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Applying the linear d expansion to disordered systems
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~Received 28 April 1997!

We apply the lineard expansion~LDE!, originally developed as a nonperturbative, analytical approximation
scheme in quantum field theory, to problems involving noninteracting electrons in disordered solids. The initial
idea that the LDE method might be applicable to disorder is suggested by the resemblance of the supersym-
metric field theory formalism for quantities such as the disorder-averaged density of states and conductance to
the path-integral expressions for then-point functions oflf4 field theory, where the LDE has proved a
successful method of approximation. The field theories relevant for disorder have several unusual features that
have not been considered before, however, such as anticommuting fields with Faddeev-Popov~FP! rather than
Dirac-type kinetic-energy terms, imaginary couplings and Minkowskian field coordinate metric. Nevertheless
we show that the LDE method can be successfully generalized to such field systems. As a preliminary test of
the method and also to give some understanding of its origins, we calculate to third order in the LDE the
ground-state energy of a supersymmetric anharmonic oscillator with FP kinetic term and real anharmonic
coupling strength of arbitrary magnitude. Strong evidence for the convergence of the LDE is obtained. We then
calculate to second order in the LDE the disorder-averaged density of states of a one-dimensional system and
find even at first order more accurate results than the commonly used self-consistent Born approximation. In
the final part we outline one possible way in which the LDE method might be applied to the conductance, using
as supporting example a zero-dimensional model with Minkowskian field coordinate metric. Further directions
for research are discussed in the conclusion.@S0163-1829~97!01439-2#
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I. INTRODUCTION

Interacting quantum field systems rarely allow exa
closed-form expressions for their observable quantities
nearly every case some method of approximate solution m
be employed. The most common approximation involves
veloping a series expansion of the quantity of interest
increasing powers of the coupling constant multiplying t
interaction term in the field Lagrangian. However, such
series is not expected to give a good approximation when
coupling constant in the appropriate dimensionless unit
not small. Even when the coupling is small, there are sit
tions where the series approximation does not work, suc
when the quantity of interest is nonanalytic at zero coupli
Given the relevance of strongly interacting quantum fi
systems for describing processes occurring in nature
worthwhile and stimulating challenge has been to find al
native, analytical approximation schemes that must neces
ily be nonperturbative in the physical coupling constants
the field systems.

The lineard expansion~LDE! is one such scheme that ha
been successfully applied to problems in, for example,lf4

theory1 and quantum chromodynamics.2,3 In outline, the
LDE method replaces the actionS of the field theory with a
modified action Sd that interpolates linearly between
soluble actionS0 depending on a variational parameterV
and the originalS, i.e.,

Sd5~12d!S01dS. ~1!

The Green function of interestG is evaluated as a powe
series in the artificial parameterd up to the desired orderN
and thend is set equal to 1. Unlike the exact Green functi
560163-1829/97/56~15!/9422~9!/$10.00
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G, the truncated Green functionGN will depend onV. The
latter is fixed at each orderN by applying the principle of
minimal sensitivity~PMS!:4

]GN

]V U
VN

50. ~2!

The PMS condition is crucial, in that it provides the nonpe
turbative dependence on the physical coupling parameter
in several cases has been shown to ensure convergence
sequence of approximantsGN(VN). There is considerable
arbitrariness in the choice ofS0 . Some choices will result in
more rapid convergence of the sequence or simpler calc
tions to perform, whereas other choices may not work at
At the very least,S0 should have some resemblance to t
original action S. Proofs of the convergence of the LD
method have been obtained in several different ways for
tain Green functions of the quantum anharmon
oscillator.5–8 These proofs have also given us insights in
how the method works. For higher-dimensional field theor
no convergence proofs have been constructed so far an
must rely on comparison with numerical methods.

In this paper we apply the LDE method to a differe
problem: the quantum dynamics of a single electron mov
in a random background potential. The idea of using
LDE method comes from the so-called supersymmetric fi
formulation of the problem,9,10 in which quantities character
izing the quantum dynamics, such as the disorder-avera
density of states and conductance, are represented as
integrals over both commuting and anticommuting field c
ordinates of some interacting field system. For a random
tential that is Gaussiand-function correlated the correspond
ing supersymmetric field actions resemble the usuallf4
9422 © 1997 The American Physical Society
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56 9423APPLYING THE LINEAR d EXPANSION TO . . .
action, hence suggesting the possibility of applying the L
method to the former systems as well. Of course, there
already several well-established approximation methods
studying the quantum dynamics of an electron in a rand
potential. Nevertheless, we thought it would be interesting
see whether a method originally developed for the study
relativistic quantum field systems could be successfu
adapted to random electron systems. First indications are
the LDE method in fact performs rather well in comparis
with established approximation methods.

