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Bound states and transmission antiresonances in parabolically confined cross structures:
Influence of weak magnetic fields
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The ballistic conductance through a device consisting of quantum wires, to which two stubs are attached
laterally, is calculated assuming parabolic confining potentials of frequenciesvw for the wires andvs for the
stubs. As a function of the ratiovw /vs the conductance shows nearly periodic minima associated with
quasibound states forming in the stubbed region. Applying a magnetic fieldB normal to the plane of the device
changes the symmetry of the wave functions with respect to the center of the wires and leads tonewquasi-
bound states in the stubs. The presence of the magnetic field can also lead to a second kind of state, trapped
mainly in the wires by the corners of the confining potentials, that yields conductance minima as well. In either
case, these bound states form forweak Band strong confining frequencies and thus arenot edge states. Finally,
we show experimental evidence for the presence of these quasibound states.@S0163-1829~97!03639-4#
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I. INTRODUCTION

Technological advances in microfabrication techniqu
now allow the manufacture of semiconductor structures
have dimensions smaller than the elastic and inelastic m
scattering lengths. In suchmesoscopicstructures, the elec
tronic transport isballistic,1 and the conductance is governe
by the fact that the electrons behave like quantum mech
cal waves. This is particularly true at low temperatures.

The wavelike behavior of electrons in such structures
led to the study of devices that are analogous to those use
microwave technology. The simplest such device is
quantum wire~QW!, which can be thought of as an ele
tronic waveguide. Some more complicated structures invo
having QW’s cross to form junctions, attaching fini
branches to the QW’s so that they become corrugated,
connecting the QW’s to the electronic equivalent of a re
nant cavity. These closely related structures have gener
experimental and theoretical interest.2–9 In particular, reso-
nant tunneling and quasibound states in stub and cross s
tures have been focused on because in these system
electrons are not bound classically by any potential barri
In addition, they are unusual in that the presence of qu
bound states can lead to resonantreflectioninstead of trans-
mission, i.e., transmissionantiresonances.

A special type of structure in this class is the electron s
tuner ~EST!, in which the length of the stub, laterally a
tached to the QW, would be controlled by an independ
gate. If the width of the QW and the stub are such that b
allow only a single propagating mode for a given incide
energy, then the conductanceG is a periodic function of the
stub lengthc, with G oscillating between 0 and 1, in units o
560163-1829/97/56~15!/9594~9!/$10.00
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2e2/h, making it potentially useful as a type of transistor10

The conductance minima that result can be attributed tode-
structiveinterference between the electron waves in the w
and those reflected from the stub. A more sophisticated
vice is the double electron stub tuner~DEST! depicted in
Fig. 1~a!. If the length of the DEST is keptfixedwhile it is
being made asymmetric by suitably synchronized gate v
ages, a conductance output, nearly square wave in form,
be achieved as a function of the degree of asymmetry w
potential uses in analog-to-digital converters.11

In this paper we consider a few important issues w
regard to these devices. First of all, in previous theoret
work on cavity and stub structures, the confining potenti
were always assumed to be infinite square well in nature.2–12

However, it is well known that for very narrow QW’s
parabolic potential is more appropriate.13 In such a case the
width of the electronic wave functions and thus the dev
dimensionsare not well defined. After briefly presenting the
formalism in Sec. II, we will presentthe zero field resultsfor
a DEST, which show a nearly periodic conductance a
function of the ratiovw /vs even under these circumstance
Some of these results are compared with those obtained
suming a square confinement.

Second, ‘‘true’’ EST’s and DEST’s, with independe
gates controlling the stub lengths, have yet to be fabrica
Thus far, experiments have only been done on cavity str
tures in which the conductance was studied as a function
gate voltageVg that affected several of the device dime
sions simultaneously, making it difficult to interpret the r
sults definitively as resulting from the interference effe
mentioned above. However,G has been measured in the
structures as a function of aweak perpendicular magnetic
9594 © 1997 The American Physical Society
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56 9595BOUND STATES AND TRANSMISSION . . .
field B as well for fixedVg .14 The results show minima inG
as a function ofB. The values ofB and the confining fre-
quencies are such that edge states do not occur and so
of the previous work on quantum dots is not applicable.
we shall show in Sec. III, such minima can arise in DEST
when electrons are reflected resonantly from quasibo
states in the stubs. We further show thatnew quasibound
states are created whenBÞ0 that are not present in zer
field. This happens becauseB changes the symmetry of th
wave functions at zero field with respect to the transve
directiony and leads tonewcouplings between the wire an
stub wave functions. In Sec. IV, we show results for act
experiments and interpret them qualitatively in terms
those of Sec. III. Conclusions follow in Sec. V.

