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We apply the lineab expansion(LDE), originally developed as a nonperturbative, analytical approximation
scheme in quantum field theory, to problems involving noninteracting electrons in disordered solids. The initial
idea that the LDE method might be applicable to disorder is suggested by the resemblance of the supersym-
metric field theory formalism for quantities such as the disorder-averaged density of states and conductance to
the path-integral expressions for tiepoint functions of\ ¢* field theory, where the LDE has proved a
successful method of approximation. The field theories relevant for disorder have several unusual features that
have not been considered before, however, such as anticommuting fields with FaddeeyFPRppather than
Dirac-type kinetic-energy terms, imaginary couplings and Minkowskian field coordinate metric. Nevertheless
we show that the LDE method can be successfully generalized to such field systems. As a preliminary test of
the method and also to give some understanding of its origins, we calculate to third order in the LDE the
ground-state energy of a supersymmetric anharmonic oscillator with FP kinetic term and real anharmonic
coupling strength of arbitrary magnitude. Strong evidence for the convergence of the LDE is obtained. We then
calculate to second order in the LDE the disorder-averaged density of states of a one-dimensional system and
find even at first order more accurate results than the commonly used self-consistent Born approximation. In
the final part we outline one possible way in which the LDE method might be applied to the conductance, using
as supporting example a zero-dimensional model with Minkowskian field coordinate metric. Further directions
for research are discussed in the conclusj&.163-182807)01439-3

[. INTRODUCTION G, the truncated Green functiddy will depend on(). The
latter is fixed at each ordeM by applying the principle of
Interacting quantum field systems rarely allow exact,minimal sensitivity(PMS):*
closed-form expressions for their observable quantities. In
nearly every case some method of approximate solution must ﬁ -0 %)
be employed. The most common approximation involves de- Q| e
veloping a series expansion of the quantity of interest in N
increasing powers of the coupling constant multiplying theThe PMS condition is crucial, in that it provides the nonper-
interaction term in the field Lagrangian. However, such aturbative dependence on the physical coupling parameter and
series is not expected to give a good approximation when thim several cases has been shown to ensure convergence of the
coupling constant in the appropriate dimensionless units isequence of approximantSy()). There is considerable
not small. Even when the coupling is small, there are situaarbitrariness in the choice &,. Some choices will result in
tions where the series approximation does not work, such asore rapid convergence of the sequence or simpler calcula-
when the quantity of interest is nonanalytic at zero couplingtions to perform, whereas other choices may not work at all.
Given the relevance of strongly interacting quantum fieldAt the very leastS, should have some resemblance to the
systems for describing processes occurring in nature, @riginal actionS. Proofs of the convergence of the LDE
worthwhile and stimulating challenge has been to find altermethod have been obtained in several different ways for cer-
native, analytical approximation schemes that must necessagin Green functions of the quantum anharmonic
ily be nonperturbative in the physical coupling constants ofoscillator®=® These proofs have also given us insights into
the field systems. how the method works. For higher-dimensional field theories
The linears expansior(LDE) is one such scheme that has no convergence proofs have been constructed so far and we
been successfully applied to problems in, for examplé?  must rely on comparison with numerical methods.
theory and quantum chromodynami¢s.In outline, the In this paper we apply the LDE method to a different
LDE method replaces the acti@of the field theory with a  problem: the quantum dynamics of a single electron moving
modified action S; that interpolates linearly between a in a random background potential. The idea of using the
soluble actionSy depending on a variational parame@r LDE method comes from the so-called supersymmetric field

and the original, i.e., formulation of the probleni:*°in which quantities character-
izing the quantum dynamics, such as the disorder-averaged
Ss=(1—8)Sy+ SS. (1) density of states and conductance, are represented as path

integrals over both commuting and anticommuting field co-
The Green function of interest is evaluated as a power ordinates of some interacting field system. For a random po-
series in the artificial parametérup to the desired ordéd  tential that is Gaussiad-function correlated the correspond-
and thenéd is set equal to 1. Unlike the exact Green functioning supersymmetric field actions resemble the usual
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action, hence suggesting the possibility of applying the LDEion is essential for the application of the LDE method to the
method to the former systems as well. Of course, there areonductance: there is no modified physical Hamiltonian that
already several well-established approximation methods foyields the same series expansiondn As a first test, we
studying the quantum dynamics of an electron in a randonapply the method to a zero-dimensional conductance model.
potential. Nevertheless, we thought it would be interesting to In the conclusion we suggest further directions for re-
see whether a method originally developed for the study of€arch. This includes the application of the LDE method to
relativistic quantum field systems could be successfullythe supersymmetric nonlinearmodel in order to determine
adapted to random electron systems. First indications are thiie conductivity critical exponent.
the LDE method in fact performs rather well in comparison
with established approximation methods. Il. THE SUPERSYMMETRIC

