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A methodology is introduced for the systematic treatment of electron-electron correlations in solids and
other interacting quanturil-particle systems. The method is developed within the framework of electronic
structure theoryband theory but, in contrast to conventional approaches, which are based on the single-
particle picture, it is formulated within a many-particle picture in whitlparticles ind-dimensional phase
space are treated as a single particle in a phase spacd dimensions. In this phase space, interparticle
interactions appear as external potentials allowing the treatment of the system of particles through the use of
single-particle methods, while at the same time allowing a systematic, direct, and nonperturbative treatment of
interparticle interactions. The method makes use of the invariance of the Hamiltonian describing an interacting-
particle system under partitioning into subsystems gfarticles. This treatment leads to exact results in the
limit n—N. Based on such partitioning, we propose a generalization of density functional theory and an
appropriately defined local density approximation to treat the interactions betweenpidugicle units in a
system ofN=n particles. This approach yieldsparticle correlated densities aneparticle states which can
be used in an analysis of the electronic properties of materials, such as total energy, phase stability, electronic
transport, and others. We use the formal construct of multiple-scattering theory to develop the method for the
calculation of the two-particle electronic structure of a solid and the corresponding total energy of the ground
state. We also illustrate some of the properties of the method in terms of a Hubbard model Hamiltonian on a
linear ring. Various features of the method and further possible applications are presented in a discussion
section.[S0163-182607)02240-9

I. INTRODUCTION structure as well as their advantages and limitations when
compared to one another, or against general criteria of a
formal nature.

There are several problems in the physics of quantum ajthough a detailed review of these methods cannot be
systems whose importance is attested to by the time angiven here, it may be useful to mention their most outstand-
effort that have been expended in search of their solutions. Mg features. The methods based on DFT, such as the LDA,
class of such problems involves the treatment of interparticlean yield quite accurately ground-state energies and equilib-
correlations. In many-particle quantum systems correlatiorium volumes of solids in most cases, but they can fail to
effects can arise either because of the indistinguishability ofjive the correct structure for the ground state of the system
the particles, i.e., the imposition of Fermi or Bose statistics(e.g., Fe where LDA predicts the ground state to be in a face
because of direct interparticle interactions, e.g., the Coulombentered instead of body centered cubic strujufhe ina-
interaction, or because two or more particles interact simuleuracies that can ensue from using such methods to predict
taneously with the same external potential, e.g., in the studthe excitation spectrum of semiconductors and insulators is
of transport in random systems. well known? In spite of a number of attempts at improve-

The treatment of correlation and exchange effects is anent, such as self-interaction correctithhd? and gradient
preeminent problem in the study of the electronic structure otorrections:>!* the treatment of exchange and correlation
solids, as well as that of “small” systems such as atoms andnd of excited states remains the most serious impediment in
molecules. A number of well-known approximation methodsnumerical applications of DFT.
have been developed for the study of fully interacting many- Hartree-Fock-based methods, on the other hand, do allow
particle systems. Among the most prominent, the local dena proper treatment of exchange effects and do not require the
sity approximation (LDA) to density functional theory removal of spurious self-interaction terms. The most com-
(DFT),}? various extensions and corrections to the LDA, mon approaches used for solids, however, neglect correlation
the various forms of the Hartree-FGclHF) approximation,  effects as, for example, the restricted HF metksidgle de-
and the GW approximatioi® can be mentioned. These terminantal wave functionsSome improvement in the treat-
methods, and many improvements introduced to alleviatenent of such effects in the case of solids is achieved on the
their various shortcomings, have been discussed in a numbbesis of additional schemes such as the use of a screened
of review articles;” and their numerous applications along exchange interaction with a diagonal dielectric function. Fi-
with theoretical studies have revealed much of their internahally, the GW approximation allows indeed the calculation

A. Preamble
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of excitation spectra in some materials such as simple metals R ) 1

and semiconductors. However, it has been demonstrated A= -VZ+Y vi+§z Vij 1)
that the need to treat strongly correlated systems widhin ! : g

initio methods requires the solution 01_‘ coqpled equations be\ivhereViz is the Laplacian operator for partidiev; =v(r;) is
yond the boundaries of th& W approximation.

: . . a single-particle potential for particie andv;;=v(r;,r;) is
All methods briefly outlined above are based directly 0Ny e interparticle potential, witly; =0. Ordinarily, we are

the calculation of single-p_article properties of the interacting +arested in the solutions of the many-particle wave equa-
system, such as the density or the Green function. Therefor on

they cannot lead directly to correlated two-partidler

higher-ordey correlation functions. Furthermore, there seems HWY=EW, )

to be no unique way of improving systematically any of

these methods so that correlation effects are taken into agvhere W denotes the many-body wave function for the in-

count through the treatment of increasingly larger numberseracting system.

of particles. We consider the density(r) for the (nondegeneraje
Finally, there is an additional reason for pursuing a deterground state of the system. The usual proof of the uniqueness

mination of two-particle state®r density in a material. Itis  of the external potential as a functional of the density pro-

not clear that materials behavior can be described most effeeeds byreductio ad absurdumLet there be two external

ciently in every case in terms of single-particle states. Fopotentialsp(r) andv’(r), differing by more than a constant

example, transport properties can be expressed directly iind each giving the same ground-state dengjty. Let also

terms of the two-particle Green function which, in present-fj and i’ pe the corresponding many-body Hamiltonians,

d_ay apphc.atlons, IS approxlmated by the product of tWOand\If and ¥’ the associated wave functions. Bdthand

single-particle Green functions. Therefore, it seems worth-. " ,

while to attempt the development of a formalism which al-H would correspond to theameground-state density, but

lows the calculation of two-particle quantitiésnd by exten- the wave functionsl and¥" would be different. Taker’

sion n-particle quantities including a direct treatment of to be a trial wave function for the system describedHby

interparticle interactions. [which includesv(r)] and use the fact that the expectation
As is shown in this paper, a scheme can be constructedalue of the energy is a minimum for the correct wave func-

which allows the direct and self-consistent calculation oftion to obtain the result

n-particle densities usingingle-particlemethods. The for- A A o

malism is based on the framework of DFT, which is gener-  Eo<(W'|H|V")=(¥V'|H'|¥')+(V'|H-H'|¥')

alized to apply tan-particle states, leading to a description of

the ground_state of a system in terms of thparticle_corre- —E/+ J' n(r)[v(r)—v’(r)]d, @)

lated density. Also, the energy is given as a unique func-

tional of that density and assumes its minimum value for the

exact density. A preliminary account of the formalism pre—Whelre Eo and E, der:o;g, respTcnvely, Ithe ene:gy of the
sented in this paper has been given in a previoué\l'e ectron systentexcluding huclear-nuclear repu sbom;;—
publication® der the influence ot andv’. The integralfn(r)v(r)d°r

For the sake of ease of presenting the formalism, we treaQescribes the interaction of the charge distribution with the
explicitly the case of two-particle states with vanishing total€Xternal field. Slmlla.rly, takingl' as a trial wave function
spin, but the extension te-particle states is straightforward. for the system described By’, we have
We also neglect relativistic effects. Thus, the formalism as R R o
presented here applies directly to spin-compensated systems. E{<(V|H'|¥)=(V|H|¥)+(¥|H —H|V)
Furthermore, we treat the case of solids with an infinite num-
ber _qf glectrons SO thqt no questions arise with regard to :EO_J n(r)[v(r)—v’(r)]d% . (4)
partitioning the system into two-particle units.

The remainder of the paper takes the following form. In . . .