II. FORMULATION OF THE TRANSMISSION PROBLEM

In this paper we consider parabolic confinement in
presence of a perpendicular magnetic fieldB5(0,0,B). For
parabolic confinement along they axis in the wire (w) and
stub (s) regions, we use a potential of the form

Vw,s~y!5m* vw,s
2 y2/2, ~1!

FIG. 1. ~a! A stubbed cavity of widthb connected to two quan
tum wires.~b! The confining potential in the wires and the stubb
cavity. The picture is generated with\vw56.39 meV,\vs52.8
meV, andb5300 Å. Thex range is from2300 Å to 600 Å and the
y range from2800 Å to 800 Å.
uch
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wherem* is the effective electron mass. The confining p
tential for a model DEST is depicted three dimensionally
Fig. 1~b!. The narrower parabolas, defined by the frequen
vw , represent the two parts of the QW; the wider parabo
defined byvs,vw , represents the stubbed region. The co
finement in the stubs alongx is achieved essentially throug
the difference in stub and wire potentials,DV(y)
5Vw(y)2Vs(y), so that only afinite potential barrier is cre-
ated. As a result, the electronic wave function in the s
regions will not go to zero at the boundaries and thus it c
spill over into the QW. This is a feature our present mod
shares with saddle potentials that is absent in infinite squ
well models used in past calculations.

To evaluate the transmission through the device depic
in Fig. 1, we solve Schro¨dinger’s equation on a mesh, usin
an iterative matrix method. We summarize the essential
the method below and refer to Ref. 15 for all the mathem
cal details. The general situation is one in which the QW
which are connected to the stub structure, extend outwar
6` along thex direction. The problem is solved on a squa
lattice of constanta. Along they direction, the system mus
be cutoff after a finite number of lattice sites, sayM . Thus,
the situation is one in which the parabolic QW’s that a
depicted are in fact enclosed within a larger waveguide t
is bounded by infinite potential barriers. The region of inte
est, containing the actual stub structure, can be broken d
into a series of slices along thex direction. The discrete form
of the Hamiltonian relates quantum mechanical amplitu
between adjacent slices. Using a finite difference approxim
tion and keeping only terms up to first order in the deriv
tive, this has the form

~EF2H j !c j1H j , j 11c j 211H j , j 21c j 1150, ~2!

wherec j is a M -dimensional column vector containing th
amplitudes of thej th strip. The matricesH j represent the
Hamiltonians for the individual slices.

When the derivatives are replaced by finite differenc
the kinetic energy terms of the Hamiltonian get mapped o
a tight-binding model witht52\2/2m* a2 representing the
nearest-neighbor hopping. To include the effects of the c
fining potential, one adds to the on-site energies, which oc
along the diagonals ofH j , the termsv j ,m , which represent
the potential on site (j ,m) in units of t. Parabolic confine-
ment can be modeled easily using Eq.~1! for v( l ,m), with
y5a@m2(M11/2)#, so thaty50 occurs at the center o
each slice. The matricesH j , j 11 andH j , j 21 give the interstrip
coupling and are related byH j , j 115H j , j 21* . We use the
gaugeA5(2By,0,0), which ensures that the magnetic fie
points along thez direction. In this gauge, these matrice
have only diagonal elements and are given
H j , j 11( l ,l )52texp(2pibl), whereb5Ba2/f0 is the mag-
netic flux per unit cell andf05\/e. Equation~2! can be
used to derive a transfer matrix which allows us to transl
across the system and thus calculate the transmission co
cients which enter the Landauer-Bu¨ttiker formula for the
conductance. Transfer matrices however are notoriously
stable due to exponentially growing and decaying evanes
modes. This problem was overcome in Ref. 15 by perfor
ing some clever matrix manipulations and turning the p
cess of translating across the system into an iterative pr
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9596 56R. AKIS, P. VASILOPOULOS, AND P. DEBRAY
dure involving a series of scattering matrices, rather th
simply multiplying transfer matrices together. It has be
found that the method gives results equivalent to those of
recursive Green’s function technique,15 which is the most
common approach to this type of problem. Its advanta
over the latter is that it is conceptually simpler and one c
quite easily reconstruct the wave function. Once the pro
dure is complete, one obtains the transmission coefficie
tnm , and reflection coefficients,r nm , for the individual
modes. Given these, the amplitudes of the wave function
specific values ofx andy can be obtained by a progressiv
backward substitution.

The total transmissionT is given by

T5(
nm

Tnm5(
nm

utnmu2
vn

vm
, ~3!

wherevn and vm correspond to the velocities of the tran
mitted and incident modes, respectively, and the sum is o
propagatingchannels only. The conductanceG then at zero
temperature is given by the Landauer-Bu¨ttiker formula:
G5(2e2/h)T.