The supersymmetric field actions have several unusual ANHARMONIC OSCILLATOR
features that have not been considered before in LDE inves-
tigations. The kinetic term for the anticommuting fields is of
Faddeev-PopoyFP) rather than the usual Dirac forine.,
dx* dx instead ofy* d,x). Also, the interaction terms ap-
pearing in the actions are imaginary and, for the action asso- 1 w2
ciated with the disorder-averaged conductance, we have a L= —dp'd— —OTP—N(PTD)?, ®)
Minkowskian field metric [i.e., nmnq)Lq)nv with  7mn 2 2
=(—1)"8mn; MNn=1,2]. In the following sections we \yhere
show how the LDE method generalizes to such systems.

In Sec. Il we evaluate to third order fithe ground-state X
energy of a supersymmetric anharmonic oscillator with FP ‘D:< s)’ ®T=(x*s*) 4
kinetic term and real, positive anharmonic coupling param-
eter. The action for this system is in fact the same as that a supervector coordinate with anticommuting component
associated with the one-dimensional density of states fog and commuting componerst In all our calculations in-
&function-correlated disorder, the only difference being thatvolving anticommuting variables we follow the rules and
the coupling is real instead of imaginary. Although the conventions of Efetov® the only difference occurring in the
ground-state energy is of little relevance for the random eleceefinition of complex conjugation for anticommuting vari-
tron dynamics, it is the simplest quantity on which to test theables. Our definition is
LDE method. Furthermore, the calculation gives some un-
derstanding of the method’s origins by showing that to first (xwx2)*=x5xi, (X*)*=x. (5)
order ind it is equivalent to choosing a Gaussian wave func-_l_h b L L . d by th .
tion with variational parameters that are fixed by requiring e above Lagrangian Is motivated by the supersymmetric
that the energy expectation value be a minimum. As we shal rmulation of thg d|sqrder—averaged Qen5|ty of statee
see, the LDE method reveals a rather remarkable dependen &C- 1. In one dimension and f@fgnchon-correlated ran-
of the ground-state energy on the frequency and anharmon om potential, the supersymmetric Lagrangian associated

coupling parameters, making the supersymmetric anhauy-"iﬂ.l the .de”S“_y of states differs from E®) only in havirjg
monic oscillator an interesting system in its own right. an imaginary instead of real couplirigs well as an unim-

; ; ; ortant overall sign and constant coefficignt8ohr and
The LDE method is applied to the disorder-averaged enEfetov“'10 also invgestigated the above supgrs mmetric La-
ergy density of states in Sec. Ill. We first consider a “zero- . ersy .
dimensional” density of states modéle., path integral re- grangian and found a closed-form expression for an eigen-

placed by ordinary integral for which we can easily go to state with eigenvalue zero which they assgmed to b_e th_e
high order in§ and obtain support for the convergence of theground state. Aszwe shall see, howeyer, th|5} assumption Is
expansion. We then evaluate to second ordef e one- correct only fore Iarger than a certain negative v_alue. .
dimensional density of states férfunction-correlated disor- In order to _qua_ntlze the oscillator we mL.JSt first write
der and compare with the exact expression, as well as WitﬂoWn the Hamiltonian. In.terms of real c_oordlnatqs S2,

the self-consistent Born approximatig8CBA). While the ~ X1 andy,, wheres=s;+is, andy=x:+ix.. the Hamil-

use of the LDE was motivated by the supersymmetric fielglonian is

formulation, it is in fact not necessary to calculate the density
of states within this formulation. Indeed, we show that the
same series approximation is obtained by expandingtime
averaged one-electron Green function expressed directly in

In this section we use the LDE method to determine the
ground-state energy of a quantum, supersymmetric anhar-
monic oscillator. The classical Lagrangian is