Sec. Il, we develop DFT for the case of two-particle statesﬁb‘ddlng the last two equations, we obtain
and in Sec. Il we show how the formal construct of
multiple-scattering theory can be used to solve the Schro

dinger equation for the solid within a generalized version ofrpege inequalities constitute a contradiction to the premise
the LDA. Section IV contains the results of model calcula-i, o+ there can be two differents, differing by more than a

tions for a system of four electrons on a linear ring of fourconstant, that give the same density) for the ground state

sites described by a Hubbard Hamiltonian with on-site inter-¢ 1o system. This proves the theoréte second theorem

action. Some conclusions that can be drawn from this worlbf Hohenberg and Koh‘ﬁ). We now show that this theorem

and some future plans are presented in Sec. V. Finally, ag;qieg through virtually intact in a hyperspace in whith
Appendix coqtams a r?umber.of formal results about partlal'particles are considered as a single particle. We consider
wave expansions in higher-dimensional spaces. explicitly the casen=2

Let us consider again the Hamiltonian of Edj) but as a
sum of distinct, nonoverlapping pairs of particle® that a

We consider the Hamiltonian of a fully interacting given particle belongs to only one pritabeled byl, and
N-particle system, write the Hamiltonian in the form

Eo+Ey<Ej+E,. (5)

Il. DFT FOR n-PARTICLE STATES
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1 1 words, the theorem holds intact in a configurational space of

H=2 —Vi+2 V, t5 > Vi (6) 3N dimensions for systems described by the Hamiltonian of

| | 1,J#1 E . . . .
g. (6). As is the case with respect to its canonical form,

This Hamiltonian is the same as that above, @9, except nDFT yields an energy functional which is stationary with
that it is expressed in terms of pairs of particles. We considerespect to variations in the density and assumes its lowest
explicitly systems with infinite numbers of particlésr with  value for the correct density of the ground state.
finite but even numbeyso that the partition into pairs can be
effected exactly. Also, we consider singlet pairs only so that
exchange effects on the wave function arise only from the A. The Kohn-Sham equations

interchange of particles across pairs. This partition does not |5 grder to make DFT a usefull tool, explicit expressions
constitute a restriction for zero-spin systems. Now, we not§yy the energy functionaE[n] are needed. The Kohn-Sham

that for each such pair we can write, (KS) formalism'® provides such an expression for ordinary
2 2 2 2 2 2 5 g DFT by writing the kinetic energy in terms of single-particle
v2yy2=— 4 4 4% 47 47 N T states, which can be determined in a straightforward self-
D e ay? 02 asz ayjz azjz a=1 gx2, consistent scheme, and casting the rest of the kinetic energy
A as well as the nonlocal part of the potential energy into the
=Vi=V§, () so-called exchange and correlation functional, for which

where the coordinates of the two particle have been comSUitabl.e approximations .SUCh as LDA can be found. The; KS
bined in a single coordinate in six dimensions formahssnil‘l is reviewed in a humber Of texts and review
articles®*and only some of its more salient features will be
X:(Xi WYiiZi !Xj 1y] 1Zj):(X11X21X31X41X51X6)- (8) mentione_d here. .

L ) ) i We will now attempt to make clear which formal results
This six-dimensional coordinate forms the direct part of theqt the Ks formalism hold irespective of dimensionality and
phase spacehyperspaceof the two particles, in which the \ynich must be justified when applied to a space with a di-
pair appears as a single particle. The other terms that appegiansion larger than three. With this in mind, we introduce

in Eq. (6) are uniquely defined in terms of the original gihgie particle orbitals, generalized KS functions, such that
Hamiltonian. Thus, withk=(r;,r;), we have

1
Vi=V(X)=V(ri,rj)=uv(r)+ov(r)+ GETR ) n(X):ZI W, (%)|2. (12)
and
1 1 The meaning of these functions as well as the extent of the
V=V X ) =V(r e 1) = —+ - sum overl is commented upon below. For the moment, we
ri=rilri=ril consider these functions as the solutions of an effective
1 1 “single-particle” Schralinger equation obtained as follows.
(10) We define a single-body potential by the relation,

’ + r -
Irj=ril[rj=rjl

This completely defines the Hamiltonian in ).

The important feature to notice about this Hamiltonian is V(X)=
that it has a formidentical to that in Eq.(1). Therefore, it
suggests a treatment using a single-particle framework,
where the particles are in six-dimensiofiather than three- - 2 Z,
dimensiongl coordinate space. This form of the Hamiltonian n
allows one to carry through essentially unchanged the proof
of the Hohenberg-Kohn theorem so that it holds in the phase- —(r r N e
space of two particle®r n particles. Thus the potential, and Pwherex—(r, ;) andV(x,x) is given by Eq.(10). For a
hence the energy, is a unique functional of the density,
that we can write for the energy of the electron gas,

1
—t f d®x’V(x,x")n(x")
ri—rjl

(13

1 N 1 }
|ri_Rn| |rj_Rn|,

S(c);iven density, the energy is evaluated in the usual manner,

E[n(x)]=T[n(x)]+U[n(x)], 11 E[n(x)]sz[n(x)]Jrf dSxV(x)n(x)+J[n(x)]
where the various terms are assigned their familiar meaning
from ordinary DFT, but must be interpreted as quantities in +Exdn(X)]. (14

an appropriate phase space. For examplenfe® the term
U[n(x)] contains all electrostatic interactions among and be-
tween particles in six-dimensional space, as well as thei/nere
interaction with the nuclei.

This generalization of the Hohenberg-Kohn theorem is a
str_a!ghtforwarq consequence of the_ obs_ervatyon that the Ts[n(X)]=E fd(sX‘I'T(X)Vx‘Iﬁ(X), (15)
original proof is not dependent on dimensionality. In other [
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represents the kinetic energy functional of a noninteractinghermore, applied to a Slater determinant, this means that
gas, eachn-order determinant can be associated with the coordi-
1 nates of a given set of particles distributed over all possible
In(x)]= _j dsxj Ao nIN(XWV(x,x'), (16) comblqatlons oN states' for the.nomnterac'u'ng system takgn
2 n at a time. This is consistent with the partition of the Hamil-
tonian into distinct sets of particles while preserving the

andE, n(x)] contains the difference between the exact ki- X . .
symmetry of the wave function required by the exclusion

netic energyT[n(x)] and that represented Bl n(x)], as

well as the difference between the exact interparticle interP"inciple. , _ N
action and its “classical” approximatidf and is given by Now;, allow the interaction between particlesthin each
the expression unit to set in which results in an external potential acting on

the particles described by the Hamiltonian of E6). The
B 5 5 various determinantal states now evolve under the action of
Exc[”(x)]_T[”(x)]_Ts[“(x)]+f d le d°xaV(Xy,%2) this potential resulting in a system which is “partially” in-
teracting in the context of ordinary particles but striatign-

X[N(xg,%z) = N(X1)N(Xz) ]- (17 interactingin terms ofn-particle units. However, the wave

Now, the single-particle Schdinger equation yielding the function written in terms of the finah-particle states, and
solutions¥(x) takes the form, corresponding to a noninteracting system in hyperspace,
leads to a density in that space which is by construction
[—V§+V(x)+MXC(x)]\If|(x):El\Ifl(x), (18 noninteractingv representable in hyperspace. Furthermore,

this wave function is fully antisymmetric with respect to the
coordinates of individuafthree-dimensionalparticles.

This discussion has also revealed the extent of the sum-
SE N matio_n 0\_/erl in EqQ. (12)_. This i_ndex runs over all poss?ble
LX) = Xtk - (19 combinations of fully interactingn-particle states which

on(x) evolve out of combinations of the states of BAparticle
system considered at a time.

where theexchange-correlatiopotential is given by the ex-
pression,

Up to this point, the KS scheme is formally identical to that
originally proposed for the case of three-dimensional sys-
tems. Most importantly, the wave functiofsrbitalg ¥, (x)
are to be interpreted only as an “aid to the calculation,” their
function being to reproduce the density by means of Eq. It may be useful to illustrate some of the previous discus-
(12). sion through a simple example. Even though we are inter-

The proper implementation of the variatonal principle toested specifically in the case of solid materials, describing a
the energy functional of Ed11) is carried out by restricting system with a small number of electrons within a two-
the set of trial densities to those which areepresentable, particle formalism can reveal a number of important features.
i.e., to densities for which a corresponding local externallt illustrates the structure of the two-particle states, shows
potential can be found for the interacting Hamiltonian. Thehow the two-particle density is to be evaluated, how the
assumption that underlies the derivation of the KS scheme isingle-particle density can be obtained from it, and how it is
that each of these-representable densities can also be reppossible for a spin-compensated system to construct a fully
resented by a noninteracting Hamiltonian which leads to theintisymmetrized wave function from the knowledge of only
single-particle Schidinger equation of the form of E¢18). product states.
Such densities are said to be interacting as well as noninter- Beryllium has four electrons and its ground-state configu-
actingv representable. For ordinary particles the assumptiomation is 15222, Let xn,(m) denote that particlen is in
is justified when the ground state is nondegenerateyt  state|nlo), characterized by principal quantum orbital
even for degenerate ground states a rigorous extension of tlggiantum numbelr, and spino. Labeling the electrons 1, 2, 3,
Kohn-Sham theorem can be formulated. This is done by asand 4, we can construct a wave function for the entire non-
suming forms for the kinetic energy functional which include interacting system by antisymmetrizing the product
a fully antisymmetric wave function rather than the productys;(1)x1s;(2)x2s1(3)x2s(4) With respect to particle indi-
states used for Eq15). In order to generalize the formalism ces, which leads to a single Slater determinant. This deter-
to n-particle states and construct the kinetic energy funciminantal wave function has 4124 terms, each consisting of
tional in n-particle space, one therefore has to ascertain thagtroducts of single-particle states.
the proper symmetry of the wave function with respect to Now, it follows from Laplace’s theoreffi on the expan-
individual particlesis retained when the system wave func- sion of determinants that the expanded form of the determi-
tion is written in terms of-particle states. In the remainder nant can be rearranged in terms of a sum of products of
of this section, we will outline how this can be done. determinants of orden and 4-n, n<4. Furthermore, in

