(JI inside an elllps@ . o
eration of Sec. Il, in such a situatitncan be removed by the d Recent_ly, an ensgmble of avyeakly non-H.erm|t|an ran-
transformation, Eq(2.9) (if the sample is confined by hard fom matricesX was introduced. These matrices have the
walls), and one obtains the standard 6Dnodel without the orm

first term in Eq.(4.1).

Equations(4.3) can be satisfied if the sample has a ring
geometry, andh (r) is directed along the circumferenttis . . . . .
corresponds to the periodic boundgry conditions of Ref. 18 with Nx N statistically independent H(_armltlan matrlcg\s
Then,h is approximately constant if the radius of the ring is @B, and a numbew of the order of unity. The matrice’s
large. Thus Eqs(4.1) and (4.2) are applicable to samples and B obeyed Gaussian distributions with the probability
with a ring geometry. Of course, one can also use these equélensities
tions for an arbitrary geometry, but the functibn(r) must

X=A+iaN"Y2B, (4.6)

obey Egs.(4.3 and the quantityh?V entering Eq.(4.2) ~ N -, ~ N _ -,
should be replaced bfh?(r)dr. P(A)cexy = 552 TIA%], P(B)=exg — 557 TrB
Removing, with the help of Eq$4.3), terms in the free- 4.7

energy functional linear in the deviations from the @D )
model, and evaluating the contribution of the quadratic onesvhereJ has the order PLQJWW-
one comes to the conclusion that the nonzero space harmon- The parameteraN is a measure of the non-

ics can be neglected in the limits Hermiticity, and is always small fdl—c and « finite. The
authors of Ref. 37 calculated a density of complex eigenval-
y<E., Yy<E;,, h<L7% (4.9 ues similar to the functiofP(e,y), Eq. (2.13, and demon-

) ) strated that this function has a finite limit whéh—oo. At
whereL is the sample size. the same time they did not point out any direct physical
The density functiorP(e,y), Egs.(3.3D) and(3.32, takes  gppjications. For computation of the functidt(e,y), they

the forms used the supersymmetry technique. Remarkablygtivedel
. derived in Ref. 37 is exactly the sanf@though numeration

T _ of elements of the matriX) is somewhat differentas the
P(ey) 4A ~I:T) f ALQlexp ~FIQNAQ, unitary version of 0D model, Eq.(4.1). The preexponential

(4.9 is different, but this is natural because anotfiess direck

A[Q]:(Q}éJr Qi% (Q%}IJF Qgi)—(QféﬂL Q}é)(Q%}pL Q%Z ’ way of calculating the functio®(e,y) was used.
The same form of ther model obtained for these two
with F[ Q] determined by Eq(4.1). different models shows that the directed disordered model

To obtain the functiorP(e,y) one should calculate in Eq. with broken time-reversal invariance in a finite volume is
(4.5) a definite integral over the supermatric@s The struc-  equivalent to the model of weakly non-Hermitian matrices.
ture of supermatrice® is the same as in Refs. 7 and 8 and, Apparently, the same equivalence holds between the time-
in principle, the way how to compute the integral is clear. Asreversal-invariant model of disorder and models of weakly
usual, all manipulations are simpler for the unitary ensemblenonsymmetric real matrices. However, it is relevant to em-
and therefore let us start with this case. phasize that not every non-Hermitian Hamiltonian corre-

However, before an explicit calculation of the integral in sponds to the models of non-Hermitian or nonsymmetric real
Eq. (4.5), an interesting observation can be made. We knownatrices. For example, models of open chaotic billiards are
that the OD version of the- model for Hermitian disordered described by Hamiltonians with additional imaginary terms
systems can also be derived from random matrix motleils. (see, e.g., Refs. 8 and.Fhese Hamiltonians do not seem to
fact, this is the way the equivalence between disordered syde equivalent to the random matrix models of Ref. 37.
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Now, let us show how explicit calculations in Eq4.1)
and (4.5 can be performed. First of all one should choose a QOZ(
proper parametrization of the supermatri€@sThe authors
of Ref. 37 used the parametrization of Ref.("Atandard  while the supermatriX can be chosen as
parametrization” in the terminology of Ref)8This param- . ~
etrization has been used for solving many interesting prob- T (u O)( cog 6/2) —i sin( 0/2))(1) 0)
lems. However, due to the presence of new terms in the free = L -
energyF[Q], Eq. (4.1), this parametrization is not as con- 0 u/\-isin(6/2) cog6/2) |\0O v

cosp  —gsing
L @Z

—738iNg  —Ccosp

venient as befgr%because novir[ Q] contains not only the R (4.10
“eigenvalues” 6§ but also many other variables. The supermatrices, u, andv are equal to
As concerns the unitary ensemble, the computation of the
function P(e,y), although very lengthy, is still feasibfé At e Y
the same time, calculations for the orthogonal case using the 1o 6,
standard parametrization do not seem to be possible at all (4.11

due to unsurmountable technical problems.

Fortunately, one more parametrization is possible that is U=
perfectly suitable for the present problem. To some extent it
resembles the parametrization used to study the crossov@he 2x2 matricesp, x, 6, and#, are proportional to the unit
between the orthogonal and unitary ensemB1€©f course,  matrix, the matrices;, « are
it should be written for the orthogonal and unitary ensembles
in a different way, but the main structure is the same. Let us n 0 k 0
show in this section how the functioR(e,y) can be ob- T“lo -5 “Tlo —k* (4.12
tained for the unitary ensemble using this new parametriza-
tion (it can be called “non-Hermitian parametrizationThe ~ Where 5, 7*, , and «* are anticommuting variables. The