The supersymmetric field actions have several unus
features that have not been considered before in LDE in
tigations. The kinetic term for the anticommuting fields is
Faddeev-Popov~FP! rather than the usual Dirac form~i.e.,
] tx* ] tx instead ofx* ] tx). Also, the interaction terms ap
pearing in the actions are imaginary and, for the action as
ciated with the disorder-averaged conductance, we hav
Minkowskian field metric @i.e., hmnFm

† Fn , with hmn

5(21)mdmn ; m,n51,2]. In the following sections we
show how the LDE method generalizes to such systems

In Sec. II we evaluate to third order ind the ground-state
energy of a supersymmetric anharmonic oscillator with
kinetic term and real, positive anharmonic coupling para
eter. The action for this system is in fact the same as
associated with the one-dimensional density of states
d-function-correlated disorder, the only difference being t
the coupling is real instead of imaginary. Although t
ground-state energy is of little relevance for the random e
tron dynamics, it is the simplest quantity on which to test
LDE method. Furthermore, the calculation gives some
derstanding of the method’s origins by showing that to fi
order ind it is equivalent to choosing a Gaussian wave fun
tion with variational parameters that are fixed by requiri
that the energy expectation value be a minimum. As we s
see, the LDE method reveals a rather remarkable depend
of the ground-state energy on the frequency and anharm
coupling parameters, making the supersymmetric an
monic oscillator an interesting system in its own right.

The LDE method is applied to the disorder-averaged
ergy density of states in Sec. III. We first consider a ‘‘ze
dimensional’’ density of states model~i.e., path integral re-
placed by ordinary integral!, for which we can easily go to
high order ind and obtain support for the convergence of t
expansion. We then evaluate to second order ind the one-
dimensional density of states ford-function-correlated disor-
der and compare with the exact expression, as well as
the self-consistent Born approximation~SCBA!. While the
use of the LDE was motivated by the supersymmetric fi
formulation, it is in fact not necessary to calculate the den
of states within this formulation. Indeed, we show that t
same series approximation is obtained by expanding ind the
averaged one-electron Green function expressed direct
terms of ad-modified single-electron Hamiltonian. Note th
the LDE method is not restricted to low dimensions, nor
just d-function-correlated random potentials.

Because the supersymmetric action associated with
disorder-averaged conductance has Minkowskian field c
dinate metric, the action must bed modified in a way that is
quite different from that of the density of states action.
Sec. IV, we describe one possibled modification. In contrast
with the density of states, the supersymmetric field formu
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tion is essential for the application of the LDE method to t
conductance: there is no modified physical Hamiltonian t
yields the same series expansion ind. As a first test, we
apply the method to a zero-dimensional conductance mo

In the conclusion we suggest further directions for
search. This includes the application of the LDE method
the supersymmetric nonlinears model in order to determine
the conductivity critical exponent.

II. THE SUPERSYMMETRIC
ANHARMONIC OSCILLATOR

In this section we use the LDE method to determine
ground-state energy of a quantum, supersymmetric an
monic oscillator. The classical Lagrangian is

L5
1

2
Ḟ†Ḟ2

v2

2
F†F2l~F†F!2, ~3!

where

F5S x

sD , F†5~x* s* ! ~4!

is a supervector coordinate with anticommuting compon
x and commuting components. In all our calculations in-
volving anticommuting variables we follow the rules an
conventions of Efetov,10 the only difference occurring in the
definition of complex conjugation for anticommuting var
ables. Our definition is

~x1x2!* 5x2* x1* , ~x* !* 5x. ~5!

The above Lagrangian is motivated by the supersymme
formulation of the disorder-averaged density of states~see
Sec. III!. In one dimension and ford-function-correlated ran-
dom potential, the supersymmetric Lagrangian associa
with the density of states differs from Eq.~3! only in having
an imaginary instead of real coupling~as well as an unim-
portant overall sign and constant coefficients!. Bohr and
Efetov11,10 also investigated the above supersymmetric L
grangian and found a closed-form expression for an eig
state with eigenvalue zero which they assumed to be
ground state. As we shall see, however, this assumptio
correct only forv2 larger than a certain negative value.

In order to quantize the oscillator we must first wri
down the Hamiltonian. In terms of real coordinatess1 , s2 ,
x1 , andx2 , wheres5s11 is2 andx5x11 ix2 , the Hamil-
tonian is

H5 ṡi pi1ẋ ip i2L

5 1
2 ~p1

21p2
2!1 1

2 v2~s1
21s2

2!2 ip1p21 iv2x1x2

1l~2ix1x21s1
21s2

2!2, ~6!

where the momenta are defined as follows:

pi5
]L

] ṡi

5 ṡi , p i5
]WL

]ẋ i

5 i e i j ẋ j . ~7!

