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Local perturbation in a Tomonaga-Luttinger liquid at g51/2:
Orthogonality catastrophe, Fermi-edge singularity, and local density of states

A. Furusaki
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-01, Japan

~Received 21 February 1997!

The orthogonality catastrophe in a Tomonaga-Luttinger liquid with an impurity is reexamined for the case
when the interaction parameter or the dimensionless conductance isg51/2. By transforming bosons back to
fermions, the Hamiltonian is reduced to a quadratic form, which allows for explicit calculation of the overlap
integral and the local density of states at the defect site. The exponent of the orthogonality catastrophe due to
a backward scattering center is found to be 1/8, in agreement with previous studies using different approaches.
The time dependence of the core-hole Green’s function is computed numerically, which shows a clear cross-
over from a nonuniversal short-time behavior to a universal long-time behavior. The local density of states
vanishes linearly in the low-energy limit atg51/2. @S0163-1829~97!09540-4#
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I. INTRODUCTION

One-dimensional interacting fermion systems, Tomona
Luttinger~TL! liquids,1–3 have recently attracted much atte
tion due to their anomalous response to local perturbatio
Recent extensive studies4–9 on transport properties of TL liq
uids with an impurity revealed that repulsively interacti
fermions have vanishing transmission probability throug
potential barrier in the low-energy limit. This is because t
interaction between fermions strongly enhances the ba
ward scattering at the barrier. Thus, a single defect ef
tively cuts a TL liquid into two disconnected ones at ze
temperature.4 This implies that the local density of state
~LDOS! at the defect is reduced for low energy, and acco
ing to Kane and Fisher4 it shows a power-law energy depe
dence,

r~v!}v1/g 21, ~1!

where g is a parameter characterizing the TL liquid. Th
picture was, however, questioned recently by Oreg
Finkel’stein,10 who claimed based on a mapping to a Co
lomb gas problem that the LDOS at the defect is enhanc
rather than suppressed, in the low-energy limit for wea
interacting fermions. This controversy motivates us to re
amine this issue.

The orthogonality catastrophe11 in a TL liquid is another
interesting subject that has been discussed by sev
authors.12–18 They showed that the overlap between t
ground state of a pure TL liquidup& and that of a TL liquid
with a single scattererus& vanishes in the limit of large sys
tem size:

u^pus&u2}L2gF2gB, ~2!
560163-1829/97/56~15!/9352~8!/$10.00
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whereL is the length of the system. The exponentgF is due
to the forward-scattering potential and depends on
strength.12,13 It can be calculated directly using a unita
transformation. The other exponentgB due to the backward
scattering is believed to be independent of the strength of
potential and take a universal value, 1/8.14–17In Refs. 14, 15,
and 17 the exponentgB is calculated by assuming that
backward scattering center can be replaced with an imp
etrable potential barrier. Oreg and Finkel’stein,18 however,
questioned the validity of the assumption and argued that
exponent of the Fermi-edge singularity due to a backw
scattering center is zero, which impliesgB50. On the other
hand, Kaneet al.16 used a renormalization-group equatio
that becomes exact in the limit of weak repulsive interact
between fermions. They could describe a crossover from
high-energy regime to the low-energy regime, and obtain
the same exponentgB51/8 in the low-energy limit. The re-
sult of a recent direct numerical calculation of the overl
integral19 is also consistent withgB51/8.

It is known that, when the TL-liquid parameterg is 1/2,
the bosonized Hamiltonian containing a nonlinear term r
resenting the backward scattering can be transformed
quadratic Hamiltonian of fermions.20 This is essentially the
same technique as the Emery-Kivelson solution of the tw
channel Kondo problem.21 The exact results on the
conductance4 and nonequilibrium noise spectra22 were ob-
tained using this refermionization technique. It is thus natu
to expect that exact calculation should also be possible
the above-mentioned problems. The purpose of this pap
to show that this is indeed the case.