H=s;p;+ xim—L

2, .2 2 2\ :
=3 (p1+p)+ 3 w*(ST+S5) —immatinyixs

terms of ag-modified single-electron Hamiltonian. Note that + N (2i yoxo+ S3+52)?, (6)
the LDE method is not restricted to low dimensions, nor to
just s-function-correlated random potentials. where the momenta are defined as follows:
Because the supersymmetric action associated with the .
disorder-averaged conductance has Minkowskian field coor- _aL . _aL
dinate metric, the action must emodified in a way that is pi_5_'si_si , Wi_a_-i_'fini : @)

quite different from that of the density of states action. In
Sec. IV, we describe one possikfenodification. In contrast The oscillator can now be straightforwardly quantized using
with the density of states, the supersymmetric field formulathe correspondence principle, i.e., by associating with the



9424

M. P. BLENCOWE AND A. P. KORTE 56

position coordinates and conjugate momenta operators actingith all other (antjcommutators vanishing. Using Eq4d.1)

on some state space and satisfying canoranatijcommuta-
tion relations:

[pi.sj]=—i8; and{m x;}=—id;, (8)

with all other (anticommutators vanishing and where we

have seth=1. Note from Eq.(7) that %i is anti-Hermitian,

i.e.,mi=—.

It will be convenient to work with two different state
space bases. In one, the states are wave functions depending

on the position coordinates/(s;,S,,x1.x2), With scalar
product defined as

(plpy=—i f dx1dx2d5,dS 4™ (81,82, X1, X2)

and (12) to express the noninteracting part of the Hamil-
tonian in terms of the creation/annihilation operators, we find
that

Ho=w(a'a+b’b+cfc—d'd). (13
The energy eigenstates are obtained in the usual way. We
first introduce a statf)), satisfying

aj0)y=b|0)=c|0)=d|0)=0 (14)

and(0|0)=1. From Eqgs(13) and(14) we see tha}0) is an
energy eigenstate with eigenvalue 0. All other eigenstates are
obtained by acting of0) with the creation operatoes', b,

c', andd®. The eigenstate

(@H™m(b")"(chl(dh*

X B(S1,52,X1:X2) ©) Im,n,j,k)= — |0) (15)
and the position and momentum operators represented as fol- min!
lows: has eigenvalue
. . 9 . . d _ -
Si<Si, P Tioc, XieXi Wi‘_)_ia. (10) Emnji= (M+n+]+kj0=0, (18
i i

The energy eigenstates of the free HamiltoniarQ and

for integersm, n, j, andk=0, so that|0) is in fact the
ground state of the free oscillator. Note that, sinéendd’

w?>0) form a second useful basis. This basis is most easilgnticommutej andk are either zero or one. Note also that,
constructed using creation/annihilation operators, defined ibecause of the minus sign entering in the anticommutation
terms of the position and momentum operators as follows: relation(12) for d andd’, eigenstates with=1 have nega-

$1= (a+a'),

1
20
pr=—i \@(a—a*),

1
s,=—=—=(b+b"),
2w

o
po=—i \/gm—b*),

1
x1=——=(c+ct+d+dh,

2\

11

my=—i @(Hc*—d—d*) :

(c—cf—d+d"),

1
=i
X2 2\/5

w
w2=—g(c—cT+d—dT),

tive norm. The occurrence of negative norm states in the
state space can be traced back to having an anticommuting

coordinate kinetic term with two time derivativeg* y, in

Eq. (3). The FP ghost fields, which occur in the quantization
of Yang-Mills fields, have similar propertié$. Negative
norm states can be avoided by using instead a Dirac kinetic

term, x* x. However, since the FP kinetic term is the rel-
evant one for disorder and the Lagrang{@his not meant to
describe a physical oscillator, we shall live with the negative
norm states.

Using Egs.(14), (11), and (10) we find that the ground
state for the free Hamiltonian has the following form in the
position coordinate basis:

1 1
S1,S5,X1,X2) = —— exp(——wd)*d))
o(S1,82:X1,X2 2 >

= —— exf— 3 w(Si+S5+2ix1x2) -

V2
17

This wave function is just the supersymmetric generalization
of the Gaussian function.

