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Exciton-phonon resonance in the continuum absorption of bulk semiconductors
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In polar semiconductors, resonances occur due to the interaction of excitoniddisteste and continuous
with excitations involving virtual excitons plus a longitudinal-opti¢al®) phonon. A theory is presented
which starts with bare electrons, holes, and phonons, interacting via Coulomb attraction lliehF@upling.
Within a self-consistent one-phonon treatment, a nonlinear and nonlocald8weo equation for the exciton
Green’s function is derived. Only after extracting a Haken type effective potential as zeroth-order, perturbation
theory with respect to the dynamical nature of the exciton-phonon interaction can be applied. Accurate mea-
surements of the exciton absorption continuum in CdTe and, recently, in GaAs display around the resonance
energy a slight change of slope which can be quantitatively explained by the present exciton-phonon model.
For GaAs, first-order perturbation theory with respect to exciton-LO-phonon coupling is found sufficient,
whereas for CdTe, a full solution of the nonlocal exciton equation is nece$Sy63-182807)07739-4

[. INTRODUCTION The outline of the paper is as follows. In Sec. I, the
concept of the exciton Green’s function is introduced, and
A peculiar weak feature in the excitonic continuum hasbasic relations are given to evaluate the linear optical re-
been observed in several optical experiments with bulk semisponse. The exciton-phonon problem is outlined in Sec. IlI,
conductors which appears at approximately one-longitudinalstarting with a Hamiltonian for electrons, holes, and LO
optical- (LO-) phonon energy above the exciton line. We phonons interacting via the bare Coulomb potential and the
mention absorption measurements in ionic crystals as ZnOFrohlich coupling. In Sec. IV a one-phonon treatment is es-
MgO, and BeC: reflectivity and transmission experiments tablished and improved using diagrammatic arguments, end-
on CdS, CdSe, and CdPé,low temperature laser-excited ing up with a self-consistent Schtimger equation for the
photoemission of InP, CdTe, CdZn,_,Te and n-type exciton Green’s function. In Se¥ a modified static Haken
CdTe:l epilayer§, and an ellipsometric study of Potential is derived which serves as a starting point for in-
Zn,Cd,_,S€ among the different systems and experimentalvestigating the dynamical aspect of the exciton-phonon cou-
configurations. In GaAs, differential transmission spectraPling. Results for CdTe and GaAs are presented in Sec. VI
with femtosecond time reso|uti6rand high-reso|ution ab- and Compared with available eXperimental data. The numeri-
sorption specttahave been reported recently. In all thesecal procedure used for calculating the exciton Green’s func-
cases a clear experimental deviation from the standarfion is described in the Appendix.
(phonon-freg Elliott theory'® has been seen and related to
the exciton-LO-phonon coupling. The observed structure 1I. GREEN'S FUNCTION FOR EXCITON SPECTRA
was assigned to a resonance due to the interaction of exci- . ) )
tonic stategdiscrete and continuopwith excitations involv- [N €lectron-hole relative space, the Wannier-Mott exciton
ing virtual excitons plus one LO phonon. On the theoreticall defined as the solution of the three-dimensional Schro
side, an exciton-phonon complex for the &tate was con- JiNger equation
structed using a variational method and single-phorsi24 52 o2
coupling in Ref. 11. The same treatment forstates was (Ego_ — A= —| pn(1)=Enbn(T), (1
given in Ref. 12. In both cases the exciton binding energy is 2 €ol
assumed to be close to the LO-phonon energy. A generaliza-
tion to exciton continuum states has been elaborated b

Sak® using first-order perturbation theory for the exciton' lecti he di )
Green’s function. dielectric constantiz,, the direct energy gap at tHe point,

In this paper we derive a theoretical description for the@1d¢n(r) the internal exciton wave function of tmh state

optical response including the exciton-phonon resonanc®ith energysy .

