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Diffusion-constant renormalization in the weakly disorderedt-J model:
Recovery of a metal-insulator transition in a generic disorder model
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We examine the metallic phase of thel model in the presence of weak site disorder using thé 1/
expansion to treat the strong electron correlations. To next leading ordeM iweltalculate the quasiparticle
interactions including diffusive effects. We then investigate the effect of these quasiparticle interactions on the
diffusion constant perturbatively as a first step towards a full scaling theory. We find thatdrmd#nensions
a bona-fide Anderson transition is recovergs0163-182807)06339-X]

I. INTRODUCTION order was coupled to the hopping via the charge susceptibil-
ity, which led to a broadening of the Mott-Hubbard region.
The interplay between strong electron correlations and Overall, the nature of the ground state of the pté
disorder remains one of the open questions in condensg®odel is still not settled. The simplest mean-field theories
matter. At present the most comprehensive treatments stdftat Yield a metallic ground state already incorporate some
from the weak disorder problem and introduced correlationgSPECts Of the antiferromagnetic interaction via a renormal-
into the microscopic theory that describes the Anderson tra jzation of the electron hopping term, thus yielding large

sition. This tvoe of aporoach. as introduced b Finkelsﬁteinn'iermi surfaces consistent with photoemission results on
: yp PP , y high-T, materials. It makes sense therefore to examine the

and reviewed recently if,examines correlation effects effect of weak disorder within such a formalism, although to
through their renormalization of the diffusion constant and iNreally make good contact with the comprehensive ap-
turn incorporates disorder effects on the Fermi-liquid paramproaches applied to weakly interacting disordered systems
eters that describe the electron correlations. The resultingne has to proceed beyond mean-field level. This is because
renormalization-group equations predict metal-insulator tranthese approaches study the renormalization of parameters
sitions when symmetry-breaking interactignsagnetic field, such as the diffusion constant, which itself is only obtained
magnetic impurities, and spin-orbit scattenirgre present. by studying diffusive corrections to the particle-hole propa-

However, one type of model in which the situation remains9ator: _ _ .
unclear are the “generic’ models with no symmetry- Moreover, to obtain the effect of correlations on the dif-
fu

I . . o sion constant we need to derive the effective interaction
breaking interactions. I_n this case 'F IS found_ that the .Landalf)etween the weakly disordered quasiparticles. This definitely
parameter corresponding to spln-trlplet partlcl_e-hole 'nteracfequires proceeding to theN/Gaussian level and summing
tions (the paramagnon channeliverges under disorder scal- 5 giffusive corrections to the boson propagators. Previously
ing implying a preemptive magnetic transition close to twWoe studied the infinitdd Hubbard model within this very
dimensions. approach? calculating the free energy and quasiparticle life-

Another line of approach is to start from the strongly cor-time, by specifically including such diffusion pole graphs
related electron system and turn on the disorder, avoiding thiato the fluctuating boson propagators that appear at the
initial invocation of Fermi liquid parameters and instead Gaussian M level, although there we did not actually derive
dealing with actual model parameters. In the context ofhe quasiparticle interaction.
heavy fermion systems, a number of authors have considered Our purpose in the present paper is to extend our previous
this approach either using the Gutzwiller apprcach by ~ work to thet-J model in the presence of weak site disorder,
enforcing the local occupation constraints using auxilliaryagain summing diffusion pole graphs that determine the bo-
bosons' Disorder of either the site or bond type is then SON propagators, but this time specifically in order to obtain
introduced and its effects on the mean-field theory are cal-_the quaSIpartche interaction. We th_en use this qua3|part|cle
culated. While the thermodynamics of the heavy fermioninteraction to_renormallz_e the diffusion propagator !tselh; fol-
state is largely unaffected by disordemansport properties 0Wing the diagrammatic procedure of Castellatial,
show different behaviofeither by treating the disorder WNich. as these authors showed, is completely equivalent to
within coherent potential approximati%(CPA) or by sum- the Finkelshtein renormallzatlgn—group approach. Although
ming maximally crossed grapHs Kondo insulators also we do not attempt the full scaling theory here, we will show
have been profitably investigated this wiy° that a generic d|.sorder mc_)del such as th@ mpdel does