Let us now return to the problem of determining the
ground-state energy of the supersymmetric oscillator Hamil-
tonian forA>0. In the case of the ordinary, commuting co-

where we have omitted the hats on the operators. From the§dinate anharmonic oscillator it is well known that the

definitions and the canonicénticommutation relationé),
we have

[a,a']=1, [b,b"]=1, {c,c'}=1, {d,d"=-1,
(12

minimum-energy expectation value for a Gaussian wave
function with variable frequency and coordinate shift param-
eters gives a good approximation to the ground ené&tdy.
natural choice for the supersymmetric oscillator trial wave
function is then
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0.0 |
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= FIG. 1. Ground-state energy in units [b|
> /o versusw?/A?3, The dashed line is the ordet
0.4 - i approximation and the solid line the ord&t ap-
// proximation.
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1 (0,0, 1a S;—S1t8g for §=1. Hence the name “linear delta expan-
(51,80, X1, X2)= — 5 exd — 2 Q4(5,—50)? sion.” To first order ind, the RS series approximation to the
v2m\ v ground energy igwith & set equal to )t
2 .
— 2 Q83— ivxxal, (18)

Eo~Eg" +(0|Hin/0), (20
wheresg is the shift parameter and,, Q,, andv are the
frequency parameters. A nonzero shift parameter is nece
sary in order to approximate the ground energy dor<0
and|w?| large, since in this case the commuting coordinat
part of the potential in Eq(6) has the “Mexican hat” form
and the ground-state wave function peaks at the rim of th
hat, instead of at the center. The expectation validéd| )
is most easily worked out in the position coordinate repre
sentation using Eg€6), (10), (18), and (9). The minimum
expectation value with respect to variations in the paramete
So, 04, Oy, and v then gives an approximation to the approximationE, for the HamiltoniarH s is evaluated up to
ground-state energy.

The ab thod id | ff imati the desired ordeN in § using the RS perturbation method
€ above method provides only a one-oft approximation,, , o frequency and shift parameters are then fixed by

however. A considerable improvement would be a scheme 0 inimizi N
. i . inimizing the ordemM approximation toE,. The calcula-
which the expectation valug/|H|y), for |¢) given by Eq. tions proceed in much the same way as for the ordinary

(18), appears as the first-order term in a perturbatl_on SeMeSnharmonic oscillator, the main difference arising from the
As shown by Stevenson for the ordinary anharmonic oscilla;

. negative norm eigenstates in the state sums that appear at
tor (see Sec. V o.f.Ref. 13 such a scheme can in fact be second order and higher. The negative norm states are best
realized. Generalizing to the supersymmetric oscillator, th

. ; . A BYealt with by making explicit the eigenstate normalization
scheme involves first modifying Hamiltonid6) as follows: factors in the RS series expansion formula.

In Fig. 1 we plot the results of the ordérand 5° ground-
state-energy calculationglo orders?, there were no param-
eter values for whictE, was stationary. This is a common
occurrence in LDE calculations, where stationary points may
exist for odd(even orders only] The analogous results for
the ordinary anharmonic oscillator are given in Ref. 13. For
19 the rangew?/\?*= —3.69, the ground energy is exactly zero

to order 5°. The frequency parameters satigdj=0Q,=v,
and then solving for the lowest-energy eigenvalue of thiswhile the shift parametes,=0. For */A\??< —3.69, E, is
modified Hamiltonian using the usual Rayleigh-Salinger  stationary for a choice of parameters with the same pattern as
(RS perturbation procedure with serving as expansion pa- above, again givinge,=0. However, there is another choice
rameter. Note thaH s interpolates linearly between a har- of parameters having the pattefhy # Q),=v ands,#0 for
monic oscillator Hamiltonian fo=0 and the original an- which E, is also stationary but less than zero, hence provid-
harmonic Hamiltonian (6) with coordinate redefinition ing a closer approximation to the ground-state energy.

Where Ego) and |0) are the ground energy eigenvalue and
eigenstate, respectively, of the harmonic oscillator Hamil-
Sonian H s=0 andH;=H s—1—Hs-o.The most straightfor-
ward way to work out Eq(20) is to first expres$ 5 in terms

Bf creation/annihilation operators using relatioidd) with

the appropriate frequency changes. After some calculation
‘we find that Eq.(20) indeed coincides with the expectation
value(#|H| ). However, we now have a systematic proce-
'§ure that allows us to go beyond the Gaussian variational

120 n2v 2 102241 ()22 D2
Hs=3 (p1+p3)+ 3 Q1sT+3 Q5Sy—imm+ivixixe
+ %wzsg+ )\Sé+ 8% wi(s;+59) %+ %wzs§+iw2)(1)(2

