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The ballistic conductance through a device consisting of quantum wires, to which two stubs are attached
laterally, is calculated assuming parabolic confining potentials of frequengjder the wires andog for the
stubs. As a function of the ratio,,/ws the conductance shows nearly periodic minima associated with
quasibound states forming in the stubbed region. Applying a magnetidfietitmal to the plane of the device
changes the symmetry of the wave functions with respect to the center of the wires and laadejtasi-
bound states in the stubs. The presence of the magnetic field can also lead to a second kind of state, trapped
mainly in the wires by the corners of the confining potentials, that yields conductance minima as well. In either
case, these bound states form@ak Band strong confining frequencies and thusrastedge states. Finally,
we show experimental evidence for the presence of these quasibound[Saf3-18207)03639-4

I. INTRODUCTION 2e%/h, making it potentially useful as a type of transistor.
The conductance minima that result can be attributedeto
Technological advances in microfabrication techniquesstructiveinterference between the electron waves in the wire
now allow the manufacture of semiconductor structures thaand those reflected from the stub. A more sophisticated de-
have dimensions smaller than the elastic and inelastic mearice is the double electron stub tun@PEST) depicted in
scattering lengths. In sucmesoscopicstructures, the elec- Fig. 1(a). If the length of the DEST is kedtxedwhile it is
tronic transport isallistic, and the conductance is governed being made asymmetric by suitably synchronized gate volt-
by the fact that the electrons behave like quantum mechaniages, a conductance output, nearly square wave in form, can
cal waves. This is particularly true at low temperatures.  be achieved as a function of the degree of asymmetry with
The wavelike behavior of electrons in such structures hapotential uses in analog-to-digital convertéts.
led to the study of devices that are analogous to those used in In this paper we consider a few important issues with
microwave technology. The simplest such device is theegard to these devices. First of all, in previous theoretical
guantum wire(QW), which can be thought of as an elec- work on cavity and stub structures, the confining potentials
tronic waveguide. Some more complicated structures involvavere always assumed to be infinite square well in nattfe.
having QW’s cross to form junctions, attaching finite However, it is well known that for very narrow QW'’s a
branches to the QW’s so that they become corrugated, arparabolic potential is more appropridteln such a case the
connecting the QW's to the electronic equivalent of a resowidth of the electronic wave functions and thus the device
nant cavity. These closely related structures have generatelimensionsare not well definedAfter briefly presenting the
experimental and theoretical interést.In particular, reso- formalism in Sec. I, we will preserthe zero field resultéor
nant tunneling and quasibound states in stub and cross strug-DEST, which show a nearly periodic conductance as a
tures have been focused on because in these systems flu@ction of the ratiow,,/ ws even under these circumstances.
electrons are not bound classically by any potential barriersSome of these results are compared with those obtained as-
In addition, they are unusual in that the presence of quassuming a square confinement.
bound states can lead to resoneeftectioninstead of trans- Second, “true” EST’'s and DEST's, with independent
mission, i.e., transmissioantiresonances gates controlling the stub lengths, have yet to be fabricated.
A special type of structure in this class is the electron stublrhus far, experiments have only been done on cavity struc-
tuner (EST), in which the length of the stub, laterally at- tures in which the conductance was studied as a function of a
tached to the QW, would be controlled by an independengate voltageVy that affected several of the device dimen-
gate. If the width of the QW and the stub are such that bottsions simultaneously, making it difficult to interpret the re-
allow only a single propagating mode for a given incidentsults definitively as resulting from the interference effects
energy, then the conductan@eis a periodic function of the mentioned above. HoweveG has been measured in these
stub lengthc, with G oscillating between 0 and 1, in units of structures as a function of weak perpendicular magnetic
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(a) wherem* is the effective electron mass. The confining po-
tential for a model DEST is depicted three dimensionally in
Fig. 1(b). The narrower parabolas, defined by the frequency
w,,, represent the two parts of the QW,; the wider parabola,
defined byw<w,,, represents the stubbed region. The con-
| | finement in the stubs alongis achieved essentially through
y=0 — - - vorow oy the difference in stub and wire potentialsAV(y)

! ! =V, (y) —Vs(y), so that only dinite potential barrier is cre-
ated. As a result, the electronic wave function in the stub
regions will not go to zero at the boundaries and thus it can
spill over into the QW. This is a feature our present model
] shares with saddle potentials that is absent in infinite square-

well models used in past calculations.