The structure of this paper is as follows. After introducin
a model of interacting fermions in Sec. II, we discuss in S
III the exact low-energy behavior of the LDOS forg51/2.
For gÞ1/2 we show that Eq.~1! follows from the assump-
tion that the phase field is pinned at the defect site. T
importance of zero modes is emphasized. In Sec. IV we
culategB analytically for g51/2 without assuming the na
ture of the low-energy fixed point. We findgB51/8. The
so-called core-hole Green’s function is then computed
9352 © 1997 The American Physical Society
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56 9353LOCAL PERTURBATION IN A TOMONAGA-LUTTINGER . . .
merically in Sec. V, which shows a clear crossover fro
short-time to long-time regimes. We show in Sec. VI that
exponent of the Fermi-edge singularity due to backw
scattering is also given bygB . We summarize the results i
Sec. VII.
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II. MODEL

In this section we introduce a model of interacting sp
less fermions and briefly explain the bosonization rule to
the notation.

The Hamiltonian of our model is given by
H5 ivFE
2`

`

dxFcL
†~x!

d

dx
cL~x!2cR

†~x!
d

dx
cR~x!G1g2E

2`

`

dx:cL
†~x!cL~x!::cR

†~x!cR~x!:

1
g4

2 E
2`

`

dx (
m5L,R

:cm
† ~x!cm~x!::cm

† ~x!cm~x!:1lF (
m5L,R

:cm
† ~0!cm~0!:1lB@eiucL

†~0!cR~0!1H.c.#, ~3!
l-

f
o

c-

e

wherecL(R) describes left-going~right-going! fermions, :A:
represents normal-ordered operatorA, andlF (lBeiu) is the
forward-scattering~backward-scattering! potential. Follow-
ing the standard bosonization rule,23 we express fermionscm
in terms of bosonic operators:

cL~x!5
1

A2pa
hLe2 iwL~x!, ~4a!

cR~x!5
1

A2pa
hReiwR~x!, ~4b!

:cm
† ~x!cm~x!:5

1

2p

d

dx
wm~x!, ~4c!

wherea is a short-distance cutoff. The bosonic fields sati
the commutation relations@wL(x),wL(y)#52 ip sgn(x2y),
@wR(x),wR(y)#5 ip sgn(x2y), and @wL(x),wR(y)#50. The
operatorhm’s are Majorana fermions corresponding to ze
modes of bosons, which are needed to ensure the antic
mutation relation betweencL and cR . They satisfy
$hL ,hR%50 and hm

2 51. We then introduce new boson
fields as

f~x!5
1

A4p
@wR~x!1wL~x!#, ~5a!

P~x!52
1

A4p

d

dx
@wR~x!2wL~x!#, ~5b!

which obey@f(x),P(y)#5 id(x2y). With these fields the
Hamiltonian can be transformed to a bosonic form,

H5
v
2 E dxF1

g S df

dx D 2

1gP2G1
lF

Ap

df~0!

dx

1 i
lB

pa
hLhRsin@A4pf~0!1u#. ~6!

The parameter g is related to g2 and g4 by
g5@(11g̃42g̃2)/(11g̃41g̃2)#1/2 with g̃i5gi /2pvF . Since
y

m-

the interaction is repulsive,g is less than 1. The renorma
ized velocity is given byv5vF@(11g̃4)22(g̃2)2#1/2.

We then introduce another set of bosonic fieldsw6(x):17

w6~x!5
1

A8
H S 1

Ag
2AgD @wR~x!6wL~2x!#

1S 1

Ag
1AgD @wR~2x!6wL~x!#J . ~7!

These fields satisfy @w1(x),w1(y)#5@w2(x),w2(y)#
52 ip sgn(x2y) and@w1(x),w2(y)#50. The advantage o
usingw6 is that we may separate the Hamiltonian into tw
commuting parts,H5HF1HB , where

HF5
v

4p E
2`

`

dxS dw2

dx D 2

1
lF

p
Ag

2

dw2~0!

dx
, ~8!

HB5
v

4p E
2`

`

dxS dw1

dx D 2

1 i
lB

pa
hLhRsin@A2gw1~0!1u#.

~9!

The fermion field atx50 may be written as

c~0!5
1

A2pa
expF2

i

A2g
w2~0!G H hLexpF2 iAg

2
w1~0!G

1hRexpF iAg

2
w1~0!G J . ~10!