As mentioned above, Eq.~2! essentially corresponds to
tight-binding model. As such, the energy dispersion relat
with respect to wave vectork is of the form of cosine rathe
than being parabolic, which is what is expected for the c
tinuous case. However, ifEF is such that one is near th
bottom of the tight-binding energy band, then we ha
cos(k);k2, and the tight-binding model then becomes a go
representation of the continuous model. To ensure this,
lattice spacinga should be much smaller than the Ferm
wavelengthlF (a!lF). For the calculations described i
the subsequent sections, we used typicallyEF59 meV,
which corresponds tolF;500 Å, anda540 Å, so thatlF /a
was always larger than 10. This is good enough typically
get a good match with the continuous model. To verify th
the results shown in the next section for zero field were co
pared with those obtained using a mode-match
technique.12 We found that the conductance traces genera
by the two methods were virtually indistinguishable. In ze
field, mode-matching techniques are the method of cho
since then the modes can be expressed as analytical ex
sions and the mathematics is relatively simple. However
finite field, the situation is much more complicated and
modes generally have to be determined numerically. In
case, using a lattice technique such as that employed
gives the maximum amount of flexibility in solving the pro
lem.

Since we do work in the regime of smalla, it will be
convenient to make reference to the modes that occur in
continuous case. Thenth channel wave numberan in the
wire is

an5
Vw

vw
A2m*

\2 @EF2~n11/2!\Vw#. ~4!

Similarly, in the stub region, the wave numbergm takes the
form

gm5
Vs

vs
A2m*

\2 @EF2~m11/2!\Vs#. ~5!
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HereVs,w
2 5vs,w

2 1vc
2 andvc5ueuB/m* is the cyclotron fre-

quency. Themodesfn along they axis depend on whethe
the waves are traveling in the positiveeianx or negative
(e2 ianx) x direction. We thus have wire mode
fn

w6(y)5wn
w@y7(\vc /m* Vw

2 )an#, and stub modes
fm

s6(y)5wm
s

„y7(\vc /m* Vs
2)gm…, wherew j

v(y) is the j th
harmonic oscillator~HO! wave function. Notice that for
B50, we havew1(y)5w2(y). It should be noted that gen
erally the number of propagating modes is dwarfed by
number of evanescent modes. In our discrete model, fo
given direction, thetotal number of modes~propagating and
evanescent! in the calculation isM , the number of lattice
sites along they axis defined earlier. We have usedM591
typically, so that we usually have about;90 evanescen
modes involved in the calculation. In the continuous ca
the number of evanescent modes is of course infinite, bu
has been found in mode-matching calculations12 that only
say ;5 evanescent modes need to be included to get c
verging results for a problem that involves one propagat
mode.

III. RESULTS

A. Zero field

In previous theoretical work on EST’s, with stub lengthc
and width b, a periodic conductance output has been o
tained, as a function ofc, for infinite square-well confine-
ment; the perioddc is given by

dc5p/A2m* EF /\22~p/b!25ls/2, ~6!

when only one mode is allowed in the QW and stub regio
Equation~6! is a restatement of the condition fordestructive
interference,ksdc5p, since ls52p/ks is the electronic
wavelength along the stub. Notice that the periodincreases
asb is made smaller. For asymmetricDEST,16 this period is
doubled, so thatdc5ls .

An interesting question is whether or not the conducta
remains periodic if the confinement is insteadparabolic, par-
ticularly when considering that in this case the stub length
no longer well defined. In the pertinent literature it is qu
common to use the classical turning points to define anef-
fective half width Weff of the parabolic well through
EF5m* v2Weff

2 /2. Taking v5vs gives an effective stub
length

ceff52Weff52A2EF

m*
1

vs
. ~7!

If the DEST in the parabolic case behaves in a manner s
lar to that of past calculations, one might expect then that
conductanceG of a DEST to be a periodic function of 1/vs
for fixed EF . As we show in Fig. 2~a!, this is in fact the case
We plotG as a function ofvw /vs for fixed\vw56.39 meV
andEF59 meV so that there is one propagating mode in
connecting quantum wires. The width of the stub isb5400
Å ~solid curve! and b5350 Å ~dashed curve!. Whenb de-
creases the period increases; this is consistent with the re
for infinite square-well confinement as expressed in Eq.(7).