To evaluate the transmission through the device depicted
b in Fig. 1, we solve Schidinger’s equation on a mesh, using
(b) an iterative matrix method. We summarize the essentials of
the method below and refer to Ref. 15 for all the mathemati-
cal details. The general situation is one in which the QW'’s,
which are connected to the stub structure, extend outward to
+ along thex direction. The problem is solved on a square
lattice of constant. Along they direction, the system must
be cutoff after a finite number of lattice sites, ey Thus,
the situation is one in which the parabolic QW’s that are
depicted are in fact enclosed within a larger waveguide that
is bounded by infinite potential barriers. The region of inter-
est, containing the actual stub structure, can be broken down
into a series of slices along tixedirection. The discrete form
of the Hamiltonian relates quantum mechanical amplitudes
between adjacent slices. Using a finite difference approxima-
y tion and keeping only terms up to first order in the deriva-

tive, this has the form
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FIG. 1. (a) A stubbed cavity of widttb connected to two quan-
tum wires.(b) The confining potential in the wires and the stubbed (Be=Hj)¢j+H;11¢j1+Hj;-1¢j:1=0, (2
cavity. The picture is generated withw,=6.39 meV,iw;=2.8
meV, andb= 300 A. Thex range is from—300 A to 600 A and the ~ where ¢; is a M-dimensional column vector containing the

y range from—800 A to 800 A. amplitudes of thejth strip. The matricedd; represent the
Hamiltonians for the individual slices.
field B as well for fixedV, 14 The results show minima i6 When the derivatives are replaced by finite differences,

as a function ofB. The values o8 and the confining fre- the kinetic energy terms of the Hamiltonian get mapped onto
quencies are such that edge states do not occur and so mugHight-binding model witit= —#%/2m* a* representing the
of the previous work on quantum dots is not applicable. Ashearest-neighbor hopping. To include the effects of the con-
we shall show in Sec. lll, such minima can arise in DEST'sfining potential, one adds to the on-site energies, which occur
when electrons are reflected resonantly from quasiboun@ong the diagonals dfi;, the termsv; ,, which represent
states in the stubs. We further show tiew quasibound the potential on sitej(m) in units of t. Parabolic confine-
states are created whdw: 0 that are not present in zero Mment can be modeled easily using Ed) for v(l,m), with
field. This happens becaugechanges the symmetry of the Y=alm—(M+1/2)], so thaty=0 occurs at the center of
wave functions at zero field with respect to the transvers@ach slice. The matricés; ;. ; andH; ;_; give the interstrip
directiony and leads tmewcouplings between the wire and coupling and are related bi;;,,=H};_;. We use the
stub wave functions. In Sec. IV, we show results for actuagaugeA=(—By,0,0), which ensures that the magnetic field
experiments and interpret them qualitatively in terms ofpoints along thez direction. In this gauge, these matrices
those of Sec. lll. Conclusions follow in Sec. V. have only diagonal elements and are given by
Hjj+a(l,1)=—texp(2migl), where 8=Ba?/ ¢, is the mag-
netic flux per unit cell andpy=7/e. Equation(2) can be
Il. FORMULATION OF THE TRANSMISSION PROBLEM used to derive a transfer matrix which allows us to translate
In this paper we consider parabolic confinement in the?Cross the system and thus calculate the transmission coeffi-
presence of a perpendicular magnetic fiBle (0,08). For cients which enter the Landauer-tﬁker formula fo_r the
parabolic confinement along theaxis in the wire ) and conductance. Transfer matrices however are notoriously un-

stub () regions, we use a potential of the form stable due to exponentially growing and decaying evanescent
' modes. This problem was overcome in Ref. 15 by perform-

2 0 ing some clever matrix manipulations and turning the pro-
Vi,s(Y)=m* oy, y*/2, (1) cess of translating across the system into an iterative proce-
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dure involving a series of scattering matrices, rather tham-lereQiW: wiw-l— w? andw.=|e|B/m* is the cyclotron fre-
simply multiplying transfer matrices together. It has beenquency. Themodese, along they axis depend on whether
found that the method gives results equivalent to those of ththe waves are traveling in the positie®* or negative
recursive Green’s function technigliewhich is the most (e~iew) x direction. We thus have wire modes,
common approach to this type of problem. Its advantagezg\r/}vi(y):@my:(ﬁwc/m*ggv)an], and stub modes,
over the latter is that it is conceptually simpler and one Canps-(y) = S (y F (hwe/m* Q%) yp), where{’(y) is thejth
quite easily reconstruct the wave function. Once the procenarmonic oscillator(HO) wave function. Notice that for
dure is complete, one obtains the transmission coefficientg = o, we havep ™ (y)= ¢ (y). It should be noted that gen-
tam, and reflection coefficientst,,, for the individual —erg|ly the number of propagating modes is dwarfed by the
modes. Given these, the amplitudes of the wave functions afymber of evanescent modes. In our discrete model, for a
specific values ok andy can be obtained by a progressive given direction, theotal number of modegpropagating and

backward substitution. evanesceftin the calculation isM, the number of lattice
The total transmissiofi is given by sites along the/ axis defined earlier. We have uskt=91
typically, so that we usually have about90 evanescent
T=2 T :2 It |2ﬁ 3) modes involved in the calculation. In the continuous case,
nm nm 1 . . .. .
nm nm Um the number of evanescent modes is of course infinite, but it

has been found in mode-matching calculatiérthat only
say ~5 evanescent modes need to be included to get con-
prerging results for a problem that involves one propagating

wherev, andv,, correspond to the velocities of the trans-
mitted and incident modes, respectively, and the sum is ov
propagatingchannels only. The conductanGethen at zero

temperature is given by the Landaueftker formula: mode.
G=(2e%h)T.

