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Finding local minimum states of Josephson-junction arrays in a magnetic field
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We conjecture that certain shift maps generate the local-minima phase structure of Josephson-junction arrays
in a magnetic field. We propose a method of constructing the local minima. The classification scheme of the
ground states is greatly simplifie50163-1827)04925-4

Study of the ground states of Josephson-junction netThere are also cases where this basic unit is larger and has
works not only has aesthetic appeal, but also implications foRq cells to an edge. From these studfetakes on another
its phase-transition properties. An array of Josephson junameaning; it represents the ratio of the cells having large cir-
tions in a magnetic field perpendicular to its plane is theculation to the total number of cells in the basic unit. A large
physical realization of the frustratedY model, and is de- circulation cell, usually called a vortex, is actually a high-

scribed by energy cell, if the sum of bond energies is considered. The
ground state is an orderly arrangement of few high-energy

H= —JE cog 6,— 6, 2mf;)). (1) cells amongst many Iow—gqergy cells. _
ap Here we study the minimum set of phases required to

generate the ground state, hence the relation among the
ghases that compose the minimum energy vortex lattice. We

ray. In the classical regime, the physical state of an island iS_ " s
de)fscribed by a phasg. Neares?—n)éighbor islady, are conjecture that local minima of Eql), could be generated
! {rom a minimal set via a kind of shift map. The manifest

coupled via the Josephson effect with the coupling strength, :
3, which is taken to be positive in Eq1). f;; is the ratio of order of the ground-state vortex lattice, as well as other local

the line integral of the vector potential along the bopgdto ~ MiNiMa, is encoded in phase correlatidfisymmetries”) of
the flux quantum®,, where®,=hc/2e.2 In terms of the & Structure having a muph smaller size than the basic unit.
flux @, through a unit cell of the square lattice, e start by constructing a local minimum bf 6/13; the
fij=n;;®/®g; with 7; being an integer giving the or y choice is made due to the difficulty of obtaining it using the
coordinate of thej bond, depending on the choice of gauge.standard methods. It is known that its ground state belongs to
It is seen that whefi=®/®, is an integer, the extra phase is the class of vacancy vortex lattices. The idea of a vacancy
a multiple of 2r—for all bonds. Therefore alignment of lattice and the discovery of its generic structure is due to
phases produces the ground state, and each bond is at #&aley? When the density of vortices is near its maximum
lowest possible energy. At noninteger valuesfpit is not  value, i.e.,f=1/2, the system seems to prefer an orderly
possible for every bond to be at its lowest energy state. larrangement of “holes” against a checkerboard background.
this sense the system is said to be frustrated, and the measdree vorticity of a hole or vacancy is what is expected of the
of frustration f is called the frustration factor. Due to the negative vortex cell, however the four neighboring cells,
symmetries of the Hamiltonian, the model need only be con-
sidered for values of in the rangd0,1/2]. Whenf=1/2, the

Superconducting islands occupy the sites of (gguare ar-
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system is said to be maximally frustrated. A useful, though i Px x>t t
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The circulation or vorticity of a cell is the superconducting ° B °
current circulating around it. The ground-state phase con- — - TN NT T
figuration is then transformed into a pattern, which is called - o

the ground-state vortex lattice. Figuré), shows the vortex
lattice of the f=1/4 ground state, due to Teitel and
4
JayaprakasiTJ). imert . iord ground state(b) KSB (Korshunov-Straley-Barnettground state;
Laboratory experimentsand computer simulations,  yqen jines indicate bonds carrying zero current(tinthe phase

along with theoretical consideratiofis, indicate that for ra-  ¢onfiguration is also shown, tar= — 2. To find the configuration
tional frustration factorsf=p/q, the basic unit of the gegenerate with it, start witity ;= 6,,=0, 65,=6,,=— ¢, and
ground-state formation is a square havingells on its edge. ,=35/4. ’ ' ' '

FIG. 1. Ground-state vortex lattice unit cells fbe=1/4: (a) TJ
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FIG. 2. This one-dimensional vortex lattice is