We begin by noting that any noninteracting state in con-each such product, particle indices can be made to appear in
ventional three-dimensional space can be constructed fromthe same order, e.g., 1, 2, 3, 4, but with each particle index
linear combination of Slater determinants. Using Laplace'sassociated with all possible states. Clearly each product that
theorem® the expanded form of a determinant of ordér enters the construction of the overall wave function is con-
can be expressed as the sum of products of determinants sistent with the Pauli principle. Choosimng=2, and denoting
lower orders,n;, such that ineachproduct=;n;=N. Fur- by the symbola;(1)a,(2) - - a,(n)| a determinantal wave

B. A simple example: the Be atom
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function of n particles, we can express the wave function foreral, subscribe to a description in terms of single-particle

the ground state of the Be atom in the form, states, but then there is no reason that they should. Finally,
these states can be used to construct the system wave func-
W= x151(1) x15(2) X251 (3) X 25/ (4)] tion through their combination into a sum of products which

in the zero interaction limit passes over into E20).

= X151(1) x15,(2)]| X251 (3) X 25 (4)] It follows from the last expression for the two-particle

—x1s1 (D) x251 (2] x15(3) X25 (4)] density that the single-particle density can be obtained by
first summing ovefintegrating out one of the state indices
+ X151 (1) X251 ()] X215 (3) X251 (4) ] that characterize a two-particle state in the noninteracting

limit, and integrating over the coordinates of one of the par-

~ X251 (D xas (2l [ X151 (3) xzs (4] ticles. When this procedure is applied to the Green function,

+{x1s, (1) X251 (2) || X151 (3) X251 (4)] it leads to the down-folding process discussed in the section
on numerical results.
+1x2s1 (D x2s) (D X251 (B x5 (D] (20 It is also interesting to note that a fully antisymmetrized

. . . wave function for the system can be obtained from a simple
The various determinantal wave functions shown here ca roduct ofn-particle states. To accomplish this, we form a
be orthc_)nor:mahzetlj and are complete in their reSpeCt'V%roduct of states which in the noninteracting limit reduces to
sp?\lces in the usq;al S(Ense. hat the sindl icle densi a product entering a single determinant, and antisymmetrize
ow, It is easlly shown that the single-particle density ., respect to particle coordinates which are takerinto

obtained from integrating out of the modulus of the total oy, jegpin |n fact, one can begin with a simple product, such
wave function the coordinates of three of the particles has thg ¢ involving the states appearing in the first term on the
form of Eq.(12) asasum of moduli of S|ng|e.-part|c|e states. expansion of the wave function given above, and antisym-
It IS thljal.ly easﬂy shown fthr?t the dtv;/o—pa;rtlr(]:Ie density Ob'metrize with respect to particle coordinates, provided these
tained by integrating out of the modulus of the system wavey s, jnciyde the spin. Because of this feature, it is only nec-
function the coordinates of two of the particles has a S|m|Iaressary to consider product states in coordinate space, which
form, is the basis for developing the formalism of two-particle

scattering theory in subsequent sections.
N0 = x1s1 (1) X151 (2) ]2+ | X151 (1) X261 (2)]2 g theory g

+ X151 (D) x2s, ()12 + [ x1s) (1) x251 ()] C. The LDA in phase space

+ X151 (D) x2s) (2)] 2+ [ X251 (1) x5, ()%, (2D) We have seen that the Hamiltonian of a fully interacting
N-particle systemwith N—<) can be written in the forms

in which various simplifications through a collection of ¢ Egs. (6)—(10), with the ground-state energy given by Eq.
terms that contribute equally to the final result is evident. 14 ’

This expression is indeed a sum over two-particle states, | these expresions, the exchange and correlation part,
Wlth.each suc.h state consisting of all possible pairs 'of |nd|cefE JIn(x)], can be evaluated numerically for a homogeneous
of single-particle states that entered the construction of thgystem of interacting particles in hyperspace and then used in

original wave function. Also, we note in this expression thethe LDA sense in terms of the local densify(x). Although
presence only of states that are consistent with the exclusi explicit reference to spin is made here .the functions

principle for the entire system. Furthermore, the states enterq,l(x) are extensions of the familiar Kohn-Sham spin func-

ing the expression for the density can indeed be ordered i . he effecti inale-particl
terms of increasing energy, with the possibility of degen-Hons and satisfy the effective single-particle &),

eracy associating different states with the same level. These _wv2_ _ _
states, such agiq, (1)xzs(2) and x1,(2)x2s, (1), would [=Vim VOO =00 =BT (), (22)
be distinguished by the distribution of their other quantumyhere the exchange-correlation potential is given by the
numbers, such as those of angular momentum or spin.  ysual relation of DFT, E(19),

The expression for the density in terms of two-particle
states, Eq(12), must be interpreted in the light of the last SE,[n]
expression. It consists of a sum of the moduli of two-particle Mexc= SN
states (1 particle in general which yields the exact two-
particle (1-particle density of the ground state of the system | terms of these functions, the single-particle Green func-
(which is still noninteracting Which states are to be used is tjon in hyperspace takes the form
to be decided by the exchange-correlation potential function
leading to them. For example, in the case of the Be atom W* ()W, (x')
with zero interaction, that function would incorporate the G(x,x';E)=E ! !
proper conditions imposed by the Pauli principle so that the !
only functions that would derive from it are those in the last . . — . .
expression. In the more general case of nonvanishing corrs© th{;\t consistent with the usual definition of a single-particle
lation, the exact potential function of DFT will yield only density we have
those solutions which have the property of reproducing the
energy of the system, avoiding nonphysical solutions that do n(x)=2 1P (x)|2, (25)
not satisfy the Pauli principle. These states will not, in gen- [

(23

TEE 29
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wherel denotes a set of single-particle states in two-particlénteractions. For the sake of simplicity, and also because in
phase space, as described in the previous section. We ndtee case of solids we are only interested in the construction
that the density can also be obtained in terms of the imagief the density rather than the wave functions, we develop the
nary part of the appropriate Green functi@dd(x,x’;E), in ~ formalism in terms of product states rather than determinan-
the form, tal states. This makes the formal aspects of the development
considerably clearer without affecting its viabilty. Fully an-
tisymmetrized two-particléor n-particle) states can be used

if necessary. On the other hand, only product states can be
employed provided that the exchange-correlation functional

The single-particle density is now obtained by means of thes constructed to include the effects of symmetry among all
relation, particles in the system.

1
n(x)=— f dEIMG(x,x;E). (26)

o

n(r)= f d3'n(r,r’) D. The structure of hyperspace

L " We consider a three-dimensional single-particle sflace
_ _f dSrIJEF dE IMG(r,r":r,r":E), (27) deflneq by a set QN points and position®&,,. The corre-

T sponding two-particle space, also to be referred to as corre-
@) . i _lated space or hyperspace, consistdNéfpoints and posi-
whereEg™ is the highest energy of an occupied two-particle g Ry=(R,,R.). In the case of a three-dimensional

state. _ _ _ o periodic lattice generated by the primitive vectors
As_, in its ordinary th_ree-_dlmen5|onal apphc_atlons, 2LDA ., &, a, the two-particle space is generated by the six
consists of the determination of the two-particle levels of aprimitive vectorsa,, @, as, a, as, a, where the vec-

system and the subsequent determination of the density Qy ¢ a,, a, a, are orthogonal to the set;, as, ag, al-

occupying the states lowest in energy. In this procedure, thg,,qh the two sets are identical within each subspace. Now,
prevailing statistics can be taken explicitly into account by, o have

occupying the states lowest in energy according to the pres-
ence or absence of the exclusion principle. 6
An application of the LDA would require the knowledge Ry=2> Nia. (28
of E,Jn(x)], and consequently of,., for interacting but =1
otherwise uniformly distributed electrons as a function of the\yie confine our discussion to the periodic case.
pair density. In principle, this quantity must be obtained \yve consider systems in which the single-particle poten-

through numerical studies of the six-dimensional uniform,iia v/(r), is a sum of contributions from nonoverlapping cell
interacting gagjellium). It is to be noted that this procedure potentials

is not equivalent to a six-dimensional treatment of three-

dimensional jellium. Such a treatment would result in a non-

uniform density because of the presence of the interparticle V(=2 V(r—=Ry), (29)
potential between the members of a pair, whereas application "

of the LDA requires the treatment of system that is uniformcentered at the lattice siteR,,. Because of translational
in six-dimensional phase space. Such a system can be ofymmetry, we have/(r +R,)=V(r). These cell potentials

tained by zeroing the intrapair interaction and consideringyive rise to a potential in two-particle space which has the
six-dimensional particles interacting by means of the potenform,

tial V(x,x"). We refer to applications of DFT and LDA to
n-particle states andDFT andnLDA, respectively.

