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Treatment of electron-electron correlations in electronic structure calculations
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A methodology is introduced for the systematic treatment of electron-electron correlations in solids and
other interacting quantumN-particle systems. The method is developed within the framework of electronic
structure theory~band theory! but, in contrast to conventional approaches, which are based on the single-
particle picture, it is formulated within a many-particle picture in whichn particles ind-dimensional phase
space are treated as a single particle in a phase space ofnd dimensions. In this phase space, interparticle
interactions appear as external potentials allowing the treatment of the system of particles through the use of
single-particle methods, while at the same time allowing a systematic, direct, and nonperturbative treatment of
interparticle interactions. The method makes use of the invariance of the Hamiltonian describing an interacting-
particle system under partitioning into subsystems ofn particles. This treatment leads to exact results in the
limit n→N. Based on such partitioning, we propose a generalization of density functional theory and an
appropriately defined local density approximation to treat the interactions between then-particle units in a
system ofN>n particles. This approach yieldsn-particle correlated densities andn-particle states which can
be used in an analysis of the electronic properties of materials, such as total energy, phase stability, electronic
transport, and others. We use the formal construct of multiple-scattering theory to develop the method for the
calculation of the two-particle electronic structure of a solid and the corresponding total energy of the ground
state. We also illustrate some of the properties of the method in terms of a Hubbard model Hamiltonian on a
linear ring. Various features of the method and further possible applications are presented in a discussion
section.@S0163-1829~97!02240-6#
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I. INTRODUCTION

A. Preamble

There are several problems in the physics of quan
systems whose importance is attested to by the time
effort that have been expended in search of their solution
class of such problems involves the treatment of interpart
correlations. In many-particle quantum systems correla
effects can arise either because of the indistinguishability
the particles, i.e., the imposition of Fermi or Bose statisti
because of direct interparticle interactions, e.g., the Coulo
interaction, or because two or more particles interact sim
taneously with the same external potential, e.g., in the st
of transport in random systems.

The treatment of correlation and exchange effects i
preeminent problem in the study of the electronic structure
solids, as well as that of ‘‘small’’ systems such as atoms a
molecules. A number of well-known approximation metho
have been developed for the study of fully interacting ma
particle systems. Among the most prominent, the local d
sity approximation ~LDA ! to density functional theory
~DFT!,1,2 various extensions and corrections to the LDA2

the various forms of the Hartree-Fock3 ~HF! approximation,
and the GW approximation4–6 can be mentioned. Thes
methods, and many improvements introduced to allev
their various shortcomings, have been discussed in a num
of review articles,1,7 and their numerous applications alon
with theoretical studies have revealed much of their inter
560163-1829/97/56~15!/9335~17!/$10.00
m
nd
A
le
n
f
,
b
l-
y

a
f
d

s
-
-

te
er

l

structure as well as their advantages and limitations w
compared to one another, or against general criteria o
formal nature.

Although a detailed review of these methods cannot
given here, it may be useful to mention their most outsta
ing features. The methods based on DFT, such as the L
can yield quite accurately ground-state energies and equ
rium volumes of solids in most cases, but they can fail
give the correct structure for the ground state of the sys
~e.g., Fe where LDA predicts the ground state to be in a f
centered instead of body centered cubic structure8!. The ina-
curacies that can ensue from using such methods to pre
the excitation spectrum of semiconductors and insulator
well known.9 In spite of a number of attempts at improv
ment, such as self-interaction corrections10–12 and gradient
corrections,13,14 the treatment of exchange and correlati
and of excited states remains the most serious impedime
numerical applications of DFT.

Hartree-Fock-based methods, on the other hand, do a
a proper treatment of exchange effects and do not require
removal of spurious self-interaction terms. The most co
mon approaches used for solids, however, neglect correla
effects as, for example, the restricted HF method~single de-
terminantal wave functions!. Some improvement in the trea
ment of such effects in the case of solids is achieved on
basis of additional schemes such as the use of a scre
exchange interaction with a diagonal dielectric function.
nally, theGW approximation allows indeed the calculatio
9335 © 1997 The American Physical Society
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of excitation spectra in some materials such as simple me
and semiconductors. However, it has been demonstrat15

that the need to treat strongly correlated systems withinab
initio methods requires the solution of coupled equations
yond the boundaries of theGW approximation.

All methods briefly outlined above are based directly
the calculation of single-particle properties of the interact
system, such as the density or the Green function. There
they cannot lead directly to correlated two-particle~or
higher-order! correlation functions. Furthermore, there see
to be no unique way of improving systematically any
these methods so that correlation effects are taken into
count through the treatment of increasingly larger numb
of particles.

Finally, there is an additional reason for pursuing a de
mination of two-particle states~or density! in a material. It is
not clear that materials behavior can be described most
ciently in every case in terms of single-particle states.
example, transport properties can be expressed directl
terms of the two-particle Green function which, in prese
day applications, is approximated by the product of t
single-particle Green functions. Therefore, it seems wo
while to attempt the development of a formalism which
lows the calculation of two-particle quantities~and by exten-
sion n-particle quantities! including a direct treatment o
interparticle interactions.

As is shown in this paper, a scheme can be constru
which allows the direct and self-consistent calculation
n-particle densities usingsingle-particlemethods. The for-
malism is based on the framework of DFT, which is gen
alized to apply ton-particle states, leading to a description
the ground state of a system in terms of then-particle corre-
lated density. Also, the energy is given as a unique fu
tional of that density and assumes its minimum value for
exact density. A preliminary account of the formalism pr
sented in this paper has been given in a previ
publication.16

For the sake of ease of presenting the formalism, we t
explicitly the case of two-particle states with vanishing to
spin, but the extension ton-particle states is straightforward
We also neglect relativistic effects. Thus, the formalism
presented here applies directly to spin-compensated syst
Furthermore, we treat the case of solids with an infinite nu
ber of electrons so that no questions arise with regard
partitioning the system into two-particle units.

The remainder of the paper takes the following form.
Sec. II, we develop DFT for the case of two-particle stat
and in Sec. III we show how the formal construct
multiple-scattering theory can be used to solve the Sch¨-
dinger equation for the solid within a generalized version
the LDA. Section IV contains the results of model calcu
tions for a system of four electrons on a linear ring of fo
sites described by a Hubbard Hamiltonian with on-site int
action. Some conclusions that can be drawn from this w
and some future plans are presented in Sec. V. Finally
Appendix contains a number of formal results about part
wave expansions in higher-dimensional spaces.

II. DFT FOR n-PARTICLE STATES

We consider the Hamiltonian of a fully interactin
N-particle system,
ls
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Ĥ5(
i

2¹ i
21(

i
v i1

1

2(i j v i j , ~1!

where¹ i
2 is the Laplacian operator for particlei , v i5v(r i) is

a single-particle potential for particlei , andv i j 5v(r i ,r j ) is
the interparticle potential, withv i i 50. Ordinarily, we are
interested in the solutions of the many-particle wave eq
tion,

HC5EC, ~2!

whereC denotes the many-body wave function for the i
teracting system.

We consider the densityn(r ) for the ~nondegenerate!
ground state of the system. The usual proof of the uniquen
of the external potential as a functional of the density p
ceeds byreductio ad absurdum. Let there be two externa
potentials,v(r ) andv8(r ), differing by more than a constan
and each giving the same ground-state densityn(r ). Let also
Ĥ and Ĥ8 be the corresponding many-body Hamiltonian
and C and C8 the associated wave functions. BothĤ and
Ĥ8 would correspond to thesameground-state density, bu
the wave functionsC andC8 would be different. TakeC8

to be a trial wave function for the system described byĤ
@which includesv(r )# and use the fact that the expectatio
value of the energy is a minimum for the correct wave fun
tion to obtain the result

E0,^C8uĤuC8&5^C8uĤ8uC8&1^C8uĤ2Ĥ8uC8&

5E081E n~r !@v~r !2v8~r !#d3r , ~3!

where E0 and E08 denote, respectively, the energy of th
N-electron system~excluding nuclear-nuclear repulsion!, un-
der the influence ofv and v8. The integral*n(r )v(r )d3r
describes the interaction of the charge distribution with
external field. Similarly, takingC as a trial wave function
for the system described byĤ8, we have

E08,^CuĤ8uC&5^CuĤuC&1^CuĤ82ĤuC&

5E02E n~r !@v~r !2v8~r !#d3r . ~4!

