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Diffusion-constant renormalization in the weakly disordered t-J model:
Recovery of a metal-insulator transition in a generic disorder model

J. W. Rasul
Department of Physics, University of Michigan, Ann Arbor, Michigan 48109

~Received 5 May 1997!

We examine the metallic phase of thet-J model in the presence of weak site disorder using the 1/N
expansion to treat the strong electron correlations. To next leading order in 1/N we calculate the quasiparticle
interactions including diffusive effects. We then investigate the effect of these quasiparticle interactions on the
diffusion constant perturbatively as a first step towards a full scaling theory. We find that in 21e dimensions
a bona-fide Anderson transition is recovered.@S0163-1829~97!06339-X#
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I. INTRODUCTION

The interplay between strong electron correlations a
disorder remains one of the open questions in conden
matter. At present the most comprehensive treatments
from the weak disorder problem and introduced correlati
into the microscopic theory that describes the Anderson t
sition. This type of approach, as introduced by Finkelshte1

and reviewed recently in,2 examines correlation effect
through their renormalization of the diffusion constant and
turn incorporates disorder effects on the Fermi-liquid para
eters that describe the electron correlations. The resu
renormalization-group equations predict metal-insulator tr
sitions when symmetry-breaking interactions~magnetic field,
magnetic impurities, and spin-orbit scattering! are present.
However, one type of model in which the situation rema
unclear are the ‘‘generic’’ models with no symmetr
breaking interactions. In this case it is found that the Land
parameter corresponding to spin-triplet particle-hole inter
tions ~the paramagnon channel! diverges under disorder sca
ing implying a preemptive magnetic transition close to tw
dimensions.

Another line of approach is to start from the strongly co
related electron system and turn on the disorder, avoiding
initial invocation of Fermi liquid parameters and inste
dealing with actual model parameters. In the context
heavy fermion systems, a number of authors have consid
this approach either using the Gutzwiller approach3 or by
enforcing the local occupation constraints using auxillia
bosons.4 Disorder of either the site or bond type is the
introduced5 and its effects on the mean-field theory are c
culated. While the thermodynamics of the heavy ferm
state is largely unaffected by disorder,5 transport properties
show different behavior@either by treating the disorde
within coherent potential approximation6 ~CPA! or by sum-
ming maximally crossed graphs7#. Kondo insulators also
have been profitably investigated this way.8–10

In the context of one-band models Zimanyi a
Abrahams11 studied thet-J model with site disorder presen
using slave bosons at the mean-field level to incorporate
cupation restrictions in the hopping term, but treated the
tiferromagnetic term as an electron interaction that sca
under disorder using the Finkelshtein approach. The site
560163-1829/97/56~15!/9370~7!/$10.00
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order was coupled to the hopping via the charge suscept
ity, which led to a broadening of the Mott-Hubbard region

Overall, the nature of the ground state of the puret-J
model is still not settled. The simplest mean-field theor
that yield a metallic ground state already incorporate so
aspects of the antiferromagnetic interaction via a renorm
ization of the electron hopping term, thus yielding lar
Fermi surfaces consistent with photoemission results
high-Tc materials. It makes sense therefore to examine
effect of weak disorder within such a formalism, although
really make good contact with the comprehensive
proaches applied to weakly interacting disordered syste2

one has to proceed beyond mean-field level. This is beca
these approaches study the renormalization of parame
such as the diffusion constant, which itself is only obtain
by studying diffusive corrections to the particle-hole prop
gator.

Moreover, to obtain the effect of correlations on the d
fusion constant we need to derive the effective interact
between the weakly disordered quasiparticles. This defini
requires proceeding to the 1/N Gaussian level and summin
up diffusive corrections to the boson propagators. Previou
we studied the infinite-U Hubbard model within this very
approach,12 calculating the free energy and quasiparticle lif
time, by specifically including such diffusion pole graph
into the fluctuating boson propagators that appear at
Gaussian 1/N level, although there we did not actually deriv
the quasiparticle interaction.

Our purpose in the present paper is to extend our prev
work to thet-J model in the presence of weak site disord
again summing diffusion pole graphs that determine the
son propagators, but this time specifically in order to obt
the quasiparticle interaction. We then use this quasipart
interaction to renormalize the diffusion propagator itself fo
lowing the diagrammatic procedure of Castellaniet al.,13

which, as these authors showed, is completely equivalen
the Finkelshtein renormalization-group approach. Althou
we do not attempt the full scaling theory here, we will sho
that a generic disorder model such as thet-J model does
recover a bona-fide metal-insulator transition in the pres
approach.