The transmission minima displayed in Fig. 2~a! can be
considered to occur as a result of destructive interference
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56 9597BOUND STATES AND TRANSMISSION . . .
alternate but complementary point of view is that they oc
as a result of resonantreflection from quasibound states i
the stubbed cavity. They are transmissionantiresonances.
This is illustrated in Fig. 2~b!, whereuc(x,y)u is plotted as a
function ofx andy. To generate this plot, we have setEF59
meV, b5400 Å, and set \vs52.89 meV, so that
vw /vs52.21. The picture corresponds to thefirst transmis-
sion minimum in the solid curve in Fig. 2~a!. A standing
wave corresponding to a quasibound state is apparent in
cavity region between the arrows along thex axis. This state
is somewhat similar in appearance to those obtained
square-well potentials.8

Further insight into the antiresonances is obtained as
lows. Since only one mode is occupied in the quantum wi
the full wave functionf(x,y) goes as then50 HO wave
function, w0

vw(y) for a set value ofx. What is interesting is
that the standing wave in the cavity region, despite be
obtained by summing over the contributions of many H
wave functions, can be associated with then52 HO wave
function w2

vs(y). In particular, if we setx5x0, where x0

representsthe center of the stub~200 Å in this case!, then
c(x0 ,y) can be fit almost perfectly by usingw2

vs(y) alone.

FIG. 2. ~a! ConductanceG vs vw /vs for b5400 Å ~solid line!
andb5350 Å ~dashed! with fixedvw56.39 meV andE59 meV.
~b! A three-dimensional plot ofuc(x,y)u vs x andy for b5400 Å
and vs52.88 meV. This corresponds to the first minimum in t
solid curve in~a!. The two arrows on the bottom right indicate th
edges of the cavity and those on the left the widthWeff of the
quantum wire.
r

he
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While this is not true away fromx5x0, c(x,y) in the stub
region keeps the basicn52 HO form and thus it remains
evenwith respect toy50, the center of the quantum wire
Consequently, the conductance minima or antiresonan
can be attributed to aneven-evencoupling between then50
state in the wire and then52 state bound in the stubbe
cavity or DEST. The other minima in the solid curve of Fi
2 can similarly be associated with an even-even coup
between then50 andn54,6, etc., states. Coupling betwee
the even, in the wire, and odd, in the stub, HO states does
occur because they are orthogonal to each other.

So far the results are similar to those obtained for
square-well confinement and standing wave patterns an
gous to Fig. 2~b! have also been obtained.12,17 The main
difference between the two cases is that in the square-
case the evanescent modesin the connecting QW’scase tend
to decay very slowly. Thus, a long exponential ‘‘tail’’ is le
in the wave function in the exiting QW, even if there
100% reflection of the incident propagating mode. Th
would be a major liability in the fabrication of an operatin
device, since the presence of the ‘‘tail’’ may result in res
nant tunneling rather than resonant reflection thus makin
difficult to manufacture a device that produces the desi
effect. No such tail is apparent in the figure. The fast de
of the evanescent modes in the case of a parabolic pote
is related to the wave numbers given by Eqs.~4! and ~5!
rather than by Eq.~6!.

B. Finite field

1. Offset or field. We now consider a finite butweakmag-
netic field B. By weak we mean a field that is not stron
enough to push the wave functions completely over to o
side. We arenot in the edge-state regime. The use of the te
‘‘weak’’ is appropriate to the experimental situation d
scribed in Sec. IV, where the dimensions of the experime
samples were several hundred to a few thousand Å, whic
our motivation. For a QW with aceff of a few hundred Å,
one expectsvc!vw for B,1 T. In addition, this regime has
been much less explored than the edge-state regime. For
plicity we neglect the Zeeman splitting.

In Fig. 3~a! we again plotG as a functionvw /vs for fixed
E59 meV,\vw56.39 meV andb5400 Å, for three differ-
ent situations, the upper two curves offset byG51 and
G52, respectively, for clarity. The bottom curve is the sam
as the solid curve in Fig. 2~a!. For the middle curve, we hav
put in a small offset,d520 Å, so that the DEST is now
asymmetric, with potentialVDEST(y)→m* vs

2(y1d)2/2. We
see that with the asymmetry the antiresonances that occ
the symmetric case are now shifted down slightly. Seco
and more importantly, a whole new set of antiresonan
occur in between the original minima. These occur due to
the breaking of symmetry of the wave functions, allowin
the evenn50 QW state to now couple with the odd stat
(n51,3,5, . . . ) trapped in the DEST. A very similar behav
ior has been noted in the case of square-well confinem
The upper curve is for asymmetricDEST, but now in the
presence of a finite magnetic field,B50.3 T. We see that the
presence of the magnetic field produces much the same r
as the asymmetry—the shifting of the original antires
nances, and the appearance of the new set of minima at
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9598 56R. AKIS, P. VASILOPOULOS, AND P. DEBRAY
tually the same locations. In Fig. 3~b! we plot uc(x,y)u for
vw /vs54.935 andd520 Å (G;0 for these parameters!.
Here, the antiresonance wave function has six lobes, ind
ing the coupling of an55 odd state in the DEST with th
n50 even state in the QW in this case. The correspond
wave function in the presence of a magnetic field is shown
Fig. 3~c! for vw /vs54.896 andB50.3 T. The state shown
in this picture is almost indistinguishable from the previo
one. Interestingly, the most significant difference betwe
the two pictures occurs in the incident waves. In the fin
field case a standing wave appears that is quite similar to
one evident in Fig. 2~b!. In the asymmetric case, the wav
have a more irregular appearance. One obtains similar re
for the other even-odd antiresonances.