(XPR) which goes beyond perturbation theory. It is shown DroPPing a prefactor which includes, e.g., the interband
that the inclusion of polaron effects in the form of Haken's MOMentum matrix element, the absorption at frequenay

potentiat* is crucial for a correct description of the exciton "€lated to the imaginary part of the linear optical response,
absorption in polar semiconductors. In this way earlier at-

tempts using plain perturbation the&hpr assuming a diag- Im X(w):iw (r=0)27r8(hw—E&,) )
onal self-energ¥’ are substantially improved. non n

hereu is the reduced effective masg (*=m_*+m; ),
- (M) the bare electrorthole) band massg, the static
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and consists of a sum over bound state§,at Ego—Ro/n2 Introducing relative and center-of-mas6OM) coordi-
and the Sommerfeld-enhanced continutfm, nates as
502 O(E M, Me
Im x(w)~ >, — S(E+1/n?)+ € (3) re=R+r, m=R-4rr, (8)

n=1 N 1—exp27/\E)'

with E=(Aw—Eg)/Ry and the Heaviside step function the Hamiltonian is cast into

®(E). The 1s exciton binding energy equals 1 '
Ro=u/€2x 13.6 eV. H=H.+ 2, hoo| alag+ > +2 Mg(ne'Ral+a_g).
If the exciton continuum is involved, the explicit use of 4 4 o)
the corresponding scattering wave functions is inconvenient.
Easier to handle is the exciton Green’s functi@n resol- Here, we have defined the phonon-free exciton Hamiltonian
vend He,
, B (1) (1) ~ h? R e?
Gttt =3, Sy @ Tl TR
at complex energyiz=%w+iy. The functionG, obeys the ~With exciton massM=me+m;, and the coupling function
inhomogeneous exciton Scliiager equation Mq(r) is introduced as
ﬁz ez 47762 h(,l)o . .
v = , _ o M.(r)= " e|qrmh/M_e igrmg /M . 11)
Ego 2,uAr o hz)GO(r,r 2)=38(r—r'), (5) qN=1 2 ( ). (
and the optical response including a Lorentz broadening The corresponding exciton Green’s functi@ of the
follows from Hamiltonian (9) is defined as a resolvent operator of the
equation
x(2)=Go(r—0r"'—0,2). (6)
(H-hz2)G=1, (12

The limit has to be taken carefully since the real part of the
Green’s function diverges at—0. A proper regularization and the optical response function can be expressed as
procedure has been described in Ref. 16. For electron-hole

potentials which differ from the simple Coulomb law, no LA , ,

analytic solution is possible. However, the Green'’s function X(Z):f dRdR'(0|G(r=0R,r'=0R",2)[0). (13

can be computed very efficientRas outlined in the Appen- _ . . . _
dix. Since we are interested in the linear response or optical di-

electric function at zero temperature, we have to project onto
the phonon vacuum stat@). From Eq.(12) follows that the
function

We add to the electron-hole Hamiltonian with Coulomb
attraction the Fiblich interaction with (dispersionless
longitudinal-optical phonons of enerdiw,,

lIl. EXCITON-PHONON HAMILTONIAN

|\if(rR,z))=fdR’é(r,R,r’=0,R’,z)|0) (14)

22 72 e? is the solution of
H:Egm_Z_Are_ 2 Arh_ — ~
Me m, €x|Fe= Tl (H—%2)|¥(r,R,2))= 8(r)|0), (15)
1 4me? ho and gives the response function directly as
i . et
+% hwo| agag* 5 +% o 2
_ _ X(z):f dR(0|¥(r=0,R,2)). (16)

x(e'qre—e'qrh)(ang a_g), (7)

where 7 1=¢.*— ¢, * determines the strength of the polar

coupling, andaa (aq) createdannihilate3 a LO phonon at
wave vectom. The electror(hole) position coordinate is de-  If written in a phonon number representation, Ef5)
noted byr, (ry), and a unity normalization volume is as- forms an infinite hierarchy of equations where each
sumed. Note that the bare energy d&p. and the electronic h-phonon state is coupled tm¢1) and f—1). As the
background screening constaat enter the Hamiltonian. main approximation being valid for moderate exciton-
The experimentally relevant energy gap and the full screenPhonon coupling we restrict ourselves to the subspace of
ing contain polaron contributions which follow from the zero- and one-phonon states only, that is
Frohlich interaction and have to be calculated explicitly as
detailed below. We stress this point since earlier investiga- |\if(r,R,z))=\I’<°)(r,R,z)|0>+2 \I,gl)(r'R'z)a;|0>,

q

IV. SELF-CONSISTENT ONE-PHONON TREATMENT

tions of the exciton-phonon resonance were incorrect in this
respect31° 17
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where W(© (¥ (D) is the zero{oney LO-phonon exciton

wave function. Using the above expression | and Egs.
(9) and(15), we obtain only two coupled equations