II. FORMULATION

In this section we formulate thet-J model in the presence
of disorder following our previous line of approach to th
9370 © 1997 The American Physical Society
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56 9371DIFFUSION-CONSTANT RENORMALIZATION IN THE . . .
infinite-U Hubbard model.12 Our formulation reduces in the
pure case to the 1/N treatment of thet-J model by Wang,
Bang, and Kotlia.14 The main difference with our previou
infinite-U work12 is then in the inclusion of the antiferromag
netic coupling. At the mean-field level this leads to an ex
contribution to the quasifermion hopping rate, while at t
1/N level it contributes to separate radial and angular bo
fluctuations in addition to the already present hopping a
constraint field fluctuations. These extra Gaussian level c
tributions are related to density and chirality fluctuations
the strongly correlated Fermi liquid. Our starting point is t
Lagrangian for thet-J model,

L~t!5(
i

@ f is
† ~d/dt2m! f is1bi

†d/dtbi

1 il i~ f is
1 f is1bi

1bi2N/2!# ~1!

1(
i , j

@N/JuD i j u22 f is
† f j s~D i j 2t/Nbj

†bi !

1H.c.#, ~2!

where f is destroys a spin carrying fermion at sitei , bi de-
stroys a charge carrying boson at sitei , while the infinite-U
constraint is enforced by the Lagrange multiplierl. The
complex bosonic fieldD i j denotes the valence bond variab
which in the large-N approach is introduced via a Hubbar
Stratonovich transformation to decouple the exchange t
in the t-J model. The hopping rate, spin exchange, a
chemical potential are as usual denoted byt, J, andm, re-
spectively. The partition function in this representation
then given by a functional integral over the fermion a
auxilliary fields

Z5E DD†DD Db†Db D f†D f Dl expF2E L~t!dt G .
~3!

Added to the above Lagrangian is a term

Li5 (
r i ,Ra

u~r i2Ra! f is
† f is ~4!

denoting the effect of a set of random impurities located
sitesRa . The impurity potential couples to the local quas
particle density as in other auxilliary boson treatments.5–7,11

As far as the formal aspects are concerned, we then fo
standard large-degeneracy treatments and integrate ove
fermion fields yielding a effective boson Lagrangian. This
then expanded around its saddle point, yielding a mean-fi
component plus a Gaussian correction.

The mean-field equations thus obtained are given in te
of the saddle-point results through the single-particle Gree
function, which is still in a site representation since the d
order average is yet to be performed. In keeping with
standard diffusion pole approaches, we keep only the low
order Born approximation to the single-particle Gree
function. Since the disorder is in such cases assumed t
weak, we can easily show that the averages over the sin
particle Green’s function in the mean-field equations yi
corrections of order (eFt)21 relative to the mean-field equa
a
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tions in the pure case.14 This feature is consistent with th
results of nondiffusion pole CPA-type approaches5,6 for
weak disorder.

The mean-field results are then identical to the pure ca14

to leading order in the disorder. In particular, thel field
shifts the chemical potential so as to satisfy the Lutting
counting rule, the mass is renormalized by the singlet
change energy and the effects of the occupation restrict
while the average boson fieldb0

2 is proportional to the hole
doping d. The explicit form taken by the mean-field equ
tions is

D5J(
k

cos~kx! f ~Ek!, l54tD/J, b0
25Nd/2, ~5!

where the quasiparticle dispersion is given byEk522(D
1tb0

2/N)@cos(kx)1cos(ky)#2m1l. Thus the quasiparticles
experience a mean-field mass enhancementm* /m5t/@2(D
1td/N)# that is large only if the ratiot/J is large; otherwise
in the zero doping limit it stays modest.