122 1022 i 2
— 3 Q781— 3 Q35— 1 v x1xal,
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An independent check of the results fi@f<0 and|w?| whereG(") is the retarded one-electron Green function. The
large is obtained by expressing the Hamilton{@hin polar  supervector coordinat® is defined in Eq(4) and the super-
coordinates and expanding the commuting coordinate potersymmetric actiorS is defined as follows:
tial to quadratic order in the radial coordinate difference
r—rq, wherer is the location of the potential minimum. To h2 Y
leading order, the ground-state energy of the resulting har- Sz—f dr %WDT&@—(EHG)‘DT‘P— 3((13@)2 :
monic oscillator Hamiltonian is (25)

o’ Given the resemblance of this action to the ordinagy*

T (22) action and the effectiveness of the LDE approximation
method for studying various quantum properties Xap*

We have verified that the ordet and 6° approximations theory! it is natural to apply the LDE method to the density

indeed tend to Eq21) asw?— —<. While not constituting  of states of systeni22) as well. Of course, as we have al-

a proof, this result taken together with the closeness of theeady mentioned, the supersymmetric action has several sig-

order § and 5° approximations strongly suggests that #e nificant additional features. In the preceding section we

expansion converges. showed how the LDE method could successfully accommo-
The existence of a region where the ground energy iglate some of these features in ground-state-energy calcula-

exactly zero is reminiscent of quantum-mechanical systemsions. In the following, we further extend the LDE method,

with time translation supersymmetfiie., the square of the using it to approximate expressio®4), which is essentially

supersymmetry operator equals the Hamilton{gor a re-  the two-point function of a supersymmetie* system with

view, see, e.g., Ref. 34 For such systems, invariance of the imaginary coupling.

ground state under supersymmetry transformations implies The first step in the LDE procedure is tos“modify”

the vanishing of the ground-state energy. On the other handction (25). Recall that, for the parameters satisfying

if the ground state is noninvariant, time translation super{),=0,=v» and s,=0, the 5-modified Hamiltonian(19)

symmetry is spontaneously broken and we have a nonvamave the energ,=0. Furthermore, Bohr and Efett\(see

ishing (positive) ground-state energy. It is tempting, there- also Sec. 6 of Ref. JG6showed, by expressing tie=1 den-

fore, to speculate that time translation supersymmetry isity of states in terms of the eigenstates of Hamiltor(@n

broken for w® below —3.6%\%* and unbroken above this that only the eigenstate with eigenvalue zero was relevant.

value. However, the Hamiltoniaf6) is known only to have  Noting the form of the-modified Hamiltonian(19) for

rotational supersymmetrgi.e., the square of the supersym- (), =0,=v=0 ands,=0, we are led to consider the fol-
metry operator equals the angular momentum operator cofowing §-modified action:

responding to rotations in thg-s, coordinate planeand no
conclusions can be drawn concerning the ground energy 2
ng_f dl’[

EON

f
from the invariance properties of the ground state under ro- ﬁaiqﬂaiqn—(ﬂﬂe)cp*q)
tational supersymmetry. It would be of interest to try to un-

derstand the reasons for the rather remarkable dependence of Y
the ground-state energy asf shown in Fig. 1. +8(Q—E)®Td— ?(<I>T<I>)2”. (26)
Ill. THE DENSITY OF STATES The original action(25) is replaced by the modified action

(26) in Eqg. (24) and the series expansion éobtained. The
final step is the application of the PMS conditi®) in order

to fix the frequency parametél. Note that the PMS condi-
tion is applied before taking the real part in expres<if).
H= PiPi +V(H—E, i=1,...4d, (22) Again it is not necessary to implement the LDE method

Consider an electron inédimensional random potential,
described by the Hamiltonian

2m within the supersymmetric formulation of the density of
) ) o ] states. Comparing the actiosand Sy and examining also
whereE is the Fermi energy and the potentialis Gaussian  he correspondence between the act®and the physical
distributed withé-function correlation: Hamiltonian (22) with correlation relation(23), we can im-
- - mediately write down the modified physical Hamiltonian
V(r)=0, V(r)V(r')=xo(r—r’). (23)  corresponding to the actioB;:

The overbar denotes disorder averaging and the parameter .
characterizes the strength of the disorder. The supersymmet- H 5:% —Q+8(Q—E)+ sY/(r). (27)
ric formulation of the averaged energy density of states per 2m

unit volume for this system 18 _ _ [ _
Since the averaged potential satisfigg)=0, only integer