Adding the last two equations, we obtain

E01E08,E081E0 . ~5!

These inequalities constitute a contradiction to the prem
that there can be two differentv ’s, differing by more than a
constant, that give the same densityn(r ) for the ground state
of the system. This proves the theorem~the second theorem
of Hohenberg and Kohn17!. We now show that this theorem
carries through virtually intact in a hyperspace in whichn
particles are considered as a single particle. We cons
explicitly the casen52.

Let us consider again the Hamiltonian of Eq.~1! but as a
sum of distinct, nonoverlapping pairs of particles~so that a
given particle belongs to only one pair!, labeled byI , and
write the Hamiltonian in the form
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H5(
I

2¹ I
21(

I
VI1

1

2 (
I ,JÞI

1

2
VIJ . ~6!

This Hamiltonian is the same as that above, Eq.~1!, except
that it is expressed in terms of pairs of particles. We cons
explicitly systems with infinite numbers of particles~or with
finite but even numbers! so that the partition into pairs can b
effected exactly. Also, we consider singlet pairs only so t
exchange effects on the wave function arise only from
interchange of particles across pairs. This partition does
constitute a restriction for zero-spin systems. Now, we n
that for each such pair we can write,

¹ i
21¹ j

25
]2

]xi
2

1
]2

]yi
2

1
]2

]zi
2

1
]2

]xj
2

1
]2

]yj
2

1
]2

]zj
2

5 (
a51

6
]2

]xIa
2

5¹ I
25¹x

2 , ~7!

where the coordinates of the two particle have been c
bined in a single coordinate in six dimensions

x5~xi ,yi ,zi ,xj ,yj ,zj !5~x1 ,x2 ,x3 ,x4 ,x5 ,x6!. ~8!

This six-dimensional coordinate forms the direct part of
phase space~hyperspace! of the two particles, in which the
pair appears as a single particle. The other terms that ap
in Eq. ~6! are uniquely defined in terms of the origin
Hamiltonian. Thus, withx5(r i ,r j ), we have

VI[V~x!5V~r i ,r j !5v~r i !1v~r j !1
1

ur i2r j u
, ~9!

and

VIJ[V~x,x8!5V~r i ,r j ;r i8 ,r j8!5
1

ur i2r i8u
1

1

ur i2r j8u

1
1

ur j2r i8u
1

1

ur j2r j8u
. ~10!

This completely defines the Hamiltonian in Eq.~6!.
The important feature to notice about this Hamiltonian

that it has a formidentical to that in Eq.~1!. Therefore, it
suggests a treatment using a single-particle framew
where the particles are in six-dimensional~rather than three-
dimensional! coordinate space. This form of the Hamiltonia
allows one to carry through essentially unchanged the p
of the Hohenberg-Kohn theorem so that it holds in the pha
space of two particles~or n particles!. Thus the potential, and
hence the energy, is a unique functional of the density
that we can write for the energy of the electron gas,

E@n~x!#5T@n~x!#1U@n~x!#, ~11!

where the various terms are assigned their familiar mean
from ordinary DFT, but must be interpreted as quantities
an appropriate phase space. For example, forn52 the term
U@n(x)# contains all electrostatic interactions among and
tween particles in six-dimensional space, as well as th
interaction with the nuclei.

This generalization of the Hohenberg-Kohn theorem i
straightforward consequence of the observation that
original proof is not dependent on dimensionality. In oth
er

t
e
ot
e

-

e

ear

k,

of
e-

o

g
n

-
ir

a
e

r

words, the theorem holds intact in a configurational space
3N dimensions for systems described by the Hamiltonian
Eq. ~6!. As is the case with respect to its canonical for
nDFT yields an energy functional which is stationary wi
respect to variations in the density and assumes its low
value for the correct density of the ground state.

A. The Kohn-Sham equations

In order to make DFT a usefull tool, explicit expressio
for the energy functionalE@n# are needed. The Kohn-Sham
~KS! formalism19 provides such an expression for ordina
DFT by writing the kinetic energy in terms of single-partic
states, which can be determined in a straightforward s
consistent scheme, and casting the rest of the kinetic en
as well as the nonlocal part of the potential energy into
so-called exchange and correlation functional, for wh
suitable approximations such as LDA can be found. The
formalism is reviewed in a number of texts and revie
articles13,14and only some of its more salient features will b
mentioned here.

We will now attempt to make clear which formal resul
of the KS formalism hold irrespective of dimensionality an
which must be justified when applied to a space with a
mension larger than three. With this in mind, we introdu
single-particle orbitals, generalized KS functions, such th

n~x!5(
I

uC I~x!u2. ~12!

The meaning of these functions as well as the extent of
sum overI is commented upon below. For the moment, w
consider these functions as the solutions of an effec
‘‘single-particle’’ Schrödinger equation obtained as follows

We define a single-body potential by the relation,

V~x!5
1

ur i2r j u
1E d6x8V~x,x8!n~x8!

2(
n

ZnF 1

ur i2Rnu
1

1

ur j2RnuG , ~13!

wherex5(r i ,r j ), and V(x,x8) is given by Eq.~10!. For a
given density, the energy is evaluated in the usual mann

E@n~x!#5Ts@n~x!#1E d6xV~x!n~x!1J@n~x!#

1Exc@n~x!#, ~14!

where

Ts@n~x!#5(
I
E d6xC I* ~x!¹xC I~x!, ~15!
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represents the kinetic energy functional of a noninterac
gas,

J@n~x!#5
1

2E d6xE d6x8n~x!n~x8!V~x,x8!, ~16!

andExc@n(x)# contains the difference between the exact
netic energyT@n(x)# and that represented byTs@n(x)#, as
well as the difference between the exact interparticle in
action and its ‘‘classical’’ approximation18 and is given by
the expression

Exc@n~x!#5T@n~x!#2Ts@n~x!#1E d6x1E d6x2V~x1 ,x2!

3@n~x1 ,x2!2n~x1!n~x2!#. ~17!

Now, the single-particle Schro¨dinger equation yielding the
solutionsC I(x) takes the form,

@2¹x
21V~x!1mxc~x!#C I~x!5EIC I~x!, ~18!

where theexchange-correlationpotential is given by the ex
pression,

mxc~x!5
dExc@n#

dn~x!
. ~19!

Up to this point, the KS scheme is formally identical to th
originally proposed for the case of three-dimensional s
tems. Most importantly, the wave functions~orbitals! C I(x)
are to be interpreted only as an ‘‘aid to the calculation,’’ th
function being to reproduce the density by means of
~12!.

The proper implementation of the variatonal principle
the energy functional of Eq.~11! is carried out by restricting
the set of trial densities to those which arev representable
i.e., to densities for which a corresponding local exter
potential can be found for the interacting Hamiltonian. T
assumption that underlies the derivation of the KS schem
that each of thesev-representable densities can also be r
resented by a noninteracting Hamiltonian which leads to
single-particle Schro¨dinger equation of the form of Eq.~18!.
Such densities are said to be interacting as well as nonin
actingv representable. For ordinary particles the assump
is justified when the ground state is nondegenerate,19 but
even for degenerate ground states a rigorous extension o
Kohn-Sham theorem can be formulated. This is done by
suming forms for the kinetic energy functional which inclu
a fully antisymmetric wave function rather than the produ
states used for Eq.~15!. In order to generalize the formalism
to n-particle states and construct the kinetic energy fu
tional in n-particle space, one therefore has to ascertain
the proper symmetry of the wave function with respect
individual particlesis retained when the system wave fun
tion is written in terms ofn-particle states. In the remainde
of this section, we will outline how this can be done.

We begin by noting that any noninteracting state in co
ventional three-dimensional space can be constructed fro
linear combination of Slater determinants. Using Laplac
theorem20 the expanded form of a determinant of orderN
can be expressed as the sum of products of determinan
lower orders,ni , such that ineachproduct ( ini5N. Fur-
g
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thermore, applied to a Slater determinant, this means
eachn-order determinant can be associated with the coo
nates of a given set ofn particles distributed over all possibl
combinations ofN states for the noninteracting system tak
n at a time. This is consistent with the partition of the Ham
tonian into distinct sets of particles while preserving t
symmetry of the wave function required by the exclusi
principle.