In the context of one-band models Zimanyi and recover a bona-fide metal-insulator transition in the present

Abraham$? studied thet-J model with site disorder present approach.

using slave bosons at the mean-field level to incorporate oc- Il FORMULATION

cupation restrictions in the hopping term, but treated the an-

tiferromagnetic term as an electron interaction that scaled In this section we formulate theJ model in the presence
under disorder using the Finkelshtein approach. The site diwf disorder following our previous line of approach to the
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infinite-U Hubbard modet? Our formulation reduces in the tions in the pure cas¥.This feature is consistent with the
pure case to the W treatment of the-J model by Wang, results of nondiffusion pole CPA-type approactiesor
Bang, and Kotlid* The main difference with our previous weak disorder.

infinite-U work'? is then in the inclusion of the antiferromag- ~ The mean-field results are then identical to the pure'éase
netic coupling. At the mean-field level this leads to an extrafo leading order in the disorder. In particular, thefield
contribution to the quasifermion hopping rate, while at theshifts the chemical potential so as to satisfy the Luttinger
1/N level it contributes to separate radial and angular bondounting rule, the mass is renormalized by the singlet ex-
fluctuations in addition to the already present hopping and¢hange energy and the effects of the occupation restriction,
constraint field fluctuations. These extra Gaussian level corwhile the average boson fielsf is proportional to the hole
tributions are related to density and chirality fluctuations indoping 6. The explicit form taken by the mean-field equa-
the strongly correlated Fermi liquid. Our starting point is thetions is

Lagrangian for th&-J model,

A=32, cogk)f(Ey), A=4tA/J, b2=No2, (5
L(r)=>, [f] (d/d7— w)f;,+bld/drb, k
' where the quasiparticle dispersion is given By=—2(A
+iN(f; fi,+ Db b —N/2)] (1) +tbS/N)[cos((X)Jrcos((y)]—MJr)\. Thus the quasiparticles
experience a mean-field mass enhancemehtm=t/[2(A
" N +1t6/N)] that is large only if the rati¢/J is large; otherwise
+i§j: [N/ A 1= 11, o (Ajj —t/Nbyb;) in the zero doping limit it stays modest.

+H.c], 2 Ill. DIFFUSIVE CORRECTIONS TO THE POLARIZATION

wheref;, destroys a spin carrying fermion at siteb; de- PARTS AT 1/N ORDER

stroys a charge carrying boson at sitevhile the infinitel Our interest lies in going beyond mean-field level, which
constraint is enforced by the Lagrange multiplier The  means that we require the weak-disorder contribution to the
complex bosonic fieldy;; denotes the valence bond variable, free energy at next leadin@Gaussiap order in 1N. This
which in the largeN approach is introduced via a Hubbard- means following the usual prescription of calculating the
Stratonovich transformation to decouple the exchange terrfluctuations of the boson operators around their mean-field
in the t-J model. The hopping rate, spin exchange, andvalues and keeping only the quadratic component in the ef-
chemical potential are as usual denotedtpby, and u, re-  fective action. The Gaussian component of the partition
spectively. The partition function in this representation isfunction then has the disorder average performed within the
then given by a functional integral over the fermion andindividual Bose propagators as in the previous infithite-
auxilliary fields paper'? In this procedure each term in the expansion of the
partition function in powers of N has the disorder average
performed individually with only the dominant low-energy
diffusive corrections kept at each order. The upshot is that
3 translational invariance is restored with the effective action
given by

z=f DA'DA Db'Db Df'Df DA exp[—f L(7)dr

Added to the above Lagrangian is a term

L= S u(n—Ryf T @ =i 2 dul@ienDsaiendu(—a, i),

g ®

denoting the effect of a set of random impurities located afyhere the fluctuating boson fields are represented here by a
sitesR, . The impurity potential couples to the local quasi- yector ¢=(r,\,R",A”) wherev=x,y distinguishes the two
particle density as in other auxilliary boson treatméfifs:'  spatial components of the radial and angular gauge fields
As far as the formal aspects are concerned, we then folloyg A The inverse boson propagatd®$q,iw) are then com-

standard large-degeneracy treatments and integrate over thgsed of a static paR and a dynamic polarization pdit so
fermion fields yielding a effective boson Lagrangian. This isihat

then expanded around its saddle point, yielding a mean-field
component plus a Gaussian correction. D Y(q,iw,)=2NP(q)+NII(q,i w,). (7)

