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Finding local minimum states of Josephson-junction arrays in a magnetic field
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We conjecture that certain shift maps generate the local-minima phase structure of Josephson-junction arrays
in a magnetic field. We propose a method of constructing the local minima. The classification scheme of the
ground states is greatly simplified.@S0163-1829~97!04925-4#
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Study of the ground states of Josephson-junction n
works not only has aesthetic appeal, but also implications
its phase-transition properties. An array of Josephson ju
tions in a magnetic field perpendicular to its plane is
physical realization of the frustratedXY model, and is de-
scribed by1

H52J(̂
i j &

cos~u i2u j22p f i j !. ~1!

Superconducting islands occupy the sites of the~square! ar-
ray. In the classical regime, the physical state of an islan
described by a phase. Nearest-neighbor islands,^ i j &, are
coupled via the Josephson effect with the coupling stren
J, which is taken to be positive in Eq.~1!. f i j is the ratio of
the line integral of the vector potential along the bondi j , to
the flux quantum,F0, whereF05hc/2e.2 In terms of the
flux F, through a unit cell of the square lattic
f i j5h i jF/F0; with h i j being an integer giving thex or y
coordinate of thei j bond, depending on the choice of gaug
It is seen that whenf5F/F0 is an integer, the extra phase
a multiple of 2p—for all bonds. Therefore alignment o
phases produces the ground state, and each bond is
lowest possible energy. At noninteger values off , it is not
possible for every bond to be at its lowest energy state
this sense the system is said to be frustrated, and the me
of frustration f is called the frustration factor. Due to th
symmetries of the Hamiltonian, the model need only be c
sidered for values off in the range@0,1/2#. Whenf51/2, the
system is said to be maximally frustrated. A useful, thou
approximate way of representing the distribution of bo
energies is to define the circulation of a cell3

l2k
u u
i2 j

Si5I i j1I jk2I lk2I i l . ~2!

The circulation or vorticity of a cell is the superconductin
current circulating around it. The ground-state phase c
figuration is then transformed into a pattern, which is cal
the ground-state vortex lattice. Figure 1~a!, shows the vortex
lattice of the f51/4 ground state, due to Teitel an
Jayaprakash~TJ!.4

Laboratory experiments5 and computer simulations,3,4

along with theoretical considerations,6–8 indicate that for ra-
tional frustration factorsf5p/q, the basic unit of the
ground-state formation is a square havingq cells on its edge.
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There are also cases where this basic unit is larger and
2q cells to an edge. From these studiesf takes on another
meaning; it represents the ratio of the cells having large
culation to the total number of cells in the basic unit. A lar
circulation cell, usually called a vortex, is actually a hig
energy cell, if the sum of bond energies is considered. T
ground state is an orderly arrangement of few high-ene
cells amongst many low-energy cells.

Here we study the minimum set of phases required
generate the ground state, hence the relation among
phases that compose the minimum energy vortex lattice.
conjecture that local minima of Eq.~1!, could be generated
from a minimal set via a kind of shift map. The manife
order of the ground-state vortex lattice, as well as other lo
minima, is encoded in phase correlations~‘‘symmetries’’! of
a structure having a much smaller size than the basic un

We start by constructing a local minimum off56/13; the
choice is made due to the difficulty of obtaining it using t
standard methods. It is known that its ground state belong
the class of vacancy vortex lattices. The idea of a vaca
lattice and the discovery of its generic structure is due
Straley.9 When the density of vortices is near its maximu
value, i.e., f51/2, the system seems to prefer an orde
arrangement of ‘‘holes’’ against a checkerboard backgrou
The vorticity of a hole or vacancy is what is expected of t
negative vortex cell, however the four neighboring ce

FIG. 1. Ground-state vortex lattice unit cells forf51/4: ~a! TJ
ground state,~b! KSB ~Korshunov-Straley-Barnett! ground state;
broken lines indicate bonds carrying zero current. In~b! the phase
configuration is also shown, tanf52A2. To find the configuration
degenerate with it, start withu1,15u2,150, u3,15u4,152f, and
a53p/4.
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FIG. 2. This one-dimensional vortex lattice
used to generate the 6/13 vacancy vortex latt
of the ground state,n55 anda50.
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which also have negative vorticity, are of slightly less circ
lation. Except for such places, there is a checkerboard
tern. To fit such a pattern, the structure must be of even e
For the present case, the density is 1/26 less than the m
mum. This is exactly the density of vacancies in t
26326 lattice.

Now, consider a lattice that has 26 cells in the form o
ladder. We intend to minimize the energy of this lattice wh
f56/13. The boundary conditions we require are, perio
along the ladder, and open along the rungs. We use Lan
gauge, so that only vertical bonds~i.e., the rungs of the lad-
der! carry the vector potential. The usual way of finding th
ground state is application of the Metropolis Monte Ca
algorithm; we, however, equip the algorithm with the co
straint

u$ i1n%, j115u i , j . ~3!