Now, allow the interaction between particleswithin each
unit to set in which results in an external potential acting
the particles described by the Hamiltonian of Eq.~6!. The
various determinantal states now evolve under the actio
this potential resulting in a system which is ‘‘partially’’ in
teracting in the context of ordinary particles but strictlynon-
interacting in terms ofn-particle units. However, the wav
function written in terms of the finaln-particle states, and
corresponding to a noninteracting system in hyperspa
leads to a density in that space which is by construct
noninteractingv representable in hyperspace. Furthermo
this wave function is fully antisymmetric with respect to th
coordinates of individual~three-dimensional! particles.

This discussion has also revealed the extent of the s
mation overI in Eq. ~12!. This index runs over all possible
combinations of fully interactingn-particle states which
evolve out of combinations of the states of anN-particle
system consideredn at a time.

B. A simple example: the Be atom

It may be useful to illustrate some of the previous disc
sion through a simple example. Even though we are in
ested specifically in the case of solid materials, describin
system with a small number of electrons within a tw
particle formalism can reveal a number of important featur
It illustrates the structure of the two-particle states, sho
how the two-particle density is to be evaluated, how t
single-particle density can be obtained from it, and how i
possible for a spin-compensated system to construct a f
antisymmetrized wave function from the knowledge of on
product states.

Beryllium has four electrons and its ground-state config
ration is 1s22s2. Let xnls(m) denote that particlem is in
state unls&, characterized by principal quantumn, orbital
quantum numberl , and spins. Labeling the electrons 1, 2, 3
and 4, we can construct a wave function for the entire n
interacting system by antisymmetrizing the produ
x1s↑(1)x1s↓(2)x2s↑(3)x2s↓(4) with respect to particle indi-
ces, which leads to a single Slater determinant. This de
minantal wave function has 4!524 terms, each consisting o
products of single-particle states.

Now, it follows from Laplace’s theorem20 on the expan-
sion of determinants that the expanded form of the deter
nant can be rearranged in terms of a sum of products
determinants of ordern and 42n, n,4. Furthermore, in
each such product, particle indices can be made to appe
the same order, e.g., 1, 2, 3, 4, but with each particle in
associated with all possible states. Clearly each product
enters the construction of the overall wave function is co
sistent with the Pauli principle. Choosingn52, and denoting
by the symbolua1(1)a2(2)•••an(n)u a determinantal wave
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function ofn particles, we can express the wave function
the ground state of the Be atom in the form,

C5ux1s↑~1!x1s↓~2!x2s↑~3!x2s↓~4!u

5ux1s↑~1!x1s↓~2!uux2s↑~3!x2s↓~4!u

2ux1s↑~1!x2s↑~2!uux1s↓~3!x2s↓~4!u

1ux1s↑~1!x2s↓~2!uux1s↓~3!x2s↑~4!u

2ux1s↓~1!x2s↑~2!uux1s↑~3!x2s↓~4!u

1ux1s↓~1!x2s↓~2!uux1s↑~3!x2s↑~4!u

1ux2s↑~1!x2s↓~2!uux1s↑~3!x1s↓~4!u. ~20!

The various determinantal wave functions shown here
be orthonormalized and are complete in their respec
spaces in the usual sense.

Now, it is easily shown that the single-particle dens
obtained from integrating out of the modulus of the to
wave function the coordinates of three of the particles has
form of Eq.~12! as a sum of moduli of single-particle state
It is equally easily shown that the two-particle density o
tained by integrating out of the modulus of the system wa
function the coordinates of two of the particles has a sim
form,

n~x!5ux1s↑~1!x1s↓~2!u21ux1s↑~1!x2s↑~2!u2

1ux1s↑~1!x2s↓~2!u21ux1s↓~1!x2s↑~1!u2

1ux1s↓~1!x2s↓~2!u21ux2s↑~1!x2s↓~2!u2, ~21!

in which various simplifications through a collection
terms that contribute equally to the final result is evide
This expression is indeed a sum over two-particle sta
with each such state consisting of all possible pairs of indi
of single-particle states that entered the construction of
original wave function. Also, we note in this expression t
presence only of states that are consistent with the exclu
principle for the entire system. Furthermore, the states en
ing the expression for the density can indeed be ordere
terms of increasing energy, with the possibility of dege
eracy associating different states with the same level. Th
states, such asx1s↓(1)x2s↓(2) and x1s↓(2)x2s↓(1), would
be distinguished by the distribution of their other quantu
numbers, such as those of angular momentum or spin.

The expression for the density in terms of two-partic
states, Eq.~12!, must be interpreted in the light of the la
expression. It consists of a sum of the moduli of two-parti
states (n particle in general! which yields the exact two-
particle (n-particle! density of the ground state of the syste
~which is still noninteracting!. Which states are to be used
to be decided by the exchange-correlation potential func
leading to them. For example, in the case of the Be a
with zero interaction, that function would incorporate t
proper conditions imposed by the Pauli principle so that
only functions that would derive from it are those in the la
expression. In the more general case of nonvanishing co
lation, the exact potential function of DFT will yield onl
those solutions which have the property of reproducing
energy of the system, avoiding nonphysical solutions tha
not satisfy the Pauli principle. These states will not, in ge
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eral, subscribe to a description in terms of single-parti
states, but then there is no reason that they should. Fin
these states can be used to construct the system wave
tion through their combination into a sum of products whi
in the zero interaction limit passes over into Eq.~20!.

It follows from the last expression for the two-partic
density that the single-particle density can be obtained
first summing over~integrating out! one of the state indices
that characterize a two-particle state in the noninterac
limit, and integrating over the coordinates of one of the p
ticles. When this procedure is applied to the Green functi
it leads to the down-folding process discussed in the sec
on numerical results.

It is also interesting to note that a fully antisymmetriz
wave function for the system can be obtained from a sim
product ofn-particle states. To accomplish this, we form
product of states which in the noninteracting limit reduces
a product entering a single determinant, and antisymmet
with respect to particle coordinates which are taken toin-
cludespin. In fact, one can begin with a simple product, su
as that involving the states appearing in the first term on
expansion of the wave function given above, and antisy
metrize with respect to particle coordinates, provided th
also include the spin. Because of this feature, it is only n
essary to consider product states in coordinate space, w
is the basis for developing the formalism of two-partic
scattering theory in subsequent sections.

C. The LDA in phase space

We have seen that the Hamiltonian of a fully interacti
N-particle system~with N→`) can be written in the forms
of Eqs.~6!–~10!, with the ground-state energy given by E
~14!.

In these expresions, the exchange and correlation p
E xc@n(x)#, can be evaluated numerically for a homogeneo
system of interacting particles in hyperspace and then use
the LDA sense in terms of the local density,n(x). Although
no explicit reference to spin is made here, the functio
C I(x) are extensions of the familiar Kohn-Sham spin fun
tions and satisfy the effective single-particle Eq.~18!,

@2¹x
22V~x!2mxc~x!#C I~x!5EIC I~x!, ~22!

where the exchange-correlation potential is given by
usual relation of DFT, Eq.~19!,

mxc5
dExc@n#

d@n~x!#
. ~23!

In terms of these functions, the single-particle Green fu
tion in hyperspace takes the form

G~x,x8;E!5(
I

C I* ~x!C I~x8!

E2EI
, ~24!

so that consistent with the usual definition of a single-parti
density we have

n~x!5(
I

uC~x!u2, ~25!
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whereI denotes a set of single-particle states in two-part
phase space, as described in the previous section. We
that the density can also be obtained in terms of the im
nary part of the appropriate Green function,G(x,x8;E), in
the form,

n~x!52
1

pE dEImG~x,x;E!. ~26!

The single-particle density is now obtained by means of
relation,

n~r !5E d3r 8n~r ,r 8!

5
1

pE d3r 8EEF
~2!

dE ImG~r ,r 8;r ,r 8;E!, ~27!

whereEF
(2) is the highest energy of an occupied two-partic

state.
As in its ordinary three-dimensional applications, 2LD

consists of the determination of the two-particle levels o
system and the subsequent determination of the densit
occupying the states lowest in energy. In this procedure,
prevailing statistics can be taken explicitly into account
occupying the states lowest in energy according to the p
ence or absence of the exclusion principle.