1—27]7 27
27 1-297y

-2k 1-2kk

(1_2KK— 2k )

orthogonal ensemble will be considered in Sec. V. conjugate matrices and« are the same as in Refs. 7and8.
The supermatrixQ in the non-Hermitian parametrization TO understand better the structure of the superm@rgiven
is written in the form by Egs.(4.8—(4.12) it is instructive to write it neglecting all
o Grassmann variables. Then, one can write separately the
Q=TQqT, (4.8 compact and noncompact sectors. The compact sector takes
whereT should be chosen to satisfy the relati¢iisA,]=0 the form
and TT=1. The bar stands for the “charge conjugation” cosf cosp — 738inp+i sind cosp

defined in Refs. 7 and 8. It is clear that with such a choice the ,

function F[ Q] depends o1Q, only (for the unitary ensemble — 73SiNp—1 sinfcosp ~ Cosf cosp 413
one has als§Qg,73]=0). '
The central parQ), in Eq. (4.8) is taken in the form whereas the noncompact sector is written as
|
coshg;coshy —i m3Sinhy — sinh@,coshy il
—ir3sinhy + sinh@,coshy —coshy,coshy 4.19
|
Comparing Egs(4.13 and (4.14) with the corresponding where
expressions for the supermatri)Q in the standard
parametrizatiof,> one can understand that in order to gL _cow costy 41
specify the supermatriQ unambiguously the following in- ¢ 8 (sinhy+i sing)?’ (4.17
equalities should be imposed:
1 1
—oly<w, —wlf<o, —gli<, JQZE.th—. (4.18
—ml2<<ml2. (4.15 sin 5(01+|6)

To start the computatiqn With_ the parametrizatio_n, EdsSubstututing Eqs(4.8)—(4.12) for Q in Eq. (4.1), one can
(4.8)—(4.12, one should first derive the proper Jacobian. Therewrite the functionF[Q] in the limit 7—0 as
derivation is presented in the Appendixes. The final result for

the elementary volumgdQ] reads F[Q]=a?(sinffx+sirfe) —ix(sinhy+i sing)
(4.19

(the limit y—0 can be taken in the beginning of the calcu-
dRe=d#n dn*dk d«* (4.16 lations, because in the present parametrization this does not

[dQ]:J‘PJngBdRF, dRB=d0 d01d<p dX,
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lead to additional convergence problemdhe function expanding() in W up to quadratic terms and calculating the
F[Q], Eq.(4.19, does not contain the anticommuting vari- Jacobian in this approximation one can see that, in the limit
ables, and therefore one can easily integrate over the supan— o,

matrix u. Writing in Eq. (4.5 the supermatrixQ, Egs.

(4.9-(4.10, as f exdmSTr(QA)]dQ=1 . (4.27

Q=uQu, (4.20 =
_ _ _ The supermatrixI can also be represented through and
with u from Eg. (4.1, and integrating ovey; and »*, one  calculating the corresponding Jacobian one may expand up
obtains to quadratic inW terms only. As concern® in the other
terms in the integrand in E§4.23, one should replace in the
av ~ ~ ~ o .=
P(ey)= f [STr(73A,Q)]%exp —F[Q])dQ limit m—o the supermatrice¥ by 1. One can also check
4A that now the Jacobian of the transformation from the matri-

4y d? - cesT andu to T equals—1 and notl,, as it did with the
=N dl f exp(—F[Q])dQ, (4.22 initial parametrization foiT, Eqg. (4.10. So, calculating the
_ elementary volumédQ], one should omit in Eq4.16) the
where the elementary voluniid Q] differs from[dQ] by the ~ multiplier J,d«xd«* and change the sign of the rest.
replacementdRe— dRe=dx d«x*, and F[Q] is given by As a result of all these manipulations one comes to the
Eq. (4.19. Although Eq.(4.21) is quite simple, one more following expression for the functioR(e,y):
difficulty should be overcome. The problem is that the inte-

grand in Eq.(4.21) does not contain the variablasand «* P(ey)=— m f [STr(73A,Qq) ]2

and, at first glance, the integral must turn to zero. However, 4A

the Jacobiad,, Eq.(4.18), is singular forg, 8;—0 and this xXexp—F[Qp])J, de dy (4.28
¢ ! )

singularity is not compensated for by the integrand. So one

obtains an expression of the typex@, which is an usual Wwith Q, from Eq.(4.9) andJ,, from Eq.(4.17). The function
phenomenon for the supersymmetry technique. DifferenE[Qo] is given by the right-hand side of E¢4.19. The
procedures for how to make the integral well defined havdimits of integration overe and y are determined in Egs.
been worked outfor a detailed discussion, see Ref. Bhe  (4.15.

simplest way is to rewrite Eq4.5) as The further calculation in Eq4.28 is very simple be-
cause the function in the preexponential is proportional to
J;l. Changing the variables of integratia+ sinh y and
t=sin ¢, one calculates a Gaussian integral ozeand the
final expression takes the form

P(ey)=Pm(ey)~ 75 | AlQIlexn—FIQ))

—exp(—F,[Q])]dQ, (4.22
2
where P(ey)= %fem{ - %

. (4.29
Pr(ey)=— g% | AlQlexp(~F,{Q1)Q
(4.23 The funt_:tion P(e,y) is properly normalized, and one ob-
FulQ]—F[Q]=—mSTr(TATA)=—mSTr(QA). tains, using Eq(4.2)

The supermatriX2 in Eq. (4.23 can be chosen as f P(e,y)dy=1. (4.30

1
f coshxt exp( —a’t?)dt.
0

Q=TAT, T=uT. (4.249  The density of complex eigenvalue®(e,y), Eq. (4.29,
agrees precisely with the corresponding function for weakly
non-Hermitian random matrices obtained in Ref. 37 in the
limit N—oo. The parametera andA are related in this case