III. DIFFUSIVE CORRECTIONS TO THE POLARIZATION
PARTS AT 1/N ORDER

Our interest lies in going beyond mean-field level, whi
means that we require the weak-disorder contribution to
free energy at next leading~Gaussian! order in 1/N. This
means following the usual prescription of calculating t
fluctuations of the boson operators around their mean-fi
values and keeping only the quadratic component in the
fective action. The Gaussian component of the partit
function then has the disorder average performed within
individual Bose propagators as in the previous infiniteU
paper.12 In this procedure each term in the expansion of
partition function in powers of 1/N has the disorder averag
performed individually with only the dominant low-energ
diffusive corrections kept at each order. The upshot is t
translational invariance is restored with the effective act
given by

LB5 1
2 (

a,b
(
q,vn

fa~q,ivn!Dab
21~q,ivn!fb~2q,2 ivn!,

~6!

where the fluctuating boson fields are represented here
vectorf5(r ,l,Rn,An) wheren5x,y distinguishes the two
spatial components of the radial and angular gauge fie
R,A. The inverse boson propagatorsD(q,iv) are then com-
posed of a static partP and a dynamic polarization partP so
that

D21~q,ivn!52NP~q!1NP~q,ivn!. ~7!

The static components have nonzero valuesP115eq , P21

5P125 ib0
2/N, andP335P445P555P665D2/J. In deriving

P11 we have made use of the mean-field equations to eli
nate the average over the leading-order Green’s functio
favor of the ‘‘holon’’ dispersion relationeq52t(D/J)@2
2cos(qx)2cos(qy)#. This component an important role in th
pure case where it leads to a different collective mode as
ciated with separation of the charge degrees of freedom. A
in the pure case this mode leads to such non-Fermi-liq
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9372 56J. W. RASUL
features as a broad background in the single-part
spectrum14 and at two-loop order15 a positive spin-exchang
Landau parameterF0

a for large mass enhancements.
Following the methods of the previous paper,12 we obtain,

after performing the disorder average, the polarization ma

Pa,b~q,ivn!5Pa,b
0 ~q,ivn!1Pa,b

1 ~q,ivn!, ~8!

where the first term is merely the polarization matrix witho
any diffusive insertions, namely,

Pa,b
0 ~q,iv!5T(

k,vn

La~k1 ,k2!Lb~k1 ,k2!

3G~k2 ,ivn!G~k1 ,iv1 ivn!, ~9!

where the momentum-dependent vertices arising in the s
boson formulation of thet-J model are given by~following
Wang, Bang, and Kotliar14!

L~k1 ,k2!5@ tb0~cos~k1x!1cos~k1y!1cos~k2x!

1cos~k2y!#/N,i ,22D coskn,2D sin kn!

~10!

and we have introduced the notationk15k1q/2, k25k
2q/2. Thex andy components of the gauge fields are ag
distinguished by the indexn. The Green’s functions appea
ing in the expression forP0 are the mean-field one
G(k,v)215 iv2Ek2 i sgn(v)/2t, where the quasiparticle
lifetime is defined by 1/2t5niu(0)2m* r0 . Here the quasi-
particle density of states is defined bym* r0 , with the con-
centration of impurities given byni . In the low-frequency,
low-wave-vector limitP0 takes, for weak disorder, the form
of a wave-vector average over the Fermi surface of
momentum-dependent vertices appearing in the Lagrang
i.e., Pa,b

0 52(kLa(k,k)Lb(k,k)d(Ek). Such averages ca
almost all be expressed in terms of the residual kinetic
ergy at the Fermi surfacee0 via the relation

(
k

d~Ek!@cos~kx!1cos~ky!#n5m* r0e0 , ~11!

with e0 itself defined ase052@cos(kx)1cos(ky)#2m*Ek .
We find that the nonzero components are given byP22

0

5m* r0 , P12
0 5P21

0 52(2i tb0 /AN)m* r0e0 , P11
0 5

2(4t2b0
2/N)m* r0e0

2, P13
0 5P14

0 52(2tb0 /AN)De0
2m* r0 ,

andP23
0 5P24

0 52 iDe0m* r0 .
The remaining radial gauge fields have nondiffusive co

ponents given byP33
0 5P44

0 524D2m* I 2 and P34
0 5P43

0 5

22D2m* @r0e0
222I 2#, where I 2 denotes the Fermi surfac

averageI 25(k@cos(kx)#
nd„cos(kx)1cos(ky)1e0…. Thus, as far

as the nondiffusive contributions to the Bose propagators
concerned, the disorder leaves their low-energy form un
fected, i.e., they are identical to their zerok,v limits in the
pure problem.