III. LOCAL DENSITY OF STATES
AT A SCATTERING CENTER

In this section we calculate the following correlation fun
tion:

D~ t ![^guueiHtc†~0!e2 iHtc~0!ugu&, ~11!

where ugu& is a ground state ofH. The LDOS is given by
r(v)5*(dv/2p)eivtD(t). In general we expectD(t)
}e2 iDtt2n for t→`. SinceH has gapless excitations, w
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know thatD must be zero. Thus, we will not pay attention
D and concentrate only on the exponentn in the following
discussion.

Since HF and HB commute, the correlation function i
factorized into two parts asD(t)5 (1/2pa) DF(t)DB(t),
where

DF~ t !5^FueiH FteiF2e2 iH Fte2 iF2uF&, ~12a!

DB~ t !5^BueiH Bt~hLeiF11hRe2 iF1!e2 iH Bt

3~hLe2 iF11hReiF1!uB&. ~12b!

HereF25w2(0)/A2g, F15Ag/2w1(0), anduF& (uB&) is
a ground states ofHF (HB). The HamiltonianHF is related
to a free Hamiltonian by a unitary transformation
UHFU†5HF

(0)1const, where

HF
~0!5

v
4p E

2`

`

dxS dw2

dx D 2

~13!

and

U5expF2 i
lF

pv
Ag

2
w2~0!G . ~14!

This meansuF&5U†uF0& with uF0& being the ground state o
HF

(0) . We thus get

DF~ t !5^F0ueiH F
~0!teiF2e2 iH F

~0!te2 iF2uF0&

5S 11 i
vt

a D 2 1/2g

;t2 1/2g. ~15!

As pointed out in Ref. 10, the forward-scattering poten
does not affect the LDOS.

Next we rewrite Eq.~12b! as

DB~ t !5^BueiH Bt~eiF12hLhRe2 iF1!e2 iH̃ Bt

3~e2 iF11hLhReiF1!uB&, ~16!

where H̃B[hLHBhL5HB(lB→2lB). Note that this sign
change of the cosine term is a direct consequence of
anticommutation relation$cL ,cR%50. At this point we may
sethLhR52 i because only the terms involving even powe
of hLhR will contribute toDB(t) when Eq.~16! is calculated
perturbatively in powers of lB . We then shift
w1(x)→w1(x)1 (1/A2g) (p/22u) and obtain

DB~ t !52^1ueiH 1teiF1e2 iH 2te2 iF1u1&

12 cosu^1ueiH 1teiF1e2 iH 2teiF1u1&, ~17!

where

H6[
v

4p E
2`

`

dxS dw1

dx D 2

6
lB

pa
cos@A2gw1~0!# ~18!

and we have used the fact that the ground state ofH1 , u1&,
is invariant underw1→2w1 . It is useful to transform Eq
~17! further to the form

DB~ t !52^1ueiH 1te2 iH̃ 2tu1&
l

he

12 cosu^1ueiH 1te2 iH̃ 2te2iF1u1&, ~19!

where

H̃25
v

4p E
2`

`

dxS dw1

dx
2pA2gd~x! D 2

2
lB

pa
cos@A2gw1~0!#. ~20!

We first consider the case ofg51/2. A crucial point in this
case is that the cosine term becomeseiw1(0)1e2 iw1(0).
Therefore, fermionizing the chiral bosonw1 as

eiw1~x!

A2pa
5hc1~x!, ~21!

we may transform Eq.~18! to20,24

H65 ivE
2`

`

dxc1
† ~x!

d

dx
c1~x!

6
lB

A2pa
@hc1~0!1c1

† ~0!h#, ~22!

whereh is a Majorana fermion, satisfyingh251. This leads
to a simple relation,hH1h5H2 . It is important to realize
that the fermionic representation~c1 andh! and the bosonic
representation (w1) are equivalent. In the perturbative ex
pansion ofDB(t) in powers oflB , the products ofh’s yield
a factor11 or 21 in such a way that this series becom
exactly the same as the series calculated in terms of the
son w1 . Clearly the fermion representation is more use
becauseH1 becomes a quadratic Hamiltonian, which can
easily diagonalized:20

H15E
2`

`

dkF jkak
†ak1

lB

2pAa
~hak1ak

†h!G
5E

0

`

dkjk~ck
†ck1dk

†dk!1const, ~23!

where jk[vk and c1(x)5*(dk/A2p)e2 ikxak . For later
convenience we write the transformation rule here:20

ak5
1

A2
ck1

jk

A2~jk
21G2!