As mentioned above, E@2) essentially corresponds to a Il RESULTS
tight-binding model. As such, the energy dispersion relation A. Zero field

with respect to wave vectdr is of the form of cosine rather

than being parabolic, which is what is expected for the con- (Ijn p_rgt\;]l%us theor_eggal wo(rjk otn ESTs, tW't? ﬁtUb kl)ength b
tinuous case. However, g is such that one is near the and wi » @ periodic conductance output has been ob-

bottom of the tight-binding energy band, then we havet@ined, as a function of, for infinite square-well confine-

cosk)~Kk?, and the tight-binding model then becomes a goodﬂent; the periodic is given by
representation of the continuous model. To ensure this, the -~ * 7 5
lattice spacinga should be much smaller than the Fermi ge=ml\2m* Eg [h*~ (w/b)*=)\4/2, )

wavelengthA g (a<\g). For the calculations described in when only one mode is allowed in the QW and stub regions.
the subsequent sections, we used typicdlly=9 meV, Equation(6) is a restatement of the condition fdestructive
which corresponds the~500 A, anda=40 A, sothaie/a  interference,ksdc=r, since A=2m/ks is the electronic
was always larger than 10. This is good enough typically tavavelength along the stub. Notice that the periocreases
get a good match with the continuous model. To verify this,asb is made smaller. For symmetridDEST 2 this period is
the results shown in the next section for zero field were comdoubled, so thasc= \s.

pared with those obtained using a mode-matching An interesting question is whether or not the conductance
techniquet? We found that the conductance traces generategemains periodic if the confinement is instgzatabolic, par-

by the two methods were virtually indistinguishable. In zeroticularly when considering that in this case the stub length is
field, mode-matching techniques are the method of choic@o longer well defined. In the pertinent literature it is quite
since then the modes can be expressed as analytical exprggmmon to use the classical turning points to defineefan

sions and the mathematics is relatively simple. However, ifective half width W4 of the parabolic well through
finite field, the situation is much more complicated and theg_—m* w?W3/2. Taking o=w, gives an effective stub

modes generally have to be determined numerically. In thajpngn
case, using a lattice technique such as that employed here

gives the maximum amount of flexibility in solving the prob- 2E- 1
Ceff= 2Wefr=2 m* o-

lem.

Since we do work in the regime of small it will be
convenient to make reference to the modes that occur in thg the DEST in the parabolic case behaves in a manner simi-
continuous case. Theth channel wave numbet, in the  |ar to that of past calculations, one might expect then that the

()

Wg

wire is conductances of a DEST to be a periodic function of @/
0 _ for fixed Eg . As we show in Fig. £a), this is in fact the case.
2m We plotG as a function ofw,,/ w, for fixed% w,,=6.39 meV
W _ w/ Ws w— 9-
“n= Wy \/ h? [Er=(n+1/2)20,]. @ andE-=9 meV so that there is one propagating mode in the

o ) ) connecting quantum wires. The width of the stulbis 400
Similarly, in the stub region, the wave numbgy, takes the & (solid curve andb=350 A (dashed curve Whenb de-

form creases the period increases; this is consistent with the results
for infinite square-well confinement as expressed in(Eq.
_%\/E E-—(m+1/2)40 5) The transmission minima displayed in Fig@Rcan be
Ym™ e V 72 [Er—(m ) 0s]. considered to occur as a result of destructive interference. An
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1.2, While this is not true away fromx=xq, #(X,y) in the stub
] region keeps the basic=2 HO form and thus it remains
10;“} = evenwith respect toy=0, the center of the quantum wires.
] '|, Consequently, the conductance minima or antiresonances
_ 038 it can be attributed to aeven-everoupling between tha=0
Nf | state in the wire and the=2 state bound in the stubbed
G 0.6 [ cavity or DEST. The other minima in the solid curve of Fig.
o 0.4 : 2 can similarly be associated with an even-even coupling
’ ! between thev=0 andn=4,6, etc., states. Coupling between
0.2] i the even, in the wire, and odd, in the stub, HO states does not
'; ;‘ occur because they are orthogonal to each other.
0.0. | . So far the results are similar to those obtained for a
1.0 3.0 square-well confinement and standing wave patterns analo-
gous to Fig. 2b) have also been obtainé8l’ The main
difference between the two cases is that in the square-well
|\W| case the evanescent modeshe connecting QW’sase tend
(b) to decay very slowly. Thus, a long exponential “tail” is left
in the wave function in the exiting QW, even if there is
X 100% reflection of the incident propagating mode. This

