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Local perturbation in a Tomonaga-Luttinger liquid at g=1/2:
Orthogonality catastrophe, Fermi-edge singularity, and local density of states

A. Furusaki
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-01, Japan
(Received 21 February 1997

The orthogonality catastrophe in a Tomonaga-Luttinger liquid with an impurity is reexamined for the case
when the interaction parameter or the dimensionless conductageeli®. By transforming bosons back to
fermions, the Hamiltonian is reduced to a quadratic form, which allows for explicit calculation of the overlap
integral and the local density of states at the defect site. The exponent of the orthogonality catastrophe due to
a backward scattering center is found to be 1/8, in agreement with previous studies using different approaches.
The time dependence of the core-hole Green’s function is computed numerically, which shows a clear cross-
over from a nonuniversal short-time behavior to a universal long-time behavior. The local density of states
vanishes linearly in the low-energy limit gt=1/2. [S0163-18207)09540-4

[. INTRODUCTION wherelL is the length of the system. The exponemtis due
to the forward-scattering potential and depends on its
One-dimensional interacting fermion systems, Tomonagastrengtht>*2 It can be calculated directly using a unitary
Luttinger (TL) liquids,"~> have recently attracted much atten- transformation. The other exponep due to the backward
tion due to their anomalous response to local perturbationsscattering is believed to be independent of the strength of the
Recent extensive studfts on transport properties of TLlig- potential and take a universal value, $/8Y7In Refs. 14, 15,
uids with an impurity revealed that repulsively interacting gnd 17 the exponenyg is calculated by assuming that a
fermions have vanishing transmission probability through &sackward scattering center can be replaced with an impen-
potentia_l barrier in the Iow—energy limit. This is because thegtraple potential barrier. Oreg and Finkel'st&fhowever,
interaction between fermions strongly enhances the backgyestioned the validity of the assumption and argued that the
ward scattering at the barrier. Thus, a single defect effeCexponent of the Fermi-edge singularity due to a backward
tively cuts a TL liquid into two disconnected ones at zerogcattering center is zero, which impligg=0. On the other
temperaturé. This implies that the local density of states hand, Kaneet al’® used a renormalization-group equation
(LDOS) at the defect is reduced for low energy, and accordtnat becomes exact in the limit of weak repulsive interaction
ing to Kane and Fish&it shows a power-law energy depen- petween fermions. They could describe a crossover from the
dence, high-energy regime to the low-energy regime, and obtained
the same exponentg=1/8 in the low-energy limit. The re-
sult of a recent direct numerical calculation of the overlap
integral® is also consistent withyg=1/8.
1/g-1 (1) It is known that, when the TL-liquid parametgris 1/2,

’ the bosonized Hamiltonian containing a nonlinear term rep-
resenting the backward scattering can be transformed to a
quadratic Hamiltonian of fermiorfS. This is essentially the
game technique as the Emery-Kivelson solution of the two-
channel Kondo problet The exact results on the

p(w)*w

where g is a parameter characterizing the TL liquid. This
picture was, however, questioned recently by Oreg an
Finkel'stein!® who claimed based on a mapping to a Cou- & . . &
lomb gas problem that the LDOS at the defect is enhance o_nducta_nc af‘d nonequn_lbru_Jm NOISE Spectravere ob-
rather than suppressed, in the low-energy limit for weakly ained using this refermlomza_tlon technique. It is thus natural
to expect that exact calculation should also be possible for

interacting fermions. This controversy motivates us to reexs . ! :
amine this issue. the above-mentioned problems. The purpose of this paper is

The orthogonality catastropein a TL liquid is another to ﬁ_f;]owtthatt this |fst|hr?deed th? cas]?.” After introduci
interesting subject that has been discussed by several € structure ot this paper IS as 10llows. After introducing

authorsi2~18 They showed that the overlap between the@ model of interacting fermions in Sec. Il, we discuss in Sec.
ground state of a pure TL liquifh) and that of a TL liquid Il the exact low-energy behavior of the LDOS fge=1/2.