1 powers iné appear in the expansion. If we then replace the
p(E)=——1m G™)(r,r;E) physical Hamiltonian by this modified Hamiltonian in the
& definition of the retarded one-electron Green function:

1
=;RefD(I)TDCI)S(I’)S*(r)eX[XiS), (29 G((9+>(r,r’):<r|(—H§+ie)’1|r'>, (28)
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we recover the same series expansiord ias for the above Setting to zero the derivative with respectQoof the term in
supersymmetric formulation. Although the supersymmetricorackets, we obtain the following PMS condition:
formulation is not required in order to apply the LDE ap-

proximation method to the density of states, the formulation

is of considerable value in suggesting the LDE method. )

Without the supersymmetric formulation, it is not obvious 032_ g2, ﬂ 2m 0 (34)

that modifying the physical Hamiltoniaf22) as in Eq.(27) 3 ;2
is a useful step. Casting a quantity in a different form can
often suggest new methods of approximation.

We first consider a zero-dimensional density of statesThis equation admits three independent solutions (or
model that provides support for the convergence of the LDEHowever, only one of these solutions is physical, i.e., yields
method. The model is essentially the dimensional reductio positive nonzero density of states when substituted into Eq.
of expression24): (33). To second order b, we have

sz dxy*dyds*dss's exp(i

—aCDT(I)—%(CDTq))ZD.

— 1 m
(29 =gt \@ Re( 150 Y2 5EQ 324 3E20 52
Apart from thes* s factor outside the exponential, this inte-
gral is just the supersymmetric version of the integral studied _[2m o 2m _3
in Ref. 19. Carrying out the integrations, we obtain +6i V ﬁ)‘ﬂ A V ﬁ)‘EQ
| =273 Ne P erfof al \2X). (30 _ 25m )\297/2) (35
8#2 '

(Note that, without thes* s factor, the integral would equal

one) Let us now approximate the integré29) using the

LDE method. Modifying the argument of the exponential asThe PMS condition now admits six independent solutions for

in Eqg. (26), we have Q of which only one is physical. In Fig. 2 we plot the order
5 and 6 approximations to the=1 density of states. Also
shown are the exact curve and the SCB&#e, e.g., Ref. 18

(Q—a)dT® and references therginA comparison between the exact
curve and the orde$ and 6% approximations provides strong

}) evidence for the rapid convergence of the LDE method. Note

I(g:f dy*dyds*dss's ex;{i[ —QOTd+ 45

(3D that even the lowest, ordet, approximation is superior to
the SCBA result. The convergence appears to be slowest in
The terms in thes expansion are simple enough that a gen-the region of the exponentially decaying exact density of
eral expression can be written down for the expansion up tstates tail. It is possible that a differetmodification pro-
arbitrary ordem: cedure from that used above can be found that gives better
convergence in this region.
N n 2 The analogous calculations fde=2 should involve little
|N=27TE 2 E (—1)k-ip—myi-ng-i-1 extra difficulty. The only new feature is the divergent nature
n=0 k=0 j=0 of the terms in thed expansion ford=2, so that the proce-
K1 dures of regularization and renormalization are required.
(2k)! . (32) Other investigatior's suggest that these procedures are
kI(n—k)!(2k—=j)! straightforward to implement within the LDE method. It

. i should also be possible to use the LDE method to approxi-
We were able to gvaluatlsN ' with ( fixed by the PMS mate the disorder-averaged density of states for random po-
condition, up to high order iN for a range of complex

parameter valueg and\ and in each case found that the tentials satisfying other correlation relations.
sequencé () converged to the exact solutigB0).

Thus encouraged, we use the LDE to approximate the
d=1 density of states. This example has been solved exactly
using a variety of method¥*’*! enabling an immediate In this section we present some ideas concerning the ap-
check of the accuracy of the LDE. Expanding to first order inplication of the LDE method to the disorder-averaged con-
o either Eq.(24) with S replaced byS;, or Eq.(28) after  ductance. Consider a channel with cross secti@nd length
disorder averaging, we obta{with & set equal to L that is connected adiabatically at both ends to reservoirs.