o

FIG. 2. (a) Conductance vs w,, /s for b=400 A (solid line)
andb= 350 A (dashedl with fixed w,,=6.39 meV ancE=9 meV.
(b) A three-dimensional plot off(x,y)| vs x andy for b=400 A

and ws=2.88 meV. This corresponds to the first minimum in the
solid curve in(a). The two arrows on the bottom right indicate the

edges of the cavity and those on the left the willth; of the
quantum wire.

alternate but complementary point of view is that they occu
as a result of resonaméflectionfrom quasibound states in
the stubbed cavity. They are transmissiantiresonances
This is illustrated in Fig. &), where|¢(x,y)| is plotted as a

function ofx andy. To generate this plot, we have &t=9

meV, b=400 A, and setZws=2.89 meV, so that

wyl/ws=2.21. The picture corresponds to tfiest transmis-
sion minimum in the solid curve in Fig.(&. A standing

wave corresponding to a quasibound state is apparent in t
cavity region between the arrows along thaxis. This state

would be a major liability in the fabrication of an operating
device, since the presence of the “tail” may result in reso-
nant tunneling rather than resonant reflection thus making it
difficult to manufacture a device that produces the desired
effect. No such tail is apparent in the figure. The fast decay
of the evanescent modes in the case of a parabolic potential
is related to the wave numbers given by E¢. and (5)
rather than by Eq(6).

B. Finite field

1. Offset or field We now consider a finite buteakmag-
netic field B. By weakwe mean a field that is not strong
enough to push the wave functions completely over to one
side. We arenotin the edge-state regime. The use of the term
“weak” is appropriate to the experimental situation de-
scribed in Sec. 1V, where the dimensions of the experimental
samples were several hundred to a few thousand A, which is
our motivation. For a QW with @4 of a few hundred A,

pne expectw < w, for B<1 T. In addition, this regime has

been much less explored than the edge-state regime. For sim-
plicity we neglect the Zeeman splitting.

In Fig. 3(@) we again ploG as a functiorw,, / w, for fixed
E=9 meV,%w,=6.39 meV and=400 A, for three differ-
ent situations, the upper two curves offset By=1 and
G=2, respectively, for clarity. The bottom curve is the same
as the solid curve in Fig.(3). For the middle curve, we have

fut in a small offsetd=20 A, so that the DEST is now

asymmetricwith potentialVpes(y)— m* wZ(y+d)?/2. We

is somewhat similar in appearance to those obtained fopee that with the asymmetry the antiresonances that occur in

square-well potentiaf$.

Further insight into the antiresonances is obtained as fo
lows. Since only one mode is occupied in the quantum wire

the full wave function¢(x,y) goes as then=0 HO wave

function, @SW(y) for a set value ok. What is interesting is
that the standing wave in the cavity region, despite bein

S

the symmetric case are now shifted down slightly. Second,

@nd more importantly, a whole new set of antiresonances

occur in between the original minima. These occur due to the
the breaking of symmetry of the wave functions, allowing
the evenn=0 QW state to now couple with the odd states

én= 1,3,5...) trapped in the DEST. A very similar behav-

or has been noted in the case of square-well confinement.

obtained by summing over the contributions of many HOThe upper curve is for aymmetricDEST, but now in the

wave functions, can be associated with the2 HO wave
function gog’s(y). In particular, if we setx=x,, where X,
representghe center of the stut200 A in this casg then
¥(Xg,Y) can be fit almost perfectly by usinggs(y) alone

presence of a finite magnetic fieB=0.3 T. We see that the
presence of the magnetic field produces much the same result
as the asymmetry—the shifting of the original antireso-
nances, and the appearance of the new set of minima at vir-
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R : . FIG. 4. (a) ConductanceG vs B for b=400 A, w,,/w=4.9.

1800 A -1800 A -1000 A The solid curve is for aymmetridEST and the dashed and dotted
curves for am@asymmetricone withd=20 A andd=40 A, respec-
FIG. 3. (8) Conductances vs w,,/ws for b=400 A, ©,=6.39 tively. (b) Conductance vsE for b=400 A andw,, /ws=4.9. The

meV, andE=9 meV. The bottom curve is for a symmetric DEST at sglid curve is forB=0.28 T andd=0 A and the dashed one for

B=0 T. For the middle curve, offset bg=1, the DEST has been B=0 andd=20 A. The dotted curve is fd=0.28 T andd= 20 A.
madeasymmetricdoy a factor ofd=20 A. For the top curve, offset

by G=2,aB=0.3 T has been applied. Notice the additional anti- the value of the magnetic field. For example, the first anti-

resonances that occur in the presence of finite asymmetry and malgé .

