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Exciton-phonon resonance in the continuum absorption of bulk semiconductors
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In polar semiconductors, resonances occur due to the interaction of excitonic states~discrete and continuous!
with excitations involving virtual excitons plus a longitudinal-optical~LO! phonon. A theory is presented
which starts with bare electrons, holes, and phonons, interacting via Coulomb attraction and Fro¨hlich coupling.
Within a self-consistent one-phonon treatment, a nonlinear and nonlocal Schro¨dinger equation for the exciton
Green’s function is derived. Only after extracting a Haken type effective potential as zeroth-order, perturbation
theory with respect to the dynamical nature of the exciton-phonon interaction can be applied. Accurate mea-
surements of the exciton absorption continuum in CdTe and, recently, in GaAs display around the resonance
energy a slight change of slope which can be quantitatively explained by the present exciton-phonon model.
For GaAs, first-order perturbation theory with respect to exciton-LO-phonon coupling is found sufficient,
whereas for CdTe, a full solution of the nonlocal exciton equation is necessary.@S0163-1829~97!07739-4#
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I. INTRODUCTION

A peculiar weak feature in the excitonic continuum h
been observed in several optical experiments with bulk se
conductors which appears at approximately one-longitudi
optical- ~LO-! phonon energy above the exciton line. W
mention absorption measurements in ionic crystals as Zn1

MgO, and BeO,2 reflectivity and transmission experimen
on CdS, CdSe, and CdTe,3,4 low temperature laser-excite
photoemission of InP,5 CdTe, CdxZn12xTe and n-type
CdTe:I epilayers,6 and an ellipsometric study o
ZnxCd12xSe7 among the different systems and experimen
configurations. In GaAs, differential transmission spec
with femtosecond time resolution8 and high-resolution ab
sorption spectra9 have been reported recently. In all the
cases a clear experimental deviation from the stand
~phonon-free! Elliott theory10 has been seen and related
the exciton-LO-phonon coupling. The observed struct
was assigned to a resonance due to the interaction of e
tonic states~discrete and continuous! with excitations involv-
ing virtual excitons plus one LO phonon. On the theoreti
side, an exciton-phonon complex for the 2s state was con-
structed using a variational method and single-phonon 1s-2s
coupling in Ref. 11. The same treatment forp-states was
given in Ref. 12. In both cases the exciton binding energ
assumed to be close to the LO-phonon energy. A genera
tion to exciton continuum states has been elaborated
Sak13 using first-order perturbation theory for the excito
Green’s function.

In this paper we derive a theoretical description for t
optical response including the exciton-phonon resona
~XPR! which goes beyond perturbation theory. It is show
that the inclusion of polaron effects in the form of Haken
potential14 is crucial for a correct description of the excito
absorption in polar semiconductors. In this way earlier
tempts using plain perturbation theory13 or assuming a diag
onal self-energy15 are substantially improved.
560163-1829/97/56~15!/9488~8!/$10.00
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The outline of the paper is as follows. In Sec. II, th
concept of the exciton Green’s function is introduced, a
basic relations are given to evaluate the linear optical
sponse. The exciton-phonon problem is outlined in Sec.
starting with a Hamiltonian for electrons, holes, and L
phonons interacting via the bare Coulomb potential and
Fröhlich coupling. In Sec. IV a one-phonon treatment is e
tablished and improved using diagrammatic arguments, e
ing up with a self-consistent Schro¨dinger equation for the
exciton Green’s function. In Sec. V a modified static Haken
potential is derived which serves as a starting point for
vestigating the dynamical aspect of the exciton-phonon c
pling. Results for CdTe and GaAs are presented in Sec
and compared with available experimental data. The num
cal procedure used for calculating the exciton Green’s fu
tion is described in the Appendix.

II. GREEN’S FUNCTION FOR EXCITON SPECTRA

In electron-hole relative space, the Wannier-Mott excit
is defined as the solution of the three-dimensional Sch¨-
dinger equation

S Eg02
\2

2m
D r2

e2

e0r Dfn~r !5Enfn~r !, ~1!

wherem is the reduced effective mass (m215me
211mh

21),
me (mh) the bare electron~hole! band mass,e0 the static
dielectric constant,Eg0 the direct energy gap at theG point,
andfn(r ) the internal exciton wave function of thenth state
with energyEn .