In Eq. ~3!, and in what follows,i denotes across andj de-
notes up; also,$ i1n%5( i1n)modq. Hence, we have estab
lished a one-to-one relation between the top row and
bottom row of phases~for a ladderj51). Usingn55, the
resulting vortex lattice is given in Fig. 2.

The idea of constructing the whole vortex lattice is tak
from the phenomenon of crystal growth. A crystal is grow
from what is called the seed. The seed crystal is a minim
energy, minimum instruction set structure which has sing
out certain symmetries for the growth of the large cryst
We intend to ‘‘grow’’ the 6/13 minimum energy vortex lat
tice using the lattice of Fig. 2 as its seed. The vortex lattice
grown one row at a time, keeping close to the minimum
the assembly at each stage. We call the one-dimensi
~1D! vortex lattice of Fig. 2 a generating lattice.

Let us see the ‘‘symmetry’’ in the generating lattice. T
do this, consider three rows of phases built according to

u$ i1n%,25u i ,11a, ~4a!

u$ i1n%,35u i ,21a22p f n, ~4b!

where a is an arbitrary constant. The above relations a
written in the Landau gauge. The term involvingf in Eq.
~4b!, guarantees that first row of vertical bonds shares gau
invariant phase differences with the second row of verti
bonds shiftedn units to the right~Fig. 3!. Due to the Landau
gauge, the same statement is easily seen to hold for the t
rows of horizontal bonds. Hence, if Eq.~4a! has resulted in a
vortex lattice~similar to that of Fig. 2!, then the same vortex
lattice is formed by the second and third rows of phases, o
shiftedn units to the right, as shown in Fig. 3.

The basic idea of constructing the complete vortex latti
is to use the vortex translation operations of Eq.~4! to shift
the vortex lattice of a row byn units in the row above it. In
the sense that the generating lattice could be any of the r
of the whole lattice, we see that the symmetry of the gen
ating lattice of Fig. 2, withn55, is to form a complete
lattice with the property that each row of vortices is repea
in the row above it, only shifted 5 units to the right. Th
translation operation is generalized into the main result
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u$ i1n%, j115u i , j1a2~ j21!2p f n, j51,2, . . . . ~5!

After construction of the vortex lattice, in our case when
26326 cell structure is formed, we quench it using the usu
Metropolis Monte Carlo~MC! routine. The final product has
energy of about21.3054J per site, and its structure is simi
lar to that of f55/11 given in Ref. 9. Withn519, the gen-
erating lattice looks the same as Fig. 2, but has a differ
phase configuration; the vacancies end up closer togethe
average, and energy per site is slightly higher,21.3031J.

The remarkable finding of our study is that the phase c
relation imposed in the beginning, is preserved after the v
tex lattice is quenched. This is the important result of th
study.

We can offer a heuristic argument for this result. With
constraint such as Eq.~3!, it is no longer true that energy
minimization corresponds to current conservation at ea
site. However, energetically each site is at a local minimu
relative to its nearest neighbors. The shift map defined
Eq. ~5! has the property of replicating a site along with i
neighbors, and maintaining the corresponding bond curre
The product is a configuration of phases where each phas
inside a local potential well, but not at its bottom; becau
Kirchoff’s current law does not yet hold at each site. On
after the system is quenched do we have a local minim
state. The experiments show that quenching atT50.01 J/k
reduces energy per site by about 0.11J to 0.28J, indicating
that the constructed vortex lattice had been in a metasta
state, with its true temperature close to the quenching te
perature. Therefore, only specially ordered arrangement
vortices constitute the states of local minima. In other wor
only stable commensurate configurations are importa
which could lend support to the TJ conjecture.4

Whenn51, the vortex lattices are called staircase stat
and there is a rigorous mathematical proof for the abo
finding due to Halsey.7 The f51/4 staircase state, con
structed by the plan described is given in Fig. 4; its energy
about 21.306(3)J per site. Halsey’s analysis give
21.30656J. The discrepancy is small enough to be confide
that more MC steps and lower temperatures will result
more significant figures.

The constanta in the shift map, Eq.~5!, serves the same
purpose asa in Halsey’s analysis, i.e.,a is set by energy
minimization; in our case by the quenching process. In g
eral, quenching does not preserve the shift map~5!, even
though the phase configuration could still be approximat
obeyed, and the vortex lattice preserved.10 Our studies lead
us to conjecture that: ground states fall in the class of lo

FIG. 3. The first row of vortices is shifted by seven units in th
row above, by using the vortex shift maps of Eq.~4!. Bonds carry-
ing same current are shown for one of the vortices;n57.
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FIG. 4. The Halsey staircase local minimum forf51/4; n51.

FIG. 5. If the stack of shifted 1D vortex lattices is to leave t
phase configuration intact, as energy is minimized in the quenc
process, each site must be in its local minimum before quench
Therefore currents into each site of the complete vortex lattice m
sum to zero, to begin with. This implies that the generator sho
obey Eq.~6!. Here, the currents that participate in that equation
indicated for one of the sites. Compare with Fig. 3.

FIG. 6. The 1D generator vortex lattice off56/17. The ground-
state vortex lattice is given in Fig. 7 of Ref. 3,n513, energy per
site is 21.2902J. Broken lines show bonds with zero gaug
invariant phase differences.