The same cannot be said of the diffusive correctio
where the nonanalytic dependence on the impurity conc
tration is crucial. The diffusive corrections take the form
the regular ladder insertions into the polarization pa
~shown in Fig. 1!
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Pa,b
1 ~q,ivn!

5T(
vn

niu0
2Ta~q,vm ,vm!S~q,ivn ,ivm!Tb~q,vm ,vn!,

~12!

where the vertices are given by

Ta~q,vm ,vn!5(
k

La~k1 ,k2!G~k2 ,ivm!

3G~k1 ,ivn1 ivm!. ~13!

These have, in the low-wave-vector, low-energy limit, co
tributions again that depend on Fermi surface averages.
the case of the hopping and constraint fields and in the c
of the radial gauge fluctuations we obtain

Ta~q,vm ,vn!52pt(
k

La~k,k!d~Ek!, ~14!

which for the various nonvanishing components yieldsTa
52ptm* r0(2tb0 /N,i ,De0 ,De0). The angular gauge field
do not contribute toT as do the other fields, since they in
volve averages of sin(kx,y) over the Fermi surface and henc
do not contribute in the low-k,v limit of interest to us. The
angular gauge components still have nondiffusive com
nents, but these factorize out of the density correlation fu
tion since the off-diagonal terms mixing the angular comp
nents with the radial gauge fields and the constraining ga
fields vanish for the same reasons as given above. Henc
can say that as far as the diffusion pole resummation
proach is concerned, the chiral fluctuations present in
pure case do not participate in the interactions between
diffusive modes.

Returning to Fig. 1, we note that the internal parts of t
polarization bubbles correspond to the regular diffusion p
ladder terms, which, as in the work of Huang and Ras
yields the diffusion propagator

S~q,vm ,vn1vm!

5
u~vm1vn!u~2vm!1u~vm!u~2vm2vn!

t@ uvnu1Dq2#
, ~15!

which constitutes an infinite sum of ladder terms. The dif
sion constant appearing here is defined asD54(D
1td/N)2^sin(kx)

2&FS, which involves, as one would expec
a Fermi surface average of the quasiparticle velocity. Si

FIG. 1. Polarization parts for the boson propagators appearin
the one-loop level. The first graph represents the nondiffusive c
tribution in terms of the mean-field propagatorsG(k,v) ~full lines!
and the momentum-dependent verticesL(k1 ,k2) ~shown here as
dots!. The second graph gives the diffusive correction in terms
the verticesTa(q,vn ,vm) ~combinations of Green’s functions an
momentum-dependent vertices! and the zeroth-order diffusive
propagatorS(q,v) shown as a double-dotted line.



rg

e
di
a

re

ta

e

th
tiv

re
l-

-

ed

ity

ol

le
mes
les.
ithin

f

se.
ly,

rn-
ial

nt
he

In
ions

his

is

rmi

e-
, at

ba-
ed

er
-
be
be
for
ys
at
-
d.

ion
fu-

the

ga-

56 9373DIFFUSION-CONSTANT RENORMALIZATION IN THE . . .
for low frequencies the vertices are independent of ene
the frequency sum in Eq.~12! yields the expression
T(vn

S(q,vm ,vn1vm)5uvmu/2pt(uvnu1Dq2).
Inserting the above low-energy and wave-vector expr

sions yields, after adding together the diffusive and non
fusive components, the expressions for the polarization p

P22~q,vn!5F~q,vn!5
m* r0Dq2

uvnu1Dq2 , ~16!

with the other constraining field polarization components
lated to P22 by P11(q,vn)52(4t2b0

2e0
2)/NF(q,vn) and

P12(q,vn)5P21(q,vn)52(2i tb0e0)/ANF(q,vn). For the
combined constraint-radial gauge components we ob
P1n(q,vn)52(2tb0De0

2)/ANF(q,vn) and P2n(q,vn)
5 iDe0F(q,vn), while for the remaining purely radial gaug
components we find

P33~q,vn!524D2m* I 21D2e0
2m* r0

uvnu
uvnu1Dq2

5P44~q,vn!, ~17!

P34~q,vn!5P43~q,vn!5P33~q,vn!18D2m* I 2

22D2e2m* r. ~18!