The oscillator can now be straightforwardly quantized us
the correspondence principle, i.e., by associating with
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9424 56M. P. BLENCOWE AND A. P. KORTE
position coordinates and conjugate momenta operators a
on some state space and satisfying canonical~anti!commuta-
tion relations:

@ p̂i ,ŝj #52 id i j and $p̂ i ,x̂ j%52 id i j , ~8!

with all other ~anti!commutators vanishing and where w
have set\51. Note from Eq.~7! that p̂ i is anti-Hermitian,
i.e., p̂ i

†52p̂ i .
It will be convenient to work with two different stat

space bases. In one, the states are wave functions depe
on the position coordinates,c(s1 ,s2 ,x1 ,x2), with scalar
product defined as

^cuf&52 i E dx1dx2ds1ds2c* ~s1 ,s2 ,x1 ,x2!

3f~s1 ,s2 ,x1 ,x2!, ~9!

and the position and momentum operators represented a
lows:

ŝi↔si , p̂i↔2 i
]

]si
, x̂ i↔x i , p̂ i↔2 i

]W

]x i
. ~10!

The energy eigenstates of the free Hamiltonian (l50 and
v2.0) form a second useful basis. This basis is most ea
constructed using creation/annihilation operators, define
terms of the position and momentum operators as follow

s15
1

A2v
~a1a†! ,

p152 iAv

2
~a2a†! ,

s25
1

A2v
~b1b†! ,

p252 iAv

2
~b2b†! ,

~11!

x15
1

2Av
~c1c†1d1d†! ,

p152 i
Av

2
~c1c†2d2d†! ,

x252 i
1

2Av
~c2c†2d1d†! ,

p252
Av

2
~c2c†1d2d†! ,

where we have omitted the hats on the operators. From t
definitions and the canonical~anti!commutation relations~8!,
we have

@a,a†#51, @b,b†#51, $c,c†%51, $d,d†%521,
~12!
ng

ing

ol-
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in

se

with all other ~anti!commutators vanishing. Using Eqs.~11!
and ~12! to express the noninteracting part of the Ham
tonian in terms of the creation/annihilation operators, we fi
that

H05v~a†a1b†b1c†c2d†d!. ~13!

The energy eigenstates are obtained in the usual way.
first introduce a stateu0&, satisfying

au0&5bu0&5cu0&5du0&50 ~14!

and^0u0&51. From Eqs.~13! and~14! we see thatu0& is an
energy eigenstate with eigenvalue 0. All other eigenstates
obtained by acting onu0& with the creation operatorsa†, b†,
c†, andd†. The eigenstate

um,n, j ,k&5
~a†!m~b†!n~c†! j~d†!k

Am!n!
u0& ~15!

has eigenvalue

Emn jk5~m1n1 j 1k!v>0, ~16!

for integersm, n, j , and k>0, so thatu0& is in fact the
ground state of the free oscillator. Note that, sincec† andd†

anticommute,j andk are either zero or one. Note also tha
because of the minus sign entering in the anticommuta
relation~12! for d andd†, eigenstates withk51 have nega-
tive norm. The occurrence of negative norm states in
state space can be traced back to having an anticommu
coordinate kinetic term with two time derivatives,ẋ* ẋ, in
Eq. ~3!. The FP ghost fields, which occur in the quantizati
of Yang-Mills fields, have similar properties.12 Negative
norm states can be avoided by using instead a Dirac kin
term, x* ẋ. However, since the FP kinetic term is the re
evant one for disorder and the Lagrangian~3! is not meant to
describe a physical oscillator, we shall live with the negat
norm states.

Using Eqs.~14!, ~11!, and ~10! we find that the ground
state for the free Hamiltonian has the following form in th
position coordinate basis:

c0~s1 ,s2 ,x1 ,x2!5
1

A2p
expS 2

1

2
vF†F D

5
1

A2p
exp@2 1

2 v~s1
21s2

212ix1x2!#.

~17!

This wave function is just the supersymmetric generalizat
of the Gaussian function.

Let us now return to the problem of determining th
ground-state energy of the supersymmetric oscillator Ham
tonian forl.0. In the case of the ordinary, commuting c
ordinate anharmonic oscillator it is well known that th
minimum-energy expectation value for a Gaussian wa
function with variable frequency and coordinate shift para
eters gives a good approximation to the ground energy.13 A
natural choice for the supersymmetric oscillator trial wa
function is then
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FIG. 1. Ground-state energy in units ofuvu
versusv2/l2/3. The dashed line is the orderd
approximation and the solid line the orderd3 ap-
proximation.
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c~s1 ,s2 ,x1 ,x2!5
1

A2p
S V1V2

n2 D 1/4

exp@2 1
2 V1~s12s0!2

2 1
2 V2s2

22 inx1x2#, ~18!

wheres0 is the shift parameter andV1 , V2 , andn are the
frequency parameters. A nonzero shift parameter is ne
sary in order to approximate the ground energy forv2,0
and uv2u large, since in this case the commuting coordin
part of the potential in Eq.~6! has the ‘‘Mexican hat’’ form
and the ground-state wave function peaks at the rim of
hat, instead of at the center. The expectation value^cuHuc&
is most easily worked out in the position coordinate rep
sentation using Eqs.~6!, ~10!, ~18!, and ~9!. The minimum
expectation value with respect to variations in the parame
s0 , V1 , V2 , and n then gives an approximation to th
ground-state energy.