Furthermore, the exchange-correlation functional must be U(X):; V(X=Ry),
constructed so as to account in principle for the effects of
symmtery that are not taken into account within theassociated with cells in two-particle space. The cell potential,
n-particle states. For example, if determinantal wave funcV(X—Ry), is given by Eq(9), so that for the cell in hyper-
tions are used, them,, must contain the effects of symmetry space corresponding to the single-particle cells at
acrossn-particle units. On the other hand, simple productRn=(R,,Ry), we have
states can be used in which case the exchange-correlation
potential must describe the effects of interchanging the coor-  V(X=Rn)=V(r1) +V(rz) +U[[r1+Ry— (ro+ R ],
dinates of any two particles. Thus, the exchange-correlation (31)

functional guarantees that the Kohn-Sham equations yiel(here the periodicity of the single-particle potentials has
only those solutions which enter the construction of thepeen used. It follows from this expression that the potential
ground-state density. in hyperspace is periodic only whéh=0. In the presence of

This completes the description of the LDA in the phaseine jnteraction, the potential retains only a partial periodicity
space of two particles for the systems under consideratiogf the form,

here. We now turn our attention to the solution of the

“single-particle” effective Schrdinger equation given by V(x—RN)=V(x), (32
Eq. (22), using the formalism of multiple scattering theory

(MST). The first step in that direction is the characterizationwhereRmz(RN ,Rn)- Thus, in the presence of the Coulomb
of the geometry of hyperspace in the presence of interparticlanteraction, the potential is partitioned into a collectionN\bf

(30
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three-dimensional periodic potentials associated with each VN N
interlattice distance and having the form, T =Vm5MN+VmGo; T (39)

V() =V(r)+V(ry)+U(Iri—r,—Ry)). (33  Inorder to expresg MN in terms of thet matrices associated

. . . . o . with individual cells we write this equation in the form,
Clearly, this potential contains the interparticle interaction q

between two particles located inside two cells separated by a

vector distanc&,, apart. Therefore, because of the form that TMN V), GoTMN=V Sun+omGo 2 7PN (39
the potential takes, the hyperspace separates naturalliNinto P#M

“parallel” three-dimensional surfaces, each characterized byrpjs, in turn, can be written asvith integral signs restored
the cell potential given in the last expression. This construc-

tion is quite analogous to that encountered in the treatment of

layered materials, such as surfaces and interfaces of three- TMN(X,X')ZtM(X,X')5MN+f d®xt™(x,x1)
dimensional systems, which often are characterized by par-

allel layers inside each of which the potential is periodic in 6 PN ,

two dimensions. The treatment of the present six- XJ d XZGO(Xl'XZ)PZM T (%2, x'),
dimensional structure within MST can be effected by a direct

extension of methods derived for the treatment of layered (40)

materials in three dimensions. wheretM=V,+VG,tV is thet matrix for potential in cell

Ry - This can be verified by operating on both sides of Eq.
lIl. MULTIPLE-SCATTERING THEORY (40) with 1—V,Go.

The cell structure of the potential in hyperspace is well. The canonical development of MST now proceeds via the

suited for treatment within the framework of MST. Since thelntrqduction of the angular momentum representgtiqn in two-
basic formalism of the theory remains the same in any di-pz.irtICIe [phase space. In correlated space, this is accom-
mensionality, we quote only those results that are relevant t lished n the_same way as in three-c!|men3|onfal space with
our immediate discussion, and refer the reader to th € o_bV|ous difference that in performing a parUaI-vyave ex
literaturé2-24for more details. pansion the'angular momentum states corresponding to the
dimensionality of the space are to be used. A summary of
some basic relations of hyperspherical harmonics— the gen-
A. Basic elements of MST eralizations of three-dimensional spherical harmonics to
We seek a determination of the single-particle Greerhigher-dimensional spaces— is given in the Appendix, while
function in two-particle phase space characterized by the pc full exposition can be found in the book by AvétyAs is
tential of Eq.(31). The corresponding Lippmann-Schwinger shown there, the spherical harmonidg,, along with the
equation takes the form spherical Besse],, Neumannn, and Hankelh*, h~, func-
tions have immediate generalizations to higher-dimensional
spaces. For the sake of easy reference, we use the same sym-
G(x,x")= Go(X,X')Jrj dX"Go(X,X")V(X)G(X",X"). bols as commonly employed in denoting these functions, but
(34)  use the capital Greek lettér instead ofL, and\ instead of

| to denote angular momentum indices in hyperspace. We
It is easy to verify that solutions to this equation are alsog|so define the combinations

solutions of the corresponding Schioger equation for the

Green funcion. Iteration of Eq34) yields the expression JA)=1()YAX), NA(X)=n,(X)YA(X),
G(x,x’)=G0(x,x’)+j dsxlf d®%,Go(X,X;) HX(X)=hy(X)YA(X), (41)
, which are the regularJ) and irregular solutions of the
XT(X1,%2) GolX2,X"), (39 free-particle Schidinger equation(Helmholtz equatioh in
where theT matrix is given by hyperspace. _ _
We also need the expansion of the free-particle propaga-
T(Xq 1 %0) = V(X1) 8(X1— Xp) tor in phase space in terms of the hyperspherical functions

defined in the last expressions. It can be shown that when

6 x<x', we have
+V(x1) | d°%3Go(X1,X3)T(X3,Xz). (36)

In the case in which the potential is given as a sum of cell Go(x—x")= _'sz: JAOOHA(X"), (42)
contributions, thel matrix can be written in the form
with H=H" and E=k?. The condition placed on the mag-
, , nitudes of the vectors in this expansion is crucial because its
Txx ):% TN (xX"), (37 failure can result in serious divergences of the sum aver
Consistent with this restriction, it can also be shown that
where(suppressing the arguments and the integrals whenx andx’ are confined inside nonoverlapping spheres
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(the so-called muffin-tin conditionwhose centers are sepa-

rated by a vectoRy, we can write G(X,X':E)=; > ZNOT(E)ZY (X))
A/
Go(x—X'+Ry) =2 AE IA0GAA(RN)IA(X). -3 Z0SH ) B 47)
(43

Here, the functioniﬁ(x) are those regular solutions of the
%chr"ajinger equation for the potential in ceédl which out-
side a sphere bounding this potential joins smoothly onto the

In applications to three-dimensional systems based on a p

riodic lattice, the quantitiesG, ,/(Ry) are commonly re-

ferred to as the real-space structure constants of the latticg. ~ . M—1 ) N

Their lattice Fourier transforms are the well-known finction Zardy OOt A_’A_'_kHA(X)' The fl_JnctlonsS_A(x)_ _

Korringa-Kohn-Rostoker structure constants of electronicd® the corresponding irregular solutions which join

structure calculations. Explicit expressions for the structuréMeOthly ontoJ,(x). From the Green function, the spatial

constants are given in the Appendix. particle density in the space and the density of states follow
At this point it is necessary to comment on the applica-PY means of well-known expressions, Eg6).