: ) ! . - _ For g#1/2 we show that Eqg(1) follows from the assump-
;’:rt: gzs;pgle scatterefs) vanishes in the limit of large sys tion that the phase field is pinned at the defect site. The

importance of zero modes is emphasized. In Sec. IV we cal-

culate yg analytically forg=1/2 without assuming the na-

ture of the low-energy fixed point. We finglg=1/8. The
|(p|s)|2e<L ™ 7F 78, (2 so-called core-hole Green’s function is then computed nu-
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merically in Sec. V, which shows a clear crossover from
short-time to long-time regimes. We show in Sec. VI that the
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Il. MODEL

In this section we introduce a model of interacting spin-

exponent of the Fermi-edge singularity due to backwardess fermions and briefly explain the bosonization rule to fix
scattering is also given byg. We summarize the results in the notation.

Sec. VII.

N d + d
i (X) ax I (X) = r(X) ax Pr(X)

H:iva dX

4

where s gy describes left-goingright-going fermions, A:

represents normal-ordered operatgrand\ g (\ge'?) is the
forward-scattering(backward-scatteringpotential. Follow-
ing the standard bosonization rdfewe express fermiong,,

in terms of bosonic operators:

I (X)= > e e, (48

1 .
wR(X) = m 77Rel sz(X)' (4b)

. 1 d
()P ()= 5 eul(X), (40)

wherea is a short-distance cutoff. The bosonic fields satisfy

the commutation relationge| (X), ¢ (Yy)]= —i sgnk—y),
[er(X), @r(Y)]=i7 sgnk—y), and[ ¢ (X),¢r(y)]=0. The

operatorzn,,’s are Majorana fermions corresponding to zero v (= de.,
modes of bosons, which are needed to ensure the anticon1=|B=E f dx(

mutation relation betweeny, and ¢g. They satisfy

{m.,mr}=0 and nizl. We then introduce new bosonic

fields as
1
P(x)= \/T—W[QDR(X)JFQDL(X)], (58
1.4
H(X)__\/T—W&[‘PR(X)_‘PL(X)], (5b)

which obey[ ¢(x),II(y)]=i8(x—y). With these fields the
Hamiltonian can be transformed to a bosonic form,

2

v 1/d¢ | Ap dg(0)
H—EJdXEW +gH +\/—; ax
g .
+i pel /1 nrSiN V47 ¢(0)+ 6]. (6)
The parameterg is related to g, and g, by

9=[(1+09,—92)/(1+Ts+7,)1"* with §;=gi/27rv . Since

The Hamiltonian of our model is given by

+ng:dxr YL () YL PR YR(X):

+= f Tax Y L0 P, (0L ) P, () N 2 1 (0)4,(0): +Ng[€ %] (0)yr(0)+H.c],  (3)
2 J-w LELR uw=LR

the interaction is repulsiveg is less than 1. The renormal-
ized velocity is given by =v ([ (1+7,)%—(g,)%]*2
We then introduce another set of bosonic fieds(x):*’

1 1
@.(X)= % f (Tg_ @) [or(X) = @ (—X)]

1

+ @+ fg)[qu(—x)rqoL(x)]]. @)

These fields satisfy [¢..(X), ¢+ (Y)]=[¢-(X),0-(Y)]
=—im sgnfk—y) and[ ¢, (X),¢_(y)]=0. The advantage of
using ¢~ is that we may separate the Hamiltonian into two
commuting partsH=Hg+Hg, where

v (= [de |® e \ﬁdso_(m
He=27 _wdx( dx)+7 2 ax 0 ®

2

g i
+|EmRsm[@<p+<0)+ 9].
(9)

dx

The fermion field atk=0 may be written as

‘mexl{—i \/g ®+(0)

} . (10

1 i
lﬂ(o): J%—anF{ - @‘P—(O)

+nRexp[i \fg ¢:(0)

Ill. LOCAL DENSITY OF STATES
AT A SCATTERING CENTER

In this section we calculate the following correlation func-
tion:

D(t)=(g,le" y(0)e My (0)|g,),

where|g,) is a ground state off. The LDOS is given by
p(w)_=f(dw/27‘r)e'“’tD(t). In general we expectD(t)
e "At~7 for t—. SinceH has gapless excitations, we

(11)
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know thatA must be zero. Thus, we will not pay attention to

A and concentrate only on the exponenin the following
discussion.