Lo [of Tef Tef [of Tef Jof [ef [of T [ Jef Jel Tef ] used to generate the 6/13 vacancy vortex lattice
of the ground statey=5 anda=0.

which also have negative vorticity, are of slightly less circu- Oisny 1= 01+ a—(j—12=fn, j=1,2,... . (5
lation. Except for such places, there is a checkerboard pat- ' '
tern. To fit such a pattern, the structure must be of even edg tt fructi £ th tex lattice. i h
For the present case, the density is 1/26 less than the ma%Ggrzgocr;S”r:tfu'g{:”% is %rvnﬁggxwz éi%nlghoifasiﬁz(ethvé L?snu:I
mum. This is exactly the density of vacancies in the ) - .

y Y Metropolis Monte CarldMC) routine. The final product has

26X 26 lattice. ) . L
Now, id lattice that has 26 cells in the f f g€nergy of about- 1.3054] per site, and |Fs structure is simi-
oW, consicer a fatice mhat has 2o celis in mhe form o alar to that off =5/11 given in Ref. 9. Witm=19, the gen-

ladder. We intend to minimize the energy of this lattice when'® " ) : .
f=6/13. The boundary conditions we require are, periodiceratmg lattice looks the same as Fig. 2, but has a different

along the ladder, and open along the rungs. We use Landaﬁpase configuration; the vacancies end up closer together on

gauge, so that only vertical bon@se., the rungs of the lad- avt?rrrz]ige, andkergler%y g_er sitfe Is sligr&tly_ hi%heﬂ,HSOShll.
den carry the vector potential. The usual way of finding the e remarkable finding of our study Is that the phase cor-

ground state is application of the Metropolis Monte Carlorelation. imposed in the begi.nn.ing, is .preserved after the vor-
algorithm; we, however, equip the algorithm with the con- X lattice is quenched. This is the important result of this

straint study. - . )
We can offer a heuristic argument for this result. With a

Opisnyj+1=0i - () co.n_str_aint. such as Edq3), it is no longer true thgt energy
, . _ minimization corresponds to current conservation at each

In Eq. (3), and in what followsj denotes across arjdde-  gjte However, energetically each site is at a local minimum
notes up; alsofi +n}= (i + n)mody. Hence, we have estab- rg|ative to its nearest neighbors. The shift map defined by
lished a one-to-one relation betvyeen the top row and thgq_ (5) has the property of replicating a site along with its
bottom row of phasegfor a ladderj=1). Usingn=5, the  neighhors, and maintaining the corresponding bond currents.
resulting vortex lattice is given in Fig. 2. o The product is a configuration of phases where each phase is

The idea of constructing the whole vortex lattice is takenside a local potential well, but not at its bottom: because
from the phenomenon of crystal growth. A crystal is growngirchoff's current law does not yet hold at each site. Only
from what is called the seed. The seed crystal is a miniMuMer the system is quenched do we have a local minimum
energy, minimum instruction set structure which has singledate The experiments show that quenching a0.01 J/k
out pertain symmetries for the grpwth of the large crystalgqyces energy per site by about @1t 0.28), indicating
We intend to “grow” the 6/13 minimum energy vortex lat- hat the constructed vortex lattice had been in a metastable
tice using the lattice o_f Fig. 2 as its seed. The vortgxilattlce iState, with its true temperature close to the quenching tem-
grown one row at a time, keeping close to the minimum ofyeratyre. Therefore, only specially ordered arrangements of
the assembly at each stage. We call the one-dimensionghices constitute the states of local minima. In other words,