Dropping a prefactor which includes, e.g., the interba
momentum matrix element, the absorption at frequencyv is
related to the imaginary part of the linear optical respons

Im x~v!5(E
n
ufn~r50!u2pd~\v2En!, ~2!
9488 © 1997 The American Physical Society
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56 9489EXCITON-PHONON RESONANCE IN THE CONTINUUM . . .
and consists of a sum over bound states atEn5Eg02R0 /n2

and the Sommerfeld-enhanced continuum,10

Im x~v!; (
n51

`
2

n3 d~E11/n2!1
Q~E!

12exp~2p/AE!
, ~3!

with E5(\v2Eg0)/R0 and the Heaviside step functio
Q(E). The 1s exciton binding energy equal
R05m/e0

2313.6 eV.
If the exciton continuum is involved, the explicit use

the corresponding scattering wave functions is inconveni
Easier to handle is the exciton Green’s function~or resol-
vent!

G0~r ,r 8,z!5(E
n

fn* ~r !fn~r 8!

En2\z
~4!

at complex energy\z5\v1 ig. The functionG0 obeys the
inhomogeneous exciton Schro¨dinger equation

S Eg02
\2

2m
D r2

e2

e0r
2\zDG0~r ,r 8,z!5d~r2r 8!, ~5!

and the optical response including a Lorentz broadening
follows from

x~z!5G0~r→0,r 8→0,z!. ~6!

The limit has to be taken carefully since the real part of
Green’s function diverges atr→0. A proper regularization
procedure has been described in Ref. 16. For electron-
potentials which differ from the simple Coulomb law, n
analytic solution is possible. However, the Green’s funct
can be computed very efficiently16 as outlined in the Appen
dix.

III. EXCITON-PHONON HAMILTONIAN

We add to the electron-hole Hamiltonian with Coulom
attraction the Fro¨hlich interaction with ~dispersionless!
longitudinal-optical phonons of energy\v0 ,

H5Eg`2
\2

2me
D re

2
\2

2mh
D rh

2
e2

e`ure2rhu

1(
q

\v0S aq
†aq1

1

2D1(
q
A4pe2

hq2

\v0

2

3~eiqre2eiqrh!~aq
†1a2q!, ~7!

whereh215e`
212e0

21 determines the strength of the pol
coupling, andaq

† (aq) creates~annihilates! a LO phonon at
wave vectorq. The electron~hole! position coordinate is de
noted byre (rh), and a unity normalization volume is as
sumed. Note that the bare energy gapEg` and the electronic
background screening constante` enter the Hamiltonian.
The experimentally relevant energy gap and the full scre
ing contain polaron contributions which follow from th
Fröhlich interaction and have to be calculated explicitly
detailed below. We stress this point since earlier investi
tions of the exciton-phonon resonance were incorrect in
respect.13,15
t.

e

le

n

n-

-
is

Introducing relative and center-of-mass~COM! coordi-
nates as

re5R1
mh

M
r , rh5R2

me

M
r , ~8!

the Hamiltonian is cast into

H5H`1(
q

\v0S aq
†aq1

1

2D1(
q

Mq~r !eiqR~aq
†1a2q!.

~9!

Here, we have defined the phonon-free exciton Hamilton
H`,

H`5Eg`2
\2

2m
D r2

\2

2M
DR2

e2

e`r
, ~10!

with exciton massM5me1mh , and the coupling function
Mq(r ) is introduced as

Mq~r !5A4pe2

hq2

\v0

2
~eiqrmh /M2e2 iqrme /M !. ~11!

The corresponding exciton Green’s functionĜ of the
Hamiltonian ~9! is defined as a resolvent operator of t
equation

~H2\z!Ĝ51̂, ~12!

and the optical response function can be expressed as

x~z!5E dRdR8^0uĜ~r50,R,r 850,R8,z!u0&. ~13!

Since we are interested in the linear response or optica
electric function at zero temperature, we have to project o
the phonon vacuum stateu0&. From Eq.~12! follows that the
function

uĈ~rR ,z!&5E dR8Ĝ~r,R,r 850,R8,z!u0& ~14!

is the solution of

~H2\z!uĈ~r ,R,z!&5d~r !u0&, ~15!

and gives the response function directly as

x~z!5E dR^0uĈ~r50,R,z!&. ~16!