SinceHg and Hg commute, the correlation function is

factorized into two parts aP(t)= (1/27a) D(t)Dg(1),
where

De(t)=(F|e'HFle'?-e Hrle™I®-|F) (12a
Dg(t)=(Bles!( e'P++ yre”'P+)e He!
X (me '+ npe'?+)[B). (12b

Hered®_=¢_(0)/y2g, ¥, =g/2¢,(0), and|F) (|B)) is
a ground states dfir (Hg). The HamiltonianH¢ is related

to a free Hamiltonian by a unitary transformation as

UHUT=H®+ const, where

o do_\2
o_Y ge-
He yp- _wdx( dx) (13
and
_ Np \/a
U—EX[{_lﬂ_—v EQD(O)} (14)

This meansgF)=U'|F,) with |F,) being the ground state of

HO . We thus get

De(t)= <F0|eiH;:O)teid),e—iH;:O)te—i(D,|FO>

— 1/2g

vt -V,

1+i—
a

(19

As pointed out in Ref. 10, the forward-scattering potential

does not affect the LDOS.
Next we rewrite Eq(12b) as

Dg(t)=(B|eMst(ei®+ — nLnRefi¢+)efiﬁBt

X (e P+ + . nge'?+)|B), (16)

where ﬁBE n Hgm =Hg(Ag— —Ag). Note that this sign

A. FURUSAKI 56
+2cosa<+|e‘H+‘e*iﬁ—‘e2‘q’+|+>, (19
where
~ v (=  [de. 2
H__E fde(W—W\/E(S(X)
A
co§ 29, (0)]. (20)

es

We first consider the case gf=1/2. A crucial point in this
case is that the cosine term becomgé+(©) e~ ie+(0),
Therefore, fermionizing the chiral bosan, as

ei(P+(X)
=77¢+(X)1 (21)
2T
we may transform Eq(18) to?%2*
I o d
H1_|UJ_de¢+(X)d_X¢+(X)
22 () + 4 (0)7) (22
- \27a o T

where 7 is a Majorana fermion, satisfying?= 1. This leads

to a simple relationyH . »=H_. It is important to realize
that the fermionic representatidyr,. and ») and the bosonic
representation ) are equivalent. In the perturbative ex-
pansion ofDg(t) in powers ofAgz, the products ofy's yield

a factor+1 or —1 in such a way that this series becomes
exactly the same as the series calculated in terms of the bo-
son ¢, . Clearly the fermion representation is more useful
becausdd, becomes a quadratic Hamiltonian, which can be
easily diagonalized’

H+=J dk

t Ag t
&kt 2—( nay+axn)

ma

change of the cosine term is a direct consequence of the =J dK&(Cle+ didy) + const, (23
anticommutation relatiofi, , g} = 0. At this point we may 0
sety_nr=—Ii because only the terms involving even POWErS\ here £, =yk and ¥, (X)=[(dk/2m)e~*a,. For later
of 7 g will contribute toDg(t) when Eq.(16) is calculated convenit:‘nce we write the transformation rullc(e here:
perturbatively in powers of A\g. We then shift
¢+ (X)= ¢, (X)+ (1\2g) (7/2— 6) and obtain 1 ¢
k
i i i i a=—=C+ ———d
Da(t)=2(+|eM e/ e M-te P4 ) T2 ey
+2coso(+|eM+tel®re H-tel®s| 1) (17) I » dq dl
+—P]| d - , (24
where 2 fo a Je+T2la—k a+k (243
v * d(p 2 )\B
thﬂf dx( dx*) = c0§V29¢.(0)] (18) Lot &
- K EZEAT T
V2 V2(8+T7)
and we have used the fact that the ground staté of | +), “
is invariant underp, — — ¢ . It is useful to transform Eqg. N r med 1 dq da )
(17) further to the form ) zn Jo q \/Efﬁr_rz qg+k gq—k/’
Dg(t)=2(+|eM+te -1 +) (24b)
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AB\F > o1 R T f _
-— Ejodq—w(d,ﬁdg), (240 ¢—J0dk 27Tk[sm(k><)(ak+ozk)+cos(k|><| )

wherek>0, I'=\3/(mav), andc, andd, satisfy the ordi- X (Bt BY)] (32
nary anticommutation relation. The ground sthte) is the
vacuum ofc, anddy.