(M= h2)¥O(r,R,2)+ > M} (r)e ' Re(rR,2)
q
= (1), (18)

(hwo+Hm—hz)\Ifgl)(r,R,z)+Mq(r)eiqR‘I’(o)(r,R,z):(:(L),g)

which can be solved as follows. The bare exciton Green's

function G_,(r,R,r’,R’,z) satisfies the equation
(Ho—1h2)G,(r,R,r",R",2)=68(r—r")8(R—R"). (20
Hence, Eq(19) can be solved as
vP(rR,z)= —J dr'dR'G..(1,R,r",R’,z— wg)Mq(r’)

X elaR g O R’ 7) (22)

and inserted into Eq18) to form a closed equation for the

zero-phonon exciton wave function.

Since we have assumed a parabolic dispersion for elec-
trons and holes, the COM motion factorizes as a plane wave

with the kinetic exciton energyo=%wo=%2Q?/2M. Con-

sequently, the bare Green’s function can be written in the

form

G..(rR,I',R",2)=2, eRRRIG, (11,2 wy),
Q
(22

R. ZIMMERMANN AND C. TRALLERO-GINER 56

+ _;_le

(© EX +

@ >N + SN

N

FIG. 1. (a) Diagrammatic Dyson equation for the exciton
Green'’s functionG (hatched block given by Eq.(23). The LO-
phonon propagator is depicted as wavy line, and the self-energy
contains the bare exciton Green'’s functi@gn (thin line). (b) Dia-
grammatic form of the improved Dyson equati@®) whereG., is
replaced by the full Green’s functio® in the self-energy(c)
Second-order diagrams taken into account to get the Dyson equa-
tion (b). (d) Crossed diagrams which are not included in the Dyson
equation(b).

h? e?
(ng_ ﬂAr— Ew—r—ﬁZ) G(r,r ,Z)

-> f dr'ME(NG(r,r',z— wo— wg)My(r’)
q
XG(r',r",z2)=68(r—r"). (25

The second diagram in Fig(d is the lowest-order nested
diagram, the sequence of which has to be summed up to

where the right-hand side Green’s function acts in relativeconvert the Dyson equation of Fig(al into Fig. 1(b) [or Eq.

space only. For the optical response, we n€ed0 only
(long-wave limit of the light field. Therefore, ¥ (9(r,R,z2)
can be taken independent B, and using Eqs(18), (21),
and(22), we end up with

h? e?
(ng— ﬂAr_ :—ﬁZ)‘P(O)(r,Z)

-> fdr’Ma‘(r)Gm(r,r’,z—wo—wq)Mq(r’)
q

XWO(r' 2)=5(r). (23
The response is now simply given by
x(2)=¥(r=02). (24)

Without exciton-phonon interaction, the solution of Eq.

(23) would be¥)(r,z)=G..(r,r' =0,z). Figure 1a) shows

(25)]. Crossing-type diagramig=ig. 1(d)] are not included
here. They would play the role of vertex correctidfss.

The nonlinear and nonlocal integral equati¢®5) is
called a self-consistent one-phonon approximation. It is ex-
actly the self-consistent treatment which places the exciton-
phonon resonance at the correct energetic positio®: lfas
a pole at the exciton energ§, which includes the polar
interaction, then the self-energy terfraum overq in Eq.
(25)] exhibits a singularity just af,+# wg.