The mean-field equations thus obtained are given in terms
of the saddle-point results through the single-particle Green’dhe static components have nonzero val&gs=eq, P2
function, which is still in a site representation since the dis-= P1,=ib3/N, andPg3=P 4= Pss=Pg=A?/J. In deriving
order average is yet to be performed. In keeping with the®;; we have made use of the mean-field equations to elimi-
standard diffusion pole approaches, we keep only the lowestate the average over the leading-order Green’s function in
order Born approximation to the single-particle Green’sfavor of the “holon” dispersion relatione,=2t(A/J)[2
function. Since the disorder is in such cases assumed to becos(,)—cos(,)]. This component an important role in the
weak, we can easily show that the averages over the singl@ure case where it leads to a different collective mode asso-
particle Green’s function in the mean-field equations yieldciated with separation of the charge degrees of freedom. Also
corrections of orderdg-7) ! relative to the mean-field equa- in the pure case this mode leads to such non-Fermi-liquid
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features as a broad background in the single-particle
spectruni* and at two-loop ordér a positive spin-exchange R
Landau parametdf for large mass enhancements.

Following the methods of the previous papéwe obtain,

after performing the disorder average, the polarization matrix o )
FIG. 1. Polarization parts for the boson propagators appearing at

I i =11° i +11t i the one-loop level. The first graph represents the nondiffusive con-
ap(0si o) a,/g(q, wp) a,ﬁ(q, wp), ®) tribution in terms of the mean-field propagat@gk, w) (full lines)

where the first term is merely the polarization matrix withoutand the momentum-dependent verticefk, ,k-) (shown here as

any diffusive insertions, namely, dots. The second graph gives _the _dlffuswe correction in terms of
the verticesT (g, w, ,wy,) (combinations of Green’s functions and
momentum-dependent vertijeand the zeroth-order diffusive

Hg,ﬁ(q'i w):'rk%: Ak, 'k*)AB(k+ ko) propagatorS(q,w) shown as a double-dotted line.
1 @Wn

XG(K_ iw)G(k, iwtioy, (9 Hap@ion)

where the momentum-dependent vertices arising in the slave _ 1% 2T i i T
boson formulation of thé-J model are given byfollowing wzn UoTalGhwm wm)S(A T wn lom) TG, om @n),
Wang, Bang, and Kotliaf)

(12
A(ky k_)=[tbg(cogk,)+cogk, )+ cogk_,) where the vertices are given by
+cogk_,)]/N,i,—2A cosk,,2A sink,) _
To(0,om,00) =2 Ag(ks K)G(K iwp)
(10 K
and we have introduced the notatidn =k+q/2, k_=k XG(ky jo,tioy). (13

—q/2. Thex andy components of the gauge fields are again
distinguished by the index. The Green’s functions appear-
ing in the expression forll, are the mean-field ones
G(k,0) t=iw—E,—i sgnw)/2r, where the quasiparticle
lifetime is defined by 1/2=n;u(0)?m* p,. Here the quasi-
particle density of states is defined hy* p,, with the con-
centration of impurities given by; . In the low-frequency, T (0, wn) =277 A (KK)S(Ey), 14
low-wave-vector limitl1° takes, for weak disorder, the form k

of a wave-vector average over the Fermi surface of theynhich for the various nonvanishing components yieljs
momentum-dependent vertices appearing in the Lagrangian, 2 ; rm* po(2thy/N,i,A€y,A€,). The angular gauge fields
ie., T19 5=~ A ,(k,K) A g(k,K) 8(E,). Such averages can do not contribute taT as do the other fields, since they in-
almost all be expressed in terms of the residual kinetic €Nyolve averages of Slk)(y) over the Fermi surface and hence
ergy at the Fermi surface, via the relation do not contribute in the lovik; » limit of interest to us. The
angular gauge components still have nondiffusive compo-
nents, but these factorize out of the density correlation func-
tion since the off-diagonal terms mixing the angular compo-
nents with the radial gauge fields and the constraining gauge
with €, itself defined ase,=—[cosky)+cosk)]—-m*E,. fields vanish for the same reasons as given above. Hence we
We find that the nonzero components are given II[)SI2 can say that as far as the diffusion pole resummation ap-