The parametem in Eqs.(4.22 and(4.23 is arbitrary. Using
Eq. (4.10, we see that

_STHTATA)=4(cost,—cosd), (425 [0 the parameters in E¢4.6) and(4.7) as
and, thus, the singularity @& = #=0 coming from the Jaco- a=v2mlv(e)a, A=[v(e)N] 1,
bian in Eq.(4.22 is compensated for by the integrand. After v(€)=(2md) 14— (elI)2, (4.3)

integration overp and »*, the integrand does not contain the

anticommuting variablesc and «*, and the integral van- andx=2nv(e)yN.
ishes. Therefore, the functiddy,(e,y), Eq. (4.23, does not The agreement can serve as a proof of the equivalence
depend omm, and one can calculate the integral in the limit between the directed disorder models in a finite voliwieh
m—ce. In this limit only small deviations of the supermatrix proken time-reversal invariancend the models of non-

) from A are essential. Using the representation Hermitian matrices defined by Eq.6) and(4.7). The func-
0 B a tion P(e,y) is represented in Fig. 1, and let us discuss its
o . ' i
_ . oA —1 _ _ basic properties following Ref. 37.
Q=AQ+HIWA-TW)™, - W (B 0)’ (a'_ ib) The density of complex eigenvalues is a smooth function

(4.26 at any finitea, which means that any finite non-Hermiticity
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N
P(e,y)= N*lnzl (8(e—€l)S(y—€l))

1S e
_ k o o "
= 9N n;l j,xdk eY(5(e— €, )exp —ikep)),

(4.39

where the angular brackets-) stand for the averaging over
the matricesA andB, Eq. (4.7). In the limit of smalla the
imaginary parte; can be obtained using the standard pertur-
bation theory. In first order, one has

N =@ Bdm, (4.36

FIG. 1. The density of complex eigenenergRée,y) for the where ¢, is the eigenvector of the matri& corresponding
unitary ensemble as a function of the imaginary par2my/A for 1O the eigenvalue,. Substituting Eq(4.36 into Eq.(4.35),
a=1,2,3. one can immediately average over the maBixUsing the

orthogonality of the eigenvectos,,, one can write the re-

smears all eigenenergies, making them complex. The protsult of the averaging as
ability of strictly real eigenvalues is negligible. Fa&1 the . N
integral in Eq.(4.29 can be calculated analytically using the _ J“’ iky o

saddle-point method. In the intervid| <2a? the integrand Pley) 27N nzl _mdk e\ dle—en)
as a function ot has a sharp maximum in the domain of the

integration, and the integral can be extended to infinity. For Xexq — E a_kJ 2 (4.37)
|x|>2a? the functionP decays quickly. As a result, one 2\ N A '
obtains

where(---), stands for averaging ové. Integrating ovek
and using Eq(4.31), one comes to Eq4.34). As concerns
4.3 the models of disorder, Eq&.1)—(2.3), even the asymptot-
' ics, Egs.(4.32 and(4.37), have not been known before, and
it not clear how to reproduce them using simple arguments.

. . . . Are the results obtained in this section general, can one
Equation(4.32 shows that fom>1 the density of imaginary expect anything new for the orthogonalg ensemble? Of

artsy of eigenvalues at a fixed real part is homogeneous in .
Fhe ir?ltervaI?(e(—Zaz 2a%). Using EQF-)(4-3D for V(gf) and  course, there is no reason to hope that Eq29 also de-

a, we can rewrite the result expressed by E432 in terms scribes the orthogonal ensemble, but are the asymptotics in
: P y the limitsa>1 anda<1, Eqs.(4.32—(4.34), still correct?

of a distribution of eigenvalues in the complex plane. In such . .
. ; The orthogonal ensemble of random matrices can again
a formulation, Eq.(4.32 means that the complex eigenval- . T
ues are distributed homogeneously within the ellipse be introduced by Eq$4.6) and(4.7) but now the matriceA
andB should be real symmetric and antisymmetric, respec-
tively. One should also make the replacemeant: —ia in
€ Eq. (4.6). As concerns the asymptotics in the limi# 1, the
2J same elliptic law as in Eq4.33 has been recoveréd At
the same time, one can expect a completely different behav-
This is the “elliptic law” found in Refs. 29 and 31; the
agreement is natural because the lim#1 should corre-
spond to a “strong” non-Hermiticity. At the same time, the

ior for a<<1. This can be seen easily from the fact that the
elliptic law is model dependent. For the models of disorde

first order of the perturbation theory corresponding to Eg.
(4.36) gives zero, and one cannot derive 434 as before.

considered in the present paper the density of complex stat

essentially depends gnonly.

IJn fact, the density of complex eigenvaluBge,y) is singu-
é%r aty=0. A study of the orthogonal ensemble is presented
in Sec. V.
In the opposite limita<1, the density of complex states
P(e,y) takes the form V. DENSITY OF COMPLEX EIGENVALUES IN A
LIMITED VOLUME: ORTHOGONAL ENSEMBLE

P mv(e) (1, |x|<2a?
(eY)= %228 |0, |x|>2a2.

2 2
+(—) =1, v=aN"2 (4.33

To compute the density of complex eigenvali®s,y)
) (4.39 for the orthogonal ensemble, one can start, as previously,
from Eqgs.(4.1)—(4.4), but now one should use supermatrices
Q with the structure corresponding to this case. As men-
The Gaussian form of the functioR can be easily under- tioned, the presence in E4.1) of the new term with the
stood starting from the random matrix model, E@s6) and  matrix A; makes the calculation very difficult even for the
(4.7). The functionP(e,y) can be written as unitary ensemble, and hardly feasible at all for the orthogo-

wm x?
P(e,y): EEX[{ - E
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nal one. So, as in Sec. IV, a new parametrization @r

should be designed.
Let us write the supermatri®) in the forms

Q=2Q,Z, Z=TY, (5.1)

with the supermatriceQ, and T specified by Eqs(4.9-
(4.12, and choose the supermatitkas follows:

Y=Y,RS Yo=Y3Y,Y;. (5.2
The supermatrixy, entering Eq.(5.2) is
w 0 (w0
Yl:(o v‘v)’ W:(o 1)'
cogul2) —sin(ul/2)
“\sinw2)  cogu2) | 6.3
The supermatrix’, is equal to
cog0,/2)  —i sin(6,/2)
YZ:( —i sin(8,/2) o §,/2) )
- 0 0 0 1
02:(0 i027-1>’ Tl:(l o) - 64

The supermatrix’; is
y _(exp(ifg/z) 0 ) A_(ﬁfs 0 )
1 o expiplR))’ = o pum)

1 0
0 —-1/°

T3=

(5.9

The supermatriceR and S contain remaining Grassmann

variables, and are written as

R O -~ [1-2pp ZpA)
\o R/’ \ —2p  1+2pp]’
p 0
p_<0 —p*) 6.9
and
1-20% 2io [0 o
STlooie 1262 7Tl o)
o 0
7=\g _* (5.7

wherep and o are conjugate t@ ando.
The parametrization fo¥, Egs.(5.2—(5.7), is chosen in
such a way thafY,A,]=0. To specify the supermatriQ

unambiguously, one should restrict variations of the vari-
ables by certain intervals. This can be done as in Sec. IV by

comparing the bosonic “skeleton” of written in the pa-
rametrization, Eqs(5.1)—(5.7) (let us call it “nonsymmetric

9641
0<y<owo, —72<e<m[2, —0<h<o,
— <0<,
T (5.9
0< <o, O<pu<m, O<B<m, 0<B<2m7.

The next step is to calculate the Jacobian. The derivation is
presented in Appendixes, and the final result for the elemen-
tary volume[dQ] is

[d Q] :‘](p‘] 0J[L‘]Cd RBd de Rle R]_': . (59)

In Eq. (5.9, J,, Jy, dRg, and dR: are given by Egs.
(4.16—(4.18. The additional quantities entering E¢5.9)
are equal to

1 sinhd,sinu

Ju=58,2 (coshd,—cosu)?’ (5.10
3 4 sirfe (5.11
¢~ (sinhy—i sing)?’ '

and
dR;g=du d6,dB dB;, dRy=do do*dp dp* .
(5.12

The free energyF[Q], Eg. (4.1), takes, in the limity—0,
the following form:

F[Q]=a2%(sirfe+sinkx) + X[ (cosu Sing
—i coshy, sinhy)+4(oo™* + pp*)(coshy,—cosu)

X(sing—i sinhy)]. (5.13

The nonsymmetric parametrization given by E@S.1)—
(5.12 looks rather complicated. The calculation of the Jaco-
bian is most lengthy, but this has to be done only once. At
the same time, the Jacobian does not contain Grassmann
variables, and the free enerdyf Q], Eq. (5.13, is simple
enough. Moreover, the supermati@x can be written as in
Sec. IV in the form of Eq(4.20 (although the supermatrix
Q is now different from that for the unitary ensembl&his
allows one to integrate first over the mattixand obtain Eq.
(4.27).

Further simplifications come from the fact that, as previ-
ously, one obtains an uncertainty of the typg ©® because
the integrand in Eq(4.21) does not contain the variables
and «*, whereas the Jacobiadg, Eq.(4.18, andJ,,, Eq.
(5.10, are singular a¥, 6,, 6,, u—0. We saw in Sec. IV
that the uncertainties can be rather easily avoided and, as a
result, one obtains a more simple integral. The “regulariza-
tion” procedure, Eqs(4.22—(4.27), led to the integral, Eq.
(4.28), that contained the variablesand y only.

Similar transformations can be performed for the orthogo-
nal ensemble. Proceeding as for the unitary ensemble, let us
introduce the functiorr,, [ Q],

Fnn=F[Q]— mSTr(ATAT_)— nSTr( T3Y7'3Y_)-
(5.19

The second term in E@5.14) can also be written in the form

parametrization’ with the standard parametrization of Refs. of Eq. (4.25. Using Eqs.(5.2—(5.7) we can write the third
7 and 8. As a result, one can write the following inequalities:term as
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—nSTr(7'3Y7'3Y_)=4n(COSh92—COS(L). (5.15 term in Eq. (5.16 is zero because it is not singular at
#=6,=0 and does not contain the variablesand «*. At
In analogy with the transformation of the integrand in Eds.the same time, the singularity @ =ux=0 is avoided by

(4.22 and(4.23, we represent exp(F[Q]) as follows: using the parametrization, Eq&.179—(5.19.
. m As a result of these manipulations one should replace fi-
e F=e Fmte Fmo(1—e F)+e Fon(1—eF ) nally Eq. (4.5 by
_ _p(m _E

+te F(1-e P )(1-e7), (5.1 P(e,y)=PY(e,y)+P?(ey), (5.20

where
PU(ey)=— 75 Im | AlQlexp—Frn{Q)dQ

F(m):an_ Fon, I:(n):an_FmO- @y 4A m,n—c mn ,

The parameterm andn in Egs.(5.15 and(5.16) are arbi- (5.2)

trary. Therefore, substituting E¢5.16 into Eq. (4.5, we
can take the limitm, n—oo. The contribution coming from
the last term in Eq(5.16 vanishes because all singularities
are compensated for amy andn, but the integrand does not
contain the anticommuting variables and «*. The limit —exp(—Fmn1dQ. (5.22
m—oo allows one to expand the supermatfiix Eq. (4.24),
near 1(and the supermatriQ nearA). As explained in Sec.
IV, in the limit m—o one can replac&—1 everywhere in | . . -
the integrand omitting simultaneouslydx «* in the el- N the integrand, replacing,J, d«dx” dRgdRy in the el-
ementary volumddQ]. The same is correct now and one &Mentary volum¢dQ], Eq. (5.9), by —1. As concemns Eq.
should removel,dx d«* from [dQ], Eq. (5.9 (changing (5.22, the integrand has only the singularity @+ 6,=0,
the sign. and one should replace by 1 the supermairignly. In the
The other singularity at,, x—0 in the first and third ~€lementary volumddxd«* should be replaced by 1.
terms in Eq.(5.16) can be avoided in a similar way. In the The subsequent manipulations are rather straightforward.
limit n—oo the supermatriy, Egs.(5.2—(5.7), is also close Integrating over the supermatribu, one obtains for

to 1. To make an expansion in small deviatighom 1 one ~ PY(e,y) and P®(ey) analogs of Eq.(4.21). Then the
can use the following parametrization: function P(M)(e,y) is expressed in terms of the integral over

the variableg = sin ¢ andz=sinhy,

PA(ey)=— ¢ lim [ ALQIexa~Fp)