dk

1
G

A2p
PE

0

`

dq
1

Ajq
21G2 S dq

q2k
2

dq
†

q1kD , ~24a!

a2k5
1

A2
ck

†2
jk

A2~jk
21G2!

dk
†

1
G

A2p
PE

0

`

dq
1

Ajq
21G2 S dq

q1k
2

dq
†

q2kD ,

~24b!
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h5
lB

p
A2

aE0

`

dq
1

Ajq
21G2

~dq1dq
†!, ~24c!

wherek.0, G[lB
2/(pav), andck anddk satisfy the ordi-

nary anticommutation relation. The ground stateu1& is the
vacuum ofck anddk .

Using Eq.~21!, we rewrite Eq.~19! in a fermionic form,

DB~ t !52^1ueiH 1the2 iH̃ 1thu1&

1A8pacosu^1ueiH 1the2 iH̃ 1tc1~0!u1&,

~25!

where

H̃15H11pv:c1
† ~0!c1~0!:1const. ~26!

From Eqs.~24a! and ~24b!, the second term becomes

pv:c1
† ~0!c1~0!:5

v
2 E

0

`

dkE
0

`

dp
jp

Ajp
21G2

~ck1ck
†!

3~dp2dp
†!, ~27!

which is an irrelevant operator with scaling dimension 2.
find the long-time behavior ofDB(t), we can thus treat Eq
~27! as a small perturbation. The lowest-order calculat
then gives, forGt@1,

DB~ t !52
4i

pGt
1A2pa cosu

lB

pv
ln~vt/a!

G2t2
. ~28!

Note that the 1/t dependence of the first term comes from t
correlator ^1uh(t)h(0)u1&, which also appeared in th
two-channel Kondo problem.21 Combining Eqs.~15! and
~28!, we getD(t)522/(p2vGt2) for Gt@1, which implies

r~v!5
2v

p2vG
~29!

for v!G. This is consistent with Eq.~1!. We see that the
single scatterer atx50 indeed depletes the low-energy exc
tations around it.

For gÞ1/2 (0,g,1) we take a different approach. W
assume from the outset that the phase fieldw1 is pinned at
x50 by the cosine potential inH1 ~18!, as in Refs. 14, 15
and 17. We thus replace the cosine by a term that is easi
deal with. A convenient choice is

HM5
v
2 E

2`

`

dxF1

g S df

dx D 2

1gP2G1
M

2
@f~0!#2, ~30!

whereM should be a characteristic energy scale at which
cosine term becomes of the order of the band width (M5G
for g51/2). It immediately follows from the scaling equa
tion dlB /dl5(12g)lB that

M}
v
a S lB

v D 1/~12g!

. ~31!

SinceHM is a quadratic Hamiltonian, it is easily diagona
ized asHM5*dkjk(ak

†ak1bk
†bk) with
n

to

e

f5E
0

`

dkA g

2pk
@sin~kx!~ak1ak

†!1cos~kuxu2dk!

3~bk1bk
†!# ~32!

andP5(1/gv)]f/]t, whereak andbk satisfy the ordinary
commutation relations of bosons. The phase shift is given
dk5tan21(gM/2vk). Note thatdk→p/2 ask→0.

Let us denote the ground state ofHM by u0M&. We then
find

^0Mu]xw1~0,t !]xw1~0,0!u0M&

52pg^0MuP~0,t !P~0,0!u0M&5
24

g2M2v2t4 ~33!

for Mt@1, implying that]xw1(0) is an irrelevant operato
with dimension 2. This is consistent with the observati
made in Eq.~27!. In fact, this is an expected result becau
w1 is pinned atx50. We may thus useH2 instead ofH̃2 to
obtain the long-time asymptotic behavior ofDB(t) in Eq.
~19!. It is also important to note thateiF1 is not fluctuating
too much and can be regarded essentially as a constan
causew1(0) is pinned. In fact, we find

^0MueiF1u0M&5^0Muexp@ iA2p/gf~0!#u0M&5AeggaM

2v
~34!

for aM!v, where g50.577... is Euler’s constant. Not
that, atg51/2, we get^1ueiF1u1&52(lB /pv)ln(v/aG),
which is consistent with Eqs.~31! and~34!. Hence, from Eq.
~19!, we get