bility of angular momentum expansions @f when its spa- _ _

tial arguments arenot confined inside nonoverlapping B. The scattering-path operator in hyperspace

spheres. For example, in the case of adjoining, space-filling The structure of two-particle space described above leads
cells, the expansion in E¢43) may diverge for some values jmmediately to the form of the scattering-path operator. The
of the cell vectorsc andx’. This apparent difficulty in ap-  equation of motion, Eq(45), for the entire space separates
plying MST to non-muffin-tin geometries can be effectively jno parts associated with the three-dimensional subspaces
circumvented"*through the replacement of divergent Sums characterized by a particular value of the potential. Each site
with conditionally convergent double sums. The final expresin sych a subspace is associated with-matrix t" corre-
sions so obtained afermally identical in most cases to the gnhonding to an interparticle interactioty(r;—r,+R,).
corresponding muffin tin results, with care taken to achievegjnce such a subspace is generated by the translations

convergence of the angular momentum expansions. In a R,,R,), the corresponding part & can be Fourier trans-
cases, MST allows a complete separation of the structure gf,med to yield the formal expression

a system from its potential, and leads to matrix equations in

angular momentum space. Because of these properties and TO(q)=[[t"T"*-G(q]~ %, (48)

for ease of presentation, we will assume that the muffin-tin - - -

expansions are applicable to all geometries and proceed M{hereG(a) is the Fourier transform of the six-dimensional
the knowledge that rigorous final expansions can be obtainegfructure constants over the three-dimensional space gener-

through appropriately defined summation procedéfes. ated by all vectors of the formR,,Ry), and an underbar
We now pass over to the angular momentum representdlenotes a matrix in angular momentum indices in hyper-
tion. We define the scattering-path operatﬁ/f;'\')", by space. Now, the equation of motion takes the form,
nm —7(n) nk kn
Z\T\M:f dGXf d®x’ 3, (Xp) TN X)) Iy (X! ), [7]"™(a)=T""(q) 5mn"‘|§m G™()[7T*(a)|. (49
(44)

In this mixed direct-reciprocal space representation, each site
wherexy, =x— Ry is a vector confined inside the cellRf, . R, of a three-dimensional lattice is associated withnaatrix
Using the expansion of the free-particle propagator in EqZ{"(q). The resulting structure is reminiscent of the struc-
(43), we obtain the followingequation of motionfor the  ture of the scattering-path operator arising in the study of
scattering-path operatS‘?‘,TA’\A”\,", layered systenfs where each site of a “linear” lattice per-
pendicular to the layered structure is associated withtthe
matrix representing a “plane” in the material passing
Sandunt 2 2 GV | (45 through that point.
P#M a7 . :
The last form of the equation of motion can be solved
Considered as a matrix in a combined site and angular mdgither by direct inversion in real space, or through an adap-
mentum representation, the scattering-path operator may ttion of more elaborate but more rigorous techniditiés

NM_ .M
Tyn =tA

written as miliar from the study of layered systems. Direct inversion
may be facilitated through the use of the so-called screened
TV =[t(1-ctH VN, =[t"t-cI\\, . (46)  structure constart$ which will have to be set up in the

hyperspace of two particles. Or, screening effects may result

In systems with translational symmetry, the equation of mo4n the reduction of the system to a single cluster of “impu-
tion can be solved by means of lattice Fourier transformsity” sites embedded in a translationally invariant effective
leading to well-known expressions for the electronic bandmedium. This system can be solved rigorously using well-
structure of a materigf known method$® Once the scattering-path operator has

Once the scattering path operator has been determinedeen determined within an adequate approximation, the
the Green function follows. For vectossand x’ confined  Green function is obtained from E@7). Related quantities,
inside no other cells than those centeredrRgtand Ry, in such as the charge density now follow from the usual expres-
two-particle space, the Green function takes the feATA: sions.
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C. Energy integrals and charge self-consistency Iy

An application of the formalism presented above hinges
crucially on the performance of energy integrations in deter-
mining such quantities as the density and the total energy.
Such energy integrals extend to the maximum energy of oc- 2¢€i + U
cupied pair states, a level which we will denote BS’. !

However, given that two-particle space-particle spackis
not periodic, the method for the determination of the Fermi el e, AT —]

i i - i i i i %5 o | site (i)
level for pairs or higher-order particles is not immediately ME he
apparent. It is to be kept in mind that the normalization to be . ‘S)guare

used in determining the “Fermi level” fon tuples of states
is that given in terms of combinations of states described
previously.

To determineE®), we exploit the analogy of the two-
particle space to that of a cluster of impurities embedded in a
host material mentioned above. As in that case, the Fermi
level is determined on the basis of the unperturbed system, fiG. 1. A square lattice representing the correlated space of a
each cell of which in the present case is characterized by thgear chain. Sitesi(i) along the main diagonal correspond to two
two-particle effective potentiafand charge densitycorre-  particles on the line occupying the same site and characterized by a
sponding to the members of the pair being sufficiently farpair energy 2;+ U, as described in the text. Off the main diagonal,
apart that the pair potential has reached its asymptotic valuaite (i,j) corresponds to two particles on different sites on the line,
The Fermi level is determined as that energy for which arand is characterized by an energy- ¢; .
integral over the density of pair states gives the total number
of combinations of states consistent with the number of parfor a periodic linear chain given by the expression
ticles needed to balance the nuclear charge.

Charge self-consistency in two-particle space can be
achieved through iterative methods such as used in the cor-
responding case of single-particle electronic structure calcu-
lations. At each iteration, the two-particle Green functionHere, n; ,=af ,a; , is the number operator for a particle
yields a(two-particle charge density, a potential, and a total with spino on sitei, ando a state of spin opposite . The
energy. The iterations terminate when the charge densitinteractionU denotes the Coulomb repulsion of two elec-
and/or the potential reach preassigned levels of convergencgons of opposite spin on the same site, and is taken to be site

This approach allows the study of essentially all proper-diagonal. More general spatial dependencies of the Coulomb
ties commonly treated within band-theoretical methods, sucinteraction can be taken into account without undue effort.
as structural stability, phase stability, transport, and othersThe correlated space corresponding to the Hamiltonian of the
while taking direct account of the interparticle interaction last expression is associated with a Hamiltonian of the form,
within the calculation of the electronic structure. Further
work, currently in progress, is aimed at understanding in Hij.ia=[Hii +Hj;16i 05 + [Hik(1— 6ik) 6
more detail the correspondence between two-particle spectra
and observable properties of materials. +H;i(1=8) 6l

Y

site i on the line

1
H=2> EiaiTai+§ > Wi;+2 uni.ni,. (50
i i57i i

+U Sjji - (51

IV. NUMERICAL ILLUSTRATION . . . . .
In this two-particle Hamiltonian the Coulomb repulsion ap-

The full implementation of the formalism described abovepears along the main diagonal of the spaeej=k=1. This
within ab initio methods is certainly an arduous computa-Hamiltonian is used with a periodic linear ring of four sites a
tional task. Certain elements of the formalism, however, canlistancea apart, characterized by the values- 0, and hop-
be implemented with relative ease and serve to illustrate thping, H;;=t=1.0, fori andj nearest neighbors and zero
basis elements of the method. otherwise. The correlated space of this four-site ring is a

In this section, we illustrate some of the formal aspectsl6-site toroidal surface, with nearest-neighbor hopping.
introduced in previous sections by the results of numerical It is useful to illustrate the geometry of two-particle space
calculations. These calculations are carried out in connectiofor the case of the infinite periodic line, as shown in Fig. 1.
with a model system consisting of four sites on a linear ring.Each point(lattice sit¢ on the infinite square lattice corre-
We choose the total spin of the system to be equal to zergponds to a particular configuration of two particles on the
and we consider the case of two and four electidosning  line, with the matrix elements of the Hamiltonian being
two pairs each of which has zero spitWe calculate the given by the last expression, E1). Thus, a point on the
exact two- and four-particle Green functions under the conmain diagonal, such as that indexed i) ( wherei is a site
straint of vanishing total spin and from this we obtain theon the line, corresponds to two particles of opposite spin
exact single-particle Green function. In the case of four parfound on that site. For such site on the square the matrix
ticles, this Green function is compared to results of approxielements of the Hamiltonian are given by
mate procedures obtained within a two-particle formalism.

We consider a single-band, Hubbard model Hamiltonian Hii i=2¢+U. (52
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FIG. 2. Single-particle DOS's for a periodic ring of four sites 4 6 4 -2 0 2 4 6 8
with U=0.0 (solid line), compared with corresponding results ob- E
tained from down folding the two-particle Green functi@ashed FIG. 3. Two-(solid line) and four-particle(dashed ling DOS's

line) and the four-particle Green functiqdotted line. for a periodic ring of four sites withJ =0.0.