An application of the LDA would require the knowledg
of Exc@n(x)#, and consequently ofmxc , for interacting but
otherwise uniformly distributed electrons as a function of
pair density. In principle, this quantity must be obtain
through numerical studies of the six-dimensional unifor
interacting gas~jellium!. It is to be noted that this procedur
is not equivalent to a six-dimensional treatment of thre
dimensional jellium. Such a treatment would result in a no
uniform density because of the presence of the interpar
potential between the members of a pair, whereas applica
of the LDA requires the treatment of system that is unifo
in six-dimensional phase space. Such a system can be
tained by zeroing the intrapair interaction and consider
six-dimensional particles interacting by means of the pot
tial V(x,x8). We refer to applications of DFT and LDA to
n-particle states andnDFT andnLDA, respectively.

Furthermore, the exchange-correlation functional mus
constructed so as to account in principle for the effects
symmtery that are not taken into account within t
n-particle states. For example, if determinantal wave fu
tions are used, thenmxc must contain the effects of symmetr
acrossn-particle units. On the other hand, simple produ
states can be used in which case the exchange-correl
potential must describe the effects of interchanging the co
dinates of any two particles. Thus, the exchange-correla
functional guarantees that the Kohn-Sham equations y
only those solutions which enter the construction of
ground-state density.

This completes the description of the LDA in the pha
space of two particles for the systems under considera
here. We now turn our attention to the solution of t
‘‘single-particle’’ effective Schro¨dinger equation given by
Eq. ~22!, using the formalism of multiple scattering theo
~MST!. The first step in that direction is the characterizati
of the geometry of hyperspace in the presence of interpar
e
ote
i-

e

a
by
e

s-

e

,

-
-
le
on

b-
g
-

e
f

-

t
ion
r-
n
ld
e

n

le

interactions. For the sake of simplicity, and also because
the case of solids we are only interested in the construc
of the density rather than the wave functions, we develop
formalism in terms of product states rather than determin
tal states. This makes the formal aspects of the developm
considerably clearer without affecting its viabilty. Fully an
tisymmetrized two-particle~or n-particle! states can be use
if necessary. On the other hand, only product states can
employed provided that the exchange-correlation functio
is constructed to include the effects of symmetry among
particles in the system.

D. The structure of hyperspace

We consider a three-dimensional single-particle spac21

defined by a set ofN points and positionsRn . The corre-
sponding two-particle space, also to be referred to as co
lated space or hyperspace, consists ofN2 points and posi-
tions RN5(Rn ,Rm). In the case of a three-dimension
periodic lattice generated by the primitive vecto
a1 , a2 , a3, the two-particle space is generated by the
primitive vectorsa1 , a2 , a3 , a4 , a5 , a6, where the vec-
tors a1 , a2 , a3 are orthogonal to the seta4 , a5 , a6, al-
though the two sets are identical within each subspace. N
we have

RN5(
i 51

6

Niai . ~28!

We confine our discussion to the periodic case.
We consider systems in which the single-particle pot

tial, V(r ), is a sum of contributions from nonoverlapping ce
potentials,

V~r !5(
n

V~r2Rn!, ~29!

centered at the lattice sites,Rn . Because of translationa
symmetry, we haveV(r1Rn)5V(r ). These cell potentials
give rise to a potential in two-particle space which has
form,

v~x!5(
n

V~x2RN!, ~30!

associated with cells in two-particle space. The cell poten
V(x2RN), is given by Eq.~9!, so that for the cell in hyper-
space corresponding to the single-particle cells
RN5(Rn ,Rm), we have

V~x2RN!5V~r1!1V~r2!1U@ ur11Rn2~r21Rm!u#,
~31!

where the periodicity of the single-particle potentials h
been used. It follows from this expression that the poten
in hyperspace is periodic only whenU50. In the presence o
the interaction, the potential retains only a partial periodic
of the form,

V~x2RN
N!5V~x!, ~32!

whereRN
N5(RN ,RN). Thus, in the presence of the Coulom

interaction, the potential is partitioned into a collection ofN
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three-dimensional periodic potentials associated with e
interlattice distance and having the form,

Vn~x!5V~r1!1V~r2!1U~ ur12r22Rnu!. ~33!

Clearly, this potential contains the interparticle interacti
between two particles located inside two cells separated
vector distanceRn apart. Therefore, because of the form th
the potential takes, the hyperspace separates naturally inN
‘‘parallel’’ three-dimensional surfaces, each characterized
the cell potential given in the last expression. This constr
tion is quite analogous to that encountered in the treatmen
layered materials, such as surfaces and interfaces of th
dimensional systems, which often are characterized by
allel layers inside each of which the potential is periodic
two dimensions. The treatment of the present s
dimensional structure within MST can be effected by a dir
extension of methods derived for the treatment of laye
materials in three dimensions.

III. MULTIPLE-SCATTERING THEORY

The cell structure of the potential in hyperspace is w
suited for treatment within the framework of MST. Since t
basic formalism of the theory remains the same in any
mensionality, we quote only those results that are relevan
our immediate discussion, and refer the reader to
literature22–24 for more details.

A. Basic elements of MST

We seek a determination of the single-particle Gre
function in two-particle phase space characterized by the
tential of Eq.~31!. The corresponding Lippmann-Schwing
equation takes the form

G~x,x8!5G0~x,x8!1E d3x9G0~x,x9!V~x9!G~x9,x8!.

~34!

It is easy to verify that solutions to this equation are a
solutions of the corresponding Schro¨dinger equation for the
Green funcion. Iteration of Eq.~34! yields the expression

G~x,x8!5G0~x,x8!1E d6x1E d6x2G0~x,x1!

3T~x1 ,x2!G0~x2 ,x8!, ~35!

where theT matrix is given by

T~x1 ,x2!5V~x1!d~x12x2!

1V~x1!E d6x3G0~x1 ,x3!T~x3 ,x2!. ~36!

In the case in which the potential is given as a sum of c
contributions, theT matrix can be written in the form

T~x,x8!5(
MN
T MN~x,x8!, ~37!

where~suppressing the arguments and the integrals!,
h
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T MN5VmdMN1VmG0(
P
T PN. ~38!

In order to expressT MN in terms of thet matrices associated
with individual cells we write this equation in the form,

T MN2VMG0T MN5VMdMN1vMG0 (
PÞM

T PN. ~39!

This, in turn, can be written as~with integral signs restored!,

T MN~x,x8!5tM~x,x8!dMN1E d6x1tM~x,x1!

3E d6x2G0~x1 ,x2! (
PÞM

T PN~x2 ,x8! ,

~40!

wheretM5VM1VMG0tM is thet matrix for potential in cell
RM . This can be verified by operating on both sides of E
~40! with 12VMG0.

The canonical development of MST now proceeds via
introduction of the angular momentum representation in tw
particle phase space. In correlated space, this is acc
plished in the same way as in three-dimensional space
the obvious difference that in performing a partial-wave e
pansion the angular momentum states corresponding to
dimensionality of the space are to be used. A summary
some basic relations of hyperspherical harmonics— the g
eralizations of three-dimensional spherical harmonics
higher-dimensional spaces— is given in the Appendix, wh
a full exposition can be found in the book by Avery25. As is
shown there, the spherical harmonics,YL , along with the
spherical Bessel,j , Neumann,n, and Hankel,h1, h2, func-
tions have immediate generalizations to higher-dimensio
spaces. For the sake of easy reference, we use the same
bols as commonly employed in denoting these functions,
use the capital Greek letterL instead ofL, andl instead of
l to denote angular momentum indices in hyperspace.
also define the combinations

JL~x!5 j l~x!YL~ x̂!, NL~x!5nl~x!YL~ x̂!,

HL
6~x!5hl

6~x!YL~ x̂! , ~41!

which are the regular (JL) and irregular solutions of the
free-particle Schro¨dinger equation~Helmholtz equation! in
hyperspace.

We also need the expansion of the free-particle propa
tor in phase space in terms of the hyperspherical functi
defined in the last expressions. It can be shown that w
x,x8, we have

G0~x2x8!52 ik(
L

JL~x!HL~x8!, ~42!

with H5H1 andE5k2. The condition placed on the mag
nitudes of the vectors in this expansion is crucial because
failure can result in serious divergences of the sum overL.
Consistent with this restriction, it can also be shown th
when x and x8 are confined inside nonoverlapping spher
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~the so-called muffin-tin condition!, whose centers are sep
rated by a vectorRN , we can write

G0~x2x81RN!5(
L

(
L8

JL~x!GLL8~RN!JL~x8!.