DB~ t !}^0MueiH 1tVe2 iH 1tV†u0M&

'^0MueiH MtVe2 iH MtV†u0M&, ~35!

where V is a unitary operator, which shifts
f(x)→f(x)1 Ap/2. The right-hand side of Eq.~35! is
known to decay as;t21/2g.25 This result can be easily ob
tained using the following representation forV:

V5expF2E
0

`

dk
sin dk

A2gk
~bk

†2bk!G , ~36!

with which it is easy to checkVf(x)V†5f(x)1Ap/2 and
^0MuV(t)V†(0)u0M&;t21/2g. We thus obtainD(t)}t21/g,
from which Eq.~1! follows. We conclude that the suppre
sion of the LDOS at low energy~1! is a direct consequenc
of the pinning of the phase field atx50. However, it is
important to note that the exact result~29! is obtained with-
out any assumption on the low-energy fixed point.

IV. ORTHOGONALITY CATASTROPHE

In this section we discuss the orthogonality catastrop
for the special case ofg51/2. We calculate the overlap in
tegral u^pus&u25u^F0uF&u23u^0u1&u2, where u0& is the
ground state of the HamiltonianH0[H1ulB50 . It is almost

trivial to find gF in Eq. ~2! becausê F0uF&5^F0uU†uF0&.
We get12,13
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gF52gS lF

2pv D 2

. ~37!

Hence our problem is reduced to calculate the over
^0u1&. In the fermion language,H0 is

H05 ivE
2`

`

dxc1
† ~x!

d

dx
c1~x!, ~38!

and u0& is the filled Fermi sea. Then the ground state ofH1

can be written as
p

u1&5TexpF2 i E
2`

0

eetH8~ t !dtG u0&, ~39!

where e is positive infinitesimal and
H8(t)5eiH 0t(H12H0)e2 iH 0t. Using the linked-cluster
theorem, we can write the overlap integral as

^0u1&5exp@Gc~0,2`!#, ~40!

whereGc(0,2`) is a sum of connected ring diagrams,
Gc~0,2`!52 (
n51

`
l2n

2n E
2`

0

dt1•••E
2`

0

dt2ns0~ t12t2!g0~ t22t3!•••s0~ t2n212t2n!g0~ t2n2t1!expS (
i 51

2n

et i D . ~41!

Herel[lB /A2pa and the propagatorss0(t) andg0(t) are given by

s0~ t !5^0uTh~ t !h~0!u0&5sgn~ t !, ~42a!

g0~ t !5^0uT@c1~x50,t !2c1
† ~0,t !#@c1~0,0!2c1

† ~0,0!#u0&5
i

pv@ t2 i«sgn~ t !#
, ~42b!

where« is positive infinitesimal. Differentiating Eq.~41! with respect tol, we obtain

Gc~0,2`!52
v
4 E

0

G

dGE
2`

0

dt1E
2`

0

dt2ee~ t11t2!s0~ t12t2!g~ t2 ,t1!, ~43!

whereg(t1 ,t2) is a solution of a Dyson equation,

g~ t1 ,t2!5g0~ t12t2!2
G

2p i
PE

2`

0

dt3E
2`

0

dt4
ee~ t31t4!

t12t3
sgn~ t32t4!g~ t4 ,t2!. ~44!

Since Eq.~44! contains double integral, working in real time is not as convenient as it is in the Fermi-liquid case.26 On the
other hand, the Fourier transform of Eq.~44! contains only a single integral:

g̃~v,t2!52
eivt2

v
sgn~v!1

iG

uvu E2`

` dn

2p i
g̃~n,t2!F 1

n2v12i e
2

1

2~n1 i e!G . ~45!

This equation can be solved in the limite→0 in the standard way.27

We first introduce functionsg̃6 by

g̃6~v!5E
2`

` dn

2p i
g̃~n,t2!F 1

n2v72i e
2

1

2~n1 i e!G . ~46!

We can then express Eq.~45! as

g̃1~v!2S 12 i
G

uvu D g̃2~v!52
eivt2

v
sgn~v!. ~47!

A solution of this equation with correct analytic properties is

g̃6~v!52
1

v E
2`

` dn

2p i

eint2sgn~n!

n2v7 id

X6~v!