Given these results, we conclude the coupling betw
even and odd states in the presence of a magnetic field
curs here because, whenB is finite, the symmetry about y50
is broken. Noting that the wave function in Fig. 3~c! appears
almost completely symmetric abouty50, it is obvious that
the presence of edge states is not required for this couplin
take place. In fact, it can occur for arbitrarily smallB. How-
ever, the smallerB is, the narrower the even-odd antires
nances that occur in Fig. 3~a! become. Another importan
point is that the position of the antiresonances depends

FIG. 3. ~a! ConductanceG vs vw /vs for b5400 Å, vw56.39
meV, andE59 meV. The bottom curve is for a symmetric DEST
B50 T. For the middle curve, offset byG51, the DEST has been
madeasymmetricby a factor ofd520 Å. For the top curve, offse
by G52, a B50.3 T has been applied. Notice the additional an
resonances that occur in the presence of finite asymmetry and
netic field.~b! uc(x,y)u vs x andy is plotted forvw /vs54.935 and
d520 Å. This quasibound state corresponds to the fifth minim
in the middle curve in~a!. ~c! As in ~b! but for B50.3 T and
vw /vs54.896. This state corresponds to the fifth minimum in t
top curve in~a!.
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the value of the magnetic field. For example, the first an
resonance, which corresponds to an50 QW 2n51 DEST
coupling, occurs at vw /vs51.1164 for B50.11 T,
vw /vs51.17 forB50.29 T, andvw /vs51.18 forB50.46
T. This shifting of the resonance as a function ofB for dif-
ferent choices ofvw /vs can be understood, at least in pa
in terms of the lining up of the energy level of the boun
state of the cavity,Ebound, with that of the incident electrons
EF , which is necessary for a resonance effect to occur. F
our previous discussion about fitting the wave function in
DEST, it is apparent that the energy level structure of
quasibound states is tied toVs . A larger ~smaller! value of
vw /vs means thatvs is smaller ~larger!, thus a larger
~smaller! value ofB is required to ensure thatVs remains at
the value that lines up the Fermi level with the bound st
level. This argument, however, is somewhat oversimplifi
in that the bound state energy is not determined byVs alone.
The bound states are confined alongboth the x andy direc-
tions and so thex confinement must neccessary contribute
the energy of then51 bound state, so that we should ha
Ebound53\Vs/21Ex . However, as the confinement alongx
is incomplete and the system is open, the contributionEx is
difficult to quantify, at least analytically. Importantly, asB
changesVs , the confining potential in the stub alongx is
also being altered, thus complicating the physical picture.
a result, the value ofVs for which antiresonance occurs
slightly different for different values ofB. The lining up of
QW and DEST energy levels is also the likely explanation
the observed downward shift in both the finiteB and finited
cases.

2. Offset and field. In Fig. 4~a! we plot G vs B for fixed

-
ag-

FIG. 4. ~a! ConductanceG vs B for b5400 Å, vw /vs54.9.
The solid curve is for asymmetricDEST and the dashed and dotte
curves for anasymmetricone withd520 Å andd540 Å, respec-
tively. ~b! ConductanceG vs E for b5400 Å andvw /vs54.9. The
solid curve is forB50.28 T andd50 Å and the dashed one fo
B50 andd520 Å. The dotted curve is forB50.28 T andd520 Å.
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56 9599BOUND STATES AND TRANSMISSION . . .
vw /vs54.9, which corresponds to then502n55 antireso-
nance. The solid curve corresponds to the DEST being s
metric. The broad minimum at about;0.28 corresponds to
the antiresonance in question. It is interesting to see w
happens whena finite B and a finite offsetare present at the
same time, as individually they appear to have similar
fects. The dashed and dotted curves correspond tod520 Å
and d540 Å, respectively. Oddly, the conductance minim
become shallower for increasedd, as if the magnetic field
and asymmetry are canceling each other out. Importan
essentially the same curves are generated if we replacd
with 2d. A clue to this behavior can be seen in Fig. 3~a!.
While the antiresonances occur at essentially the same s
the line shapes are different, withG51 followed byG50 in
the case of finited, and almost exactly themirror opposite
for finite B. In either case, the line shapes are asymme
that is, they are ofFano type. The occurence of Fano ant
resonances in stub structures has been the subject of se
papers, typically using simple qualitative models5–7 ~stub
and wire both treated as being purely one dimensional!. Stub
structures, unlike say a double barrier problem, yieldboth
transmissionpolesin the complex energy plane, the real pa
of which is associated with the energy of the quasibou
states and yield unit transmission, and transmissionzeroes
~the antiresonances!. If the pole and the zero do not occur
the same location in energy, one obtains the asymme
Fano line shape. This gives aG51 peak followed by aG50
minimum when Epole,Ezero, and the opposite when
Epole.Ezero. Figure 3~a!, however, shows the antiresonanc
as a function ofvw /vs , which we remind the reader is
measure of stub length for fixedvw .