~43!

In applications to three-dimensional systems based on a
riodic lattice, the quantitiesGLL8(RN) are commonly re-
ferred to as the real-space structure constants of the lat
Their lattice Fourier transforms are the well-know
Korringa-Kohn-Rostoker structure constants of electro
structure calculations. Explicit expressions for the struct
constants are given in the Appendix.

At this point it is necessary to comment on the applic
bility of angular momentum expansions ofG0 when its spa-
tial arguments arenot confined inside nonoverlappin
spheres. For example, in the case of adjoining, space-fil
cells, the expansion in Eq.~43! may diverge for some value
of the cell vectorsx and x8. This apparent difficulty in ap-
plying MST to non-muffin-tin geometries can be effective
circumvented24,26 through the replacement of divergent sum
with conditionally convergent double sums. The final expr
sions so obtained areformally identical in most cases to th
corresponding muffin tin results, with care taken to achie
convergence of the angular momentum expansions. In
cases, MST allows a complete separation of the structur
a system from its potential, and leads to matrix equation
angular momentum space. Because of these properties
for ease of presentation, we will assume that the muffin
expansions are applicable to all geometries and procee
the knowledge that rigorous final expansions can be obta
through appropriately defined summation procedures.27

We now pass over to the angular momentum represe
tion. We define the scattering-path operator,TLL8

NM , by

TLL8
NM

5E d6xE d6x8JL~xM !T MN~x,x8!JL8~xN8 !,

~44!

wherexM5x2RM is a vector confined inside the cell atRM .
Using the expansion of the free-particle propagator in
~43!, we obtain the followingequation of motionfor the
scattering-path operator,28 TLL8

NM ,

TLL8
NM

5tL
MFdLL8dMN1 (

PÞM
(
L9

GLL9
NP TL9L8

PM G . ~45!

Considered as a matrix in a combined site and angular
mentum representation, the scattering-path operator ma
written as

TLL8
MN

5@ t~12Gt!21#LL8
MN

5@ t212G#LL8
MN . ~46!

In systems with translational symmetry, the equation of m
tion can be solved by means of lattice Fourier transfor
leading to well-known expressions for the electronic ba
structure of a material.28

Once the scattering path operator has been determi
the Green function follows. For vectorsx and x8 confined
inside no other cells than those centered atRN and RM in
two-particle space, the Green function takes the form,22–24
e-
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G~x,x8;E!5(
L

(
L8

ZL
N~x!TLL8

MN
~E!ZL

M~x8!

2(
L

ZL
N~x!SL

M~x8!dNM . ~47!

Here, the functionsZL
N(x) are those regular solutions of th

Schrödinger equation for the potential in cellN which out-
side a sphere bounding this potential joins smoothly onto
function (L8JL8(x)tM

L8l
21

2 ikHl(x). The functionsSL
N(x)

are the corresponding irregular solutions which jo
smoothly ontoJL(x). From the Green function, the spati
particle density in the space and the density of states fol
by means of well-known expressions, Eq.~26!.

B. The scattering-path operator in hyperspace

The structure of two-particle space described above le
immediately to the form of the scattering-path operator. T
equation of motion, Eq.~45!, for the entire space separate
into parts associated with the three-dimensional subsp
characterized by a particular value of the potential. Each
in such a subspace is associated with at-matrix tn corre-
sponding to an interparticle interaction,U(r12r21Rn).
Since such a subspace is generated by the transla
(Rn ,Rn), the corresponding part ofT can be Fourier trans
formed to yield the formal expression

T ~n!~q!5@@ tn#212G~q!#21, ~48!

whereG(q) is the Fourier transform of the six-dimension
structure constants over the three-dimensional space ge
ated by all vectors of the form (Rn ,Rn), and an underbar
denotes a matrix in angular momentum indices in hyp
space. Now, the equation of motion takes the form,

@T#nm~q!5T ~n!~q!Fdmn1 (
kÞm

Gnk~q!@T#kn~q!G . ~49!

In this mixed direct-reciprocal space representation, each
Rn of a three-dimensional lattice is associated with at matrix
T (n)(q). The resulting structure is reminiscent of the stru
ture of the scattering-path operator arising in the study
layered systems29 where each site of a ‘‘linear’’ lattice per
pendicular to the layered structure is associated with tht
matrix representing a ‘‘plane’’ in the material passin
through that point.

The last form of the equation of motion can be solv
either by direct inversion in real space, or through an ad
tation of more elaborate but more rigorous techniques29 fa-
miliar from the study of layered systems. Direct inversi
may be facilitated through the use of the so-called scree
structure constants30 which will have to be set up in the
hyperspace of two particles. Or, screening effects may re
in the reduction of the system to a single cluster of ‘‘imp
rity’’ sites embedded in a translationally invariant effectiv
medium. This system can be solved rigorously using w
known methods.29 Once the scattering-path operator h
been determined within an adequate approximation,
Green function is obtained from Eq.~47!. Related quantities
such as the charge density now follow from the usual exp
sions.
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C. Energy integrals and charge self-consistency

An application of the formalism presented above hing
crucially on the performance of energy integrations in de
mining such quantities as the density and the total ene
Such energy integrals extend to the maximum energy of
cupied pair states, a level which we will denote asEF

(2) .
However, given that two-particle space (n-particle space! is
not periodic, the method for the determination of the Fer
level for pairs or higher-order particles is not immediate
apparent. It is to be kept in mind that the normalization to
used in determining the ‘‘Fermi level’’ forn tuples of states
is that given in terms of combinations of states describ
previously.

To determineEF
(2) , we exploit the analogy of the two

particle space to that of a cluster of impurities embedded
host material mentioned above. As in that case, the Fe
level is determined on the basis of the unperturbed syst
each cell of which in the present case is characterized by
two-particle effective potential~and charge density! corre-
sponding to the members of the pair being sufficiently
apart that the pair potential has reached its asymptotic va
The Fermi level is determined as that energy for which
integral over the density of pair states gives the total num
of combinations of states consistent with the number of p
ticles needed to balance the nuclear charge.

Charge self-consistency in two-particle space can
achieved through iterative methods such as used in the
responding case of single-particle electronic structure ca
lations. At each iteration, the two-particle Green functi
yields a~two-particle! charge density, a potential, and a to
energy. The iterations terminate when the charge den
and/or the potential reach preassigned levels of converge

This approach allows the study of essentially all prop
ties commonly treated within band-theoretical methods, s
as structural stability, phase stability, transport, and oth
while taking direct account of the interparticle interacti
within the calculation of the electronic structure. Furth
work, currently in progress, is aimed at understanding
more detail the correspondence between two-particle spe
and observable properties of materials.

IV. NUMERICAL ILLUSTRATION

The full implementation of the formalism described abo
within ab initio methods is certainly an arduous compu
tional task. Certain elements of the formalism, however,
be implemented with relative ease and serve to illustrate
basis elements of the method.

In this section, we illustrate some of the formal aspe
introduced in previous sections by the results of numer
calculations. These calculations are carried out in connec
with a model system consisting of four sites on a linear ri
We choose the total spin of the system to be equal to z
and we consider the case of two and four electrons~forming
two pairs each of which has zero spin!. We calculate the
exact two- and four-particle Green functions under the c
straint of vanishing total spin and from this we obtain t
exact single-particle Green function. In the case of four p
ticles, this Green function is compared to results of appro
mate procedures obtained within a two-particle formalism

We consider a single-band, Hubbard model Hamilton
s
r-
y.
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for a periodic linear chain given by the expression

H5(
i

e iai
†ai1

1

2 (
i , j Þ i

Wi j 1(
i

Uni ,sni ,s̄ . ~50!

Here, ni ,s5ai ,s
† ai ,s is the number operator for a particl

with spins on sitei , ands̄ a state of spin opposite tos. The
interactionU denotes the Coulomb repulsion of two ele
trons of opposite spin on the same site, and is taken to be
diagonal. More general spatial dependencies of the Coulo
interaction can be taken into account without undue effo
The correlated space corresponding to the Hamiltonian of
last expression is associated with a Hamiltonian of the fo

Hi j ;kl5@Hii 1H j j #d ikd j l 1@Hik~12d ik!d j l

1H jl ~12d j l !d ik#

1Ud i jkl . ~51!