X1~n!
, ~48!

whered is positive infinitesimal and

X6~v!5expF E
2`

` dn

2p i

ln~12 i G/unu!
n2v7 id G . ~49!

With this solution Eq.~43! becomes
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Gc~0,2`!5
1

8p2i E0

G

dGE
2`

0

dt1E
2`

t1
dt2E

2`

`

dvE
2`

`

dne2 ivt11 int21e~ t11t2!
sgn~n!

n2v1 id

X2~v!

X1~n!

5
1

8p2 E
0

G

dGE
2`

0

dtE
2`

`

dnei ~n2 i e!t
sgn~n!

X1~n!
E

2`

`

dv
X2~v!

~v2n12i e!~n2v1 id!
, ~50!

wheret5t22t1 and we have integrated over (t11t2)/2. As pointed out by Hamann,28 in the next step in which we perform
the v integral, it is important to keepe finite while taking the limitd→10:

Gc~0,2`!52
i

4p E
0

G

dGE
2`

0

dtE
2`

`

dnei ~n2 i e!t
sgn~n!

2i e

X2~n22i e!

X1~n!

52
1

8pe E
0

G

dGE
2`

0

dtE
2`

`

dn
nei ~n2 i e!t

unu2 iG
1

1

8p2 E
0

G

dGE
2`

0

dtE
2`

`

dn1E
2`

`

dn2

n1ei ~n12 i e!t

un1u2 iG

ln~12 i G/un2u!
~n22n11 id!2 .

After replacingn/(unu2 iG) by n@(unu2 iG)212(n2 iG)21# and ln(12i G/unu) by ln@(12i G/unu)/(11i G/n)#, we integrate over
t to obtain

Gc~0,2`!5
1

4pe i E0

G

dGE
2`

0

dn
n

n21G2 2
1

2p2 E
0

G

dGE
0

`

dn1E
0

`

dn2

1

~n11n2!2

n1

n1
21G2 tan21S G

n2
D

5
i

2e

G

2p F lnS L

G D11G2
1

16
lnS G

EL
D , ~51!
s

e

c

e
.

re-
where we have introduced the high-energy cutoffL;v/a
and the low-energy cutoffEL;v/L. From Eqs.~40! and~51!
we get gB51/8 in agreement with the previou
studies.14–17,19 Note that the quantity E0[2(G/
2p)@ ln(L/G)11# appearing in the first term is equal to th
difference between the ground state energies ofH1 and
H0 .20

Sinced(E)[tan21(G/E) in Eq. ~51! is the phase shift for
fictitious chiral fermions due to the couplinglB in Eq. ~22!,

the above calculation implies thatgB5 1
2 @d(0)/p#2, in con-

trast to the Fermi-liquid result11,26 gFermi5@d(0)/p#2. The
extra factor 1/2 in our result can be traced back to the pe
liar form of the scattering term in Eq.~22!. Only the combi-
nationc12c1

† interacts withh, and the other combination
c11c1

† is decoupled. Hence onlyhalf of the degrees of
freedom have the phase shift@d(0)5p/2#, giving the factor
1/2.

V. CORE-HOLE GREEN’S FUNCTION

Next we calculate the core-hole Green’s function,

G~ t !5^0ueiH 0te2 iH 1tu0& ~52!

for g51/2. Using the linked-cluster theorem again, we g
G(t)5exp@Gc(t,0)#, whereGc(t,0) is

Gc~ t,0!52 (
n51

`
l2n

2n E
0

t

dt1•••E
0

t

dt2ns0~ t12t2!g0

3~ t22t3!•••s0~ t2n212t2n!g0~ t2n2t1!. ~53!

This time we differentiate Eq.~53! with respect tot to get
u-

t

2
d

dt
Gc~ t,0!5l2E

0

t

dt1g0~ t2t1!s~ t1!, ~54!

where s(t1) is defined for 0<t1<t and is a solution of a
Dyson equation,

s~ t1!5212
G

2p i
PE

0

t

dt3E
0

t

dt4
sgn~ t12t3!

t32t4
s~ t4!.

~55!

From this equation we can easily show thats(t1)5s(t2t1)
ands(10)521. Thus Eq.~54! becomes

2
d

dt
Gc~ t,0!5

G

4
2

G

2p i E0

t

dt1
s~ t1!

t1
. ~56!