Using Eq.(21), we rewrite Eq.(19) in a fermionic form,

andIl=(1/gv)d¢/at, wherea, and B, satisfy the ordinary
commutation relations of bosons. The phase shift is given by
S=tan {(gM/2vk). Note thats,— /2 ask—O0.

DB(t)=2(+|e‘H+‘7;e"ﬁ+tn|+) Let us denote the ground state l8f, by |Oy). We then

find
+Bmacosi(+|ef-tye -y (0)] ), (Ou 39+ (01) .. (0.0)| Oy}
(29
where =27g(Oy|TTI(0,)TI(0,0)|0y) = Mm% %E (33
Ho=H.+mv:y}(0)y(0):+const. (26)  for Mt>1, implying thatdye_ (0) is an irrelevant operator

with dimension 2. This is consistent with the observation

F Egs.(24 24b), th t : T
rom Eqs.(243 and(24b), the second term becomes made in Eq.(27). In fact, this is an expected result because

v ¢, is pinned ax=0. We may thus usHE _ instead oH_ to
wv:z,//i(O)zm(O)::E f dkf pP———= (ck+ck) obtain the long-time asymptotic behavior Dfg(t) in Eq.
(19). It is also important to note tha ®+ is not fluctuating

x (d—d @27 too much and can be regarded essentially as a constant be-

causep, (0) is pinned. In fact, we find
which is an irrelevant operator with scaling dimension 2. To

find the long-time behavior dbg(t), we can thus treat Eq. o, gal\/l
(27) as a small perturbation. The lowest-order calculation {OmI€'® *[0m) = (Omlexii v27/g¢(0)]|0w) =
then gives, fol't>1, (34)
4i \g IN(ut/a) for aM<v, where y=0.577... is Euler's constant. Note
DB(t):——FJr 27a coso—BT. (29)  that, atg=1/2, we get(+|e'®+|+)=—(\g/7v)In(w/al),
7t oI which is consistent with Eq$31) and(34). Hence, from Eq.
Note that the 1/dependence of the first term comes from the(lg)’ we get
correlator {+|n(t) 7(0)|+), which also appeared in the iH oty e iH ot
two-channel Kondo probler’riL Combining Egs.(15) and Dp(t)(Ou[e™ Ve < VI[0y)
(28), we getD(t)=—2/(7?vT't?) for I't>1, which implies ~(0yleMmiveHmtyT|oy,), (35)
2w where V is a unitary operator, which shifts
plw)= 2ol (29 d(X)— d(x)+ Jm/2. The right-hand side of Eq(35) is

known to decay as-t~Y%.%° This result can be easily ob-
for w<<I". This is consistent with qu) We see that the tained usmg the f0||0W|ng representaﬂon or

single scatterer at=0 indeed depletes the low-energy exci-
tations around it. = sin &y
For g+ 1/2 (0<g<1) we take a different approach. We V=ex —f dk——=(BL— B |, (36)
assume from the outset that the phase figldis pinned at o y2gk
x=0 by the cosine potential inl, (18), as in Refs. 14, 15, . C o
and 17. We thus replace the cosine by a term that is easier {(\gth \V/Vhlc\;]T |t0|s(;aasy tc_)ltl:zgecxd)(xh)v g’@)g ‘/;/2_611,2(1
deal with. A convenient choice is u[V(OV(0)[Oy)~t"*. We thus obtainD(t)et™"5,
' from which Eq.(1) follows. We conclude that the suppres-
v [ 1 M sion of the LDOS at low energgl) is a direct consequence
HM:EJ dx — +?[¢(0)]2’ (300  of the pinning of the phase field at=0. However, it is
-= 19 important to note that the exact res(@0) is obtained with-
whereM should be a characteristic energy scale at which th@Ut @ny assumption on the low-energy fixed point.
cosine term becomes of the order of the band width«T"

for g=1/2). It immediately follows from the scaling equa- IV. ORTHOGONALITY CATASTROPHE
tion d\g/dl=(1—g)\g that