The above method provides only a one-off approximati
however. A considerable improvement would be a schem
which the expectation valuêcuHuc&, for uc& given by Eq.
~18!, appears as the first-order term in a perturbation se
As shown by Stevenson for the ordinary anharmonic osc
tor ~see Sec. V of Ref. 13!, such a scheme can in fact b
realized. Generalizing to the supersymmetric oscillator,
scheme involves first modifying Hamiltonian~6! as follows:

Hd5 1
2 ~p1

21p2
2!1 1

2 V1
2s1

21 1
2 V2

2s2
22 ip1p21 in2x1x2

1 1
2 v2s0

21ls0
41d[ 1

2 v2~s11s0!21 1
2 v2s2

21 iv2x1x2

1l„2ix1x21~s11s0!21s2
2
…

22 1
2 v2s0

22ls0
4

2 1
2 V1

2s1
22 1

2 V2
2s2

22 in2x1x2], ~19!

and then solving for the lowest-energy eigenvalue of t
modified Hamiltonian using the usual Rayleigh-Schro¨dinger
~RS! perturbation procedure withd serving as expansion pa
rameter. Note thatHd interpolates linearly between a ha
monic oscillator Hamiltonian ford50 and the original an-
harmonic Hamiltonian ~6! with coordinate redefinition
s-

e

e

-

rs

,
in

s.
-

e

s

s1→s11s0 for d51. Hence the name ‘‘linear delta expan
sion.’’ To first order ind, the RS series approximation to th
ground energy is~with d set equal to 1!:

E0'E0
~0!1^0uH intu0&, ~20!

where E0
(0) and u0& are the ground energy eigenvalue a

eigenstate, respectively, of the harmonic oscillator Ham
tonian Hd50 and H int5Hd512Hd50 .The most straightfor-
ward way to work out Eq.~20! is to first expressHd in terms
of creation/annihilation operators using relations~11! with
the appropriate frequency changes. After some calcula
we find that Eq.~20! indeed coincides with the expectatio
value^cuHuc&. However, we now have a systematic proc
dure that allows us to go beyond the Gaussian variatio
approximation:E0 for the HamiltonianHd is evaluated up to
the desired orderN in d using the RS perturbation metho
and the frequency and shift parameters are then fixed
minimizing the orderN approximation toE0 . The calcula-
tions proceed in much the same way as for the ordin
anharmonic oscillator, the main difference arising from t
negative norm eigenstates in the state sums that appe
second order and higher. The negative norm states are
dealt with by making explicit the eigenstate normalizati
factors in the RS series expansion formula.

In Fig. 1 we plot the results of the orderd andd3 ground-
state-energy calculations.@To orderd2, there were no param
eter values for whichE0 was stationary. This is a commo
occurrence in LDE calculations, where stationary points m
exist for odd~even! orders only.# The analogous results fo
the ordinary anharmonic oscillator are given in Ref. 13. F
the rangev2/l2/3*23.69, the ground energy is exactly ze
to orderd3. The frequency parameters satisfyV15V25n,
while the shift parameters050. For v2/l2/3&23.69, E0 is
stationary for a choice of parameters with the same patter
above, again givingE050. However, there is another choic
of parameters having the patternV1ÞV25n ands0Þ0 for
which E0 is also stationary but less than zero, hence prov
ing a closer approximation to the ground-state energy.
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9426 56M. P. BLENCOWE AND A. P. KORTE
An independent check of the results forv2,0 and uv2u
large is obtained by expressing the Hamiltonian~6! in polar
coordinates and expanding the commuting coordinate po
tial to quadratic order in the radial coordinate differen
r 2r 0 , wherer 0 is the location of the potential minimum. T
leading order, the ground-state energy of the resulting h
monic oscillator Hamiltonian is

E0'2
v4

16l
. ~21!

We have verified that the orderd and d3 approximations
indeed tend to Eq.~21! asv2→2`. While not constituting
a proof, this result taken together with the closeness of
order d and d3 approximations strongly suggests that thed
expansion converges.