The integrand in Eq(5.21) has both singularities. Therefore,
one has to replac€ andY by 1 simultaneously everywhere

—(1—i i)l x=| . . 2 2
Y=(1-X)A+X) Y X=| o 2] (517 P(l)(ey)=Ld—J et AL 2
R n _ _ ' 4A dx? (t°+2%)%"
The blocksA andL satisfy the constraint=—A, L=L, (5.23

{A,75}=0, and{L, 75} =0, where{---} is an anticommutator.

These blocks can be written in an explicit form as In the integral in Eq(5.22), one has to integrate first over the

variables p, p*, o, and ¢*, and then, the function

A ( f 5) A (0 g“) P()(e,y) reduces to
A=| — , =l— . 1, 51
—f 0 é’ il ( 8 v d2 A .
. ) ) P(Z)(E,y): — f efa (t°+2%) —x(tw—i\2)
where the Z 2 matricesf andl contain conventional com- 4A dx
plex numbersf andl, whereasé and { consist of anticom- (t—iz) 222
muting variablest and . The explicit forms of these matri- X ——m———dt dz do d\ (5.24)
ces are (t°+29)
0 —f 0o | 0 ¢ where w=cosu, and A =coshé,. The integration in Egs.
f:<f* 0 ) :<|* 0), g’:( ok 0) (5.23 and(5.249) is performed ovet andz in the intervals
¢ —1<t<1and—o<z<w, and overw and\ in the intervals
(5.19 —1l<w<l1 and K\ <,
In Eq. (5.19, | is an arbitrary complex number, while fér The integration ovew and\ in Eq. (5.24 can be carried
one should integrate over the domain 1m0. The structure out immediately. However, to provide the convergence of
of ¢ is the same as df. the integral oveh one should shift the contour of integration

Substituting Egs.(5.17—(5.19 into Eqg. (5.14), one overz into the complex plang—z+ié sgnk), whered is
should expand the ter@Tr(73Y 75Y) up to quadratic terms an infinitesimal positive number and
in X and replaceYy by 1 everywhere else in the integrand.
Calculating the Jacobian we can see that the factor B 1, x>0
J,dR;gdR;¢ should be replaced by 1. Of course, this con- Sgr(x)= -1, x<0.
cerns only the first and the third terms in E§.16 because
the second term does not lead to any singularity in the intelntegrating overw and\ and adding Eqs(5.23 and (5.29),
grand atd,=u=0. In fact, the contribution from the third we obtain, forP(e,y), Eq. (5.20,
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v d2I(x)

P(ey)= TN TR (5.25

1 (= 2.2, 2 h
l(X):f f e—a (t ”—)[e"‘(“'Z*)(Hiz_)z
—1J -

t dt dz

— Xtz (t—jz )2 7 2 (5.26

wherez_=2z+i6 sgn).

As is clear from the form of the functionx), it is con-
venient to differentiate first ovex and then calculate the
integral. However, one should be careful performing this, at -100 -50 00 50 100
first glance trivial, manipulation. The problem is ttzat con- x
tainsx, which can result in an additional contribution. FIG. 2. The density of complex eigenenergiggith nonzero

To avoid lengthy calculations let us consider first the casgmaginary part P.(e,y) for the orthogonal ensemble as a function
when x is finite nonzero number. Then, the derivatives of the imaginary park=2my/A for a=3,5,7.
dz_/dx andd?z_ /dx? vanish, and one has to differentiate

the exponentials only. Shifting the contour of integration v d2? 1 (o b s
z—z+ (ix/2a?), which can be done without crossing singu- P(e,y)xﬁozﬂ v lim f e a9
larities in the complex plane and changing the new variable X 5012
asz—zl/a, one obtains £2|x]
X— —_
’ ¥2\ (1 71 2 2y 24t 4z
P.(e,y)=—exp —— Xt sinhxt . . . o .
(€y) aA F{ 432) fo The integration ovee in the limit 5—0 is elementary, and
o~ 2)d for the anomalous contributioR, (€,y) one obtains the fol-
© exp(—z%)dz : o
Xexp(—aztz)dtj > (5.27) lowing expression:
0
2+ 4a2 27y 1
P (€,y)= Té(x)f exp(—a’t?)dt.  (5.29
0
[the variablesx andy are related to each other through Eq.
(4.2)]. By making simple transformations in E¢5.27), the final

Equation(5.27) holds for any finitex, but is it the final  result for the density of complex eigenvalu@ée,y) can be
result? It would be the final result if the density function written as
were continuous at=0. As concerns the unitary ensemble,
we already know that the functid®(e,y) is continuougsee P(e,y)=P(€,y) +Pc(€,y), (5.30
Eq. (4.29], but does the continuity follow from a physical
principle? In fact, it does not and the functi@te,y) for the
orthogonal ensemble containssdunction atx=0.