These polarization parts are then required as input to
charge-density correlation functions as well as the effec
interaction.

IV. CHARGE SUSCEPTIBILITY AND QUASIPARTICLE
INTERACTION

Having obtained all the required matrix elements, we
turn to the explicit definition of the charge susceptibility fo
lowing Wang, Bang, and Katliar,14

x~q,iv!5^n~q,ivn!n~2q,2 ivn!&54Nb0
2Drr ~q,iv!,

~19!

which becomes

x~q,ivn!5
Nm* r0Dq2

uvnu1@11 f ~q!#Dq2 , ~20!

where the factorf (q) plays the role of a wave-vector
dependent Landau parameter and is defined by

f ~q!52tue0u22e0
2J1eq/2b0

2. ~21!

In the limit of low wave vector this reduces to the extend
singlet Landau parameterF0

s found in the pure case.14 Tak-
ing first the limit of zero frequency yields the compressibil

dn

dm
5x~q→0,0!5Nm* r0 /~11F0

s!, ~22!

with F0
s52tue0u22ue0u2J. For finite frequencies we find a

diffusionlike pole at a frequency

v5 iDq2@11F0
s1eq/2b0

2#, ~23!

which at low wave vectors corresponds to a diffusion p
with a diffusion constant modified such thatD→D@1
y,

s-
f-
rts

-

in

e
e

-

e

1F0
s]. This result extends the previous infinite-U result12 to

include antiferromagnetic interactions.
In order to study the renormalization of the diffusion po

parameters the central ingredient in our discussion beco
the interaction between the weakly disordered quasipartic
As the disorder averages have already been performed w
the boson propagators~entering the Gaussian 1/N corrections
to the effective action!, it is straightforward to make use o
the translationally invariant effective actionLB and to follow
the derivation of the effective interaction in the pure ca
Formally, the effective interaction is that of Ref. 14, name

v~k,k8,q,v!52Sa,bLa~k1 ,k2!Da,b~q,v!Lb~k18 ,k28 !;
~24!

however, a significant simplification may be made by retu
ing to the effective Lagrangian level and defining new rad
gauge fieldsR15(Rx1Ry)/& andR25(Rx2Ry)/&. It is
then found that within the present diffusion pole treatme
the only radial field coupling to the constraint fields is t
s-wave fieldR1 . There still remains thed-wave fieldR2 ,
but the propagator for this boson field is nondiffusive.
addition, we shall see that as far as the one-loop correct
to the diffusion constant are concerned, only thes-wave
component is relevant and the effective interaction in t
channel does have diffusive components.

Anyway, following the same approach as in Ref. 14 it
straightforward to drive effective interaction in thes-wave
channel. Placing the incoming wave vectors on the Fe
surface we obtain

v~q,v!52LS21L5
f ~q!

11
f ~q!m* r0Dq2

uvu1Dq2

. ~25!

At very low q this shows the expected Landau-like b
havior consistent with the charge susceptibility. However
larger values of the wave vector the explicitq dependence of
f (q) dominates over the Landau part leading to a form
sically identical to that obtained with dynamically screen
long-range Coulomb potential v(q,v)5(uvu1Dq2)/
2m* r0Dq2.

It should be noted that this form holds for the larg
wave-vector regimeq.kF /Ad instead of as in the long
range Coulomb case, the long-wavelength limit. It may
possible at very small hole dopings for this crossover to
consistent with the small values of wave vector required
the diffusion pole treatment to be valid, but we have alwa
then to remember the crossover to the Fermi-liquid form
very low q. Still we might expect this to lead to a modifica
tion of the full scaling behavior as the hole doping is varie

V. RENORMALIZATION AND SCALING BEHAVIOR OF
THE DIFFUSION CONSTANT

The basic element in the diagrammatic renormalizat
procedure is to obtain corrections to the leading-order dif
sion propagatorS(q,v) @defined in Eq.~15!# connecting the
quasiparticle and quasihole lines on opposite side of
Fermi surface. We follow the procedure of Castellaniet al.13

and consider the corrections shown in Figs. 2~a!–2~d!, which
yield the weak-disorder corrections to the diffusion propa
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tor to lowest order in the inverse of the diffusion consta
The details of the calculations follow closely those given
the paper by Castellaniet al.so we shall not repeat them. W
would however, stress the following points.