These have, in the low-wave-vector, low-energy limit, con-
tributions again that depend on Fermi surface averages. For
the case of the hopping and constraint fields and in the case
of the radial gauge fluctuations we obtain

> 8(Egcogky+cogky)]"=m*poep,  (11)
k

=m*po, 19,=T13,= — (2itby/VN)M* pyeo, mnd,= proach is concerned, the chiral fluctuations present in the
— (4t203/IN)YmM* poed, TI9,=T1%,= — (2thy//N)A€edm* pg, pure case do not participate in the interactions between the
andI19,=119,= —i A eom* po. diffusive modes.

The remaining radial gauge fields have nondiffusive com- R€tuming to Fig. 1, we note that the internal parts of the
ponents given byl1%=1I1%,= —4A2m*1, and [13,= 1%~ polarization bubbles correspond to the regular diffusion pole

—2A2m*[poe§—2lz], wherel, denotes the Fermi surface ladder terms, which, as in the work of Huang and Rasul,

averagd ,= X[ cosk,)]"8(cosk,) +cosk) +&). Thus, as far yields the diffusion propagator
as the nondiffusive contributions to the Bose propagators arg
concerned, the disorder leaves their low-energy form unaf-
fected, i.e., they are identical to their zdeao limits in the N wpt+w,)0(—wy,)+ (o) 0(—ov,— o)
pure problem. = Ao 1D , (19

The same cannot be said of the diffusive corrections
where the nonanalytic dependence on the impurity concenwhich constitutes an infinite sum of ladder terms. The diffu-
tration is crucial. The diffusive corrections take the form of sion constant appearing here is defined Bs=4(A
the regular ladder insertions into the polarization parts+t&/N)?(sink)?)es, Which involves, as one would expect,
(shown in Fig. } a Fermi surface average of the quasiparticle velocity. Since

0, 0m,0n T ©n)
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for low frequencies the vertices are independent of energy+ F$]. This result extends the previous infiniteresult? to

the frequency sum in Eq(12) yields the expression include antiferromagnetic interactions.

T, S(d,0m,0nt+ wm)=|om277(| oy +Dg?). In order to study the renormalization of the diffusion pole
Inserting the above low-energy and wave-vector expresparameters the central ingredient in our discussion becomes

sions yields, after adding together the diffusive and nondifthe interaction between the weakly disordered quasiparticles.

fusive components, the expressions for the polarization partds the disorder averages have already been performed within
the boson propagatofentering the GaussianNL/corrections

to the effective actiop it is straightforward to make use of
the translationally invariant effective actidg and to follow
the derivation of the effective interaction in the pure case.
Tormally, the effective interaction is that of Ref. 14, namely,

m*p Dq2
M2, 00) =F(d0n) = 2 (16)

w,|+Dg?’
with the other constraining field polarization components re
lated to IT,, by T114(q,,)=— (4t?b3€5)/NF(q,w,) and
I11(0, @n) =11 1(0, 0,) = — (2itboeg)/VNF(g,@,). For the v(kK',g,0)==2%, gAo(Ks K )Dg p(0,0) A gkl KD);
combined constraint-radial gauge components we obtain (24
I11,(q,@p) == (2tboA€g)/ \NF(q,@p)  and T15,(d,@n)  however, a significant simplification may be made by return-
=iA€oF(q, ), while for the remaining purely radial gauge ng to the effective Lagrangian level and defining new radial
components we find gauge fieldR, = (R,+R,)/v2 andR_=(R,—R,)/V2. ltis
then found that within the present diffusion pole treatment
the only radial field coupling to the constraint fields is the
s-wave fieldR, . There still remains the-wave fieldR_,