whereP,(e,y) is given by Eq.(5.29, andP.(e,y) equals

To extract thes function let us expand the exponentialsin  p (¢ y)= 2mv Eq) x| th sinh(|X|t) exp — a2t2)dt
the integrand in Eq(5.26). In the first two orders one obtains A 2 \2a)Jo
(5.32)
2 o0
Pleny)= - f ' f e )| __ 2 where ®(v) = (2Vm)J* exp(~1Adu. It is not difficult to
20 dX% | ) 1) = (t2+27%) check that the functio®(e,y), Egs.(5.29—(5.31), satisfies
. the normalization condition, Eq4.30), and the singular part
- — ———|dt dz|. (5.28 P.(e,y) gives an essential contribution that becomes small
iz_ t°+2z% only in the limita—o. The functionP (e,y) is represented
, ) . ) ) . in Fig. 2.
The first term in the integrand in E¢.28 has no singulari- The existence of the anomalous pBy(e,y), Eq. (4.33,

ties, and one can shift the contour of the integration @/er means that a finite fraction of all eigenvalues remains real for
such that the variables_ are replaced by. Then this part of any imaginary vector potentid in the models of disorder,

the integrand does not contaiy and the differentiation Egs.(2.1) and (2.3), or degree of asymmetry for the real
gives zero. The contribution involved comes from the seconqandom matrix models. At the same time, the function

term in the integrand. Writing~* as P.(e,y) decays whery— 0, which corresponds to a vanish-
ing probability of eigenstates with small but nonzero imagi-
1 z—iésgnx) nary parts.
7z 722152 In contrast to the unitary ensemble, the functi®te,y)

for a<1 can hardly be obtained from a perturbation theory.
one can represent the functiéi{e,y) for x—0 as Most of the eigenvalues are in this case real. In the opposite
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limit a>1 one should distinguish between several regionsmatrix A ;. Although the Hamiltonians with the direction of
In the limit |x| <a the asymptotics is determined by the ex- Egs.(2.1) and(2.3) can be obtained from conventional Her-

pression mitian Hamiltonians in a magnetic field by the formal re-
placemenA—ih, the same replacement in the conventional
mv || o models would not lead to Eq3.29. This reflects an es-
Pc(ey)= 2a2A  2a ' (532 sential symmetry difference between systems in a magnetic
field where the time-reversal invariance is broken, and the
showing a linear decay of the density |aé— c°. models with direction that are time reversal invariant.

In the region|x|>2a the density of complex eigenvalues  In contrast to average density of states for Hermitian dis-
is constant forx| < 2a2, and falls off outside this interval. Its order problems which is always smooth, the joint probability
value in this region is the same as in the unitary case, Ecdensity of complex eigenenergies considered in the previous
(4.32. This corresponds to the elliptic law, Eg.33. For  sections is a nontrivial quantity. Themodel was derived to
an ensemble of strongly asymmetric real random matricedescribe this quantity, and it is expected to be sensitive to
with a Gaussian distribution, this law was proven in Refs. 3llocalization-delocalization transitions in one- and higher-
and 32. The authors of this paper have also found numeridimensional systems.
cally that the portion of real eigenvalues for their ensemble The form of the OD version of ther model obtained
decays a®\ ™2, whereN is the size of the matrices. Appar- above demonstrates the equivalence between the directed
ently, this behavior corresponds to th®functional part disorder models in a limited volume and ensembles of ran-
P.(e,y), Eq.(5.29, in the eigenvalue density for the case of dom weakly non-Hermitian or weakly asymmetric real ma-
weak asymmetrythe orthogonal analog of Eq&l.7)]. trices that have been mapped onto the @D model
previously?” Complex random non-Hermitian matrices ap-
pear in a study of dissipative quantum mapd} whereas
random real asymmetric matrices have applications in neural

The results presented in the previous sections demonstratetwork dynamic$>3* Thus thes model can describe com-
that disorder models with a direction are interesting, and capletely different phenomena in an unified manner.
be efficiently studied using the supersymmetry technique. The supermatrixr model can serve as a useful calcula-
The o model derived, Eq(3.29, can be used in any dimen- tional tool for all these non-Hermiatian problems. Although
sion. It is relevant to emphasize that, as usifahe dimen-  the new term with the matriA ; in the o model, Eq.(3.29),
sionality is determined by the geometry of the sample. So thenakes the use of previous parametrizatfodificult, the
one-dimensional version of the model corresponds to a new parametrization suggested in the present paper allows
thick wire with a directed hopping. In the language of vorti- one to circumvent the difficulties and obtain explicit results
ces in a superconductdt,the 1D model can describe the for the OD case in a straightforward manner. Weakly non-
vortices in a slab with line defects and the magnetic fieldHermitian random matrices can also be studied using more
parallel to the surface. Such a model is somewhat more reraditional methods of orthogonal polynomiéfsHowever, a
alistic than the purely 1D model of Ref. 18. The 2Dnodel  study of weakly non-symmetric real matrices with this
is supposed to describe the vortices in a bulk superconductenethod seems be more difficult and the density of complex
with line defects. In addition, one can imagine a situationeigenvalues, Eqg5.29—(5.31), has been calculated for the
when the sample is long but has a small cross section. If théirst time. In addition, ther model approach is not dependent
line defects are aligned in the longitudinal direction, oneon details of the model considered, and can be applied not
comes to the ODr model considered in the present paper. only to Gaussian models. It can also be used to study the

Of course, the directed non-Hermitian Hamiltonians candirected models in one and higher dimensions, where one
arise not only from the vortex model but also correspond tccan expect localization-delocalization transitions.
nonequilibrium processes. A very interesting possibility is Equationg5.29—(5.31) demonstrate that at any finite dis-
the directed hopping model, E(.3), that can be considered order and “imaginary vector potential” a finite portion of
as a quantum counterpart of the directed percolation nfddel. eigenvalues remain real, whereas this does not occur if the
Applications to other physical systems that can be reduced ttime-reversal invariance is brokdieq. (4.29]. This phe-
models of a disorder with a direction also deserve an attenaomenon has manifested itself in numerical study of differ-
tion. The problem of turbulence is one of most famous. Theent models. In Refs. 31 and 32 ensembles of random strongly
main features of the turbulence are believed to be describealymmetric matricegsymmetric and antisymmetric parts
by the Burgers equatiof?:?>*° Reduction of the Burgers had the same order of magnitydeere considered. It was
equation to a linear equation allows one to use well-found that the fraction of real eigenvalues decayetllad?
developed methods of disorder physics. A similarity of thefor large matrix sizedN. Apparently, this corresponds to the
linear equation to equations used in a study of problems dfinite fraction of the real eigenvalueB, (e,y), Eq. (5.29,
directed polymers have already inspired application of thébecause in the ensemble of weakly nonsymmetric matrices
replica method to study the problem of turbuleitélse of  involved the magnitude of the antisymmetric part of the ran-
supersymmetry for the problems of the turbulence might belom matrices i8N/ times smaller than that of the symmetric
one more interesting direction of research. one.