FIG. 7. A local minimum off56/17, n56, energy per site is
21.2634J.
minimum vortex configurations which preserve the sh
map. Then the generating lattice must have the property~see
Fig. 5!

( I ~ i ,1!5I $ i1n% , i51, . . . ,q, ~6!

stating that, the net current into the site (i ,1) must equal the
current in the vertical bond ($ i1n%,1)2($ i1n%,2). So to
form local minimum configurations~instead ofq2 phases!,
one needs the parameters of the shift map,a andn, and the
startingq phases obtained by Eqs.~6!.11

For q3q periodicity, we must have

qa2@~1/2!~q21!q#2p f n52pm, ~7!

wherem is an integer. Then it easily follows that forq being
even, whenn is odd, qa5(2k11)p, k50,1,2,. . . , and
when n is even,qa52kp. For q being odd,qa52kp. It
also can be shown that different values ofk do not amount to
new configurations, but to a shift in thej coordinate. Hence
for n51 we geta5p/q when q is even, anda50 when
q is odd; results obtained by Halsey.7

Straley and Barnett3 have found that for severalf values,
the ground state has a larger thanq3q unit cell. Of those
f values, we have studiedf51/4, 1/6, 3/10, 3/14, 5/16, 5/18
We find that in each case the phase configuration rotate
p/2 or 3p/2 afterq/2 shifts, at which point the vortex con
figuration repeats, i.e., the basic unit of formation in ea
case isq32q. We also find that in each casen52.12 A
relation similar to Eq.~7! givesa5p/q or 3p/q. Now, con-
sidering consecutive-row phase rotation,u$ i1n%, j112u i , j ,
we note that each choice ofa has its own set of phase rota
tions for variousj . The conclusion is that suchq32q states
are doubly degenerate. In Fig. 1~b! we have shown the
a5p/4 phase configuration forf51/4 Korshunov-Straley-
Barnett ground state. The exact energy per site of
f51/4 ground state is2(31A3)J/2A3.
The generator off56/17 ground state, havingn513, is

given in Fig. 6. As Eq.~6! implies, it is as if we had taken
such a structure, with its phase configuration, out of
ground-state vortex lattice. The complete vortex lattice of
ground state is shown in Fig. 7 of Ref. 3; we find its ener
to be 21.2902J per site. A local minimum off56/17 is
given in Fig. 7;n56.

We should emphasize that there are other ground st
~or local minima! which do not belong to the 1D generato
class. For instance, the TJ ground state off51/4 @Fig. 1~a!#,
the 5/14 ground state,3 or the 7/15 vacancy lattice groun
state.9 In such cases more complicated generators are ne
~e.g., a two-row vortex lattice as the generator of the
f51/4 ground state!.
In summary, we have helped to reveal the phase struc

of the local minima of the frustratedXYmodels with rational
frustration. Our study should be useful in developing a p
ning potential model for the vortex lattice of Josephso
junction arrays in a magnetic field.

I am grateful to Professor Joseph P. Straley whose crit
comments on the manuscript were instrumental to the
covery of some of the results. I also thank Shahla Manso
Hamlabadi for drawing the figures.
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10This is directly related to the question of why ground states~or
local minimum states! almost always haveq3q unit cells. For
example, a 7314 vortex lattice off55/14, suffers from a strain
due to the boundary condition imposed on it. The phase confi
ration cannot follow the shift map exactly and minimize ener
at the same time; vortices remain in their places. A 2314 lattice
of f55/14 ~Fig. 3!, on the other hand, is kept together solely
boundary condition effects.

11The tendency of the one row lattice to form a lattice according
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f , as a function ofn is an open question. For a givenq there are
q/2 ~for evenq) or (q21)/2 ~for odd q) distinct n values. (n
and q2n give mirror image vortex lattices.! In practice it is
easier to use the shift-map-equipped MC algorithm on the
row lattice followed by quenching of the constructed vortex l
tice, rather than actually solving Eqs.~6!. For a givenn there
could be more than one solution. It could be that a givenn
produces a vortex lattice, that when shifted, results in a confi
ration with nearest-neighbor vortices. These are high-ene
states. The choices forn giving low-lying states are few.

12In general, if aq3q8 unit cell is to be found, both the vortex
configuration and the phase configuration must repeat afteq8
shifts. In the vacancy lattices of the type discussed here,
phase periodicity isq, but the vortex periodicity is 2q. Equation
~7! gives the condition for phase periodicity; for vortex perio
icity we need$m1nq8%5m, wherem is an integer not greate
than q. For example, f55/14 with q852 and n57, has
a5p/2 and a 22212 generator~numbers give vortex spacings!;
its energy per site is21.254J. For havingq32q periodicity, as
described in the text, i.e., withq/2 vortex periodicity, evenn
would do. For f55/18 and n54 the energy per site is
21.280J; the generator has 21514 structure. Whenn52, the
energy is21.335J, and the structure becomes 32332. It rema
to be explained whyn52 results in the ground state inq32q
lattices.