The existence of a region where the ground energy
exactly zero is reminiscent of quantum-mechanical syste
with time translation supersymmetry@i.e., the square of the
supersymmetry operator equals the Hamiltonian~for a re-
view, see, e.g., Ref. 14!#. For such systems, invariance of th
ground state under supersymmetry transformations imp
the vanishing of the ground-state energy. On the other h
if the ground state is noninvariant, time translation sup
symmetry is spontaneously broken and we have a non
ishing ~positive! ground-state energy. It is tempting, ther
fore, to speculate that time translation supersymmetry
broken for v2 below 23.69l2/3 and unbroken above thi
value. However, the Hamiltonian~6! is known only to have
rotational supersymmetry~i.e., the square of the supersym
metry operator equals the angular momentum operator
responding to rotations in thes1-s2 coordinate plane! and no
conclusions can be drawn concerning the ground ene
from the invariance properties of the ground state under
tational supersymmetry. It would be of interest to try to u
derstand the reasons for the rather remarkable dependen
the ground-state energy onv2 shown in Fig. 1.

III. THE DENSITY OF STATES

Consider an electron in ad-dimensional random potentia
described by the Hamiltonian

H5
pipi

2m
1V~r !2E, i 51, . . . ,d, ~22!

whereE is the Fermi energy and the potentialV is Gaussian
distributed withd-function correlation:

V~r !50, V~r !V~r 8!5ld~r2r 8!. ~23!

The overbar denotes disorder averaging and the paramel
characterizes the strength of the disorder. The supersym
ric formulation of the averaged energy density of states
unit volume for this system is10

r~E!52
1

p
Im G~1 !~r ,r ;E!

5
1

p
Re E DF†DFs~r !s* ~r !exp~ iS!, ~24!
n-

r-

e

is
s

s
d,

r-
n-

is

r-

gy
-

-
e of

r
et-
er

whereG(1) is the retarded one-electron Green function. T
supervector coordinateF is defined in Eq.~4! and the super-
symmetric actionS is defined as follows:

S52E dr F \2

2m
] iF

†] iF2~E1 i e!F†F2
il

2
~F†F!2G .

~25!

Given the resemblance of this action to the ordinarylf4

action and the effectiveness of the LDE approximati
method for studying various quantum properties oflf4

theory,1 it is natural to apply the LDE method to the densi
of states of system~22! as well. Of course, as we have a
ready mentioned, the supersymmetric action has several
nificant additional features. In the preceding section
showed how the LDE method could successfully accomm
date some of these features in ground-state-energy calc
tions. In the following, we further extend the LDE metho
using it to approximate expression~24!, which is essentially
the two-point function of a supersymmetriclf4 system with
imaginary coupling.

The first step in the LDE procedure is to ‘‘d modify’’
action ~25!. Recall that, for the parameters satisfyin
V15V25n and s050, the d-modified Hamiltonian~19!
gave the energyE050. Furthermore, Bohr and Efetov11 ~see
also Sec. 6 of Ref. 10! showed, by expressing thed51 den-
sity of states in terms of the eigenstates of Hamiltonian~6!,
that only the eigenstate with eigenvalue zero was relev
Noting the form of thed-modified Hamiltonian~19! for
V15V25n5V and s050, we are led to consider the fol
lowing d-modified action:

Sd52E dr H \2

2m
] iF

†] iF2~V1 i e!F†F

1dF ~V2E!F†F2
il

2
~F†F!2G J . ~26!

The original action~25! is replaced by the modified actio
~26! in Eq. ~24! and the series expansion ind obtained. The
final step is the application of the PMS condition~2! in order
to fix the frequency parameterV. Note that the PMS condi-
tion is applied before taking the real part in expression~24!.

Again it is not necessary to implement the LDE meth
within the supersymmetric formulation of the density
states. Comparing the actionsS and Sd and examining also
the correspondence between the actionS and the physical
Hamiltonian~22! with correlation relation~23!, we can im-
mediately write down the modified physical Hamiltonia
corresponding to the actionSd :

Hd5
pipi

2m
2V1d~V2E!1d1/2V~r !. ~27!

Since the averaged potential satisfiesV(r )50, only integer
powers ind appear in the expansion. If we then replace t
physical Hamiltonian by this modified Hamiltonian in th
definition of the retarded one-electron Green function:

Gd
~1 !~r ,r 8!5^r u~2Hd1 i e!21ur 8&, ~28!



tri
p-
io
od
us

a

te
D
tio

-
ie

l

a

n
p

e

th
c

in

lds
Eq.

for
er

ct
g
ote

st in
of

tter

re

ed.
re
It
oxi-
po-

ap-
n-

irs.

t-

er-

56 9427APPLYING THE LINEAR d EXPANSION TO . . .
we recover the same series expansion ind as for the above
supersymmetric formulation. Although the supersymme
formulation is not required in order to apply the LDE a
proximation method to the density of states, the formulat
is of considerable value in suggesting the LDE meth
Without the supersymmetric formulation, it is not obvio
that modifying the physical Hamiltonian~22! as in Eq.~27!
is a useful step. Casting a quantity in a different form c
often suggest new methods of approximation.