but the propagator for this boson field is nondiffusive. In

_ 2k 2 2 % |w”|
II35(9,0n) = —4A°M* | ,+ A“egm* pg —|w [+D?
n

=Mlad(9,@n), (7 addition, we shall see that as far as the one-loop corrections
to the diffusion constant are concerned, only tave
349, w,) =T145(0, 0,) =135, w,) + 8A%m*1 i L SN
30, 0n) =140, 0n) =150, @) 2 component is relevant and the effective interaction in this
—2A%e’m* p. (18)  channel does have diffusive components.

Anyway, following the same approach as in Ref. 14 it is

These polarization parts are then required as input to theyaighttorward to drive effective interaction in tisewave
charge-density correlation functions as well as the effeCt'V%hannel Placing the incoming wave vectors on the Fermi

interaction.

IV. CHARGE SUSCEPTIBILITY AND QUASIPARTICLE
INTERACTION

Having obtained all the required matrix elements, we re-

turn to the explicit definition of the charge susceptibility fol-

surface we obtain

f(q)

f * D 2"
1+ (q)m*poDq
|w[+Dg?

v(q,w)=—AS A= (25

At very low g this shows the expected Landau-like be-

lowing Wang, Bang, and Katlidf' . ; . .
havior consistent with the charge susceptibility. However, at

x(d,iw)=(n(g,imy)n(—q,—iw,))=4N bSD”(q,i ), larger values of the wave vector the expligitependence of

(19 f(q) dominates over the Landau part leading to a form ba-
hich b sically identical to that obtained with dynamically screened
which becomes long-range  Coulomb  potential v(q,w)=(Jw|+Dg?)/
Nm* poDg> 2m* poDg?. .
(20 It should be noted that this form holds for the larger

x(Q,iwy) = 7,
|@nl+[1+f(q)]Dg wave-vector regimey>kg/\/5 instead of as in the long-

range Coulomb case, the long-wavelength limit. It may be
possible at very small hole dopings for this crossover to be
consistent with the small values of wave vector required for
the diffusion pole treatment to be valid, but we have always
then to remember the crossover to the Fermi-liquid form at
very low g. Still we might expect this to lead to a modifica-

tion of the full scaling behavior as the hole doping is varied.

where the factorf(q) plays the role of a wave-vector-
dependent Landau parameter and is defined by

f(q) = 2t|eo| — 2€53+ €4/2b}. (21)

In the limit of low wave vector this reduces to the extended
singlet Landau parametét, found in the pure cas¥. Tak-
ing first the limit of zero frequency yields the compressibility

V. RENORMALIZATION AND SCALING BEHAVIOR OF
THE DIFFUSION CONSTANT

dn

du
with F3=2t|eo| —2| €0|?J. For finite frequencies we find a
diffusionlike pole at a frequency

x(g—0,0=Nm*py/(1+F}), (22

The basic element in the diagrammatic renormalization
procedure is to obtain corrections to the leading-order diffu-
sion propagatos(q,») [defined in Eq(15)] connecting the
quasiparticle and quasihole lines on opposite side of the
Fermi surface. We follow the procedure of Castellanal '3
which at low wave vectors corresponds to a diffusion poleand consider the corrections shown in Fig®)22(d), which
with a diffusion constant modified such th@—D[1 yield the weak-disorder corrections to the diffusion propaga-

w=iDg*[1+F§+ €, /2b3], (23
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tor to lowest order in the inverse of the diffusion constant.

The details of the calculations follow closely those given in

the paper by Castellaet al. so we shall not repeat them. We N
V4

would however, stress the following points.

(a) In evaluating these graphs a collection of mean-field
level particle and hole propagators appear, each of which has
an imaginary part proportional to the impurity concentration
and includes a dependence on external and internal wave
vectors.