(1D) vortex lattice of Fig 2 a generating lattice. _ only stable commensurate configurations are important,
Le_t us see the “symmetry” in the generating Iat.tlce. TO \which could lend support to the TJ conjectdre.
do this, consider three rows of phases built according to Whenn=1, the vortex lattices are called staircase states,
and there is a rigorous mathematical proof for the above
Ofi+ny,2= 01t @, (49 9 P

finding due to Halsey. The f=1/4 staircase state, con-
O+ ny.3= 0, o+ a—27fn, (4b) structed by the plan descriped is given in Fig. 4; it; energy is
_ o ' _ about —1.306(3) per site. Halsey’'s analysis gives
where « is an arbitrary constant. The above relations are—1.3065@. The discrepancy is small enough to be confident
written in the Landau gauge. The term involviigin Eq.  that more MC steps and lower temperatures will result in
(4b), guarantees that first row of vertical bonds shares gaugénore significant figures.
invariant phase differences with the second row of vertical The constantr in the shift map, Eq(5)’ serves the same
bonds shiftedch units to the I’Ight(Flg 3). Due to the Landau purpose asy in Ha|sey’s ana|ysis, i.eq is set by energy
gauge, the same statement is easily seen to hold for the thr@ginimization; in our case by the quenching process. In gen-
rows of horizontal bonds. Hence, if E@ta) has resulted ina eral, quenching does not preserve the shift nip even
vortex lattice(similar to that of Fig. 2, then the same vortex though the phase configuration could still be approximately
lattice is formed by the second and third rows of phases, onlybeyed, and the vortex lattice preserd®®ur studies lead

shiftedn units to the right, as shown in Fig. 3. us to conjecture that: ground states fall in the class of local
The basic idea of constructing the complete vortex lattice,

is to use the vortex translation operations of E).to shift
the vortex lattice of a row by units in the row above it. In * ° n o Fok
the sense that the generating lattice could be any of the rows H .
of the whole lattice, we see that the symmetry of the gener- o o1 * b .
ating lattice of Fig. 2, withn=5, is to form a complete

lattice with the property that each row of vortices is repeated F|G. 3. The first row of vortices is shifted by seven units in the
in the row above it, only shifted 5 units to the right. The row above, by using the vortex shift maps of E4). Bonds carry-
translation operation is generalized into the main result  ing same current are shown for one of the vortiages;7.
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minimum vortex configurations which preserve the shift
P map. Then the generating lattice must have the profesesy

Fig. 5

° 2 lin=lgen, i=1,...4, (6)

o stating that, the net current into the siiel) must equal the
current in the vertical bond{{+n},1)—({i+n},2). So to
form local minimum configurationginstead ofg? phasey
FIG. 4. The Halsey staircase local minimum for 1/4;n=1.  one needs the parameters of the shift magndn, and the
startingq phases obtained by Eq&).!!

For qx g periodicity, we must have

qa—[(1/2(q—1)q]2#wfn=27mm, W)
wherem is an integer. Then it easily follows that fgrbeing
I | l' | |=*;| | |' I |'| + |‘l even, whenn is odd, ga=(2k+1)m, k=0,1,2,..., and

whenn is even,qa=2k. For q being odd,qa=2kr. It
FIG. 5. If the stack of shifted 1D vortex lattices is to leave the also can be shown that different valueskafo not amount to