V. PERTURBATION AROUND THE HAKEN POTENTIAL

For a weakly polar material and, in particular, if the ex-
citon binding energy is small with respect to the phonon
energy,H., is not a good start for perturbation theory. To
derive an effective electron-hole interaction which includes
already some part of the polar interaction, we use the large-
frequency limit of the Green’s function,

the diagrammatic Dyson equation for the exciton Green’'s
function G(r,r’,z) of Eqg. (23). Note that in the coupling
term thebare Green’s functionG.(r,r',z) enters. This in-
consistency can be cured by adding further diagrams to the
Dyson equation of Fig.(@®). Then, all Green’s functions re-
fer to the same level of approximation. Technicalfy, in
Eq. (23 has to be replaced by the full Green’s functiGn

S(r—r’)

G(r,r',2)— 77

(26)

in the self-energy term of Eq25) which gives the local
equation,
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#2 e? |Mq(r)|2 TABLE I. Semiconductor parameters used in the numerical cal-
Egu—ﬂAr—a—ﬁZ—% m GH(r,r ,Z) culations.
=5(r—r") 27) Parameter CdTe GaAs
The additional term is €o 100 124
€. 6.0% 10.7
IMg(r)|?  €? - i 08 Me/mg 0.17 0.067
— _ = — —a 0
2 oot eq grtTMrome (29 My /Mo 0.5 0.3¢
wlmg 0.064 0.046
with the polaron radius3=7/(2M w,). Equation(28) con- fiog 21.0 meV\? 36.7 me\P
tains a constant part which forms the polaron shift of the bare Ro 10.0 me\? 4.0 me\

gap,

®Reference 13.
Ego=Eg.—€%(nry). (299  °Reference 15.
¢(my,/mg) 1=y, — 27, with Luttinger parameters; and y,.

The r-dependent terms can be combined with thedFrom the fit(see text

e.-screened Coulomb potential into
e2
vH(r):—T[egl+(e;1—egl)e—”fo], (30 x(Z)=GH(0,Oz)+§ fdrM;(r)GH(O,r,z)cﬁﬁ(r)

which is close to the well-known Haken potentfaand in- 1 1

terpolates between the, exciton at low energies/large dis- X hiwot €q+Eq—hz hwgte
tances and the,, exciton at high energies/small distances. a a
The corresponding Green'’s function obeys XJ dr'Mo(r')Gu(0r",2) ("), (34)
2
EgO_ﬂAr+VH(r)_ﬁZ Gu(r,r",z)=48(r—r"). where ¢, and &, have to be taken irHaken quality now.

(31  Further, a reduction of the sum to the dominant bound state

. . _ ) _ n=1s is expected to give the main resonance feature.
Obviously, the Haken potential fails to display any exciton- |, Ref. 13 a similar expression for(z) using perturba-

phonon resonance feature since it is basically a static quagyp, theory was obtained, but the result differs from E3f)
tity. However, it serves as a suitable starting p_oint to solve, o respects: the Coulomb Green’s functid®s instead
the XPR problem. This is implemented by adding and suby¢ G . has been used, and the second term in the square
tracting the term(28) in Eq. (25 bracket of Eq(34) was missing. Our numerical calculations
52 have shown that the first approximation is not a bad one
Ego— Z—Ar+VH(f)—ﬁZ)G(r-r",z)—E f dr’M;(r) since for weakly polar matenal the “Haken” quantltles are
I q rather close to the “static screened” on@sit differ mark-
S(r—r’) edly from the polaron-free casg,). I—!owever, the fa'ilure to
————|M4(r)G(r',1",2) subtract the second energy denominator would give a large
hwot €q change in the bound state region. In contrast, our procedure
=S5(r—r"). (32 Wwas chosen to give a small correction néag=%w. This
would not have been achieved using the original Haken
Writing the resolvent and the interndffunction as sum over potential* which contains a sum of contributions with elec-

X[ G(r,r",2— wg— wq) —

states:’ we get tron and hole polaron radii ,=#/(2me hwo). In our frame-
52 work, this potential form could be obtained by taking the
_r _ " free-particle Green’s function instead of the high-frequency
Ego™ 5, At Vh(D) ﬁZ)G(” 2) limit in Eq. (25).