. : sonance, which corresponds tda0 QW —n=1 DEST
netic field.(b , d lotted forw,, / ws=4.935 and . !

ic field.(b) [ 4(x,y)| vsx andy is plotted forw, /s an coupling, occurs atw,/ws=1.1164 for B=0.11 T,

d=20 A. This quasibound state corresponds to the fifth minimum > . _
in the middle curve in@). (c) As in (b) but for B=0.3 T and wy/ws=1.17 forB=0.29 T, andw,,/ ws=1.18 forB=0.46

o,/ w,=4.896. This state corresponds to the fifth minimum in the T This shifting of the resonance as a functiongofor dif-
top curve in(a). ferent choices ofv,,/wg can be understood, at least in part,
in terms of the lining up of the energy level of the bound
tually the same locations. In Fig(l® we plot |4(x,y)| for state of the cavitykE,,ng, With that of the incident electrons,
wy/ws=4.935 andd=20 A (G~0 for these parameters Er, Which is necessary for a resonance effect to occur. From
Here, the antiresonance wave function has six lobes, indicagur previous discussion about fitting the wave function in the
ing the coupling of an=5 odd state in the DEST with the DEST, it is apparent that the energy level structure of the
n=0 even state in the QW in this case. The correspondingluasibound states is tied {os. A larger (smallej value of
wave function in the presence of a magnetic field is shown irww/ws means thatws is smaller (largep, thus a larger
Fig. 3(c) for w,/ws=4.896 andB=0.3 T. The state shown (smalley value ofB is required to ensure th&ls remains at
in this picture is almost indistinguishable from the previousthe value that lines up the Fermi level with the bound state
one. Interestingly, the most significant difference betweerevel. This argument, however, is somewhat oversimplified
the two pictures occurs in the incident waves. In the finitein that the bound state energy is not determinedqylone.
field case a standing wave appears that is quite similar to thehe bound states are confined aldmghthe x andy direc-
one evident in Fig. @). In the asymmetric case, the waves tions and so the confinement must neccessary contribute to
have a more irregular appearance. One obtains similar resultee energy of then=1 bound state, so that we should have
for the other even-odd antiresonances. Epounde 37 Q2+ E,. However, as the confinement alorg
Given these results, we conclude the coupling betweeis incomplete and the system is open, the contribukigns
even and odd states in the presence of a magnetic field odifficult to quantify, at least analytically. Importantly, &
curs here because, wheris finite, the symmetry aboutzy0 changed)¢, the confining potential in the stub alongis
is broken Noting that the wave function in Fig(& appears also being altered, thus complicating the physical picture. As
almost completely symmetric aboyt=0, it is obvious that a result, the value of)¢ for which antiresonance occurs is
the presence of edge states is not required for this coupling talightly different for different values oB. The lining up of
take place. In fact, it can occur for arbitrarily smBIl How- QW and DEST energy levels is also the likely explanation of
ever, the smalleB is, the narrower the even-odd antireso- the observed downward shift in both the finBeand finited
nances that occur in Fig.(& become. Another important cases.
point is that the position of the antiresonances depends on 2. Offset and fieldIn Fig. 4a) we plotG vs B for fixed
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wy/ws=4.9, which corresponds to tlmee=0—n=5 antireso- 12, —
nance. The solid curve corresponds to the DEST being sym- 1.0 5
metric. The broad minimum at about0.28 corresponds to o

the antiresonance in question. It is interesting to see what g0-8

happens whea finite B and a finite offsedre present at the ‘“&: 0.6]

same time, as individually they appear to have similar ef- 04

fects. The dashed and dotted curves corresport=ta0 A o=

andd=40 A, respectively. Oddly, the conductance minima 0.2] '

become shallower for increasel] as if the magnetic field 0_8',, S BT
and asymmetry are canceling each other out. Importantly, 0 02 04 BO‘(% 08 1.0 1.2
essentially the same curves are generated if we replace

with —d. A clue to this behavior can be seen in Figa)3

While the antiresonances occur at essentially the same spots, n

the line shapes are different, with= 1 followed byG=0 in . .
the case of finited, and almost exactly theirror opposite "
for finite B. In either case, the line shapes are asymmetric,

that is, they are of-anotype. The occurence of Fano anti-

resonances in stub structures has been the subject of several (b)
papers, typically using simple qualitative models(stub

transmissiorpolesin the complex energy plane, the real part

of which is associated with the energy of the quasibound '
states and yield unit transmission, and transmisgieres

(the antiresonancgdf the pole and the zero do not occur at
the same location in energy, one obtains the asymmetric
Fano line shape. This gives@=1 peak followed by &=0 o
minimum when E,qe<E,yo and the opposite when

Epole™ Ezero- Figure 3a@), however, shows the antiresonances “

as a function ofw,,/ws, which we remind the reader is a "
49

y (©)
and wire both treated as being purely one dimensjoisalb . L
structures, unlike say a double barrier problem, yietith ' ‘ x ‘ ‘
)

d (e)

measure of stub length for fixed,, .