(b) In the weak-disorder limit of interest to us the imagi-
nary parts constrain these wave vectors to lie on the Fermi
surface. In all the cases shown in Fig. 2 this means that only (@)
the isotropics-wave component of the quasiparticle interac-
tion is relevant. Hence, in the following results onrlyq, ) P %--\
and not its nondiffusivel-wave partner appears in the self- »° ~

energy corrections to the diffusion propagator. ;7 \\
We then proceed to list the self-energy corrections. The 4 \
first three graph$§Figs. 2a)—2(c)] yield a total contribution H

5 U(q a)q//) - -
2 abc=—27N(0) 7 E ;l |wq |+un2 [Q+|wq”|

+D(g?+ q”z)] (26)

(where the frequency sum is limited to less than that of the
incoming holg along with similar graphs involving self-

energy corrections on the hole lines. It should be noted that
these graphs involve the quasiparticle interacti¢g, w) to- (b)

gether with two powers of a vertex renormalization factor
1/7'[|qu+ Dq"?] (indicated by dotted lines dressing each
interaction vertex These factors, which are responsible for

the dominant singularities from these graphs, appear when- 7\ N T 7]
ever the intermediate quasiparticle states in the self-energy ~=7 { N
graphs are on opposite sides of the Fermi surface. Hence, in 1
these diagrams, the intermediate stdths continuous lines >:<
\
[}
i
1
'

/N

either side of the dressed vertigese holelike.

However, the actual graph largely responsible for the dif-
fusion constant renormalizatiofshown in Fig. 2d)] in-
volves no such vertex factors since the intermediate lines
exchange a full diffusion propagator. They can only do this if
they remain on the same side of the Fermi surface as the ©

original incoming lines. They then yield a contribution m
Sy=27N0) 2SS ACHLTD

q’ @q’> "€ |wq"+Q|+D(q2—|—q"2)'
(27)

which again is accompanied by a time-reversed partner. The
above self-energy corrections are then expanded for small
external frequencies and wave vectors with the result that,
following the renormalization scheme of Castellantial,*®

the diffusion propagator becomes

N

\Y

<

XlT (@

S(q,w)ZW, (28
g FIG. 2. Self-energy corrections to the diffusion propagator. The

where the renormalized diffusion constdnt is given by notation is the same as in Fig. 1, except for the single dotted lines
(representing a single potential scatt¢@ard the wavy lines, which
denote the quasiparticle interactiofq, ). The quasiparticle inter-
action lines are themselves dressed by diffusive vertices when they
connect quasiparticles on opposite sides of the Fermi suféacin
which yields logarithmic corrections to the diffusion con- (a)—(c)]. The dominant diffusion propagator correcti@h does not

stant. Also present are a frequency renormalization factor get dressed in this way.