VI. RESULTS AND COMPARISON WITH EXPERIMENT

_ EVE *
p fdr Ma (o0 (D) T ot eqr En—hz

We begin with CdTe where accurate absorption measure-
, , PO N — S(p ments at liquid nitrogen temperature have been reported
Pn(rIMq(r)G(r',r,2)=o(r=r"), some time ago by Dillingeet al®>* Details on the applied
33) numerical procedures for the Green'’s function and the opti-
cal response can be found in the Appendix. The parameters
where wave functiong,, and eigenvalue§,, refer to thefull used are listed in Table |. The valence band structure consists
problem now. For weak coupling as applicable to GaAs, theof heavy- and light-hole bands which are degenerate af the
first order perturbation theory with respect to the self-energyoint. Following Sak® we adopt a simplified single-valence-
differencelsum overg andn in Eq. (33)] is expected to work band approximation with a density-of-states mass giving
well. Then, combining Eqg13), (31), and(33) the response large weight to the heavy-hole component. We use this mass
function is given approximately by for the COM motion of the exciton. However, the internal

ﬁw0+ Eq
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FIG. 2. Excitonic absorptiomr~Im y in bulk CdTe in depen-
dence on energfE=fiw—Egy,. Calculated spectra for bare,
screening(dot-dashed curye static €, screening(dashed curve
with the Haken potentialthin solid curve, and full calculation
including the XPR(thick solid curve. A Lorentz broadening of
y=4 meV is used for all curves.
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FIG. 3. Absorption differencel a~Im[x(2)—xn(2)] between
the XPR and the Haken potential result for CdTe. First-order per-
turbation theory according to E¢34) (dashed curveis compared
with the full calculation, Eq(33) (solid curve. The energetic po-
sition of the exciton-LO-phonon resonance is indicated by an arrow.

exciton reduced mass @f=0.046n, follows from the Lut-
tinger parametey; =6.85. As in the CdTe case the statically

exciton motion is governed by the diagonal component of thd €0) screened exciton differs not much from the Haken case,

Luttinger Hamiltonian (reduced effective massu ™!

=m;1+ v.I/mgy, where vy, is the Luttinger parametgr

which gives rise to degenerate heavy- and light-hole excito
states. We have chosen to yses an adjustable parameter

whereas the bare exciton spectrum is displaced towards
higher energies by the polaron shift. In GaAs the Hiah

Iqoupling parameter is very small and equal to 0.068 for elec-
trons, so that the XPR causes only a rather weak spectral
feature above the gap hardly visible in both the experimental

for getting an exciton binding energy in agreement with the
experimentally accepted value &;=10 meV. We found
©=0.064n, resulting in a eg-exciton binding energy
Ro=8.7 meV which is then increased by the Haken potential
towards the final 10 meV. Thus, even in the polar material
CdTe, the difference between tlg exciton and the Haken-
screened exciton is not very large. This can be seen in Fig. 2
where the calculated exciton absorptiarIm y is dis-
played for the different levels of approximation. The hypo-
thetical e.,-exciton spectrum differs markedly bynissing
polaron shift, larger binding energy, and oscillator strength.
Clearly seen is the interpolating character of the Haken spec-
trum which approaches the, curve at large energies.

The dynamical exciton-LO contribution shows up as a
broad feature on top of the Haken spectrum around the reso-
nance energy¥is+fhiwe=Ey+11 meV, but no clear struc-
ture is seen. This contrasts a simple Fano resonance argu-
ment where the interaction of a bound state with a continuum
leads to a strong dispersive modification of the spectrum. But
note that in the present case, the virtual state is a continuum,
too, due to the COM dispersiofys+fhwy+ eq. We have
checked that the overall Lorentz damping usee=@ meV)
is not responsible for the absence of sharp structures. Figure
3 shows the importance of taking the full continuum re-
sponsd calculated from Eq(33) with n=1s] in comparison
with the first order perturbation theory, E@4). The struc-
ture is smeared out in the full calculation. The results shown
in Fig. 2 for the excitonic absorption including the exciton-
phonon resonance are in good agreement with the experi-
mental data of Ref. 3 which are reproduced in Fig. 4.

In Fig. 5 we show the calculated exciton absorption for

bulk GaAs using the different screening potentials. Here, arm=

8 CdTe .

LO

Absorption Coefficient (10% cm™)

1 I
1.55 1.60 1.65
ho (eV)

FIG. 4. Measured absorption coefficient of bulk CdTe at
93 K (after Ref. 3.
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s LA AR ez tance has not been corrected for in the experimental data.