Leaving these interesting problems for future study, let us A finite fraction of real eigenenergies was found in a nu-
summarize the results obtained in the present work. #dhe merical study of the 2D model, EQ.3), (without magnetic
model, Eq.(3.29, differs from the o models used in the interaction$ near the center of the bantiAlthough the 2D
localization and mesoscopic probleffiy the term with the case was not considered in the present paper, and nothing

VI. DISCUSSION
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can be said about a possibility of a mixture of eigenstates Su=éu,+éu, ,

with real and complex eigenvalues, one can argue that per-

haps the parameters of the model of Ref. 18 corresponded to 0 d

the 0D case. This mlg_ht easily happen beca'use the Iocallza— Su=2r4(n dy* —dzy 7*), 5U¢:2( o 77)’
tion length in weakly disordered 2D systems is exponentially —dnp O

large and can exceed the sample size, which would corre-

spond to the OD regime. If this is really so, the results of theand similar equations can be written 6v.

present study are in an agreement with the numerical inves- Substituting Eqs(4.11), (4.12), and (A8) into Eqg. (A7)

tigation. one can represent the supermaifik as
The phenomenon that some finite portion of eigenvalues
lies on a certain line in the complex plane occurs also in ST=6T"+ 6T, (A9)

other models with a randomness. Recently, it was found that
a finite fraction of all roots of random self-inversive polyno- .
mials lies on the unit circlé® At the same time, if the poly- sTl=2 cose_lel ( O_ d7
nomials are not self-inversive the density of complex roots is 2 —-dnp O
smooth everywhere in the complex plane. It is clear from the . N . .
preceding discussion that the directed disorder models de- +273(n dy* —dn n* +k de* —dk «*)
serve further investigation. —io,
+4713c0s 5

+2

0 dx
—-dk O

(k*dyp—dn* k), (A10)
APPENDIX A: NON-HERMITIAN PARAMETRIZATION
(UNITARY ENSEMBLE )

. : . _6—i6, [ 0 dy : 0 «
Let us calculate for the unitary ensemble the Jacobian for§T+=iA,| 2 S'”T a —(do—id6,)| —
the parametrization given by Eqgl.8)—(4.12) (it was sug- n 0 « 0
gested to call it “non-Hermitian parametrization” As 1 (d6(1—4:<;<*) 0 )

usual’® it is convenient to consider the leng8Tr(dQ)2. - = ) .
With Eqg. (4.9), it can be written as 2 0 id 6y (1+4kx™)
2_ 2 2 0—i6
STr(dQ)"=STr{(dQo)"+[ T, Qo]"+ 44T 5Qq}, (A1) +4sin— Lk dnt+dy* k)|, (A11)
¥vhere OT=TdT, 6Qo=QodQo and[---]is the commuta- |, Egs. (A9)—(A11), 5T' commutes withA, and 6T+ anti-
Orit' ¢ f Eq4.9) that commutes withA. The second line in EqA10) does not
is easy to see from Ed4.9) tha contribute td 5T,Q,] in Eq. (A1). In Egs.(A10) and(A11),
0 — 750 one can change the variables
5Q0=(7_ da 0o | (A2)
sue dO(1—4xk*)—d6, do,(1+4xx*)—do;,
and hence (A12)
{6Qo,A1}=0 (A3)  and make the shifts
where{---} is the anticommutator.
Then, using the relatiof6T,A;]=0 and Eq.(A3) we 1/(de O 1/do O
i 5 : = . +4(k*dy+dy*
obtain 210 ide,) "2l 0 idg,) A AnTdn )
STr(8T6Qg) =STr(A16T6QpA1)=—STr(86T6Qq) =0 6—i6,
(A4) Xsin > (A13)
which shows that Jacobians are the product of Jacobians cor-
responding taQg, and T. As concerngiQ,, we have . .
25in? g, 2 6in %G, (do—ido
STH(dQo)2=4{(de) >+ (d)?]. (A5) sin 2SN drtdomidy
Writing Eq. (4.10 as (Al4)
T=uT, (A6) 6—i6,
_ dxk—dk—cos dx». (Al5)
one obtains 2
ST=vToduTv +vTv + v, (A7) The transformations, Eq$A12)—(A15), do not change
where, with Eq(4.1D) and (4.12 the Jacobian, andT' and 5T* take more simple forms,
ST (0 a0 (A8) ST!=1/i (dc 0 2 0 A16
=35 ~ ] = + — y
" 2ldp o '8 0 de) l—dx 0O (A16)
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steming - 2[%0 O )y ognlTifn O 7 ar 12l C %) 2mdp o* - p dp?
7500 ide) M2 ldy o) =12\ _gp o) T2 T mp deT)).
(A7) (B6)

wherei r3dc is the second line of EA10), andl is the unit
8X 8 matrix.

Further computation is already simple. Changing once

more

2

01

sin dyp—dn, (A18)
one obtains a contribution to the Jacobian proportiondjto
Eq. (4.18. Writing the second term in EqA1) through the

new variables we have

ST 6T,Qo12=4[(d#)%cog e+ (dh;)?cost x]

+i
+12%CO$2(P > Xd77 d»*

(A19)

—i
+Sinz(P > XdK dK*).