Sites with indicesj, i #j, correspond to two particles found tions of four particles with total spin zero arranged on four
on two different sites on the line with a Corresponding matl’iXSiteS, and with each site having e|ght nearest neig}'mrs.
element of nectivity of 8. Neglecting the Pauli principle and seting
U=0, the sitesjjkl, of the four dimensional torus are as-
Hijij=2[ €+ ] (53 signed an energy ofi + €+ e,+ ¢, . All curves in this figure
The remaining, off-diagonal Hamiltonian matrix elements ondiSplay the same structure inside the band, but the down-
the square are equal tofor near-neighbor sites and zero fo!ded curves are dlsplace_d with respect to the res_ults ob-
otherwise. tained dirtectly from the single-particle Green function by
The following figures show one- two- and four-particle f[he average energy of the additional particles. As discussed

spectra for a uniform finite ring of four sites described by ain the text, this energy equalst22.0 and 6=6.0 for the
Hubbard Hamiltonian, and illustrate a number of points oftWO-particle and four-particle results, respectively.

the formalism presented in the text. The spectra are shown at Figure 3 shows twotsolid line) and four-particlgdashed
complex energies with an imaginary partEm t/4, which line) DOS corresponding to two and four particles occupying

allows thes-function like spectra to be displayed for graphi- thé same site on the ringve continue to ignore the Pauli
cal purposes. principle). The important feature to notice here is the pro-

The single-particle density of statéBOS) for the peri- gre;sive in_creas_e in pandwidth with an increasing number of
odic four-site ring, defined by the expression, partlcles(d|men3|qngllty.of spaQe This is the result of the
greater connnectivity, increasing the number of nearest
1 neighbors, in the higher-dimensional space.
n(E)=——ImG;;(E), (54 We now present results in which the Pauli principle is
m taken fully into account, and the interparticle interaction is
and forU=0 is shown by the solid line in Fig. 2. The figure gradually increased in value. To take account of the Pauli
also shows the corresponding DOS obtained from the singleprinciple within the present model, we assign a very ldige
particle Green function obtained the two-particle Green funcprinciple infinite energy to any configuration of the system
tion, (dashed ling and to the four-particle Green function corresponding to two particles of the same spin occupying
(dotted ling. In each case, single-particle quantities are obthe same site on the ring. Two-particle DOS corresponding
tained by integrating out the coordinates of all other parto two particles of opposite spin on the same site of the ring
ticles. We will refer to this process atown folding For ~ and on near-neighbor sites are shown, respectively, by the
example, given a two-particle Green function, we have solid and the dashed lines in the three panels of Fig. 4, the
panels containing the results fod=0.1 upper panel,
1 U=1.0, middle panel, and foJ=10.0, lower panel. We
N% Giksjt - (55 note that these spectra contain an impuritylike resonant state
at energiesE=U, in agreement with the interpretation of
An illustration of this reduction procedure in a special caseinterparticle interactions appearing as external potentials in
can be obtained by reconsidering the case of the Be atomppropriately defined higher-dimensional spaces. This state
discussed above. It is easy to see that in order to obtain the clearly illustrated in the case & =10.0, where it falls
contribution to the single-particle density of a given state outside the band. Note also, that the four-particle spectrum
from a two-particle density, one sums over all two-particlecontains a resonance &t 2U corresponding to two-particle
states corresponding, in the noninteracting limit to one parpairs on two different sites. The complete four-particle spec-
ticle being in statex. trum is shown in Fig. 5 for the cadé=10.0, corresponding
The four-particle calculation is carried out on a four-to two pairs of particles of zero spin. Note that in all cases,
dimensional space formed by the combination of two two-particularly in that of lowd, the band narrows in hyperspace
dimensional spaces. This results in a four-dimensional cubiwhich is caused by the Pauli principle. In the present case,
structure with 256 sites, reflecting the number of configurathe Pauli principle is taken fully into account by assigning an

Gij:



56 TREATMENT OF ELECTRON-ELECTRON CORRELATIONS ... 9345

08— 0.6
051
0.6
04
2 04 2 037
02 r
02 |
0.1
0 L ) L N N N L L . 0 ngunzi L e ) )
4 2 0 2 4 6 8 10 12 14 4 2 0 2 4 6 8 10 12 14
E E
0.8 . . . . .
FIG. 6. Single-particle spectra for a ring with four sites. The
solid line is the spectrum for noninteracting particles, while the
0.6 1 il dashed line is the single-particle spectrum obtained from down
folding the two-particle Green function, and the dotted line the
@ o4l ; i four-particle Green function fod =0.1.
= it
“infinite” energy of 10° to every site in hyperspace which
02 ¢ corresponds to a forbidden configuration, thus removing
A Y. such sites from the system. It is this effect which reduces
S —— e connectivity and the associated bandwidth.
420 2 4E6 8 10 12 14 The following three figures show single-particle spectra
for the three values of the on-site interaction stated above,
08— and with the Pauli principle taken fully into account. Figure
6 shows a comparison of the noninteracting single-particle
0.6 | i spectrum(solid line) for a particle on the ring and the corre-
A sponding results fot) =0.1 obtained from down-folding the
2 o4l two-particle Green functiondashed ling and the four-
- particle Green functioridotted ling. In the procedure used
P here, the single-particle spectrum is shifted by the average
0.z r I energy of the particles whose coordinates are integrated
(summedl in the down-folding process. The various curves
0 SIS N . in the figures have been shifted by the average energies of
4 -2 0 2 4 6 8 1012 14 particles in order for the centers of the bands to coincide. For
E this small value olJ, the main difference between the spec-

tra is a narrowing of the band in the spectrum obtained from

FIG. 4. Two-particle DOS for on-site occupantashed ling  the four-particle Green function produced by the removal of
and near-neighbor occupancgolid line) for a ring of four sites forbidded configurations in four-particle space. Note that no
with U=0.1, upper panelJ=1.0, middle panel, andJ=10.0, narrowing is indicated in the spectrum obtained from the
lower panel. Even for the strong-interaction cabks10.0, the two-particles Green function because that Green function de-
near-neighbor spectra resemble closely those of the noninteractigstribes two particles of opposite spin and hence is not af-

case(solid line in previous figure fected by the Pauli principle.

Results analogous to those in Fig. 6 but for the cases

U=1.0 andU=10.0 are shown, respectively, in Figs. 7 and

0.3 : : : : 0.6
05 |
06 |
04 L
g o4} @ 03}
=] =
02|
02 |
01 |
0 | | | . o N
0 5 0 15 20 25 4 20 2 4 6 8 10 12 14
T E E

FIG. 5. Four-particle spectrum for two pairs of total zero spin  FIG. 7. Results analogous to those of the previous figure but for
occupying adjacent sites in a ring of four site with=10.0. U=1.0.
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0.6 ture, and to contrast the present method with existing ap-
05 | proaches, we show now the comparison between dzatt
’ lines) single-particle Green functions and spectra obtained by
04 down-folding the four-particle Green function for the four-
8 o3l site ring with those obtained by down-folding a two-particle
= Green function(dashed ling which is the average over the
021 i Green functions describing two-particle states in the pres-
i ence of an additional pair of particles on the ring, and the
0.1+ THN | results obtained within a version of tl@@W approximation
(dotted ling. Here, the single-particle self-energy,

4 -2 0 2 4 6 8 10 12 14
E

1 .

Eij(E)IllmE e"“”’Wij(w)Gij(E—w)dw, (56)

FIG. 8. Results analogous to those of the previous figure but for 70

U=10.0.
is given in terms of the exact single-particle Green function

8. We note in all cases the resonancelike state at values ahd the exact screened interaction which is determined in
the energy aproximately equal th. This is a remnant of the terms of the noninteracting, zero superscript, and exact two-
states in higher-dimensional spaces whose position is slightlgarticle Green functionsWi;.,(E) ={Gi(j°;)k|—1—(3ij W
altered in the down-folding process. The results corresponding td=0.1, U=1.0, andU=10.0

The next figure illustrates the role played by the density ofare exhibited in the upper, middle, and lower panels, respec-
particles in determining the single-particle spectrum of a systively, of Fig. 10.
tem of particles. Figure 9 shows the single-particle spectrum As is seen in these figures, the averaged results are in
obtained from down-folding the two-particle Green function considerably better agreement with the exact spectra than
for U=10.0 and for periodic rings of 4, 10, and 20 sites, asthose obtained in the present version of @& approxima-
indicated by the solid-line, dashed-line, and dotted-linetion, particularly for large values df. One also sees that the
curves, respectively. We note that the strentgh of the peak @lveraged results overestimate the gap in the stebfigit as
E=U decreases with increasing numbers of sites since thgyay be expected in a non-self-consistent procedure of this
likelihood of finding two particles on the same site decreaseg;ype_ Even forlU/t=1.0, a region in which th&W approxi-
with increasing volumedecreasing density Therefore, an  mation has been found to give accurate results for real sys-
application of the formalism to the study of interacting sys-tems, the averaging of the two-particle Green function in the
tems along the lines ofDFT andnLDA hinges crucially on  presence of a finite density resolves the band structure much
the presence of a ﬁnite-partide denSity and its treatment. more accurate|y than that approximation_ We note the reso-