IV. SELF-CONSISTENT ONE-PHONON TREATMENT

If written in a phonon number representation, Eq.~15!
forms an infinite hierarchy of equations where ea
n-phonon state is coupled to (n11) and (n21). As the
main approximation being valid for moderate excito
phonon coupling we restrict ourselves to the subspace
zero- and one-phonon states only, that is17

uĈ~r,R,z!&5C~0!~r,R,z!u0&1(
q

Cq
~1!~r,R,z!aq

†u0&,

~17!
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9490 56R. ZIMMERMANN AND C. TRALLERO-GINER
where C (0) (Cq
(1)) is the zero-~one-! LO-phonon exciton

wave function. Using the above expression foruĈ& and Eqs.
~9! and ~15!, we obtain only two coupled equations

~H`2\z!C~0!~r,R,z!1(
q

Mq* ~r !e2 iqRCq
~1!~r,R,z!

5d~r !, ~18!

~\v01H`2\z!Cq
~1!~r,R,z!1Mq~r !eiqRC~0!~r,R,z!50,

~19!

which can be solved as follows. The bare exciton Gree
function G`(r,R,r 8,R8,z) satisfies the equation

~H`2\z!G`~r,R,r 8,R8,z!5d~r2r 8!d~R2R8!. ~20!

Hence, Eq.~19! can be solved as

Cq
~1!~r,R,z!52E dr 8dR8G`~r,R,r 8,R8,z2v0!Mq~r 8!

3eiqR8C~0!~r 8,R8,z! ~21!

and inserted into Eq.~18! to form a closed equation for th
zero-phonon exciton wave function.

Since we have assumed a parabolic dispersion for e
trons and holes, the COM motion factorizes as a plane w
with the kinetic exciton energyeQ[\vQ5\2Q2/2M . Con-
sequently, the bare Green’s function can be written in
form

G`~r,R,r 8,R8,z!5(
Q

eiQ~R2R8!G`~r ,r 8,z2vQ!,

~22!

where the right-hand side Green’s function acts in relat
space only. For the optical response, we needQ50 only
~long-wave limit of the light field!. Therefore,C (0)(r,R,z)
can be taken independent ofR, and using Eqs.~18!, ~21!,
and ~22!, we end up with

S Eg`2
\2

2m
D r2

e2

e`r
2\zDC~0!~r ,z!

2(
q
E dr 8Mq* ~r !G`~r ,r 8,z2v02vq!Mq~r 8!

3C~0!~r 8,z!5d~r !. ~23!

The response is now simply given by

x~z!5C~0!~r50,z!. ~24!

Without exciton-phonon interaction, the solution of E
~23! would beC (0)(r ,z)5G`(r ,r 850,z). Figure 1~a! shows
the diagrammatic Dyson equation for the exciton Gree
function G(r ,r 8,z) of Eq. ~23!. Note that in the coupling
term thebare Green’s functionG`(r ,r 8,z) enters. This in-
consistency can be cured by adding further diagrams to
Dyson equation of Fig. 1~a!. Then, all Green’s functions re
fer to the same level of approximation. Technically,G` in
Eq. ~23! has to be replaced by the full Green’s functionG,
’s

c-
ve

e

e

s

e

S Eg`2
\2

2m
D r2

e2

e`r
2\zDG~r ,r 9,z!

2(
q
E dr 8Mq* ~r !G~r ,r 8,z2v02vq!Mq~r 8!

3G~r 8,r 9,z!5d~r2r 9!. ~25!

The second diagram in Fig. 1~c! is the lowest-order nested
diagram, the sequence of which has to be summed up
convert the Dyson equation of Fig. 1~a! into Fig. 1~b! @or Eq.
~25!#. Crossing-type diagrams@Fig. 1~d!# are not included
here. They would play the role of vertex corrections.18

The nonlinear and nonlocal integral equation~25! is
called a self-consistent one-phonon approximation. It is
actly the self-consistent treatment which places the excit
phonon resonance at the correct energetic position: IfG has
a pole at the exciton energyEn which includes the polar
interaction, then the self-energy term@sum overq in Eq.
~25!# exhibits a singularity just atEn1\v0 .

V. PERTURBATION AROUND THE HAKEN POTENTIAL

For a weakly polar material and, in particular, if the e
citon binding energy is small with respect to the phon
energy,H` is not a good start for perturbation theory. T
derive an effective electron-hole interaction which includ
already some part of the polar interaction, we use the lar
frequency limit of the Green’s function,

G~r ,r 8,z!→
d~r2r 8!