Here the first term comes from the real part ofg0 in Eq.
~42b!.

For short timesGt!1, we can solve Eq.~55! perturba-
tively. Up to order (Gt)2 we obtain

Gc~ t,0!5 i
Gt

2p F lnS t

tc
D21G2

1

4
Gt1

1

24
~Gt !2, ~57!

wheretc is a short-time cutoff;1/L. This expansion, how-
ever, starts to fail aroundGt;1. From the analysis in Sec
IV, for Gt@1 we expect Gc(t,0) to approach

2 iE0t2 1
8 ln(Gt).14–17

The crossover from the short-time to the long-time
gimes can be seen most conveniently by solving Eq.~55!
numerically and putting the solution into Eq.~56!. Note that
the integral in Eq. ~56! is well defined because
Ims(t1);t1ulnt1u for t1→0. Figure 1 shows thet dependence
of the real part of (d/dt)Gc(t,0) computed in this way. It
clearly exhibits the crossover atGt;1 from the short-time
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behavior, Eq. ~56!, to the long-time asymptote
Re@dGc(t,0)/dt#521/8t. Thus we have shown that the e
ponent for the long-time decay ofG(t) is also given bygB ,
the exponent for the orthogonality catastrophe. This re
can be easily understood if one accepts the physical pic
that in the low-energy limit the system is cut into two sem
infinite TL liquids in which the low-energy excitations~den-
sity fluctuations! have the linear dispersion (v}k). We em-
phasize that our numerically exact result~Fig. 1! is obtained
without assuming this, unlike the previous works.14–17

VI. FERMI-EDGE SINGULARITY

In this section we briefly discuss the Fermi-edge singu
ity for g,1 to show that the exponents can be easily
tained from the analysis of Secs. IV and V. Here we
concerned with the correlation function

I ~ t !5^g0uei ~HF
~0!

1H0!tc~0!e2 i ~HF1HB!tc†~0!ug0&, ~58!

whereug0&[uF0& ^ u0&. Following the same path as in Se
III, we write the correlator asI (t)5 (1/2pa) I F(t)I B(t),
where12,13

I F~ t !5^F0ueiH F
~0!te2 iF2Ue2 iH F

~0!tU†eiF2uF0&;t2nF

~59!

with nF5@(1/A2g)1 (lF/2pv)A2g#2 and

FIG. 1. Time evolution of the core-hole Green’s function. The
is a clear crossover atGt;1. The dashed line represen
Re@dGc /dGt#521/(8Gt).
lt
re

r-
-
e

I B~ t !52^0ueiH 0te2 iH̃ 2tu0&

12 cosu^0ueiH 0te2 iH̃ 2te2iF1u0&. ~60!

We expect thatI B(t) should decay asI B(t)}t2nB in the
long-time limit. We now notice that the first term in Eq.~60!
is similar to the core-hole Green’s function discussed in S
V. As we saw in Fig. 1, it should decay as;t2 g̃ with g̃
being the exponent of the orthogonality catastrophe betw
u0& and the ground state ofH̃2 : u^0u2&u2}L2 g̃. The latter
state has a finite overlap with the ground state ofH2 , be-
cause ]xw(0) @}(H̃22H2)# is an irrelevant operato
around the fixed point ofH2 . This meansg̃5gB51/8.
Since the second term in Eq.~60! contains an extra factor
e2iF1, at least it is not larger than the first term. Hence
concludenB51/8, in agreement with Refs. 15 and 17. Th
fact thatnB equalsgB is a direct consequence of the pinnin
of w1 at x50. Therefore the insertion of thew1 part of the
fermion field, eiF1, does not change the exponent. On t
other hand,nF is not equal togF because the forward sca
tering potential is a marginal operator.