The “flipping” of the Fano shaped antiresonance also
occurs with respect tenergyand this is shown in Fig.#), (2)
whereG vs E is plotted for fixedw,,/ws=4.9. Once again,
the minima he.re correspond to the=0—n=5 antireso- FIG. 5. (8) Conductances vs B. The solid, dashed, and dotted
nance. The solid curve correspondsBe0.28 T andd=0,  cyryes correspond tm,,/w,=3.0, 2.91, and 2.85, respectively.
while the dashed curve is f@=0 andd=20 A. Note that  Note that two conductance minima occur in each cufbeln pan-
the conductance minima occur at slightly different locations.els (n)—(g) the wave functions corresponding to these minima are
The dotted curve has boa=0.28 T andd=20 A, which  plotted vsx andy with darker shading corresponding to higher
shows the hybrid line shape, the result of the “competition” amplitude. Panelgb) and (c) correspond to the first and second
between the two sources of symmetry breaking. In the regiominima, respectively, fow,, /ws=3.0; (d) and (e) correspond to
of the minimum, this third curve looks somewhat like an w,,/ws=2.91 and(f) and(g) to w,,/ws=2.85.
average between the other two curves. We note that the con-
ductance maximum follows the minimum in the combinedby darker shading. The incident electron waves are traveling
curve, like the finiteB only curve. We note that the mini- from the top to the bottom in this picture. The quasibound
mum is much wider for the finit& only curve than for thel  state in this case has four lobes along the length of the stub
only curve, indicating that the finitB is producing a stron- and thus represents coupling between0 andn=3 states
ger effect in comparison to the fini in this case, and is and is yet another example of the even-odd coupling phe-
essentially winning out. Again, referring back to Figa3 nomenon we have already pointed out. More interesting is
we note that the “flipping” effect does not occur when the the wave function that corresponds to the second minimum
field B is turned on for the even-even antiresonances, preat B=0.67 T, which is plotted in Fig. (6). Here the wave
sumably because we consider a relatively weak fizld function again has four lobes, but in this case there are two

3. Two conductance minimén Fig. 5a) we again ploiG each inboth the x andy directions. The quasibound state
vs B. However, unlike the previous examplo transmis-  shown here does not arise from confinement by the stubs, but
sion minima are apparent for each of the curves shown herés held in place by the corners formed by the intersection
The solid, dashed, and dotted curves correspond tpoints of the stub and wire potentials. Quasibound states of
w,lws=3.0, 291, and 2.85, respectively. In Fig(bh this type were first found to occur theoretically in intersect-
|(x,y)| is plotted as a function ok andy for the first ing quantum wires in a situation analogous to having stubs of
minimum in thew,,/ ws= 3.0 curve, which occurs &=0.27 infinite length by Schult, Wyld, and RavenhallThey
T. Unlike the previous wave function plots, we are looking pointed out two such “intersection” states, the lower energy
directly from above and higher amplitudes are representedtate consisting of one large lobe in the intersection region,
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occurring below the first propagating mode of the quantum 3.0
wires, and a four-lobed excited state having the same odd
symmetry of the state we see here.

In the curve forw,,/ ws= 3.0, the two minima have a rela- 2.5
tively large spacing irB. When w,,/ ws=2.91, the minima
are quite close to each other, with the lower minimum oc-
curing at a higher value d, while the second one remains
fixed. In fact, this is as close to each other as the minima get
and they never merge for any value @f,/ws. This is a
situation akin to an anticrossing from band structure theory.
The wave functions for these two minima are shown in Figs.
5(d) and He). These wave functions are virtual mirror im- 1.0
ages of each other and appear to thdrids of the stub-
confined and intersection-confined states shown in the previ-
ous two panels. 0.5

For w,,/ ws=2.85, the second minimum occurs&t0.8
T a somewhat higher value 8f than the previous two cases,
while the first minimum occurs aB=0.57 T. The wave
function corresponding to the first minimum of this curve is

2.0

15

G (2e2/h)