2\z
, ~26!

in the self-energy term of Eq.~25! which gives the local
equation,

FIG. 1. ~a! Diagrammatic Dyson equation for the excito
Green’s functionG ~hatched block! given by Eq.~23!. The LO-
phonon propagator is depicted as wavy line, and the self-ene
contains the bare exciton Green’s functionG` ~thin line!. ~b! Dia-
grammatic form of the improved Dyson equation~25! whereG` is
replaced by the full Green’s functionG in the self-energy.~c!
Second-order diagrams taken into account to get the Dyson e
tion ~b!. ~d! Crossed diagrams which are not included in the Dys
equation~b!.
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S Eg`2
\2

2m
D r2

e2

e`r
2\z2(

q

uMq~r !u2

\v01eq
DGH~r ,r 9,z!

5d~r2r 9!. ~27!

The additional term is

2(
q

uMq~r !u2

\v01eq
5

e2

hr
~12r /r 02e2r /r 0!, ~28!

with the polaron radiusr 0
25\/(2Mv0). Equation~28! con-

tains a constant part which forms the polaron shift of the b
gap,

Eg05Eg`2e2/~hr 0!. ~29!

The r -dependent terms can be combined with t
e`-screened Coulomb potential into

VH~r !52
e2

r
@e0

211~e`
212e0

21!e2r /r 0#, ~30!

which is close to the well-known Haken potential14 and in-
terpolates between thee0 exciton at low energies/large dis
tances and thee` exciton at high energies/small distance
The corresponding Green’s function obeys

S Eg02
\2

2m
D r1VH~r !2\zDGH~r ,r 9,z!5d~r2r 9!.

~31!

Obviously, the Haken potential fails to display any excito
phonon resonance feature since it is basically a static q
tity. However, it serves as a suitable starting point to so
the XPR problem. This is implemented by adding and s
tracting the term~28! in Eq. ~25!

S Eg02
\2

2m
D r1VH~r !2\zDG~r ,r 9,z!2(

q
E dr 8Mq* ~r !

3FG~r ,r 8,z2v02vq!2
d~r2r 8!

\v01eq
GMq~r 8!G~r 8,r 9,z!

5d~r2r 9!. ~32!

Writing the resolvent and the internald function as sum over
states,19 we get

S Eg02
\2

2m
D r1VH~r !2\zDG~r ,r 9,z!

2(
qn

E dr 8Mq* ~r !fn* ~r !F 1

\v01eq1En2\z

2
1

\v01eq
Gfn~r 8!Mq~r 8!G~r 8,r 9,z!5d~r2r 9!,

~33!

where wave functionsfn and eigenvaluesEn refer to thefull
problem now. For weak coupling as applicable to GaAs,
first order perturbation theory with respect to the self-ene
difference@sum overq andn in Eq. ~33!# is expected to work
well. Then, combining Eqs.~13!, ~31!, and~33! the response
function is given approximately by
e

.

-
n-
e
-

e
y

x~z!5GH~0,0,z!1(
qn

E drMq* ~r !GH~0,r ,z!fn* ~r !

3F 1

\v01eq1En2\z
2

1

\v01eq
G

3E dr 8Mq~r 8!GH~0,r 8,z!fn~r 8!, ~34!

where fn and En have to be taken inHaken quality now.
Further, a reduction of the sum to the dominant bound s
n51s is expected to give the main resonance feature.

In Ref. 13 a similar expression forx(z) using perturba-
tion theory was obtained, but the result differs from Eq.~34!
in two respects: the Coulomb Green’s functionsG0 instead
of GH has been used, and the second term in the sq
bracket of Eq.~34! was missing. Our numerical calculation
have shown that the first approximation is not a bad o
since for weakly polar material the ‘‘Haken’’ quantities a
rather close to the ‘‘static screened’’ ones~but differ mark-
edly from the polaron-free caseG`). However, the failure to
subtract the second energy denominator would give a la
change in the bound state region. In contrast, our proced
was chosen to give a small correction nearE1s5\v. This
would not have been achieved using the original Hak
potential14 which contains a sum of contributions with ele
tron and hole polaron radiir e,h5\/(2me,hv0). In our frame-
work, this potential form could be obtained by taking th
free-particle Green’s function instead of the high-frequen
limit in Eq. ~25!.