~a! In evaluating these graphs a collection of mean-fi
level particle and hole propagators appear, each of which
an imaginary part proportional to the impurity concentrati
and includes a dependence on external and internal w
vectors.

~b! In the weak-disorder limit of interest to us the imag
nary parts constrain these wave vectors to lie on the Fe
surface. In all the cases shown in Fig. 2 this means that o
the isotropics-wave component of the quasiparticle intera
tion is relevant. Hence, in the following results onlyv(q,v)
and not its nondiffusived-wave partner appears in the se
energy corrections to the diffusion propagator.

We then proceed to list the self-energy corrections. T
first three graphs@Figs. 2~a!–2~c!# yield a total contribution

Sabc522pN~0!t2(
q9

(
uvqu

v~q9,vq9!

uvq9u1Dq92 @V1uvq9u

1D~q21q92!# ~26!

~where the frequency sum is limited to less than that of
incoming hole! along with similar graphs involving self
energy corrections on the hole lines. It should be noted
these graphs involve the quasiparticle interactionv(q,v) to-
gether with two powers of a vertex renormalization fac
1/t@ uvq91Dq92# ~indicated by dotted lines dressing ea
interaction vertex!. These factors, which are responsible f
the dominant singularities from these graphs, appear wh
ever the intermediate quasiparticle states in the self-en
graphs are on opposite sides of the Fermi surface. Henc
these diagrams, the intermediate states~the continuous lines
either side of the dressed vertices! are holelike.

However, the actual graph largely responsible for the d
fusion constant renormalization@shown in Fig. 2~d!# in-
volves no such vertex factors since the intermediate li
exchange a full diffusion propagator. They can only do thi
they remain on the same side of the Fermi surface as
original incoming lines. They then yield a contribution

Sd52pN~0!t2(
q9

(
vq9.2e

v~q9,vq9!

uvq91Vu1D~q21q92!
,

~27!

which again is accompanied by a time-reversed partner.
above self-energy corrections are then expanded for s
external frequencies and wave vectors with the result t
following the renormalization scheme of Castellaniet al.,13

the diffusion propagator becomes

S~q,v!5
x2/t

zuVu1D8q2 , ~28!

where the renormalized diffusion constantD8 is given by

D85DF12
8

d (
q,vq.uVu

v~q,vq!Dq2

~vq1Dq2!3 G , ~29!

which yields logarithmic corrections to the diffusion co
stant. Also present are a frequency renormalization factoz
.
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FIG. 2. Self-energy corrections to the diffusion propagator. T
notation is the same as in Fig. 1, except for the single dotted l
~representing a single potential scatterer! and the wavy lines, which
denote the quasiparticle interactionv(q,v). The quasiparticle inter-
action lines are themselves dressed by diffusive vertices when
connect quasiparticles on opposite sides of the Fermi surface@as in
~a!–~c!#. The dominant diffusion propagator correction~d! does not
get dressed in this way.
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56 9375DIFFUSION-CONSTANT RENORMALIZATION IN THE . . .
and a wave-function renormalizationx, each of which in-
volves logarithmic factors. In evaluatingD8 we have to dis-
tinguish the frequency ranges according to the filling fact
For the lowest-frequency interval the logarithmic contrib
tion depends on the Landau parameter appropriate for
pure systemF0

s that we defined earlier, whereas at high fr
quencies the ‘‘long-range’’ form ofv(q,v) takes over and
the universal form of the scaling theory~i.e., independent of
F0

s! is obtained. Before evaluating the integrals explicitly w
have to define, following the standard weak-disorder sca
treatments, the renormalized ‘‘resistance’’ t
51/4p2D8m* r0 , so that to leading logarithmic order th
high-energy form isDt52t2 ln(1/uVut), while at lower en-
ergies the dependence on the Landau parameterF0

s is re-
stored,

Dt52t2F12
ln~F0

s!

F0
s21G lnS 1

uVut D . ~30!

Thus, for the very-low-energy region, in two dimension
the scaling equation for the resistivity becomes, to lead
order in t,

dt

d~ lnuVu!
5t2F12

ln F0
s

F0
s21G , ~31!

which implies for all values of the Landau parameterF0
s a

resistivity that scales to infinity, with a resulting meta
insulator transition in two dimensions. In 21e dimensions,
we may, following Castellaniet al.,13 redefine a dimension
less resistancet5le/(21e)/4p2D8m* r0 , which, to zeroth or-
der in e, adds a term2et/2 to the right-hand side of the
above scaling equation. This leads to a non-Gaussian fi
point and implies a metal-insulator transition in 21e dimen-
sions.