0.0

shown in Fig. %f). It is virtually a mirror reflection of the 05 e
intersection-confined wave function shown in Figc)5 The -0.55 -0.50 -0.45 -0.40
wave function for the second minimum in this case is shown Gate Voltage (V)

in Fig. 5(g) and again has the hybrid form.
As is evident from our results, the relative positions of the  FIG. 6. Conductanc& as function of gate voltag¥, for a
two minima depend quite sensitively @R,/ ws. It should be  nominally symmetric DEST at 70 mK. The numbers accompanied
pointed out that, whem,,/w is increased 3.05, the lower by arrows give stub subband indices. The inset shows a schematic
conductance minimum no longer occurs leaving only thedrawing of the DEST geometry as defined by lithography. The
intersection-confined state at approximately the same poshatched areasq) represent Schottky gates.
tion as it is forw,,/ws=3.0. On the other hand, &,,/ wg is
decreased further below 2.85, the position of the lower mini-absence of magnetic field measured as a function of gate
mum, which now corresponds to the intersection-confinedoltageV, at 70 mK. This temperature is a small fraction of
state, occurs at lower and lower valuesBofout it shifts less  Er to be considered essentially zero. Xg is made more
significantly than the second minimum which occurs at in-negative, the device dimensioas b, andc all decrease at
creasingly higheB values. That the intersection-confined the same time due to depletion. From measurements of the
state is less sensitive to changesu/ws is not surprising, quantized conductance plateaus of a single quantum wire
since its presence should not depend too strongly on stuhith lithographic width the same as that of the DEST wires,
length. On the other hand, the reason why there is a shift at was found that aVy=—500 mV the Fermi level lies just
all in its position, whemw,,/ ws is changed, is because while below the bottom of the seconeh# 1) wire subband, and
we are changing the stub length, we are also changing thie corresponding wire width is 400 A, so that Ty (— 500
confinement at the corners as well in our model. mV) one could say that transport is in the fundamental mode
of the connecting quantum wires and only the lowest Q)
wire subband is occupied. Assuming the depletion at the stub
edges is the same as that at the wire edges as the gate voltage
is decreased, a rough estimate of the DEST dimensions at
In this section, we present experimental results whichvy=—500 mV could be obtaineda=b=400 A, c=6400
lend support to our theoretical analysis and provide ewdencé Though the estimate is rough, we can safely expect sev-
for the presence of quasibound states in a DEST device argtal DEST subbands to be occupied. Since the Fermi level is
the appearance of new transmission minima under the inflthe same across the device and the Fermi energy does not
ence of a magnetic field applied perpendicular to the devicehange withVy, a decrease iV, accompanied by corre-
plane. Some preliminary results and details of sample fabrisponding reduction of device dimensions means a decrease
cation and experimental measurement technique have beémthe effective wire width and stub length as derived from
reported earliet* The DEST device was fabricated using the definition of classical turning points and given by Ef.
Schottky gates to define device geometry from a high-One could then say that the effective wire and stub confining
mobility (u=110 nf/V, at 4.2 K) and low-electron-density frequencies increase as the gate voltage is made more nega-
(n=3.1x 10" m ?) Al,Ga_,As/GaAs modulation-doped tive. Since the depletion at the gate edge2(9 A/mV) is
(Si) heterostructure grown by molecular beam epitaxy and ishe same for the wires and the stub, a chang¥ jrover a
shown in the inset of Fig. 6. The Fermi energy of the 2DEGsmall range brings about little relative change in the stub
was measured to He-=8.50 meV. The lithographic dimen- length. However, for the wires, because of the much shorter
sions of the device wera=b=2500 A, c=8500 A, and dimension, the relative change in the wire width is quite
|=1500 A, respectivelyi, being the length of the connecting important asv, is swept. Considering th¥, range between
wires. Figure 6 shows the conductar@ef the device inthe —500 mV and pinch-off, one could then possibly consider

IV. EXPERIMENTAL EVIDENCE
FOR QUASIBOUND STATES
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the stub confining frequenay, to stay practically constant, 14 T . T
while the wire confining frequencw,, to increase rapidly

with decreasingVy. In Fig. 6, therefore, decreasing,

would mean increasing the ratie, / ws. It would also mean
sweeping the Fermi level down across the stub subband lev-
els given byws. In Fig. 6, the conductanc& shows two
prominent minima and three maxima fay, less than—500

mV. The observed minima can be attributed to an even-even
coupling between tha=0 state in the wire and the=even
guasibound states in the stubbed cavity or DEST, as the
Fermi level sweeps down the stub energy level structure. ’E\
This analysis is in line with the theoretical prediction of the ‘R
previous section and the observed minima can be considered ~
as an experimental support of the theoretical analysis illus- O
trated in Fig. 2a). Note that in the present device geometry
asVq changes, the stub width changes as well. The observed
minima are thus expected to be much broader than the theo-
retically predicted ones for a constant stub width. Moreover,

the stub shape may also depend somewhat on the gate volt-
age. The shallowness of the minima can be attributed to
asymmetry and/or defect§while values of the maxima less

than 2?/h can be attributed to backscattering at the wire

entrance and/or impurities. Fofy larger than—500 mV, 0.0 o .
transport in both the wire and in the stub is multimode since , , .