VI. RESULTS AND COMPARISON WITH EXPERIMENT

We begin with CdTe where accurate absorption meas
ments at liquid nitrogen temperature have been repo
some time ago by Dillingeret al.3,4 Details on the applied
numerical procedures for the Green’s function and the o
cal response can be found in the Appendix. The parame
used are listed in Table I. The valence band structure con
of heavy- and light-hole bands which are degenerate at thG
point. Following Sak13 we adopt a simplified single-valence
band approximation with a density-of-states mass giv
large weight to the heavy-hole component. We use this m
for the COM motion of the exciton. However, the intern

TABLE I. Semiconductor parameters used in the numerical c
culations.

Parameter CdTe GaAs

e0 10.0a 12.4b

e` 6.0a 10.7b

me /m0 0.11a 0.067b

mh /m0 0.5a 0.38c

m/m0 0.064d 0.046
\v0 21.0 meVa 36.7 meVb

R0 10.0 meVa 4.0 meVb

aReference 13.
bReference 15.
c(mh /m0)215g122g2 with Luttinger parametersg1 andg2 .
dFrom the fit~see text!.
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9492 56R. ZIMMERMANN AND C. TRALLERO-GINER
exciton motion is governed by the diagonal component of
Luttinger Hamiltonian ~reduced effective massm21

5me
211g1 /m0 , where g1 is the Luttinger parameter!,

which gives rise to degenerate heavy- and light-hole exc
states. We have chosen to usem as an adjustable paramet
for getting an exciton binding energy in agreement with
experimentally accepted value ofEB510 meV. We found
m50.064m0 resulting in a e0-exciton binding energy
R058.7 meV which is then increased by the Haken poten
towards the final 10 meV. Thus, even in the polar mate
CdTe, the difference between thee0 exciton and the Haken
screened exciton is not very large. This can be seen in F
where the calculated exciton absorptiona;Im x is dis-
played for the different levels of approximation. The hyp
thetical e`-exciton spectrum differs markedly by~missing!
polaron shift, larger binding energy, and oscillator streng
Clearly seen is the interpolating character of the Haken sp
trum which approaches thee` curve at large energies.

The dynamical exciton-LO contribution shows up as
broad feature on top of the Haken spectrum around the r
nance energyE1s1\v05Eg0111 meV, but no clear struc
ture is seen. This contrasts a simple Fano resonance a
ment where the interaction of a bound state with a continu
leads to a strong dispersive modification of the spectrum.
note that in the present case, the virtual state is a continu
too, due to the COM dispersionE1s1\v01eQ . We have
checked that the overall Lorentz damping used (g54 meV)
is not responsible for the absence of sharp structures. Fi
3 shows the importance of taking the full continuum r
sponse@calculated from Eq.~33! with n51s# in comparison
with the first order perturbation theory, Eq.~34!. The struc-
ture is smeared out in the full calculation. The results sho
in Fig. 2 for the excitonic absorption including the excito
phonon resonance are in good agreement with the exp
mental data of Ref. 3 which are reproduced in Fig. 4.

In Fig. 5 we show the calculated exciton absorption
bulk GaAs using the different screening potentials. Here,

FIG. 2. Excitonic absorptiona;Im x in bulk CdTe in depen-
dence on energyE5\v2Eg0 . Calculated spectra for baree`

screening~dot-dashed curve!, static e0 screening~dashed curve!,
with the Haken potential~thin solid curve!, and full calculation
including the XPR~thick solid curve!. A Lorentz broadening of
g54 meV is used for all curves.
e

n

e

l
l

2

-

.
c-

o-

gu-
m
ut
m,

re
-

n

ri-

r
n

exciton reduced mass ofm50.046m0 follows from the Lut-
tinger parameterg156.85. As in the CdTe case the statical
(e0) screened exciton differs not much from the Haken ca
whereas the bare exciton spectrum is displaced towa
higher energies by the polaron shift. In GaAs the Fro¨hlich
coupling parameter is very small and equal to 0.068 for el
trons, so that the XPR causes only a rather weak spe
feature above the gap hardly visible in both the experime

FIG. 3. Absorption differenceDa;Im@x(z)2xH(z)# between
the XPR and the Haken potential result for CdTe. First-order p
turbation theory according to Eq.~34! ~dashed curve! is compared
with the full calculation, Eq.~33! ~solid curve!. The energetic po-
sition of the exciton-LO-phonon resonance is indicated by an arr