The single electron Hamiltonian is given by Eq22) and
— 1 \ﬁ [ m
N B -12_FO-321i~/ 3O -2
P1=572\7% Re( 3Q EQ ™%+ Zﬁz)\Q

A
— _(PdTPH)2
5 (@1®)

X(Q—a)®"]

IV. THE CONDUCTANCE

(23) with an additional hard-wall confining potential restrict-
ing the electron to move within cross sectidn The super-
symmetric formulation of the zero-temperature, disorder-
(33 averaged conductance is
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0.25 |
0.20 |
FIG. 2. Energy density of states per unit
length versus Fermi energy for disorder strength
o 015 - A=1/y2 in unitsi=m=1. The solid line is the
exact curve, the dashed line the ordeapproxi-
mation, the dotted line the orde®® approxima-
0.10 |+ tion, and the dot-dashed line the self-consistent
Born approximation.
0.05
0.00
-3.0
- ehd (L2 +L/2 expansion iné is obtained and the PMS condition applied
= 8wm2L2fL/2de drif o after all the integrals have been carried out. The complex
conjugate of the resulting LDE approximation yields the ap-
, + t . proximation to theS™~ term.
X fAerJ D®;DP;DPDPo[sy(r)dxST(r') The application of the LDE method to the terms involving
the actionsS*~ andS™* is less straightforward as a conse-
X Sy(1")8yS5 (1) + dyS1(r)sy (r')dyrsa(r’)ss (r) qguence of the Minkowskian field metric appearing in the
actions. As a first step, we consider a zero-dimensional con-
— dxS1(1) ST (1")Sp(r")s3 (1) = sy(r)sy(r') ductance model analogous to the density of states model de-
, P - fined in Eq.(29). These models are particularly useful for
XSy (1') oS3 (N](€S +e  +e'S +e ), testing the convergence of a givéhmodification. Dimen-

(36)  sionally reducing th&&" ~ term in Eq.(36), we arrive at the

wherer=(x,r;)=(x,y,z), and the action$s*" are defined following model:

as follows:

S

—ied!d ——(nabcb Lo (e, >] (37)

1= [ dxidvadys drdst dsdsdsgs.st s, exs(is)
~— 5P} 5D, —ED D } (39)

where

S=a(®ld,—dld,) +ib(PId,+DID,)
with the supervector field®,,, m=1,2, vanishing at the

- i ; : i ; iA
Cross s.ectlon boundaries. The field metrics are defined as +_(¢Tq)1_ T(I)Z)z_ (40)
follows:

Ton = Smns Tmn =~ Omns Mmn =(— 1™ 0, The parametera andb are real withb>0. We choosé to

- ) _ be much smaller than. The termib is the analogue of the

mn = (= 1)"mn; mn=12. (38) i e term in EQ.(37). In order that Eq(39) not diverge, how-
Equation (36) follows from the formula for the disorder- ever,b must be positive and nonzero, rather than infinitesi-
averaged conductance of a finite-length wire in terms of thenal. The integrals are readily carried out and we obtain
averaged products of advanced and retarded Green functions

(see, e.g., Ref. 30and the formulation of these products in | = ,/2775/)\b71{e<b+ia)2/2x erfd (b+ia)/\2\]
terms of supersymmetric path integrdfls.
We can decompose E@36) into a sum of four terms, +eb-1%2\ orfd (b—ia)/ 2\ ]} (41)

each involving a different action. It is most natural to apply

the LDE method to each of these four terms separately. Thdlote that Eq.(41) is just twice the real part of expression
actionS™* is very similar to the density of states acti@®®),  (30) multiplied by the factorm/b and with the parametet
the only difference being the number of supervector fieldsreplaced bya+ib. How might we § modify the “action”
We therefore expect that the acti®i* can bes modified  S? The partS, should have some resemblanceStand so a
with a single parametef? exactly as in Eq(26). The series natural choice is
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with some difficulty, however, in evaluating the terms in the
(a—Q) S-expansion series. The difficulty lies in performing the path
integrals in the presence of the step functids). The first
Y thought is to carry out the path integrals first and thenghe
X(DId,—dIb,) + E(qﬁcpl—@;cpz)z}, (42 integral appearing in the definition of the step function. But
interchanging the order of integration in this way makes the
whereQ=Q,+iQ,, with Q,>0 andQ,>b>0. Replacing path integrals ill defined for the same reason as was men-
S by S; in Eg. (39) and expanding i we find, however, tioned above for the ordinary integrals of the zero-
that the integrals are infinite since the integrands diverge fodimensional model. One possible resolution is to have a se-
;S —s,85 — —. The solution to this problem is to split ries expansion of the step function involving only
the range of integration in Eq39) into the two regions polynomial and Gaussian functions of the superfields — so
1St >s,s5 and s;sF <s,s; and apply the LDE method that the path integrals can be performed — and to link the
separately to each integral withQ replaced by order of this expansion with the order of ti&eexpansion.
O*=0Q,-iQ, in the integral over the latter region. Since Relévant discussions can be found in Ref. 7.
the two integrals are complex conjugates of each other, it is
sufficient to consider only one of them. We are therefore led