We first consider a zero-dimensional density of sta
model that provides support for the convergence of the L
method. The model is essentially the dimensional reduc
of expression~24!:

I 5E dx* dxds* dss* s expS i F2aF†F2
l

2
~F†F!2G D .

~29!

Apart from thes* s factor outside the exponential, this inte
gral is just the supersymmetric version of the integral stud
in Ref. 19. Carrying out the integrations, we obtain

I 5A2p3/lea2/2lerfc~a/A2l!. ~30!

~Note that, without thes* s factor, the integral would equa
one.! Let us now approximate the integral~29! using the
LDE method. Modifying the argument of the exponential
in Eq. ~26!, we have

I d5E dx* dxds* dss* s expS i H 2VF†F1dF ~V2a!F†F

2
l

2
~F†F!2G J D . ~31!

The terms in thed expansion are simple enough that a ge
eral expression can be written down for the expansion u
arbitrary orderN:

I N52p (
n50

N

(
k50

n

(
j 50

2k

~21!k2 j22nl j 2nV2 j 21

3~V2a!2n2 j
~2k!!

k! ~n2k!! ~2k2 j !!
. ~32!

We were able to evaluateI N , with V fixed by the PMS
condition, up to high order inN for a range of complex
parameter valuesa and l and in each case found that th
sequenceI N(VN) converged to the exact solution~30!.

Thus encouraged, we use the LDE to approximate
d51 density of states. This example has been solved exa
using a variety of methods15–17,11 enabling an immediate
check of the accuracy of the LDE. Expanding to first order
d either Eq.~24! with S replaced bySd , or Eq. ~28! after
disorder averaging, we obtain~with d set equal to 1!:

r̄ 15
1

2p\
Am

2
ReS 3V21/22EV23/21 iA m

2\2
lV22D .

~33!
c

n
.

n

s
E
n

d

s

-
to

e
tly

Setting to zero the derivative with respect toV of the term in
brackets, we obtain the following PMS condition:

V3/22EV1/21
2i

3
A2m

\2
l50. ~34!

This equation admits three independent solutions forV.
However, only one of these solutions is physical, i.e., yie
a positive nonzero density of states when substituted into
~33!. To second order ind, we have

r̄ 25
1

8p\
Am

2
ReS 15V21/225EV23/213E2V25/2

16iA2m

\2
lV2224iA2m

\2
lEV23

2
25m

8\2
l2V27/2D . ~35!

The PMS condition now admits six independent solutions
V of which only one is physical. In Fig. 2 we plot the ord
d andd2 approximations to thed51 density of states. Also
shown are the exact curve and the SCBA~see, e.g., Ref. 18
and references therein!. A comparison between the exa
curve and the orderd andd2 approximations provides stron
evidence for the rapid convergence of the LDE method. N
that even the lowest, orderd, approximation is superior to
the SCBA result. The convergence appears to be slowe
the region of the exponentially decaying exact density
states tail. It is possible that a differentd-modification pro-
cedure from that used above can be found that gives be
convergence in this region.

The analogous calculations ford>2 should involve little
extra difficulty. The only new feature is the divergent natu
of the terms in thed expansion ford>2, so that the proce-
dures of regularization and renormalization are requir
Other investigations1 suggest that these procedures a
straightforward to implement within the LDE method.
should also be possible to use the LDE method to appr
mate the disorder-averaged density of states for random
tentials satisfying other correlation relations.

IV. THE CONDUCTANCE

In this section we present some ideas concerning the
plication of the LDE method to the disorder-averaged co
ductance. Consider a channel with cross sectionA and length
L that is connected adiabatically at both ends to reservo
The single electron Hamiltonian is given by Eqs.~22! and
~23! with an additional hard-wall confining potential restric
ing the electron to move within cross sectionA. The super-
symmetric formulation of the zero-temperature, disord
averaged conductance is
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FIG. 2. Energy density of states per un
length versus Fermi energy for disorder streng
l51/A2 in units\5m51. The solid line is the
exact curve, the dashed line the orderd approxi-
mation, the dotted line the orderd2 approxima-
tion, and the dot-dashed line the self-consiste
Born approximation.
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n

C̄5
e2\3

8pm2L2E2L/2

1L/2

dxE
A
dr'E

2L/2

1L/2

dx8

3E
A
dr'8 E DF1

†DF1DF2
†DF2@s1~r !]x8s1* ~r 8!

3s2~r 8!]xs2* ~r !1]xs1~r !s1* ~r 8!]x8s2~r 8!s2* ~r !

2]xs1~r !]x8s1* ~r 8!s2~r 8!s2* ~r !2s1~r !s1* ~r 8!