FIG. 4. Measured absorption coefficient of bulk CdTe
T593 K ~after Ref. 3!.
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56 9493EXCITON-PHONON RESONANCE IN THE CONTINUUM . . .
and calculated spectra. It can be seen more pronounced
focus on the energy derivative of the absorptio
a8(E)/a(E). This spectrum is displayed in Fig. 6 for th
Haken potential and the full result based on Eq.~34!. The
dynamical exciton-LO-phonon contribution shows up in
slight but rather abrupt change in the slope around the r
nance energyE1S1\v0 . Experimental absorption data for
4.2 mm thick high-purity GaAs crystal have been nume
cally differentiated and are shown in Fig. 6 as circles.9 The
XPR feature with its kink at 32.8 meV above the gap ene
Eg051.5192 eV compares well with the structure in the c
culated spectrum, both in magnitude and energetic posit
The overall slope of the experimental absorption curve
slightly larger. We believe that this is mainly due to the ba
nonparabolicity effect and/or heavy-light-hole valence ba
mixing in the exciton. Further, the smoothly varying refle

FIG. 5. Excitonic absorptiona;Im x in bulk GaAs in depen-
dence on energyE5\v 2 Eg0 . Calculated spectra are shown fo
bare e` screening~thin solid curve!, static e0 screening~dashed
curve!, and with the Haken potential~thick solid curve!. Lorentz
broadeningg51 meV.

FIG. 6. Energy-derivative of the absorption,a8(E)/a(E), in the
excitonic continuum of GaAs. Circles—experiment atT51.2 K
from Ref. 9, dashed curve—calculated with the Haken poten
solid curve—full calculation including the exciton-phonon res
nance.
we
,

o-

y
-
n.
s
d
d

tance has not been corrected for in the experimental dat
In conclusion, we have developed a theoretical appro

for the exciton-phonon resonance in the absorption coe
cient above the gap in bulk semiconductors. Using an e
ton Green’s function formalism, the weak structure seen
the exciton continuum of several semiconductors has b
shown to result from the interaction of continuum states w
the virtual excitation of exciton ground state plus one L
phonon. We stress that the reformulation in terms of an
fective Haken potential is necessary before using pertu
tion theory. The calculated excitonic absorption agrees w
with experimental data for CdTe and GaAs. This good agr
ment between theory and experiment underlines that
present treatment gives a reliable description of the exc
continuum absorption in the vicinity of the exciton-phono
resonance.
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APPENDIX

Numerical procedures to calculate the exciton Gree
function in real space have been developed earlier by on
the present authors.16 For the sake of completeness w
present the relevant material in this Appendix, extending
treatment given in Ref. 16 to anonlocal Schrödinger equa-
tion. Equation~33! is rewritten as

S Eg02
\2

2m
D r1VH~r !2\zDG~r ,r 9,z!

2E dr 8W~r ,r 8,z!G~r 8,r 9,z!5d~r2r 9!, ~A1!

with the kernel (a5mh /M , b5me /M ),

W~r ,r 8,z!5(
n

fn* ~r !@wn~ar2ar 8!1wn~br 82br !

2wn~ar1br 8!2wn~2br2ar 8!#fn~r 8!.

~A2!

The integration overq could be performed analytically yield
ing

wn~r !5
e2

2hr F S r n

r 0
D 2

~12e2r /r n!2~12e2r /r 0!G , ~A3!

with the ~complex and state dependent! polaron radii

r n
25

\2/2M

\v01En2\z
. ~A4!

A decomposition with respect to angular momentum reve
that, in general, differentl components of the Green’s func
tion are coupled. However, if we restrict ourselves ton51s
as an intermediate state, thes component

l,
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G~r ,r 9,z!us5
1

4prr 9
g~r ,r 9,z! ~A5!

obeys a closed equation which reads

\2

2m

]2g~r ,r 9,z!

]r 2 5@Eg01VH~r !2\z#g~r ,r 9,z!

24pr E
0

`

dr8r 8W~r ,r 8,z!g~r 8,r 9,z!

2d~r 2r 9!. ~A6!