VII. CONCLUSION

In this paper we have studied the low-energy behavior
the LDOS at the location of a scattering center and the
thogonality catastrophe due to a sudden local perturbat
The characteristic, anomalous low-energy~long-time! prop-
erties were obtained by exact calculations forg51/2 by
mapping the bosonized Hamiltonian back to a fermionic q
dratic Hamiltonian. This method has allowed us to descr
the crossover from the weak-coupling~short-time! to the
strong-coupling~long-time! regimes. The exact results ob
tained forg51/2 agree with the previous studies based
the assumption that the phase fields are completely pinne
the impurity site in the low-energy limit. The agreement im
plies that, to describe the low-energy physics, it is suffici
to use an effective model that incorporates the perfect refl
tion by the local potential. We conclude thatgB51/8 and
r(v)}v1/g21 for g,1. It seems that the mapping to a Co
lomb gas problem used in Refs. 10 and 18 makes it diffic
to capture the Majorana fermions, which have played an
sential role in this paper.

Recently the author became aware that Fabrizio
Gogolin29 obtained a similar result on the low-energy beha
ior of the LDOS, Eq.~1!. Furthermore, the author was in
formed that Komniket al.30 independently obtainedgB51/8
for the g51/2 TL liquid using essentially the same metho
as in Sec. IV.

ACKNOWLEDGMENTS

The author would like to thank N. Kawakami, N. Na
gaosa, and V. Ponomarenko for helpful discussions. The
merical computation was supported by the Yukawa Instit
for Theoretical Physics and also done in part on VPP500
the Institute for Solid State Physics, University of Tokyo.



.

,

-

56 9359LOCAL PERTURBATION IN A TOMONAGA-LUTTINGER . . .
1S. Tomonaga, Prog. Theor. Phys.5, 544 ~1950!.
2J. M. Luttinger, J. Math. Phys.4, 1154~1963!.
3F. D. M. Haldane, J. Phys. C14, 2585~1981!.
4C. L. Kane and M. P. A. Fisher, Phys. Rev. Lett.68, 1220~1992!;

Phys. Rev. B46, 15 233~1992!.
5A. Furusaki and N. Nagaosa, Phys. Rev. B47, 3827~1993!; 47,

4631 ~1993!.
6K. A. Matveev, D. Yue, and L. I. Glazman, Phys. Rev. Lett.71,

3351~1993!; D. Yue, L. I. Glazman, and K. A. Matveev, Phys
Rev. B49, 1966~1994!.

7K. Moon, H. Yi, C. L. Kane, S. M. Girvin, and M. P. A. Fisher
Phys. Rev. Lett.71, 4381~1993!.

8P. Fendley, A. W. W. Ludwig, and H. Saleur, Phys. Rev. Lett.74,
3005 ~1995!; Phys. Rev. B52, 8934~1995!.

9K. Leung, R. Egger, and C. H. Mak, Phys. Rev. Lett.75, 3344
~1995!.

10Y. Oreg and A. M. Finkel’stein, Phys. Rev. Lett.76, 4230~1996!.
11P. W. Anderson, Phys. Rev. Lett.18, 1049~1967!.
12T. Ogawa, A. Furusaki, and N. Nagaosa, Phys. Rev. Lett.68,

3638 ~1992!.
13D. K. K. Lee and Y. Chen, Phys. Rev. Lett.69, 1399~1992!.
14A. O. Gogolin, Phys. Rev. Lett.71, 2995~1993!.
15N. V. Prokof’ev, Phys. Rev. B49, 2148~1994!.
16C. L. Kane, K. A. Matveev, and L. I. Glazman, Phys. Rev. B49,

2253 ~1994!.
17I. Affleck and A. W. W. Ludwig, J. Phys. A27, 5375~1994!.
18Y. Oreg and A. M. Finkel’stein, Phys. Rev. B53, 10 928~1996!.
19S. Qin, M. Fabrizio, and L. Yu, Phys. Rev. B54, R9643~1996!.
20K. A. Matveev, Phys. Rev. B51, 1743~1995!; see also A. Furu-

saki and K. A. Matveev,ibid. 52, 16 676~1995!.
21V. J. Emery and S. Kivelson, Phys. Rev. B46, 10 812~1992!; see

also D. G. Clarke, T. Giamarchi, and B. I. Shraiman,ibid. 48,
7070 ~1993!; A. M. Sengupta and A. Georges,ibid. 49, 10 020
~1994!.

22C. de C. Chamon, D. E. Freed, and X. G. Wen, Phys. Rev. B53,
4033 ~1996!.

23V. J. Emery, inHighly Conducting One-Dimensional Solids, ed-
ited by J. T. Devreeseet al. ~Plenum, New York, 1979!; J.
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