The ‘‘flipping’’ of the Fano shaped antiresonance al
occurs with respect toenergyand this is shown in Fig. 4~b!,
whereG vs E is plotted for fixedvw /vs54.9. Once again,
the minima here correspond to then502n55 antireso-
nance. The solid curve corresponds toB50.28 T andd50,
while the dashed curve is forB50 andd520 Å. Note that
the conductance minima occur at slightly different locatio
The dotted curve has bothB50.28 T andd520 Å, which
shows the hybrid line shape, the result of the ‘‘competitio
between the two sources of symmetry breaking. In the reg
of the minimum, this third curve looks somewhat like a
average between the other two curves. We note that the
ductance maximum follows the minimum in the combin
curve, like the finiteB only curve. We note that the mini
mum is much wider for the finiteB only curve than for thed
only curve, indicating that the finiteB is producing a stron-
ger effect in comparison to the finited in this case, and is
essentially winning out. Again, referring back to Fig. 3~a!,
we note that the ‘‘flipping’’ effect does not occur when th
field B is turned on for the even-even antiresonances, p
sumably because we consider a relatively weak fieldB.

3. Two conductance minima. In Fig. 5~a! we again plotG
vs B. However, unlike the previous example,two transmis-
sion minima are apparent for each of the curves shown h
The solid, dashed, and dotted curves correspond
vw /vs53.0, 2.91, and 2.85, respectively. In Fig. 5~b!,
uc(x,y)u is plotted as a function ofx and y for the first
minimum in thevw /vs53.0 curve, which occurs atB50.27
T. Unlike the previous wave function plots, we are looki
directly from above and higher amplitudes are represen
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by darker shading. The incident electron waves are trave
from the top to the bottom in this picture. The quasibou
state in this case has four lobes along the length of the
and thus represents coupling betweenn50 andn53 states
and is yet another example of the even-odd coupling p
nomenon we have already pointed out. More interesting
the wave function that corresponds to the second minim
at B50.67 T, which is plotted in Fig. 5~c!. Here the wave
function again has four lobes, but in this case there are
each inboth the x and y directions. The quasibound sta
shown here does not arise from confinement by the stubs
is held in place by the corners formed by the intersect
points of the stub and wire potentials. Quasibound state
this type were first found to occur theoretically in interse
ing quantum wires in a situation analogous to having stub
infinite length by Schult, Wyld, and Ravenhall.3 They
pointed out two such ‘‘intersection’’ states, the lower ener
state consisting of one large lobe in the intersection reg

FIG. 5. ~a! ConductanceG vs B. The solid, dashed, and dotte
curves correspond tovw /vs53.0, 2.91, and 2.85, respectively
Note that two conductance minima occur in each curve.~b! In pan-
els ~b!–~g! the wave functions corresponding to these minima
plotted vsx and y with darker shading corresponding to high
amplitude. Panels~b! and ~c! correspond to the first and secon
minima, respectively, forvw /vs53.0; ~d! and ~e! correspond to
vw /vs52.91 and~f! and ~g! to vw /vs52.85.
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occurring below the first propagating mode of the quant
wires, and a four-lobed excited state having the same
symmetry of the state we see here.

In the curve forvw /vs53.0, the two minima have a rela
tively large spacing inB. Whenvw /vs52.91, the minima
are quite close to each other, with the lower minimum o
curing at a higher value ofB, while the second one remain
fixed. In fact, this is as close to each other as the minima
and they never merge for any value ofvw /vs . This is a
situation akin to an anticrossing from band structure theo
The wave functions for these two minima are shown in Fi
5~d! and 5~e!. These wave functions are virtual mirror im
ages of each other and appear to behybrids of the stub-
confined and intersection-confined states shown in the pr
ous two panels.

For vw /vs52.85, the second minimum occurs atB50.8
T a somewhat higher value ofB than the previous two case
while the first minimum occurs atB50.57 T. The wave
function corresponding to the first minimum of this curve
shown in Fig. 5~f!. It is virtually a mirror reflection of the
intersection-confined wave function shown in Fig. 5~c!. The
wave function for the second minimum in this case is sho
in Fig. 5~g! and again has the hybrid form.