Clearly, a full implementation of the LDA on the basis of nance atJ = 1.0 which is missed in th& W results, and that
two-particle states is not feasible at present. However, as Both approximate results are displaced somewhat with re-
precursor to such an application, we consider the results afpect to the exact ones. Much of this effect, along with the
applying a strictly two-particle formalism in the presence ofider gap in the strong) limit can be traced back to the
nonvanishing density. Thus, we average the Green functiongcomplete treatment of the Pauli principle, i.e., the neglect
corresponding to two-particle states in the presence of aryf configuration interactions between the configurations be-
other pair, but we neglect the interactions among the variougg averaged and in th& W approximation. Both of these
four-particle configurations. This leads to an approximateapproximations can be expected to improve with increased
two-particle Green function and a corresponding singlegimensionality and lattice connectivity. More detailed dis-

particle Green function which can be compared to exact valgyssions of these and other numerical results will be given in
ues and to the results of other approximation schemes. 3 future publication.

In order to illustrate further the role played by the two-

particle density in the determination of the electronic struc- V. DISCUSSION AND CONCLUSIONS

bd The formal framework presented in this paper introduces
a different approach in the study of interacting quantum sys-
tems. In this viewpoint, quantum systems are considered
from a higher-dimensional perspective corresponding to the
unified treatment of sets of two or more particles as a single
particle. The formal aspects of the ensuing treatment are of-
ten indistinguishable, apart from technical considerations,
from those used within a single-particle picture. The final
formal and computational results, however, can be of consid-

= — e S erable interest providing direct insights into issues, such as
420 2 4 6 8 1012 14 the effects of correlations, not easily resolved within a

E single-particle framework.

FIG. 9. Single-particle spectrum obtained from the two-particle = We can also give a more physical perspective of the
Green function witHJ = 10.0, for a ring of four sitesolid ling), 10 ~ method. A central aim of canonical many-body theory is the
sites(dashed ling and 20 sitegdotted ling. calculation of the single-particle self-energy, describing the

02|

n(E)
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0.3 mentation. First, at least formally, the method provides an
improved treatment of correlations in a many-particle system
in a unified manner. Thus it fills the long existing gap be-
tween many-body theory and the so-called band theory based
on an independent-particle picture. Like ordinary band
theory, the method can be applied to specific systems under
variable external conditions so that it can be used in the
study of materials behavior and materials properties. Thus,
properties such as structural stability, alloy phase stability,
i S and transport are well within its purview. In addition, the
4 2 0 2 4 6 8 10 12 14 method is based on a minimufaxtremal principle which
E can be used to guide an iterative procedure to convergence.
03— e This last feature is possibly the most distinct advantage of
) this method when compared to traditional many-body tech-
niques as applied to solids, such as the Hartree-Fock, the
random phase approximation, diagramatic summations, and
others. For example, none of these methods has been as yet
associated with the study of phase stability in alloys. Such a
study is feasible within the present formalism.
At the same time, as already mentioned, its numerical
implementation becomes considerably more difficult with in-
e T creasing size of the numbers of particles treated as a single
4 2 0 2 4 6 8 10 12 14 unit. It is evident that an application of the two-particle pic-
E ture, and by extension am-particle picture within DFT,
requires a significant computational effort as well as the es-
tablishment of new quantities, e.g., the exchange and corre-
lation functional in two-particle space, compared with three-
dimensional(single-particlg¢ applications of the theory. At
the same time, the method allows the analysis of experimen-
tal results just as current approaches. Specific details along
these lines are currently being developed such as, for ex-
ample, the determination of the two-particle spectrum of a
random substitutional alloy. It can only be hoped that con-
tinuing advances in computational power will make the use
of this method feasible in the not too distant future.
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characterized by increasingly correlated electron motion be-

comes less accurate. Similarly, in the treatment of semicon-  APPENDIX A: HYPERSPHERICAL HARMONICS
ductors and insulators, systems generally known to be char-

acterized by interparticle interactions of increased strengtfﬁ This appendix contains a number of basic notions about
compared to metals—where the LDA can be said to be fairly. -dimensional Euclidean space, leading to expressions which

. o r ful in th lution of the wav ion.
accurate—the application of the LDA can lead to quite inac-2'c USeM! the solution of the wave equatio

curate results in many cases. It is conceivable, that for sys- )

tems where the quasiparticle picture becomes less accurate, a 1. Introductory notions

treatment in terms of quasipairs may provide an improved A vectorr in n-dimensional spacen(spacg is defined by

description of the electronic states and properties of the sysy set of numbers,

tem. It is with this in mind that the present methodology is

developed. F=(X1,Xg,- -, Xp), (A1)
It is also relevant to compare this new methodology with

other approaches used in the study of interacting quantunwherex; is called the component ofalong theith direction.

systems, both conceptually as well as in terms of its impleThe length of a vector and the innédot) product of two

single-particle(or single quasiparticleexcitation spectrum
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vectors inn space are defined as a natural generalization of n
the corresponding concepts in three space. Thus, we have A?= —2 Aﬁ- , (A9)
i>]
rz:z X2 (A2)  where
I
for the length, and A= J J A10
) i =X 5_)(1 Xj 07—)(' ( )
r-rpy= 2 XYi =" 11 2C0S0p) , (A3)  The hyperspherical harmonics are deffftexs the eigenfunc-
i tions of A2,
for the dot product of two vectors; = (X4,X»,- - +,X,) and A2Y,(Q)=A(A+n—2)Y,(Q), (A11)

r,=(y1,¥2,---,¥Yn). The last expression also defines the
angle between two vectors. In particular, for two unit vec-which is analogous to the relation,
tors, Fl and Fz, we have

L2,/ m(Q)=/(/+1)Y n(Q), (A12)

Coxm=ra-la- Ad) catisfied by the ordinary, three-dimensional, spherical har-

A vector of lengthr in n-dimensional space is character- MoNics. The subscripk is a combined index, analogous to

ized by a set of angle®), », 6, s,---,01, ¢, which are f[he_ indexL=(/,m) in three dimensions. It_denqtes a set of
defined by the relationships, indices,A=(\,uq,M2," ), also usually written in the con-
densed notationA =(\,u«). The spherical harmonics form
X1=TrSing;Siné,- - - Sinf,,_ ,COSP, an orthonormal set on the unit sphere mrdimensional
space,

Xo,=1rSin#;Sinb,- - - Sinfd,,_,Sing,

QY Q)Y Q=f QY ()Y, (O
X3=TrSsin@;Sind,- - - coYs, Jd A (DY) A Yy (V)

= 5)\)\75

pp's

(A13)

wheres,, . implies M= M1, o= T , etc. The_ solid angle
elementd(} integrates to tha-dimensional solid angle,

I(O)=f szf sing] %sing3 3. ..
Xp_1=TrSsing,c0,, _
Xsing,d6,_,d0,_3---d6,d¢
27Tn/2

We note that the angle ), formed by two vectors im space - I'(n/2)’
can be expressed in terms of the angles each vector makes ) ) ]
with the nth axis, 6;, and the anglew(,_;) made by the whereT'(x) is theI" function. Forx integral,I'(x)=x!. In

Xn=rC0H;. (A5)
(A14)

projections of the vectors ontm{ 1) space, four-space, A=(\,u1,u2), where Osu;<\, and
— Mu1=us<uq, SO that the degeneracy associated with a
COSw, = COSPTCOH: + SiNdsindicosw 1)  (AB) given\ equals § +1)2%. An extensive discussion of the hy-

perspherical harmonics with many applications to quantum
Often, the subscriptr() indicating n-dimensional quantities physics is given by Aver§®
will be omitted, and used only to render emphasis to specific

results. . . ) ) 2. Gegenbauer polynomials and the addition theorem
The generalized Laplacian opera@fn)EA(n) is defined ) ) i
also in analogy with three-dimensional space, IQ rl—dlmensmnal space, the Gegenbauer polynomials,