In this two-particle Hamiltonian the Coulomb repulsion a
pears along the main diagonal of the space,i 5 j 5k5 l . This
Hamiltonian is used with a periodic linear ring of four sites
distancea apart, characterized by the valuese i50, and hop-
ping, Hi j [t51.0, for i and j nearest neighbors and zer
otherwise. The correlated space of this four-site ring is
16-site toroidal surface, with nearest-neighbor hopping.

It is useful to illustrate the geometry of two-particle spa
for the case of the infinite periodic line, as shown in Fig.
Each point~lattice site! on the infinite square lattice corre
sponds to a particular configuration of two particles on
line, with the matrix elements of the Hamiltonian bein
given by the last expression, Eq.~51!. Thus, a point on the
main diagonal, such as that indexed by (i i ), wherei is a site
on the line, corresponds to two particles of opposite s
found on that site. For such site on the square the ma
elements of the Hamiltonian are given by

Hii ,i i 52e i1U. ~52!

FIG. 1. A square lattice representing the correlated space
linear chain. Sites (i ,i ) along the main diagonal correspond to tw
particles on the line occupying the same site and characterized
pair energy 2e i1U, as described in the text. Off the main diagon
site (i , j ) corresponds to two particles on different sites on the li
and is characterized by an energye i1e j .
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Sites with indicesi j , iÞ j , correspond to two particles foun
on two different sites on the line with a corresponding mat
element of

Hi j ,i j 52@e i1e j #. ~53!

The remaining, off-diagonal Hamiltonian matrix elements
the square are equal tot for near-neighbor sites and zer
otherwise.

The following figures show one- two- and four-partic
spectra for a uniform finite ring of four sites described by
Hubbard Hamiltonian, and illustrate a number of points
the formalism presented in the text. The spectra are show
complex energies with an imaginary part ImE5t/4, which
allows thed-function like spectra to be displayed for graph
cal purposes.

The single-particle density of states~DOS! for the peri-
odic four-site ring, defined by the expression,

n~E!52
1

p
ImGii ~E!, ~54!

and forU50 is shown by the solid line in Fig. 2. The figur
also shows the corresponding DOS obtained from the sin
particle Green function obtained the two-particle Green fu
tion, ~dashed line!, and to the four-particle Green functio
~dotted line!. In each case, single-particle quantities are
tained by integrating out the coordinates of all other p
ticles. We will refer to this process asdown folding. For
example, given a two-particle Green function, we have

Gi j 5
1

N(
kl

Gik; j l . ~55!

An illustration of this reduction procedure in a special ca
can be obtained by reconsidering the case of the Be a
discussed above. It is easy to see that in order to obtain
contribution to the single-particle density of a given statea,
from a two-particle density, one sums over all two-partic
states corresponding, in the noninteracting limit to one p
ticle being in statea.

The four-particle calculation is carried out on a fou
dimensional space formed by the combination of two tw
dimensional spaces. This results in a four-dimensional cu
structure with 256 sites, reflecting the number of configu

FIG. 2. Single-particle DOS’s for a periodic ring of four site
with U50.0 ~solid line!, compared with corresponding results o
tained from down folding the two-particle Green function~dashed
line! and the four-particle Green function~dotted line!.
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tions of four particles with total spin zero arranged on fo
sites, and with each site having eight nearest neighbors~con-
nectivity of 8!. Neglecting the Pauli principle and setin
U50, the sites,i jkl , of the four dimensional torus are as
signed an energy ofe i1e j1ek1e l . All curves in this figure
display the same structure inside the band, but the do
folded curves are displaced with respect to the results
tained dirtectly from the single-particle Green function
the average energy of the additional particles. As discus
in the text, this energy equals 2t52.0 and 6t56.0 for the
two-particle and four-particle results, respectively.

Figure 3 shows two-~solid line! and four-particle~dashed
line! DOS corresponding to two and four particles occupyi
the same site on the ring~we continue to ignore the Pau
principle!. The important feature to notice here is the pr
gressive increase in bandwidth with an increasing numbe
particles~dimensionality of space!. This is the result of the
greater connnectivity, increasing the number of near
neighbors, in the higher-dimensional space.

We now present results in which the Pauli principle
taken fully into account, and the interparticle interaction
gradually increased in value. To take account of the Pa
principle within the present model, we assign a very large~in
principle infinite! energy to any configuration of the syste
corresponding to two particles of the same spin occupy
the same site on the ring. Two-particle DOS correspond
to two particles of opposite spin on the same site of the r
and on near-neighbor sites are shown, respectively, by
solid and the dashed lines in the three panels of Fig. 4,
panels containing the results forU50.1 upper panel,
U51.0, middle panel, and forU510.0, lower panel. We
note that these spectra contain an impuritylike resonant s
at energiesE5U, in agreement with the interpretation o
interparticle interactions appearing as external potentials
appropriately defined higher-dimensional spaces. This s
is clearly illustrated in the case ofU510.0, where it falls
outside the band. Note also, that the four-particle spect
contains a resonance atE52U corresponding to two-particle
pairs on two different sites. The complete four-particle sp
trum is shown in Fig. 5 for the caseU510.0, corresponding
to two pairs of particles of zero spin. Note that in all cas
particularly in that of lowU, the band narrows in hyperspac
which is caused by the Pauli principle. In the present ca
the Pauli principle is taken fully into account by assigning

FIG. 3. Two-~solid line! and four-particle~dashed line! DOS’s
for a periodic ring of four sites withU50.0.
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FIG. 4. Two-particle DOS for on-site occupancy~dashed line!
and near-neighbor occupancy~solid line! for a ring of four sites
with U50.1, upper panel,U51.0, middle panel, andU510.0,
lower panel. Even for the strong-interaction case,U510.0, the
near-neighbor spectra resemble closely those of the nonintera
case~solid line in previous figure!.

FIG. 5. Four-particle spectrum for two pairs of total zero sp
occupying adjacent sites in a ring of four site withU510.0.
‘‘infinite’’ energy of 103 to every site in hyperspace whic
corresponds to a forbidden configuration, thus remov
such sites from the system. It is this effect which reduc
connectivity and the associated bandwidth.

The following three figures show single-particle spec
for the three values of the on-site interaction stated abo
and with the Pauli principle taken fully into account. Figu
6 shows a comparison of the noninteracting single-part
spectrum~solid line! for a particle on the ring and the corre
sponding results forU50.1 obtained from down-folding the
two-particle Green function~dashed line! and the four-
particle Green function~dotted line!. In the procedure used
here, the single-particle spectrum is shifted by the aver
energy of the particles whose coordinates are integra
~summed! in the down-folding process. The various curv
in the figures have been shifted by the average energie
particles in order for the centers of the bands to coincide.
this small value ofU, the main difference between the spe
tra is a narrowing of the band in the spectrum obtained fr
the four-particle Green function produced by the removal
forbidded configurations in four-particle space. Note that
narrowing is indicated in the spectrum obtained from t
two-particles Green function because that Green function
scribes two particles of opposite spin and hence is not
fected by the Pauli principle.

Results analogous to those in Fig. 6 but for the ca
U51.0 andU510.0 are shown, respectively, in Figs. 7 a

ion

FIG. 6. Single-particle spectra for a ring with four sites. T
solid line is the spectrum for noninteracting particles, while t
dashed line is the single-particle spectrum obtained from do
folding the two-particle Green function, and the dotted line t
four-particle Green function forU50.1.

FIG. 7. Results analogous to those of the previous figure but
U51.0.
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9346 56GONIS, SCHULTHESS, TURCHI, AND van EK
8. We note in all cases the resonancelike state at value
the energy aproximately equal toU. This is a remnant of the
states in higher-dimensional spaces whose position is slig
altered in the down-folding process.