2
+gll?

dx

In this section we discuss the orthogonality catastrophe

v )\B)l/(l—g) for the special case af=1/2. We calculate the overlap in-
Mo —

a

— (31  tegral [(p|s)|®=|(Fq|F)|>x|(0|+)|2, where |0) is the
ground state of the Hamiltoniad,=H +|A —o- Itis almost
SinceHy, is a quadratlc Hamiltonian, it is easily diagonal- trivial to f|nd ve in Eq. (2) becausegF, |F) (FolUTIFo).

ized asHy, = [ dké(afa+ BBy with We get?13

v
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Ae |2 _Jo
=2q| —— +)=Texg — “H’(t)dt||0 39
7e 29(2“) (37 [+) exp[ || etH(dt|[0), (39
Hence our problem is reduced to calculate the overlap . . o
where € is positive infinitesimal and

(0[+). In the fermion languagéd, is H'(t)=e"o'(H —Hy)e Mo', Using the linked-cluster

(e d theorem, we can write the overlap integral as
Homiv | dwloosu0. (39
(0] +)=exf G(0,—=)], (40)
and|0) is the filled Fermi sea. Then the ground stateHaf
can be written as whereG,(0,— ) is a sum of connected ring diagrams,

2n

* )\2[1 0 0
Ge(0,—0)=— > an J: dtl"'jﬁ dtonSo(ts—t2)go(ta—t3) - So(ton—1—ton)Go(ton—t1)€X 21 eti|. (41

HereA=\g/\27a and the propagatorg(t) andggy(t) are given by

So(t) =(0[ T7(t) 7(0)|0) = sgn(t), (429
i
_ —0ty_ gt ot -
90(t) = (OT[ ¥+ (x=0) = yL (O] (0.0 =YL (0.0]0) = —m— . (42b
wheree is positive infinitesimal. Differentiating Eq41) with respect tox, we obtain
v (T 0 0
GC(OI_OC): - Z f drf dtlf dtzef(t1+t2)30(tl_t2)g(t21t1)! (43)
0 — —
whereg(t;,t,) is a solution of a Dyson equation,
r 0 0 g(tatty)
g(t1,tp) =go(ti—ty) — > PJ dtaj dt, P— sgntz—t,)g(ts,to). (44)
—oo —oo 1~ 3

Since Eq.(44) contains double integral, working in real time is not as convenient as it is in the Fermi-liquid®casethe
other hand, the Fourier transform of E44) contains only a single integral:

_ G ir f dv _ 1 1 45
g(w!tZ)__ v Sgr(w)+m _wﬁg(vatZ) V_a)+2|6_2(V+|E) . ( )
This equation can be solved in the linit-0 in the standard wa¥/.
We first introduce functiong.. by
- _f“ dv _ 1 46
9=(@)= | o 9t S = 2(v+ie)| (46)
We can then express E(5) as
_ ' r _ eiwtz
9+(w)—(1—lm)g(w)Z—TSQF(w)- (47)
A solution of this equation with correct analytic properties is
- 1 (> dv e2sgrv) X.(w)
gt(w)__;ffwﬁ v—wFid X (v)’ (48)
where § is positive infinitesimal and
X B Jw dv In(1—iT/|v|) 49
(@)= | o T mewis | 49