3]x8s2~r 8!]xs2* ~r !#~eiS12
1eiS21

1eiS11
1eiS22

!,

~36!

where r5(x,r')5(x,y,z), and the actionsSab are defined
as follows:

Sab52E dxE
A
dr'H hmn

ab F \2

2m
] iFm

† ] iFn2EFm
† FnG

2 i eFm
† Fm2

il

2
~hmn

ab Fm
† Fn!~huv

abFu
†Fv!J , ~37!

with the supervector fieldsFm , m51,2, vanishing at the
cross-section boundaries. The field metrics are defined
follows:

hmn
115dmn , hmn

2252dmn , hmn
125~21!m11dmn ,

hmn
215~21!mdmn ; m,n51,2. ~38!

Equation ~36! follows from the formula for the disorder
averaged conductance of a finite-length wire in terms of
averaged products of advanced and retarded Green func
~see, e.g., Ref. 20! and the formulation of these products
terms of supersymmetric path integrals.10

We can decompose Eq.~36! into a sum of four terms,
each involving a different action. It is most natural to app
the LDE method to each of these four terms separately.
actionS11 is very similar to the density of states action~25!,
the only difference being the number of supervector fiel
We therefore expect that the actionS11 can bed modified
with a single parameterV exactly as in Eq.~26!. The series
as

e
ns

e

.

expansion ind is obtained and the PMS condition applie
after all the integrals have been carried out. The comp
conjugate of the resulting LDE approximation yields the a
proximation to theS22 term.

The application of the LDE method to the terms involvin
the actionsS12 andS21 is less straightforward as a cons
quence of the Minkowskian field metric appearing in t
actions. As a first step, we consider a zero-dimensional c
ductance model analogous to the density of states mode
fined in Eq. ~29!. These models are particularly useful fo
testing the convergence of a givend modification. Dimen-
sionally reducing theS12 term in Eq.~36!, we arrive at the
following model:

I 5E dx1* dx1dx2* dx2ds1* ds1ds2* ds2s1s1* s2s2* exp~ iS!,

~39!

where

S5a~F1
†F12F2

†F2!1 ib~F1
†F11F2

†F2!

1
il

2
~F1

†F12F2
†F2!2. ~40!

The parametersa andb are real withb.0. We chooseb to
be much smaller thanl. The termib is the analogue of the
i e term in Eq.~37!. In order that Eq.~39! not diverge, how-
ever,b must be positive and nonzero, rather than infinite
mal. The integrals are readily carried out and we obtain

I 5A2p5/lb21$e~b1 ia !2/2l erfc@~b1 ia !/A2l#

1e~b2 ia !2/2l erfc@~b2 ia !/A2l#%. ~41!

Note that Eq.~41! is just twice the real part of expressio
~30! multiplied by the factorp/b and with the parametera
replaced bya1 ib. How might wed modify the ‘‘action’’
S? The partS0 should have some resemblance toS and so a
natural choice is
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Sd5V~F1
†F12F2

†F2!1 ib~F1
†F11F2

†F2!1dF ~a2V!

3~F1
†F12F2

†F2!1
il

2
~F1

†F12F2
†F2!2G , ~42!

whereV5V11 iV2 , with V1.0 andV2.b.0. Replacing
S by Sd in Eq. ~39! and expanding ind we find, however,
that the integrals are infinite since the integrands diverge
s1s1* 2s2s2*→2`. The solution to this problem is to spl
the range of integration in Eq.~39! into the two regions
s1s1* .s2s2* and s1s1* ,s2s2* and apply the LDE method
separately to each integral withV replaced by
V* 5V12 iV2 in the integral over the latter region. Sinc
the two integrals are complex conjugates of each other,
sufficient to consider only one of them. We are therefore
to consider the followingd modification:

I d52ReE dx1* dx1dx2* dx2ds1* ds1ds2*

3ds2s1s1* s2s2* Q~F1
†F12F2

†F2!exp~ iSd!, ~43!

whereSd is given by Eq.~42! and

Q~F1
†F12F2

†F2!5
1

2p i E2`

1`

dq~q2 i e!21

3exp@ iq~F1
†F12F2

†F2!#

5Q~s1* s12s2* s2!1~x1* x12x2* x2!

3d~s1* s12s2* s2!2x1* x1x2* x2

3d8~s1* s12s2* s2!. ~44!

The functionQ(F1
†F12F2

†F2) limits the integration range
to s1s1* .s2s2* , while preserving supersymmetry. We ca
this the supersymmetric step function. Using the iden
Q(F1

†F12F2
†F2)1Q(F2

†F22F1
†F1)51, we can check

that I d515I . Expanding Eq.~43! with respect tod and then
carrying out the integrals, we obtain an expression that c
cides with twice the real part of expression~32! multiplied
by the factorp/b and with the parametera replaced by
a1 ib. Thus, we can immediately conclude that applying
PMS condition and then taking the real part yields a se
that converges to the exact solution~41!.