Ss= QD] — PID,) +ib(PID,+DID,) + 5

V. CONCLUSION

to consider the followings modification: We have applied the LDE approximation method to the
quantum dynamics of a single electron in a random potential.
| =2Rej dyv*dy.dy*dy.ds‘ds.dst The LDE method was originally developed for the study of
° X1 OXaCx2 EX2051 9169 quantum field systems such ag* field theory. The idea

* o ok t 1 - that the LDE method might be applied to disordered systems
X %3157 757 O(P1P1 = P P2)eXRIS,), (43 el comes from the %esembllzl?lce of the path integral ex-
whereS; is given by Eq.(42) and pressions of thex ¢* field theory n-point functions to the
supersymmetric path integral expressions of quantities such
as the averaged density of states and conductance for Gauss-
ian &-function-correlated disorder. The supersymmetric ac-
tions associated with these quantities contain several unusual

t t L N
®(¢’1¢1_¢’2¢2):ﬁ ~ dag(g—ie)

xexdiq(®ld,—did,)] features, such as Faddeev-Popov rather than Dirac kinetic
_ . . . N term for the anticommuting fields, imaginary coupling, and
=0(s18175;8) T (X1 X1~ X2 X2) Minkowskian field coordinate metric. We showed how the

LDE method can be applied to such systems using as illus-
trative examples the ground-state energy of a supersymmet-
X 8'(STS1—S5Sy). (44) ric anharmonic oscillator, a zero-dimensional density of
states model, the one-dimensional density of states, and a
The function® (®]d, —®1d,) limits the integration range  zero-dimensional conductance model.
to s;57 >s,s5 , While preserving supersymmetry. We call  The next stage is to apply the LDE approximation to the
this the supersymmetric step function. Using the identitydensity of states imi=2 for Gaussians-function as well as
O(PID,—D]D,)+O(PIP,—DIP)=1, we can check other types of correlated disorder. The calculations should be
thatl s;—,=1. Expanding Eq(43) with respect tos and then similar to those for thal=1 density of states, the only es-
carrying out the integrals, we obtain an expression that coinsential new feature being the need to regularize and renor-
cides with twice the real part of expressi@2) multiplied  malize. The ideas presented concerning the application of the
by the factor#/b and with the parametesr replaced by LDE method to the conductance must also be developed fur-
a+ib. Thus, we can immediately conclude that applying thether.

PMS condition and then taking the real part yields a series We now finish with a brief description of another possible
that converges to the exact soluti¢fl). application of the LDE method. This concerns the use of a
Having found a way in which to apply the LDE method to supersymmetric nonlinear model to determine the conduc-
the zero-dimensional conductance model, we can now try ttivity critical exponent for the Anderson metal-insulator tran-
apply the method in the same way to 8&~ andS™ * terms  sition (see, e.g., Secs. lll and IV of Ref. 10 and also Ref. 21

in Eq. (36). The 5-modified actionsS; ~ andS; * analogous for a review of the Anderson transitipnThe o model is
to Eq. (42) are clear. As for the supersymmetric step func-usually quantized using the-+2e expansiorf>?* However,
tion, the natural choice is the conductivity exponent foe=1 (d=3) was found not to
agree with the accepted value from numerical calculatféns.

X 8(ST $1—55S2) = XT X1X3 X2

1 (+= . One possible reason put forward for this disagreement is the
® ab g, T - _ -1
fdr”mnq)m(b”) 27 f_w da(g—ie) omission from theo-model action of high-order gradient
terms that may be relevant to the fixed point &nekpansion
. ab + t (see, e.g., Ref. 25 for a revigwAnother possibility is that
xex;{qu dfﬂmn‘bmq’n>- the o model is adequate, but the method of perturbative

(45) quantization is not. With respect to the latter possibility, it

would be of interest to try to apply the LDE or some related
The & modifications of the terms involving”~ andS™ " in  method to the supersymmetric nonlineamodel in order to
Eqg. (36) are then just the analogues of E43). We are faced determine the conductivity exponent.
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