Equations(A5) and (A19) lead to the elementary volume

[dQ], Eq.(4.16.

APPENDIX B: NONSYMMETRIC PARAMETRIZATION
(ORTHOGONAL ENSEMBLE )

Now we have to calculatéY,. Using Egs.(5.3)—(5.5) one
can represent this differential in the form

SYo=8Y 1+ Yo+ Y1Y28Y3Y,Y, . (B7)

Calculating the matrice8Y, 8Y,, andé8Y; we rewritesY

as follows
7'2 0
0O O

o

5 i [[dB wraw 0
YO_ L E 0 d,817'3008h92

1 0 0
+Al§ -

—du

0 Tzdﬁlsinhez 0 T1

Joan

(B8)

where

0 —i
270 o)
Making the replacement

dxk—dk exp@,

—sinu
—Ccosu

cosu
—sinu

m?,W: (

i(B—B1)

dk*— >

dx*exp

To calculate the Jacobian of the parametrization, Eqs2nd the same fod# anddz*, one can derive

(5.1)—(5.7), for the orthogonal ensemble we can use the re-

sults obtained for the unitary ensemble, because (Eq)

contains the same supermatricd®g and T, as previously.
However, the presence of the supermaltfimakes the com-

putation quite lengthy. The leng®Tr(dQ)? is written as in
Appendix A,

STr(dQ)?=STr[(dQq)?+[ 6Z,Q0]2+456Z5Q,],
(B1)

where 5Z=Z_dZ can be written as

6Z=SR(Yo6TYy+ 6Yo+dR R+R dS SR)RS
(B2

The last term in Eq(B1) is equal to zergsee Eq(7.4)]. As

concerns the supermatriXT, it can be written after the re-

placements, Eq9A12)—(A15), in the form of Eqgs.(A16)

and (Al7). So, one has to calculate the other differentials

entering Eq.(B2). Using Eq.(5.7) one can rewritedS Sin
the form

dS S=(dS 9,+(dS 9, , ©3)

(dS 9,=2731(do 0* — o do*), (dS 9, =2iA,dé.
Taking the supermatriR from Eg. (5.6), one can derive

R dS R=R(dS 9,R+(dS 9, (B4)

R(dS 9,R=2iA,d&+4iA,(do p* +p do*), (BS)

and

YT Yo=1x2

0 dx’
d«/ O

R 0 dn'm
+ —= i
snn (—Tldn’ 0 )

0,
cosh? ( _

_ 6, 0 dn
+2|A1(cos?(d7 0 )

o h02 0 de'71| i a4
—tsin ? Tld7 0 _E o '
(B9)

whered?’=w d# anddzn’=d» w, and the same fodx’
andd«. The contribution froni 7,dc, Eq.(A16), is not writ-
ten because it can be removed by a proper shifd @fand
du.

Substituting Eqs(B3)—(B6) into Egs.(B2) and(B1), we
see that the second terms of EB4) and (B6) do not con-
tribute. After making the replacement &7, Eq. (A18), and
shifting

0>
2

6>

e L . .
do=do, (cosh coszdn+| sinh 5 sin 2dK )
(B10)
_ O u L I
dp=dp, (coshf COSEdK [ smh? smEdn )

it is convenient to introduce the matrix differentials
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dpy
—dpj;

d0'2

dO’l
—doi )’ dp=

do= ( —dot

dp2
—dp7/’

(B11)
where

do =—cosh@ sinﬁdn*—i sinh&cos—dx
2 2772 2 2

0 0
do} =cosh?2 sin%d n—i sinh72 cos%dx*,
(B12)

b om0
dp,= —C05h7 sin de +i smh? cosEdn,

b . u c o0
* — < . _“ - *
dp3 cosh2 sin 2d;<+| sinh 5 coszdn .

The Jacobiar’a]u# of the transformation, Eq$B12), equals

~ 4
J":(cosmz—cosﬂ)z' (B13
Then Eq.(B2) can be written as
5Z=SRSURS (B14)
R R -
U=8Yo+iNy| 2d5—5do|+2k dp 1, (BLY

where the matriceslc and dp enteringdo and dp, Eq.
(5.7), have the structure of E¢B11), and

k:(; —01)'

One can obtainsZ, Eq. (B14) calculating firstRSUR and
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6Z=08Y,+iA(2d5— 1dO)+2k dp 1.  (B16)
The supermatrixdY entering Eq.(B16) equals
i d T1 d T 0
l=—1— [ +
oY, 1 5 B sinu 0 0 "o o
1 ] 0 O 0 O
+A1§ _S|nha2dﬂl 0 7_2 +d02 O 7'1
(B17)

Using Eq.(B16) we can calculateSTr[ 6Z,Q,]?. The anti-
commuting partéZ, decouples from the commuting one
6Z,, and one obtains

ST 6Z, ,Qol?=64dodof[1+cog @ +ix)]+do,dai[1
+coge—ix)]
+dp,dpi[1—coge—ix)]

+dp,dp3[1—coge+ix)]}.

The JacobianJ,, corresponding to the length, E¢B18)
equals

(B18)

B 1 1
eX~ 224 (sirf o+ sintly)2”

The commuting pardZ, contributes to the elementary length
as

J (B19)

STH 6Z,Qo]*=H[(du)*+ (dB)?sir’ u]sire
+(d@)*cog e+ (do,)?costty
+(d6,)2+(dBy)%sinl?6,}.  (B20)

Combining the contribution to the Jacobian from EGS5)

then 6Z. The corresponding manipulations are still quite and (B20) with those written in Eqs(B13) and (B19), and
lengthy. One should again make different replacements thaecalling that the replacement, E@#\18), results in an addi-
do not change the Jacobian. Alternatively, one might writetional multiplier proportional toJ, one obtains finally the

the final result using general symmetry propertiesdoat.
Finally, one obtains

elementary volumgdQ], Egs. (5.9—-(5.12 and (4.16—
(4.18.
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