3 — In conclusion, we have developed a theoretical approach

- for the exciton-phonon resonance in the absorption coeffi-
: GaAs cient above the gap in bulk semiconductors. Using an exci-

1 ton Green’s function formalism, the weak structure seen in
— the exciton continuum of several semiconductors has been
1 shown to result from the interaction of continuum states with

] the virtual excitation of exciton ground state plus one LO

= phonon. We stress that the reformulation in terms of an ef-
T - fective Haken potential is necessary before using perturba-
tion theory. The calculated excitonic absorption agrees well
i with experimental data for CdTe and GaAs. This good agree-
. ment between theory and experiment underlines that the
present treatment gives a reliable description of the exciton
continuum absorption in the vicinity of the exciton-phonon

.10 0 10 20 30 40 50

Absorption Coefficient (arb. units)

E (meV) resonance.
FIG. 5. Excitonic absorptiom~Im y in bulk GaAs in depen- ACKNOWLEDGMENTS
dence on energif=fiw — Eg. Calculated spectra are shown for
bare €., screening(thin solid curve, static ey screening(dashed The authors gratefully acknowledge intense discussions
curve, and with the Haken potentidthick solid curve. Lorentz ~ with R. Ulbrich, who provided the experimental absorption
broadeningy=1 meV. data on GaAs. Part of this work has been supported by the

exchange program between Humboldt University Berlin and
and calculated spectra. It can be seen more pronounced if wéniversity of Havana.
focus on the energy derivative of the absorption,
a'(E)/a(E). This spectrum is displayed in Fig. 6 for the APPENDIX
Haken potential and the full result based on E2f). The ) )
dynamical exciton-LO-phonon contribution shows up in a Numerical procedures to calculate the exciton Green's
slight but rather abrupt change in the slope around the resdunction in real space have been developed earlier by one of
nance energy,s+7 w,. Experimental absorption data for a the present authorS. For the sake of completeness we
4.2 um thick h|gh_pur|ty GaAs Crystal have been numeri- present the.relev.ant material in this Appen(.jlx., eXtendlng the
cally differentiated and are shown in Fig. 6 as cirdléghe  treatment given in Ref. 16 to monlocal Schralinger equa-
XPR feature with its kink at 32.8 meV above the gap energytion. Equation(33) is rewritten as
Eg0=1.5192 eV compares well with the structure in the cal- 52
culated spectrum, both in magnlltude and energetic position. (Ego_ —— A, +Vy(r)—hz|G(r,r",2)
The overall slope of the experimental absorption curve is 2
slightly larger. We believe that this is mainly due to the band
nonparabolicity effect and/or heavy-light-hole valence band _J dr'W(r,r’,2)G(r’,r",z)=8(r—r"), (Al)
mixing in the exciton. Further, the smoothly varying reflec-

with the kernel @=m,/M, B=m./M),

B B B L ALEL B
W(r,r',2)= 2, ¢y () wn(ar —ar’) - wo(fr' = Br)
d —Wy(ar+ Br') =wo(— Br—ar’)]gn(r").
= (A2)
w
= The integration oveq could be performed analytically yield-
=~ ing
y
° wa) = (1) ety (1 e )|, (a3
n 2qr |\1g '

PRI IR RIS RN R with the (complex and state dependgpblaron radii
0 20 40 60 80 100

E (meV) 2 h212M
n ﬁwo-i—é'n—ﬁz'

(A4)

FIG. 6. Energy-derivative of the absorptia#,(E)/«(E), in the » .
excitonic continuum of GaAs. Circles—experiment B=1.2 K A decomposition with respect to angular momentum reveals
from Ref. 9, dashed curve—calculated with the Haken potentialthat, in general, differerit components of the Green’s func-
solid curve—full calculation including the exciton-phonon reso- tion are coupled. However, if we restrict ourselvesite1s
nance. as an intermediate state, teecomponent
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1 Additional terms have been dropped which are divergent.
G(r,r",2)|s=——g(r,r",2) (A5) Being real and independent of frequency, they renormalize
Amrr” the background dielectric constant orfsee Ref. 16 for a
detailed explanation
The coefficientsA(z) andB(z) in Y(r) [Eg. (A11)] con-
#2 Pg(r.r".2) tain_all the_informayion, th.ey have.to be determined after
ﬂ T=[Eg0+vH(r)—ﬁz]g(r,r ,2) solving the integrodifferential equation