one expecta~b. The resulting enhanced mixing between 0.0 0.2 0.4 0.6 0.8
different modes will result in a more irregul& curve and B (T)

may cause the regular oscillations observed below
Vy=—500 mV to be gradually washed out as seen in Fig. 6. FIG. 7. Conductancé as function of magnetic field applied
Based on the above analysis, we could in¢f@xthe minima  perpendicular to device plane for the DEST shown in Fig. 6 at fixed
and maxima of Fig. 6. The indexing is shown by arrows.v,=-500 mV and 70 mK. The theoretical curves THS, THA20,
Using the known value oEg and the above indexing, we and THA40 are reproduced from Figiah THS : symmetric DEST;
get, for V4=—-500 mV, hw,=5.67 meV, anchws=1.030  THA20: with offset 20 A; THA40: with offset 40 A. See text for
meV, givingw,,/ ws=5.50. This value is close to that used to details.
generate Fig. @). Note also that at this gate voltage
a=b=400 A. Figure 7 shows how the conductance maxi-of a magnetic field we find geriodic conductance output as
mum (index 5 of the DEST atVy=—500 mV, changes the stubbed cavity is made longer, which is consistent with
under the influence of a magnetic field applied perpendiculaprevious theoretical work done assuming infinite square well
to the plane of the device. We have added to Fig. 7, fopotentials. The conductance minima amtiresonanceor-
comparison purposes, the theoretical curves of Fi@ 4 respond to quasibound states in the stubbed regions. When
which correspond tdo=400 A. As the field is increased, the two parabolas representing the wire and stub confining
experimentalG decreases and goes through a pronounceglotentials are displaced with respect to each other, the sym-
dip which corresponds to a transmission minimum. Themetry of the wave functions, with respect to the center of the
minimum inG occurs aB=0.29 T, a value that is not strong wire, is broken anshewquasibound states occur in the inter-
enough to produce edge states. The experimentally observeéction regions. The same holds when the two parabolas are
minimum follows remarkably well thd8 dependence pre- not displaced but aweakmagnetic fieldB is present because
dicted by theory and may be understood in terms of thehe field too breaks this symmetry thus allowing states in the
formation of a new quasibound state due to even-odd coueavity and wire, that were previously orthogonal, to couple.
pling induced by a weak magnetic field as discussed aboverhe appearance of these quasibound states is heralded by one
The shallowness of the observed dip may be due to an asynar more dips in the conductance as a function of magnetic
metry of the experimental DEST as illustrated by the theofield. We emphasize that these dips occur in short and long
retical curves THA20 and THA40, respectively. The fabrica-stubs, i.e, whether there are just a few or many stub subbands
tion of a perfectly symmetric DEST is a matter of chance ancbccupied for electrons incident at the Fermi energy. Such
cannot bea priori guaranteed. Given that the experimentaldips have been observed experimentally in electron
curve is somewhat noisy in comparison to the smooth theowaveguides with stubbed caviti&s.
retical ones, the presence of disorder quite likely is playing a We have also investigated more sophisticated models for
role as well*® the confinement potentials, in particular models in which the
transition between the quantum wire and stub regions is
made gradually instead of abruptly as well as combinations
of square well and parabolic confinement. We find that for
We have calculated the conductance for stubbed electrofiie most part the results are qualitatively similar to those of
waveguides defined by a parabolic potential. In the absendde simple double parabolic model shown here. Importantly,

V. CONCLUSIONS
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most quasibound states that occur when the transition in conwidth of the connecting wiregsee, for example, Refs. 19 and
finement is not abrupt, tend to be variations of the hybrid20 and references thergjrso that the enclosed wave func-
type discussed in the context of Fig. 5. In addition, we findtion can have hundreds of nodes. In these large cavities,
that it is much more difficult to get the conductance minima“scarring” of resonant wave functio$? has been ob-

at the low values oB considered here when all potentials areserved, such that their amplitude is maximized along peri-
defined by infinite square-well confinement. Unless there igdic classical trajectori€s. These “scarred” features in
some rounding of the potentials, as one expects in real dehese large open structures may result from a more compli-

vices, the energy level spacing is too large to permitit.  cated variation of the hybridization effect we have discussed
Finally, in closing we note that the structures we havengre.

studied here can be thought of as “simple” quantum dots in

the sense that relatively few nodes are apparent in the qua-
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