As is evident from our results, the relative positions of t
two minima depend quite sensitively onvw /vs . It should be
pointed out that, whenvw /vs is increased 3.05, the lowe
conductance minimum no longer occurs leaving only
intersection-confined state at approximately the same p
tion as it is forvw /vs53.0. On the other hand, ifvw /vs is
decreased further below 2.85, the position of the lower m
mum, which now corresponds to the intersection-confin
state, occurs at lower and lower values ofB, but it shifts less
significantly than the second minimum which occurs at
creasingly higherB values. That the intersection-confine
state is less sensitive to changes invw /vs is not surprising,
since its presence should not depend too strongly on
length. On the other hand, the reason why there is a shi
all in its position, whenvw /vs is changed, is because whi
we are changing the stub length, we are also changing
confinement at the corners as well in our model.

IV. EXPERIMENTAL EVIDENCE
FOR QUASIBOUND STATES

In this section, we present experimental results wh
lend support to our theoretical analysis and provide evide
for the presence of quasibound states in a DEST device
the appearance of new transmission minima under the in
ence of a magnetic field applied perpendicular to the dev
plane. Some preliminary results and details of sample fa
cation and experimental measurement technique have
reported earlier.14 The DEST device was fabricated usin
Schottky gates to define device geometry from a hi
mobility (m5110 m2/Vs at 4.2 K! and low-electron-density
(n53.131015 m22) Al xGa12xAs/GaAs modulation-doped
~Si! heterostructure grown by molecular beam epitaxy an
shown in the inset of Fig. 6. The Fermi energy of the 2DE
was measured to beEF58.50 meV. The lithographic dimen
sions of the device werea5b52500 Å, c58500 Å, and
l 51500 Å, respectively,l being the length of the connectin
wires. Figure 6 shows the conductanceG of the device in the
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absence of magnetic field measured as a function of g
voltageVg at 70 mK. This temperature is a small fraction
EF to be considered essentially zero. AsVg is made more
negative, the device dimensionsa, b, andc all decrease at
the same time due to depletion. From measurements of
quantized conductance plateaus of a single quantum
with lithographic width the same as that of the DEST wire
it was found that atVg52500 mV the Fermi level lies jus
below the bottom of the second (n51) wire subband, and
the corresponding wire width is 400 Å, so that forVg (2500
mV! one could say that transport is in the fundamental mo
of the connecting quantum wires and only the lowest (n50)
wire subband is occupied. Assuming the depletion at the s
edges is the same as that at the wire edges as the gate vo
is decreased, a rough estimate of the DEST dimension
Vg52500 mV could be obtained:a5b5400 Å, c56400
Å. Though the estimate is rough, we can safely expect s
eral DEST subbands to be occupied. Since the Fermi lev
the same across the device and the Fermi energy does
change withVg , a decrease inVg accompanied by corre
sponding reduction of device dimensions means a decr
in the effective wire width and stub length as derived fro
the definition of classical turning points and given by Eq.~7!.
One could then say that the effective wire and stub confin
frequencies increase as the gate voltage is made more n
tive. Since the depletion at the gate edges (.2.9 Å/mV! is
the same for the wires and the stub, a change inVg over a
small range brings about little relative change in the s
length. However, for the wires, because of the much sho
dimension, the relative change in the wire width is qu
important asVg is swept. Considering theVg range between
2500 mV and pinch-off, one could then possibly consid