phase configuration intact, as energy is minimized in the quenchin§€W configurations, but to a shift in thecoordinate. Hence,
process, each site must be in its local minimum before quenchind®f N=1 we géta==/q whenq is even, andx=0 when
Therefore currents into each site of the complete vortex lattice musd iS 0dd; results obtained by Halséy.
sum to zero, to begin with. This implies that the generator should Straley and Barnetthave found that for severdlvalues,
obey Eq.(6). Here, the currents that participate in that equation ardN€ ground state has a larger tha q unit cell. Of those
indicated for one of the sites. Compare with Fig. 3. f values, we have studiegd=1/4, 1/6, 3/10, 3/14, 5/16, 5/18.
We find that in each case the phase configuration rotates by
/2 or 3m/2 afterg/2 shifts, at which point the vortex con-
figuration repeats, i.e., the basic unit of formation in each
case isqx2q. We also find that in each case=2.12 A
relation similar to Eq(7) givesa= 7/q or 3w/q. Now, con-
sidering consecutive-row phase rotatiofy; . j+1— 6; j,
we note that each choice ef has its own set of phase rota-
e tions for variousj. The conclusion is that sudapx 2q states
L le] . Lo ‘ o] le] ] [ l _B are doubly degenerate. In Fig(bl we have shown the
a= /4 phase configuration fof=1/4 Korshunov-Straley-
FIG. 6. The 1D generator vortex lattice bf 6/17. The ground-  Barnett ground state. The exact energy per site of the
state vortex lattice is given in Fig. 7 of Ref. 8=13, energy per f=1/4 ground state is- (3+/3)J/2/3.
site is —1.2902. Broken lines show bonds with zero gauge- The generator of =6/17 ground state, having=13, is
invariant phase differences. given in Fig. 6. As Eq(6) implies, it is as if we had taken
such a structure, with its phase configuration, out of the
ground-state vortex lattice. The complete vortex lattice of the
ground state is shown in Fig. 7 of Ref. 3; we find its energy
to be —1.2902 per site. A local minimum off =6/17 is
given in Fig. 7;n=6.
We should emphasize that there are other ground states
(or local minima which do not belong to the 1D generator
class. For instance, the TJ ground statd fl/4 [Fig. 1(a)],

IEONEONONEONERORS the 5/14 ground statepr the 7/15 vacancy lattice ground
% H Yyt P i o o state® In such cases more complicated generators are needed
. e T (e.g., a two-row vortex lattice as the generator of the TJ
S OEROROREOSOREON f=1/4 ground state
OEEOECEEL SRS SN In summary, we have helped to reveal the phase structure
ANEOEONECEOEND of the local minima of the frustratedY models with rational
T EEROEECROREOROE frustration. Our study should be useful in developing a pin-
ol Lo ol |- . . ning potential model for the vortex lattice of Josephson-
AEEROENRRORSONGE junction arrays in a magnetic field.
el el ] [o el L[ ]e | am grateful to Professor Joseph P. Straley whose critical

comments on the manuscript were instrumental to the dis-
FIG. 7. A local minimum off =6/17,n=6, energy per site is covery of some of the results. | also thank Shahla Mansouri
—1.2634. Hamlabadi for drawing the figures.
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OThis is directly related to the question of why ground states

local minimum statésalmost always have X q unit cells. For
example, a ¥ 14 vortex lattice off =5/14, suffers from a strain
due to the boundary condition imposed on it. The phase configu-
ration cannot follow the shift map exactly and minimize energy
at the same time; vortices remain in their places.’A12 lattice

of f=5/14(Fig. 3), on the other hand, is kept together solely by
boundary condition effects.

11The tendency of the one row lattice to form a lattice according to

g/2 (for evenq) or (q—1)/2 (for odd q) distinctn values. f

and q—n give mirror image vortex latticesIn practice it is
easier to use the shift-map-equipped MC algorithm on the one
row lattice followed by quenching of the constructed vortex lat-
tice, rather than actually solving Eg&). For a givenn there
could be more than one solution. It could be that a given
produces a vortex lattice, that when shifted, results in a configu-
ration with nearest-neighbor vortices. These are high-energy
states. The choices for giving low-lying states are few.

2In general, if agxq’ unit cell is to be found, both the vortex

configuration and the phase configuration must repeat gfter
shifts. In the vacancy lattices of the type discussed here, the
phase periodicity ig|, but the vortex periodicity is @ Equation

(7) gives the condition for phase periodicity; for vortex period-
icity we need{m+nq’}=m, wherem is an integer not greater
than q. For example,f=5/14 with q'=2 and n=7, has
a=m/2 and a 22212 generat@mumbers give vortex spacings

its energy per site is-1.254). For havingg X 2q periodicity, as
described in the text, i.e., with/2 vortex periodicity, evem
would do. For f=5/18 and n=4 the energy per site is
—1.28QJ; the generator has 21514 structure. When2, the
energy is— 1.335], and the structure becomes 32332. It remains
to be explained whyn=2 results in the ground state @qx 2q
lattices.