Ultimately, the reason for our recovering a metal-insula
transition lies in the fact that the 1/N expansion introduces
the density fluctuations at next leading order in 1/N; hence
only F0

s appears. Whatever the behavior of this parame
itself under scaling, the sign of the right-hand side of t
scaling equation remains unchanged and the metal-insu
transition survives.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have investigated the interplay betw
strong correlation and weak disorder for thet-J model. We
introduce a weak-site-disorder term into thet-J model and,
by combining the 1/N expansion approach to the strong co
relations with the standard diffusion pole treatment of
disorder, we derived the effective quasiparticle interact
between the weakly disordered quasiparticles. We then u
this as input into the standard diagrammatic treatment of
weak-disorder corrections to the effective diffusion const
and studied the overall consequences of the large-N ap-
proach to strong correlations as regards the scaling theo
the metal-insulator transition.

We found that, compared with our previous work on t
infinite-U Hubbard model, that the extra antiferromagne
bond fluctuations contributed radial parts that coupled to
density fluctuations, while the angular bond fluctuations
r.
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sociated with chiral effects in the pure system did not surv
the dressing by diffusive effects. As a result, the effect
interaction could be decomposed into ans-wave part, which
participated in the diagrammatic corrections to the diffus
constant, together with ad-wave part, which did not. In fact
of the two components, only thes-wave part was dressed b
diffusive corrections.

Nevertheless, the correction to the diffusion constant
tained by following the diagrammatic procedure of Ref.
@equivalent to the renormalization-group~RG! procedure of
Finkelshtein# was found to imply scaling towards an Ande
son transition in 21e dimensions. It may of course be a
gued that this is because the present 1/N approach unduly
favors a rigorous systematic expansion procedure over
inclusion of physically relevant spin fluctuations; howeve
arbitrarily these are usually included. In response to t
criticism we believe that~a! the t-J model already includes
magnetic effects~antiferromagnetic!, which in the 1/N treat-
ment for the pure model lead to a renormalized bandwi
and chiral fluctuations, and~b! it is important to isolate pre-
cisely those effects in a strongly correlated electron sys
that can be related directly to model parameters. In addit
we have shown explicitly the decoupling of these chiral flu
tuations in disordered systems together with the different
fects disorder has ons-wave andd-wave interactions. More-
over, it is hardly justified to apply the full RG procedure to
purportedly ferromagnetic spin Landau parameter when
two-loop calculations for the puret-J model with large mass
enhancements15 indicate thatF0

a is positive. Ultimately, how-
ever, the physical justification for our procedure must
found in those systems that do not appear close to a fe
magnetic transition.

The present work has several possible extensions. F
the full scaling calculation~following Ref. 13! should be
carried out. The only drawback to this being done at pres
lies in the treatment of the logarithmic disorder corrections
the effective interaction. The Fermi-liquid parameters in R
13 for large and small momentum transfer are renormali
separately, whereas in the present approach a single effe
interaction valid for all momentum transfers is obtained. It
not at present clear how to compensate for this differenc

Another possible extension concerns thed-wave effective
interaction. This is particularly important for anisotropic s
perconductors where disorder is present. It has been sh
by Rojo and Balseiro,16 who carried out a self-consisten
disorder treatment ofd-wave operators valid over the entir
superconductor-insulator transition, thatd-wave pairing in-
deed survives the Anderson transition and is consistent w
localized one-particle states. It would be of interest to s
within the present approach how the quasiparticle inter
tions inherent in thet-J model affect this picture.

Overall, our major conclusion is that for the ‘‘generic
strongly correlated model such as thet-J model the 1/N
expansion ‘‘rescues’’ the metal-insulator transition by pla
ing, in a rigorous fashion, a microscopic emphasis on den
fluctuations over ferromagnetic spin fluctuations at the 1N
level. We found that in 21e dimensions, the scaling equa
tions recover the expected weak localization fixed point
terms of the bare parameters of thet-J model rather than
arbitrary Landau parameters.
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