C,(rq-15), are defined so that for any vectarsandr,

n 2

J

Amn=2, —. A7
() 21 ax? (A7) ! 1

i S = —
_ o [ra=ra™™2  (ry+1,—2r 1,080, " 272
The Laplacian operator can be written in the form,

oo (re\* o s
A é # 1 9 a A? A8 = rn,zgo (:) CX(ryrp),  (Al5)
= — — —_—— — >
(n) = (9X|2 rn_l arr or rzl ( )
wherer.. (r.) is the larger(smalle) of the lengths of the
where A? is the square of the generalized angular momenvectorsr, andr,. In three dimensions, this reduces to the
tum operator defined by the expression, familiar expansion in terms of Legendre polynomials,
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* / 4. Expansions in spherical functions
1 1 r— ~ -
r- PAryra). (A16) As in three space, a plane waverindimensions can be

expandetf in terms of Gegenbauer polynomials and hyper-
In general, the Gegenbauer polynomials are given by théPherical harmonics,

lri—r,) _:/:0

expressiorf> -
[1/2\] (_1)t[a (2?_?/)])\72t elkr:)\zoI}\(n+2)\_2)(n_4)”Jg(kr)cg(k\F)
CHr-r')= > At (AL7)
A &b tI(A—2t)! ' °
=(n—=2)111(0), i*jl(k Y (K)Yy (7).
where (n=2)11(0) 2 RN 2 ¥E,(R) YD)
1 (A26)
a=5N— 1 (A18)  Here, then-dimensional spherical Bessel function is defined
in terms of ordinary Bessel functions,
and
_ o D(@274,0(0 & (— 1)kt
()j=a(a+1)(a+2) - (a+j—1). (A19) Ih(X¥)= (n—2)1x" =& 20 (nT 2t =21
(A27)

In Eq. (A17), the symbol 3\ ] stands for the largest integer

smaller tham\ /2. It is easily checked that in three dimensions E426) re-
The n-dimensional Gegenbauer polynomials satisfy anduces to Bauer’s identity,

addition theorem which is exactly analogous to the corre-

sponding result in three space, . c N -
ek f=4w20 |/J/(kr)§n} Y5 (K)Y, m(F). (A28

CH(Ir-1)=2 K\YRL(Q)Y5,(Q), (A20)  The n-dimensional plane waves are solutions of the
g n-dimensional Helmholtz equation
where() (€1') are the directional angles defined by the vec-
torsr andr’, and [Am+EIV=0, (A29)

where E=k?, and satisfy the usual conditions of orthonor-

(n=2)1(0) malit
_ y and completeness,
Mop+2an-2° (A21)
1 . ,
For n=3, this expression reduces to the familiar result, ( )nf drel” k)= sk—k'), (A30)
2
IR 47
PART =5 g2 Yin( Y, m(Q).  (A22)  nd
_ f drkek == g5(r—r"). (A31)
3. Green functions 2m)"
~ Itcan be showf? that[1/(|r—r’|""?)] is the Green func- |t follows that any function of the coordinates in
tion for then-dimensional Laplacian so that n-dimensional space can be expanded in plane waves. For
example, the Green function of the generalized Laplacian
1 operator can be written in the form
A(H)WZ—(H—ZN(O)&U—I’,), (A23)
1 (n—=2)I1(0) 1 ey
N . . . : = d'k—e* (=) (A32)
whered(r—r') is then dimensional Diracs function. lr—r’|n-2 (2m)" K2

In general, given a differential operatbr,, in n space, _ . o o
the corresponding Green function is defined formally bylt can be checked that this function satisfies the defining
means of the identity, equations for the Green function, E@A24). For n=3, the

last expression reduces to
The symboll represents the identity in the sense of distribu- —=—— | dkek T, (A33)
tions. Thus, in the coordinate representation, we have r=r'[ 2= k

, , while for n=4 we have
Dm(NGny(r—r")y=o6(r—r’), (A25)

where it is convenient to absorb the inverse of the prefactor r 1 d4kieik-(rfr’>_ (A34)

—(n—2)I(0) into the definition of the Green function. Ir=r'|2 42 k2




9350 GONIS, SCHULTHESS, TURCHI, AND van EK 56

In addition to the Green functions of the Laplacian, we alsoAll the relations exhibited above reduced to well-kndwn
need the Green functions of the generalized Helmholtz opresults in three space. Also, it is always possible to use hy-
erator which are defined by means of the relation, perspherical harmonics which are real in which case the des-

ignation of complex conjugates is not necessary.
(Am+E)G(E;r—r")=46(r—r"), (A35)

where a factor of-{1/[(n—2)I1(0)]} has been absorbed into 5. Expansions about shifted origins
G. In what follows, the dependence of the Green function on We now derive a number of useful relations Connecting
the energy will not be shown explicitly unless it is necessarythe Bessel functions of argument-a to their undisplaced
to clarify the content of the discussion. We note that in theyajues atr. From Eq.(A26), we have
limit E—0 the Helmholtz operator becomes the Laplace op-
erator and correspondingly the Green function of the former o
becomes that of the latter. ek A= (n—2)111(0) >, i*jV(k|r+al)
The Green function introduced in the last equation can be A
expandetP in hyperspherical harmonics in the form

X2 Y5, (K)Y,,(r+a)
M

2
G(E;r—r)=20 —— |\ a(kro) .
r ) =[=2MOF ML k0 S Ve, (R
~ ~ 1 M1
XKyt ol Kr2) 2 = YR Y,
“ A

- en . e -

(A36) XYMMl(r)% |*2“2(kr)#22 YAzMz(k)Y)‘zﬂz(r)'
wherel, ., andK, ., [a=(n/2)—1] are modified Bessel (A43)
functions, being, respectively, the regular and irregular solu- _ . _
tion of the modified Bessel equation inspace. We empha- Multiplying the two expansions byy, , (k), integrating
size the condition placed on the arguments of these functiongyer the angles ok, and using the orthonormality property
in the last expansion. This expansion converges only wheBf the hypespherical harmonics and the definition in Eq.
the smaller of the two vectors is associated With, and the  (A37), we obtain the expansion for the shifted Bessel func-
larger withK, , . tions

Defining the functions

[2 1 o JALK(r+2)]=(n=2)111(0) > gax- (@) (kr),
Ja(kr)= KTr—alHa(kr)YW(r)EJA(kr)YM(r), A (Add)
(A37) . . .
where the expansion coefficiends , (a) are the matrix el-
and ements in an angular momentum basis of the translation
operator! and are defined by the expression
21 - -
Ny (kr)= \/K—A r—aKHa(kr)Yw(r)En?(kr)YW(r), garr(ka)=(n—2)!11(0)
(A38) ’ n
_ X DN TN C(ALA, A I (KA,
we can write I
(A45)
Gr=r )ZEA: Ja(kr NA(kr>). (B39 ith C(A,A’,A") being a generalized Gaunt number, or an

) ] ) » ) integral of three hyperspherical harmonics,
The functionn] defined above is the modified spherical Neu-

mann function. We can also define the modified spherical

Hankel functions of the first+) and second ) kinds C(A,A',A")IJ dQ YX(Q)YL ()Y rn(Q).

hY=)=jl+in], (A40) (A40)

. Now, Eq.(A44) can be written in a vector/matrix notation,

and the function

. . - [9[k(r+a)])=g(ka)|I[Kk(r)1), (A47)

HE (0= 00 Yy, (%). (A41) -
) ) ) _ where the symbd| ) denotes a ket vector whose components

Denotingh™ simply byh, we can also write the expansion of gre indexed by, and the matrix elements g{(@) are given

the Green function of the Helmholtz operator in the form explicitly in Eq. (A45). We note that since the translation

operator is unitary, we have

Gr=r)=2 hikraHakr). (A2 g(kayg(—ka)=g(ka)g'(ka)=1.  (A48)
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modified Neumann and Hankel functions. For example, not-
ing that for any vectors such thgR|>|r|, there exist other-
wise arbitrary vectorsp such that |[r—p|<|R| and
|[R—r|>|p|, we have

Expansions analogous to that fai{k(r)]) hold for the I[H[k(R—T)])=g(kr)|H(KR))=G(KR)|J(kr)).
- - (A51)

Here we have defined the real-spatalimensional structure
constant in terms of its matrix elements

G(r—p—R)=(H(kR)|I[k(r—p)T).  (A49) G (ka)=(n=2)!11(0)

We can also write X D iN AN C(ALAT, AT H yn(Ka).
AII
G(r—p—R)=(H[k(R-N]|I(kp)).  (A50) (A52)
This expression can be compared to the previous one and iFhese expansion relations are straightforward generalizations
view of Eq. (A47) yields the expansion of the corresponding ones in three-dimensional spate.
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