The next figure illustrates the role played by the density
particles in determining the single-particle spectrum of a s
tem of particles. Figure 9 shows the single-particle spectr
obtained from down-folding the two-particle Green functi
for U510.0 and for periodic rings of 4, 10, and 20 sites,
indicated by the solid-line, dashed-line, and dotted-l
curves, respectively. We note that the strentgh of the pea
E5U decreases with increasing numbers of sites since
likelihood of finding two particles on the same site decrea
with increasing volume~decreasing density!. Therefore, an
application of the formalism to the study of interacting sy
tems along the lines ofnDFT andnLDA hinges crucially on
the presence of a finite-particle density and its treatment

Clearly, a full implementation of the LDA on the basis
two-particle states is not feasible at present. However, a
precursor to such an application, we consider the result
applying a strictly two-particle formalism in the presence
nonvanishing density. Thus, we average the Green funct
corresponding to two-particle states in the presence of
other pair, but we neglect the interactions among the vari
four-particle configurations. This leads to an approxim
two-particle Green function and a corresponding sing
particle Green function which can be compared to exact
ues and to the results of other approximation schemes.

In order to illustrate further the role played by the tw
particle density in the determination of the electronic str

FIG. 8. Results analogous to those of the previous figure bu
U510.0.

FIG. 9. Single-particle spectrum obtained from the two-parti
Green function withU510.0, for a ring of four sites~solid line!, 10
sites~dashed line!, and 20 sites~dotted line!.
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ture, and to contrast the present method with existing
proaches, we show now the comparison between exact~solid
lines! single-particle Green functions and spectra obtained
down-folding the four-particle Green function for the fou
site ring with those obtained by down-folding a two-partic
Green function~dashed line! which is the average over th
Green functions describing two-particle states in the pr
ence of an additional pair of particles on the ring, and
results obtained within a version of theGW approximation
~dotted line!. Here, the single-particle self-energy,

S i j ~E!5 lim
h→0

1

2pE e2 ivhWi j ~v!Gi j ~E2v!dv, ~56!

is given in terms of the exact single-particle Green funct
and the exact screened interaction which is determined
terms of the noninteracting, zero superscript, and exact t
particle Green functions,Wi j ;kl(E)5$Gi j ;kl

(0) 212Gi j ;kl
21%.

The results corresponding toU50.1, U51.0, andU510.0
are exhibited in the upper, middle, and lower panels, resp
tively, of Fig. 10.

As is seen in these figures, the averaged results ar
considerably better agreement with the exact spectra
those obtained in the present version of theGW approxima-
tion, particularly for large values ofU. One also sees that th
averaged results overestimate the gap in the strongU limit as
may be expected in a non-self-consistent procedure of
type. Even forU/t51.0, a region in which theGW approxi-
mation has been found to give accurate results for real
tems, the averaging of the two-particle Green function in
presence of a finite density resolves the band structure m
more accurately than that approximation. We note the re
nance atU51.0 which is missed in theGW results, and that
both approximate results are displaced somewhat with
spect to the exact ones. Much of this effect, along with
wider gap in the strongU limit can be traced back to the
incomplete treatment of the Pauli principle, i.e., the negl
of configuration interactions between the configurations
ing averaged and in theGW approximation. Both of these
approximations can be expected to improve with increa
dimensionality and lattice connectivity. More detailed d
cussions of these and other numerical results will be give
a future publication.

V. DISCUSSION AND CONCLUSIONS

The formal framework presented in this paper introduc
a different approach in the study of interacting quantum s
tems. In this viewpoint, quantum systems are conside
from a higher-dimensional perspective corresponding to
unified treatment of sets of two or more particles as a sin
particle. The formal aspects of the ensuing treatment are
ten indistinguishable, apart from technical consideratio
from those used within a single-particle picture. The fin
formal and computational results, however, can be of con
erable interest providing direct insights into issues, such
the effects of correlations, not easily resolved within
single-particle framework.

We can also give a more physical perspective of
method. A central aim of canonical many-body theory is t
calculation of the single-particle self-energy, describing
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single-particle~or single quasiparticle! excitation spectrum
of the system. This method works very well in the case
weakly correlated systems, but its application to syste
characterized by increasingly correlated electron motion
comes less accurate. Similarly, in the treatment of semic
ductors and insulators, systems generally known to be c
acterized by interparticle interactions of increased stren
compared to metals—where the LDA can be said to be fa
accurate—the application of the LDA can lead to quite in
curate results in many cases. It is conceivable, that for
tems where the quasiparticle picture becomes less accura
treatment in terms of quasipairs may provide an improv
description of the electronic states and properties of the
tem. It is with this in mind that the present methodology
developed.

It is also relevant to compare this new methodology w
other approaches used in the study of interacting quan
systems, both conceptually as well as in terms of its imp

FIG. 10. Exact single-particle spectra obtained for a ring of fo
sites~solid line! compared to those corresponding to an average
two-particle Green functions~dashed line!, and theGW approxima-
tion ~dotted line!. Here,U50.1, upper panel,U51.0, middle panel,
andU510.0, lower panel.
f
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mentation. First, at least formally, the method provides
improved treatment of correlations in a many-particle syst
in a unified manner. Thus it fills the long existing gap b
tween many-body theory and the so-called band theory ba
on an independent-particle picture. Like ordinary ba
theory, the method can be applied to specific systems un
variable external conditions so that it can be used in
study of materials behavior and materials properties. Th
properties such as structural stability, alloy phase stabi
and transport are well within its purview. In addition, th
method is based on a minimum~extremal! principle which
can be used to guide an iterative procedure to converge
This last feature is possibly the most distinct advantage
this method when compared to traditional many-body te
niques as applied to solids, such as the Hartree-Fock,
random phase approximation, diagramatic summations,
others. For example, none of these methods has been a
associated with the study of phase stability in alloys. Suc
study is feasible within the present formalism.

At the same time, as already mentioned, its numer
implementation becomes considerably more difficult with
creasing size of the numbers of particles treated as a si
unit. It is evident that an application of the two-particle pi
ture, and by extension anm-particle picture within DFT,
requires a significant computational effort as well as the
tablishment of new quantities, e.g., the exchange and co
lation functional in two-particle space, compared with thre
dimensional~single-particle! applications of the theory. At
the same time, the method allows the analysis of experim
tal results just as current approaches. Specific details a
these lines are currently being developed such as, for
ample, the determination of the two-particle spectrum o
random substitutional alloy. It can only be hoped that co
tinuing advances in computational power will make the u
of this method feasible in the not too distant future.
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APPENDIX A: HYPERSPHERICAL HARMONICS

This appendix contains a number of basic notions ab
n-dimensional Euclidean space, leading to expressions w
are useful in the solution of the wave equation.

1. Introductory notions

A vector r in n-dimensional space (n space! is defined by
a set of numbers,

r5~x1 ,x2 ,•••,xn!, ~A1!

wherexi is called the component ofr along thei th direction.
The length of a vector and the inner~dot! product of two
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vectors inn space are defined as a natural generalization
the corresponding concepts in three space. Thus, we ha

r 25(
i

xi
2 ~A2!

for the length, and

r1•r25(
i

xiyi5r 1r 2cosv~n! , ~A3!

for the dot product of two vectors,r15(x1 ,x2 ,•••,xn) and
r25(y1 ,y2 ,•••,yn). The last expression also defines t
angle between two vectors. In particular, for two unit ve
tors, r̂1 and r̂2, we have

cosv~n!5 r̂1• r̂2 . ~A4!

A vector of lengthr in n-dimensional space is characte
ized by a set of angles,un22 , un23 ,•••,u1 , f, which are
defined by the relationships,

x15rsinu1sinu2•••sinun22cosf,

x25rsinu1sinu2•••sinun22sinf,

x35rsinu1sinu2•••cosu3 ,

.

.

.

xn215rsinu1cosu2 ,

xn5rcosu1 . ~A5!

We note that the anglev (n) formed by two vectors inn space
can be expressed in terms of the angles each vector m
with the nth axis, u1, and the anglev (n21) made by the
projections of the vectors onto (n21) space,

cosvn5cosu1
1cosu1

21sinu1
1sinu1

2cosv~n21! . ~A6!

Often, the subscript (n) indicatingn-dimensional quantities
will be omitted, and used only to render emphasis to spec
results.

The generalized Laplacian operator¹ (n)
2 [D (n) is defined

also in analogy with three-dimensional space,

D~n!5(
i 51

n
]2

]xi
2

. ~A7!

The Laplacian operator can be written in the form,

D~n!5(
i 51

n
]2

]xi
2

5
1

r n21

]

]r
r n21

]

]r
2

L2

r 2
, ~A8!

whereL2 is the square of the generalized angular mom
tum operator defined by the expression,
of

-

es

c

-

L252(
i . j

n

L i j
2 , ~A9!

where

L i j [xi

]

]xj
2xj

]

]xi
. ~A10!