obeys a closed equation which reads

[ arew s g Y'(1)=(Ego+ Vu(r) —42) Y(r)
0

—S(r—r7), (A6) —47rrJ0 dr'r'W(r,r',2)Y(r"). (Al3)
Note that we have divided the Green’s function loy”() in
order to remove the first-order derivative. The angular aver
age in the kernelW(r,r’,z)=W(r,r’,z), can be performed
analytically with

To do so we discretize the spatial variable in equidistant
stepsA. The second order derivative is often discretized by
central  differences as Y'(r)=[Y(r+A)+Y(r—A)
—2Y(r)]/A%. This simple form has an error of ordar,

2 [(2 3 which can be markedly reduced by implementing
Wo(r—1')= = | 5— — e sinh(r'/r,) — 1
n 29r (15 r'rg : 2

Y(r+A)+Y(r—A)—2Y(r)= E[F(H—AH—F(r—A)
. (A7)

+ :—0 e~ "o sinh(r'/ro)
+10F(r)], (Al4)

Forr<r’', the variables andr’ have to be interchanged.

For the construction of the Green’s function it is sufficient whereF(r) represents the rhs of EGA13). The error of this
to determine two linearly independent solutioX¢r) and  so-called Numerov scherffes of an order ofA* and allows
Y(r) of the corresponding homogeneous equatfoingpping  us to use a moderate step size. We found 0.04a, to be
the & function in Eq.(A6)]. If X(r) is chosen to be regular at sufficient. The size of the matrix equatiohal4) scales with
the origin, andY(r) regular at infinity, the Green’s function the maximunr value used. For calculating, e.g., the exciton

is given by ground state, a maximum of =4a, is sufficient. However,
to get a reliable absorption continuum well above the energy
, X(min(r,r”))Y(maxr,r'")) gap, a much larger cutoff is importartve have used
g(r,r',z)= WY, X] (A8 r,=8ay). Additionally, the wave function has to be matched

to the quasiclassical expression there,

with the Wronski determinanW[Y,X]=YX —-Y’'X. To

simplify the expressions, we use from E@8) onwards

units of the e, exciton: Bohr radiusag=7%2¢y/(ne?) and
binding energyRy=7%2a3/2u.

For the optical respondef. Eq. (6)] we need the Green'’s Y(r,—A)=\k(ry)/k(r,—A)

function at zero arguments,
Xexp{A[k(rp)+k(ro—A)]/2}, (A1)

Y(ry)=1,

1 X(r)Y(r)
X(2)= g2 Moz oS (A9) where k(r)=[Eq4o+Vy(r)~#Z]/Ry. The nonlocal part
W(r,r’,z), however, is practically zero above. Therefore,
The series expansion of(r) and Y(r) at small argument Eq.(A14) can be used recursively down tg. Using Simp-
can be derived as son’s rule for the integral over in Eq.(A13), the remainder
down tor=A can be treated as a linear matrix problem.
Finally, fitting Y(2A) andY(A) with the limiting expression
(Al1l) provides the complex coefficientd(z) and B(z)
needed to get the optical response from &i2).
Y(r)=[A(z)+B(2)a In(r)]X(r)+B(z)+ O(r?). For theeq exciton withVy(r)=—2/r, an analytic expres-
(A11)  sion is obtained!

a
X(r)=r+§r2+0(r3), (A10)

The logarithmic term in the solutio¥(r) is due to the Cou- 1
lomb singularity of the potential, here represented by the __ - _
constanta= —2e¢y/€,,. The Wronskian equal8(z), and x(2) w[w(l i)+ In(x) + wl2], (A16)
plugging both expansions into EGA9) gives as a final result
with  ¢(x) being Euler's digamma function, and
(2)= 1 A (AL2) k?=(Eqo—1%2)/R,. Equation(A16) can be used to control
X 47 B(z)’ the accuracy of the numerical procedure.
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