With this solution Eq(43) becomes
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i 1+IV +e(ty+ Sgr‘(v) X_(w)
Go(0,— )= Jdrf dtlf dtzJ de dpe-iwtitivty el tz>v_w+i5X+(V)
(v—ieyr_2 "7 gr(v) X_(w)
-8 ZJ dFJ de dve X, (v) ,md"’(w—u+2ie)(u—w+i5)' (50)

wherer=t,—t; and we have integrated over; - t,)/2. As pointed out by Hamarff,in the next step in which we perform
the w integral, it is important to keep finite while taking the limité— +0:

i r 0 o o osgn(v) X_(v—2ie)
_ - i(v—ie)r
G (0,— ) yp fo dFJloodeiwdve e X.(v)

drf g f g vellviar f drf g f g f g v1€' "7 In(1—i T/]v,|)

" 8me T "To=ir |v|—il 877 4 "1 v2 |v| =T (vp— v +i6)?"
After replacingv/(|v|—iT) by v[(|v|—iT) 1= (v—iT) "] and In(1=i I/|v|) by In[(1—i T/|#|)/(1+iT/v)], we integrate over
7 to obtain

G(0 ! errfod Y ! frdrfwd de ! P et L

— 00 )= —_—_——— J—

o(0.7) 47ei Jo —» YIZET2 T 242 0 0 1 0 V2 (v1+vy)? v"{+r2 tan Vo
= I | A 1(— 1| I 51
AR R (52)

where we have introduced the high-energy cutdffuv/a d

and the low-energy cutof, ~v/L. From Eqs(40) and(51) ~ i Ce(tLO=A f dtygo(t—ta)s(ty), (54
we get yg=1/8 in agreement with the previous

studies:*"'"** Note that the quantity Eqc=—(I'/  wheres(t,) is defined for Gst;<t and is a solution of a
2m)[In(A/T')+1] appearing in the first term is equal to the Dyson equation,

difference between the ground state energiesHqf and

Ho.2° _ r q q 1~ t3)
Since 8(E)=tan {I'/E) in Eq. (51) is the phase shift for s(ty)=—1- 20 P 0 t3 0 ta t3—t, S(ta).
fictitious chiral fermions due to the coupling in Eqg. (22), (55)

the above calculation implies th%= 1[8(0)/#]?, in con-
trast to the Fermi-liquid restft?® yeemi=[8(0)/7]?. The
extra factor 1/2 in our result can be traced back to the pecu-
liar form of the scattering term in E¢22). Only the combi- t
nation ¢, — :,01 interacts with#, and the other combination G.(t,00= 1 o f dt;
z//++¢//1 is decoupled. Hence onlgalf of the degrees of 0
freedom have the phase sHifi(0)=7/2], giving the factor Here the first term comes from the real partgy in Eq.
1/2. (42b).

For short timesl't<1, we can solve Eq(55) perturba-
tively. Up to order {'t)? we obtain

Ftlt
2w nz_

Gu(1,0)=i =—

From this equation we can easily show tisét;) =s(t—t;)
ands(+0)=—1. Thus Eq.(54) becomes

s(tq)
ty

(56)

V. CORE-HOLE GREEN'S FUNCTION

- ’ i 1
Next we calculate the core-hole Green’s function, _ ZFH —(Ft)2 (57

— iHota—iH 4t
G(t)=(0le" e +1[0) (52 wheret, is a short-time cutoff-1/A. This expansion, how-

ever, starts to fail arounfit~1. From the analysis in Sec.
for g=1/2. Using the linked-cluster theorem again, we get|V for Tt>1 we expect G.(t,0) to approach

G(t)=exd G.(t,0)], whereG,(t,0) is CiEgt— in(Tt). 247

The crossover from the short-time to the long-time re-
gimes can be seen most conveniently by solving &)
Ge(t.0)=— n,l 2n fdtl fdt2“50(t1 t2)90 numerically and putting the solution into E¢p6). Note that
the integral in Eq. (56) is well defined because
X (ty—t3) - So(tan—1—t2n)Go(ton—t1). (63)  Ims(ty)~ty|Int,| for t;— 0. Figure 1 shows the dependence
of the real part of /dt)G.(t,0) computed in this way. It
This time we differentiate Eq53) with respect ta to get clearly exhibits the crossover &tt~1 from the short-time
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10