FIG. 6. ConductanceG as function of gate voltageVg for a
nominally symmetric DEST at 70 mK. The numbers accompan
by arrows give stub subband indices. The inset shows a schem
drawing of the DEST geometry as defined by lithography. T
hatched areas (G) represent Schottky gates.
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the stub confining frequencyvs to stay practically constant
while the wire confining frequencyvw to increase rapidly
with decreasingVg . In Fig. 6, therefore, decreasingVg
would mean increasing the ratiovw /vs . It would also mean
sweeping the Fermi level down across the stub subband
els given byvs . In Fig. 6, the conductanceG shows two
prominent minima and three maxima forVg less than2500
mV. The observed minima can be attributed to an even-e
coupling between then50 state in the wire and then5even
quasibound states in the stubbed cavity or DEST, as
Fermi level sweeps down the stub energy level structu
This analysis is in line with the theoretical prediction of t
previous section and the observed minima can be consid
as an experimental support of the theoretical analysis il
trated in Fig. 2~a!. Note that in the present device geome
asVg changes, the stub width changes as well. The obse
minima are thus expected to be much broader than the t
retically predicted ones for a constant stub width. Moreov
the stub shape may also depend somewhat on the gate
age. The shallowness of the minima can be attributed
asymmetry and/or defects,18 while values of the maxima les
than 2e2/h can be attributed to backscattering at the w
entrance and/or impurities. ForVg larger than2500 mV,
transport in both the wire and in the stub is multimode sin
one expectsa;b. The resulting enhanced mixing betwee
different modes will result in a more irregularG curve and
may cause the regular oscillations observed be
Vg52500 mV to be gradually washed out as seen in Fig
Based on the above analysis, we could index~n! the minima
and maxima of Fig. 6. The indexing is shown by arrow
Using the known value ofEF and the above indexing, w
get, for Vg52500 mV, hvw55.67 meV, andhvs51.030
meV, givingvw /vs55.50. This value is close to that used
generate Fig. 4~a!. Note also that at this gate voltag
a5b5400 Å. Figure 7 shows how the conductance ma
mum ~index 5! of the DEST atVg52500 mV, changes
under the influence of a magnetic field applied perpendic
to the plane of the device. We have added to Fig. 7,
comparison purposes, the theoretical curves of Fig. 4~a!
which correspond tob5400 Å. As the field is increased
experimentalG decreases and goes through a pronoun
dip which corresponds to a transmission minimum. T
minimum inG occurs atB50.29 T, a value that is not stron
enough to produce edge states. The experimentally obse
minimum follows remarkably well theB dependence pre
dicted by theory and may be understood in terms of
formation of a new quasibound state due to even-odd c
pling induced by a weak magnetic field as discussed ab
The shallowness of the observed dip may be due to an as
metry of the experimental DEST as illustrated by the th
retical curves THA20 and THA40, respectively. The fabric
tion of a perfectly symmetric DEST is a matter of chance a
cannot bea priori guaranteed. Given that the experimen
curve is somewhat noisy in comparison to the smooth th
retical ones, the presence of disorder quite likely is playin
role as well.18

V. CONCLUSIONS

We have calculated the conductance for stubbed elec
waveguides defined by a parabolic potential. In the abse
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of a magnetic field we find aperiodicconductance output a
the stubbed cavity is made longer, which is consistent w
previous theoretical work done assuming infinite square w
potentials. The conductance minima orantiresonancescor-
respond to quasibound states in the stubbed regions. W
the two parabolas representing the wire and stub confin
potentials are displaced with respect to each other, the s
metry of the wave functions, with respect to the center of
wire, is broken andnewquasibound states occur in the inte
section regions. The same holds when the two parabolas
not displaced but aweakmagnetic fieldB is present becaus
the field too breaks this symmetry thus allowing states in
cavity and wire, that were previously orthogonal, to coup
The appearance of these quasibound states is heralded b
or more dips in the conductance as a function of magn
field. We emphasize that these dips occur in short and l
stubs, i.e, whether there are just a few or many stub subba
occupied for electrons incident at the Fermi energy. Su
dips have been observed experimentally in elect
waveguides with stubbed cavities.14

We have also investigated more sophisticated models
the confinement potentials, in particular models in which
transition between the quantum wire and stub regions
made gradually instead of abruptly as well as combinati
of square well and parabolic confinement. We find that
the most part the results are qualitatively similar to those
the simple double parabolic model shown here. Importan

FIG. 7. ConductanceG as function of magnetic fieldB applied
perpendicular to device plane for the DEST shown in Fig. 6 at fix
Vg52500 mV and 70 mK. The theoretical curves THS, THA2
and THA40 are reproduced from Fig. 4~a!. THS : symmetric DEST;
THA20: with offset 20 Å; THA40: with offset 40 Å. See text fo
details.
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most quasibound states that occur when the transition in
finement is not abrupt, tend to be variations of the hyb
type discussed in the context of Fig. 5. In addition, we fi
that it is much more difficult to get the conductance minim
at the low values ofB considered here when all potentials a
defined by infinite square-well confinement. Unless there
some rounding of the potentials, as one expects in real
vices, the energy level spacing is too large to permit it.

Finally, in closing we note that the structures we ha
studied here can be thought of as ‘‘simple’’ quantum dots
the sense that relatively few nodes are apparent in the
sibound wave functions~four for the example in Fig. 5!. The
situation that is most typically studied in experiment a
theory with regards to quantum dots is one in which
linear dimensions of the cavity are much larger than
d

tt.

ys
n-
d

is
e-

e
n
a-

e
e

width of the connecting wires~see, for example, Refs. 19 an
20 and references therein!, so that the enclosed wave func
tion can have hundreds of nodes. In these large cavi
‘‘scarring’’ of resonant wave functions19,20 has been ob-
served, such that their amplitude is maximized along p
odic classical trajectories.21 These ‘‘scarred’’ features in
these large open structures may result from a more com
cated variation of the hybridization effect we have discus
here.
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