Note that we have divided the Green’s function by (rr 9) in
order to remove the first-order derivative. The angular av
age in the kernel,W(r ,r 8,z)5W(r ,r 8,z), can be performed
analytically with

wn~r2r 8!5
e2

2hr F r n
2

r 0
22

r n
3

r 8r 0
2 e2r /r nsinh~r 8/r n!21

1
r 0

r 8
e2r /r 0 sinh~r 8/r 0!G . ~A7!

For r ,r 8, the variablesr and r 8 have to be interchanged.
For the construction of the Green’s function it is sufficie

to determine two linearly independent solutionsX(r ) and
Y(r ) of the corresponding homogeneous equations@dropping
thed function in Eq.~A6!#. If X(r ) is chosen to be regular a
the origin, andY(r ) regular at infinity, the Green’s function
is given by

g~r ,r 9,z!5
X„min~r ,r 9!…Y„max~r ,r 9!…

W @Y,X#
, ~A8!

with the Wronski determinantW @Y,X#5YX82Y8X. To
simplify the expressions, we use from Eq.~A8! onwards
units of thee0 exciton: Bohr radiusa05\2e0 /(me2) and
binding energyR05\2a0

2/2m.
For the optical response@cf. Eq. ~6!# we need the Green’s

function at zero arguments,

x~z!5
1

4p
limr→0

X~r !Y~r !

r 2W @Y,X#
. ~A9!

The series expansion ofX(r ) and Y(r ) at small argument
can be derived as

X~r !5r 1
a

2
r 21O~r 3!, ~A10!

Y~r !5@A~z!1B~z!a ln~r !#X~r !1B~z!1O~r 2!.
~A11!

The logarithmic term in the solutionY(r ) is due to the Cou-
lomb singularity of the potential, here represented by
constanta522e0 /e` . The Wronskian equalsB(z), and
plugging both expansions into Eq.~A9! gives as a final resul

x~z!5
1

4p

A~z!

B~z!
. ~A12!
r-

t

e

Additional terms have been dropped which are diverge
Being real and independent of frequency, they renorma
the background dielectric constant only~see Ref. 16 for a
detailed explanation!.

The coefficientsA(z) andB(z) in Y(r ) @Eq. ~A11!# con-
tain all the information, they have to be determined af
solving the integrodifferential equation

Y9~r !5~Eg01VH~r !2\z!Y~r !

24pr E
0

`

dr8r 8W~r ,r 8,z!Y~r 8!. ~A13!

To do so we discretize the spatial variable in equidist
stepsD. The second order derivative is often discretized
central differences as Y9(r )5@Y(r 1D)1Y(r 2D)
22Y(r )#/D2. This simple form has an error of orderD2,
which can be markedly reduced by implementing

Y~r 1D!1Y~r 2D!22Y~r !5
D2

12
@F~r 1D!1F~r 2D!

110F~r !#, ~A14!

whereF(r ) represents the rhs of Eq.~A13!. The error of this
so-called Numerov scheme20 is of an order ofD4 and allows
us to use a moderate step size. We foundD50.04a0 to be
sufficient. The size of the matrix equation~A14! scales with
the maximumr value used. For calculating, e.g., the excit
ground state, a maximum ofr 154a0 is sufficient. However,
to get a reliable absorption continuum well above the ene
gap, a much larger cutoff is important~we have used
r 258a0!. Additionally, the wave function has to be matche
to the quasiclassical expression there,

Y~r 2!51,

Y~r 22D!5Ak~r 2!/k~r 22D!

3exp$D@k~r 2!1k~r 22D!#/2%, ~A15!

where k2(r )5@Eg01VH(r )2\z#/R0 . The nonlocal part
W(r ,r 8,z), however, is practically zero abover 1 . Therefore,
Eq. ~A14! can be used recursively down tor 1 . Using Simp-
son’s rule for the integral overr 8 in Eq. ~A13!, the remainder
down to r 5D can be treated as a linear matrix proble
Finally, fitting Y(2D) andY(D) with the limiting expression
~A11! provides the complex coefficientsA(z) and B(z)
needed to get the optical response from Eq.~A12!.

For thee0 exciton withV0(r )522/r , an analytic expres-
sion is obtained,21

x~z!52
1

p
@c~121/k!1 ln~k!1k/2#, ~A16!

with c(x) being Euler’s digamma function, an
k25(Eg02\z)/R0 . Equation~A16! can be used to contro
the accuracy of the numerical procedure.
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