]
-

—_
(=]

|
N

—Re[dG, /d T1]
=

b
o
b

I't

FIG. 1. Time evolution of the core-hole Green’s function. There
is a clear crossover af't~1. The dashed line represents
R dG,/dI't]=—1/(8I't).

behavior, Eq. (56), to the long-time asymptote,
R dG,(t,0)/dt]=—1/8t. Thus we have shown that the ex-
ponent for the long-time decay @& (t) is also given byyg,
the exponent for the orthogonality catastrophe. This resu
can be easily understood if one accepts the physical pictu
that in the low-energy limit the system is cut into two semi-
infinite TL liquids in which the low-energy excitatiorfden-
sity fluctuation$ have the linear dispersionvfck). We em-
phasize that our numerically exact resiiig. 1) is obtained
without assuming this, unlike the previous works!’

VI. FERMI-EDGE SINGULARITY

In this section we briefly discuss the Fermi-edge singular

A. FURUSAKI

4

|(t)=2(0]eMote~1H-1]0)

+2 cos#(0|eHote H-tg2®+|0), (60)

We expect thatig(t) should decay agg(t)<t™ "8 in the
long-time limit. We now notice that the first term in E§0)

is similar to the core-hole Green’s function discussed in Sec.
V. As we saw in Fig. 1, it should decay ast™? with "y
being the exponent of the orthogonality catastrophe between
|0) and the ground state &1 _: [(0|—)|?<L~”. The latter
state has a finite overlap with the ground stateHof, be-
cause dy¢(0) [«<(H_—H_)] is an irrelevant operator
around the fixed point oH_. This meansy=yg=1/8.
Since the second term in E¢60) contains an extra factor,
e’ ®+ at least it is not larger than the first term. Hence we
concludevg=1/8, in agreement with Refs. 15 and 17. The
fact thatvg equalsyg is a direct consequence of the pinning
of ¢ atx=0. Therefore the insertion of the, part of the
fermion field, e ®+, does not change the exponent. On the
other handyg is not equal toyr because the forward scat-
tering potential is a marginal operator.

VIl. CONCLUSION

In this paper we have studied the low-energy behavior of
e LDOS at the location of a scattering center and the or-
ogonality catastrophe due to a sudden local perturbation.
The characteristic, anomalous low-eneftpng-time prop-
erties were obtained by exact calculations fpe1/2 by
mapping the bosonized Hamiltonian back to a fermionic qua-
dratic Hamiltonian. This method has allowed us to describe
the crossover from the weak-couplighort-timg to the
strong-coupling(long-time regimes. The exact results ob-
tained forg=1/2 agree with the previous studies based on
the assumption that the phase fields are completely pinned at
the impurity site in the low-energy limit. The agreement im-

plies that, to describe the low-energy physics, it is sufficient

ity for g<1 to show that the exponents can be easily 0by, e an effective model that incorporates the perfect reflec-
tained from the analysis of Secs. IV and V. Here we arg;g, by the local potential. We conclude thag=1/8 and

concerned with the correlation function

1(t)=(gole!HF +Holty(0) eI (HE+HB)tyT(0)[g), (59)

where|gg)=|F)®|0). Following the same path as in Sec.
lll, we write the correlator ad(t)= (1/27a) 1(t)15(1),
wherg?13

I F(t) :<FolengzO)te—iq),Ue—iHs:O)tuTeifD,|FO>~t—VF
(59

with ve=[(1/y/29) + (\¢/27v)/29]? and

p(w)* w1 for g<1. It seems that the mapping to a Cou-
lomb gas problem used in Refs. 10 and 18 makes it difficult
to capture the Majorana fermions, which have played an es-
sential role in this paper.

Recently the author became aware that Fabrizio and
Gogolir?® obtained a similar result on the low-energy behav-
ior of the LDOS, Eq.(1). Furthermore, the author was in-
formed that Komniket al*® independently obtainegi;=1/8
for the g=1/2 TL liquid using essentially the same method
as in Sec. IV.
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