U(q’wq)qu

d quglol (0gtDg?)° | @9
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and a wave-function renormalizatiop each of which in- sociated with chiral effects in the pure system did not survive
volves logarithmic factors. In evaluatiriy’ we have to dis- the dressing by diffusive effects. As a result, the effective
tinguish the frequency ranges according to the filling factorinteraction could be decomposed into swave part, which
For the lowest-frequency interval the logarithmic contribu-participated in the diagrammatic corrections to the diffusion
tion depends on the Landau parameter appropriate for thgonstant, together with @wave part, which did not. In fact,
pure systent; that we defined earlier, whereas at high fre- of the two components, only trewave part was dressed by
guencies the “long-range” form ob(q,w) takes over and ({iffusive corrections.
the universal form of the scaling theofiye., independent of Nevertheless, the correction to the diffusion constant ob-
Fo) is obtained. Before evaluating the integrals explicitly wetajned by following the diagrammatic procedure of Ref. 13
have to deﬁne, fO”OWing the Stal’.ldard Weak'd.isorder Scalingequiva|ent to the renorma"zation_grOl(IBG) procedure of
treatments, ~ the  renormalized ~ “resistance” t Finkelshteir) was found to imply scaling towards an Ander-
=1/47"D’'m* po, so that o leading logarithmic order the gon transition in 2- e dimensions. It may of course be ar-
high-energy form is\t=—t* In(1/Q|7), while at lower en- g 0 that this is because the presem approach unduly
ergies the dependence on the Landau paranfédeis re-  ayors a rigorous systematic expansion procedure over the
stored, inclusion of physically relevant spin fluctuations; however,
In(ES arbitrarily these are usually included. In response to this
n(Fg) 1 o . :
At= —tz[l— S_}m(_)_ (30 criticism we believe thata) the t-J model already includes
Fo—1 Q7 magnetic effectgantiferromagneti which in the 1N treat-
L . . ment for the pure model lead to a renormalized bandwidth
Thus, for the very-low-energy region, in two dimensions, : . o .
the scaling equation for the resistivity becomes, to Ieadingi.nd chiral quctuatlon_s, an) it is important to isolate pre-
order int isely those effects in a strongly correlated electron system
’ that can be related directly to model parameters. In addition,
we have shown explicitly the decoupling of these chiral fluc-
: (3D tuations in disordered systems together with the different ef-
fects disorder has ostwave andd-wave interactions. More-
which implies for all values of the Landau paramefigra  over, itis hardly justified to apply the full RG procedure to a
resistivity that scales to infinity, with a resulting metal- purportedly ferromagnetic spin Landau parameter when the
insulator transition in two dimensions. In+2e dimensions, two-loop calculations for the puteJ model with large mass
we may, following Castellangt al,'® redefine a dimension- enhancement3indicate thaF} is positive. Ultimately, how-
less resistance= A ¥/(?* 947D’ m* p,, which, to zeroth or-  ever, the physical justification for our procedure must be
der in €, adds a term— et/2 to the right-hand side of the found in those systems that do not appear close to a ferro-
above scaling equation. This leads to a non-Gaussian fixegagnetic transition.
point and implies a metal-insulator transition if-2 dimen- The present work has several possible extensions. First,
sions. the full scaling calculation(following Ref. 13 should be
Ultimately, the reason for our recovering a metal-insulatorcarried out. The only drawback to this being done at present
transition lies in the fact that the N/expansion introduces lies in the treatment of the logarithmic disorder corrections to
the density fluctuations at next leading order ilN1hence the effective interaction. The Fermi-liquid parameters in Ref.
only F§ appears. Whatever the behavior of this parametet-3 for large and small momentum transfer are renormalized
itself under scaling, the sign of the right-hand side of theSeparately, whereas in the present approach a single effective

transition survives. not at present clear how to compensate for this difference.

Another possible extension concerns theave effective
interaction. This is particularly important for anisotropic su-
perconductors where disorder is present. It has been shown

In this paper we have investigated the interplay betweelpy Rojo and Balseird® who carried out a self-consistent
strong correlation and weak disorder for thd model. We  disorder treatment ofi-wave operators valid over the entire
introduce a weak-site-disorder term into thd model and, superconductor-insulator transition, trdiwave pairing in-
by combining the M expansion approach to the strong cor- deed survives the Anderson transition and is consistent with
relations with the standard diffusion pole treatment of thelocalized one-particle states. It would be of interest to see
disorder, we derived the effective quasiparticle interactiorwithin the present approach how the quasiparticle interac-
between the weakly disordered quasiparticles. We then usdtbns inherent in theé-J model affect this picture.
this as input into the standard diagrammatic treatment of the Overall, our major conclusion is that for the “generic”
weak-disorder corrections to the effective diffusion constanstrongly correlated model such as thel model the 1N
and studied the overall consequences of the latgap- expansion “rescues” the metal-insulator transition by plac-
proach to strong correlations as regards the scaling theory d@fig, in a rigorous fashion, a microscopic emphasis on density
the metal-insulator transition. fluctuations over ferromagnetic spin fluctuations at the 1/

We found that, compared with our previous work on thelevel. We found that in 2 ¢ dimensions, the scaling equa-
infinite-U Hubbard model, that the extra antiferromagnetictions recover the expected weak localization fixed point in
bond fluctuations contributed radial parts that coupled to théerms of the bare parameters of the model rather than
density fluctuations, while the angular bond fluctuations asarbitrary Landau parameters.

dt
d(njQ]) ~

s
t201— Inj
Fg—l
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