Having found a way in which to apply the LDE method
the zero-dimensional conductance model, we can now tr
apply the method in the same way to theS12 andS21 terms
in Eq. ~36!. Thed-modified actionsSd

12 andSd
21 analogous

to Eq. ~42! are clear. As for the supersymmetric step fun
tion, the natural choice is

QS E drhmn
ab Fm

† FnD5
1

2p i E2`

1`

dq~q2 i e!21

3expS iqE drhmn
ab Fm

† FnD .

~45!

Thed modifications of the terms involvingS12 andS21 in
Eq. ~36! are then just the analogues of Eq.~43!. We are faced
r

is
d

y

n-

e
s

to

-

with some difficulty, however, in evaluating the terms in t
d-expansion series. The difficulty lies in performing the pa
integrals in the presence of the step function~45!. The first
thought is to carry out the path integrals first and then thq
integral appearing in the definition of the step function. B
interchanging the order of integration in this way makes
path integrals ill defined for the same reason as was m
tioned above for the ordinary integrals of the zer
dimensional model. One possible resolution is to have a
ries expansion of the step function involving on
polynomial and Gaussian functions of the superfields —
that the path integrals can be performed — and to link
order of this expansion with the order of thed expansion.
Relevant discussions can be found in Ref. 7.

V. CONCLUSION

We have applied the LDE approximation method to t
quantum dynamics of a single electron in a random poten
The LDE method was originally developed for the study
quantum field systems such aslf4 field theory. The idea
that the LDE method might be applied to disordered syste
as well comes from the resemblance of the path integral
pressions of thelf4 field theory n-point functions to the
supersymmetric path integral expressions of quantities s
as the averaged density of states and conductance for G
ian d-function-correlated disorder. The supersymmetric
tions associated with these quantities contain several unu
features, such as Faddeev-Popov rather than Dirac kin
term for the anticommuting fields, imaginary coupling, a
Minkowskian field coordinate metric. We showed how t
LDE method can be applied to such systems using as il
trative examples the ground-state energy of a supersym
ric anharmonic oscillator, a zero-dimensional density
states model, the one-dimensional density of states, an
zero-dimensional conductance model.

The next stage is to apply the LDE approximation to t
density of states ind>2 for Gaussiand-function as well as
other types of correlated disorder. The calculations should
similar to those for thed51 density of states, the only es
sential new feature being the need to regularize and re
malize. The ideas presented concerning the application o
LDE method to the conductance must also be developed
ther.

We now finish with a brief description of another possib
application of the LDE method. This concerns the use o
supersymmetric nonlinears model to determine the conduc
tivity critical exponent for the Anderson metal-insulator tra
sition ~see, e.g., Secs. III and IV of Ref. 10 and also Ref.
for a review of the Anderson transition!. The s model is
usually quantized using the 21e expansion.22,23 However,
the conductivity exponent fore51 (d53) was found not to
agree with the accepted value from numerical calculation24

One possible reason put forward for this disagreement is
omission from thes-model action of high-order gradien
terms that may be relevant to the fixed point ande expansion
~see, e.g., Ref. 25 for a review!. Another possibility is that
the s model is adequate, but the method of perturbat
quantization is not. With respect to the latter possibility,
would be of interest to try to apply the LDE or some relat
method to the supersymmetric nonlinears-model in order to
determine the conductivity exponent.



F.
ting
the

9430 56M. P. BLENCOWE AND A. P. KORTE
ACKNOWLEDGMENTS

We would like to thank M. Chu, E. Hofstetter, M. Itoh, H
F. Jones, A. MacKinnon, and L-H. Tang for very helpful an
.
d

stimulating discussions. We are especially grateful to H.
Jones for his close interest in the project and for sugges
improvements to the manuscript. Financial support from
EPSRC is also acknowledged.
*Electronic address: m.blencowe@sst.ph.ic.ac.uk
1I. Stancu and P. M. Stevenson, Phys. Rev. D42, 2710~1990!.
2I. L. Solovtsov, Phys. Lett. B327, 335 ~1994!.
3J. O. Akeyo, H. F. Jones, and C. S. Parker, Phys. Rev. D51, 1298

~1995!.
4P. M. Stevenson, Phys. Rev. D23, 2916~1981!.
5C. Arvanitis, H. F. Jones, and C. S. Parker, Phys. Rev. D52, 3704

~1995!.
6R. Guida, K. Konishi, and H. Suzuki, Ann. Phys.~N.Y.! 249, 109

~1996!.
7S. A. Pernice and G. Oleaga~unpublished!.
8W. Janke and H. Kleinert~unpublished!.
9A. J. McKane, Phys. Lett. A76, 22 ~1980!.

10K. B. Efetov, Adv. Phys.32, 53 ~1983!.
11T. Bohr and K. B. Efetov, J. Phys. C15, L249 ~1982!.
12T. Kugo and I. Ojima, Prog. Theor. Phys. Suppl.66, 1 ~1979!.
13P. M. Stevenson, Phys. Rev. D30, 1712~1984!.
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