The hyperspherical harmonics are defined25 as the eigenfunc-
tions of L2,

L2YL~V!5l~l1n22!YL~V!, ~A11!

which is analogous to the relation,

L2Yl m~V!5l ~ l 11!Yl m~V!, ~A12!

satisfied by the ordinary, three-dimensional, spherical h
monics. The subscriptL is a combined index, analogous t
the indexL5(l ,m) in three dimensions. It denotes a set
indices,L5(l,m1 ,m2 ,•••), also usually written in the con
densed notation,L5(l,m). The spherical harmonics form
an orthonormal set on the unit sphere inn-dimensional
space,

E dV YL8
* ~V!YL~V!5E dV Yl8m8

* ~V!Ylm~V!

5dll8dmm8, ~A13!

wheredmm8 implies m15m18 , m25m28 , etc. The solid angle
elementdV integrates to then-dimensional solid angle,

I ~0!5E dV5E sinu1
n22sinu2

n23
•••

3sinu1dun22dun23•••du1df

5
2pn/2

G~n/2!
, ~A14!

whereG(x) is the G function. Forx integral,G(x)5x!. In
four-space, L5(l,m1 ,m2), where 0<m1<l, and
2m1<m2<m1, so that the degeneracy associated with
given l equals (l11)2. An extensive discussion of the hy
perspherical harmonics with many applications to quant
physics is given by Avery.25

2. Gegenbauer polynomials and the addition theorem

In n-dimensional space, the Gegenbauer polynomi
Cl( r̂ 1• r̂ 2), are defined so that for any vectorsr1 and r2,

1

ur12r2un22
5

1

~r 11r 222r 1r 2cosv~n!!
~n22!/2

5
1

r .
n22 (

l50

` S r ,

r .
D l

Cl
a~ r̂1• r̂2!, ~A15!

wherer . (r ,) is the larger~smaller! of the lengths of the
vectorsr1 and r2. In three dimensions, this reduces to t
familiar expansion in terms of Legendre polynomials,
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1

ur12r2u
5

1

r .
(

l 50

` S r ,

r .
D l

Pl ~ r̂1• r̂2!. ~A16!

In general, the Gegenbauer polynomials are given by
expression,25

Cl
a~ r̂• r̂ 8!5 (

t50

[1/2l]
~21! t@al2t~2r̂• r̂ 8!#l22t

t! ~l22t !!
, ~A17!

where

a[
1

2
n21 ~A18!

and

~a! j[a~a11!~a12!•••~a1 j 21!. ~A19!

In Eq. ~A17!, the symbol@ 1
2 l# stands for the largest intege

smaller thanl/2.
The n-dimensional Gegenbauer polynomials satisfy

addition theorem which is exactly analogous to the cor
sponding result in three space,

Cl
a~ r̂• r̂ 8!5(

m
KlYlm* ~V!Ylm~V8!, ~A20!

whereV (V8) are the directional angles defined by the ve
tors r and r 8, and

Kl5
~n22!I ~0!

n12l22
. ~A21!

For n53, this expression reduces to the familiar result,

Pl ~ r̂• r̂ 8!5
4p

2l 11(m Yl m* ~V!Yl m~V8!. ~A22!

3. Green functions

It can be shown25 that @1/(ur2r 8un22)# is the Green func-
tion for then-dimensional Laplacian so that

D~n!

1

ur2r 8un22
52~n22!I ~0!d~r2r 8!, ~A23!

whered(r2r 8) is then dimensional Diracd function.
In general, given a differential operatorD (n) in n space,

the corresponding Green function is defined formally
means of the identity,

D ~n!G~n!52~n22!I ~0!I . ~A24!

The symbolI represents the identity in the sense of distrib
tions. Thus, in the coordinate representation, we have

D ~n!~r !G~n!~r2r 8!5d~r2r 8!, ~A25!

where it is convenient to absorb the inverse of the prefa
2(n22)I (0) into the definition of the Green function.
e

n
-

-

-

r

4. Expansions in spherical functions

As in three space, a plane wave inn dimensions can be
expanded25 in terms of Gegenbauer polynomials and hyp
spherical harmonics,

eik•r5 (
l50

`

i l~n12l22!~n24!!! j l
n~kr !Cl

a~ k̂• r̂ !

5~n22!!! I ~0!(
l

`

i l j l
n~kr !(

m
Ylm* ~ k̂!Ylm~ r̂ !.

~A26!

Here, then-dimensional spherical Bessel function is defin
in terms of ordinary Bessel functions,

j l
n~x!5

G~a!2a21Ja1l~x!

~n22!!! xa
5(

t50

`
~21! tx2t1l

~2t !!! ~n12t12l22!!!
.

~A27!

It is easily checked that in three dimensions Eq.~A26! re-
duces to Bauer’s identity,

eik•r54p (
l 50

`

i l j l ~kr !(
m

Yl m* ~ k̂!Yl m~ r̂ !. ~A28!

The n-dimensional plane waves are solutions of t
n-dimensional Helmholtz equation

@D~n!1E#C50, ~A29!

whereE5k2, and satisfy the usual conditions of orthono
mality and completeness,

1

~2p!nE dnrei r•~k2k8!5d~k2k8!, ~A30!

and

1

~2p!nE dnkeik•~r2r8!5d~r2r 8!. ~A31!

It follows that any function of the coordinates i
n-dimensional space can be expanded in plane waves.
example, the Green function of the generalized Laplac
operator can be written in the form

1

ur2r 8un22
5

~n22!I ~0!

~2p!n E dnk
1

k2
eik•~r2r8!. ~A32!

It can be checked25 that this function satisfies the definin
equations for the Green function, Eq.~A24!. For n53, the
last expression reduces to

1

ur2r 8u
5

1

2p2E d3k
1

k2
eik•~r2r8!, ~A33!

while for n54 we have

1

ur2r 8u2
5

1

4p2E d4k
1

k2
eik•~r2r8!. ~A34!
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In addition to the Green functions of the Laplacian, we a
need the Green functions of the generalized Helmholtz
erator which are defined by means of the relation,

~D~n!1E!G~E;r2r 8!5d~r2r 8!, ~A35!

where a factor of2$1/@(n22)I (0)#% has been absorbed int
G. In what follows, the dependence of the Green function
the energy will not be shown explicitly unless it is necess
to clarify the content of the discussion. We note that in
limit E→0 the Helmholtz operator becomes the Laplace
erator and correspondingly the Green function of the form
becomes that of the latter.

The Green function introduced in the last equation can
expanded25 in hyperspherical harmonics in the form

G~E;r2r 8!5(
L

2

~rr 8!a
I l1a~kr,!

3Kl1a~kr.!(
m

1

Kl
Ylm* ~ r̂ !Ylm~ r̂ 8!,

~A36!

where I l1a and Kl1a @a5(n/2)21# are modified Besse
functions, being, respectively, the regular and irregular so
tion of the modified Bessel equation inn space. We empha
size the condition placed on the arguments of these funct
in the last expansion. This expansion converges only w
the smaller of the two vectors is associated withI l1a and the
larger withKl1a .

Defining the functions

JL~kr !5A 2

Kl

1

r a
I l1a~kr !Ylm* ~ r̂ ![ j l

n~kr !Ylm* ~ r̂ !,

~A37!

and

NL~kr !5A 2

Kl

1

r a
Kl1a~kr !Ylm~ r̂ ![nl

n~kr !Ylm~ r̂ !,

~A38!

we can write

G~r2r 8!5(
L

JL~kr,!NL~kr.!. ~A39!

The functionnl
n defined above is the modified spherical Ne

mann function. We can also define the modified spher
Hankel functions of the first~1! and second (2) kinds

hl
n~6 !5 j l

n6 inl
n , ~A40!

and the function

HL
6~x!5hl

n~6 !~x!Ylm~ x̂!. ~A41!

Denotingh1 simply byh, we can also write the expansion o
the Green function of the Helmholtz operator in the form

G~r2r 8!5(
L

JL~kr,!HL~kr.!. ~A42!
o
-

n
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e
-
r

e

-

ns
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All the relations exhibited above reduced to well-known31

results in three space. Also, it is always possible to use
perspherical harmonics which are real in which case the d
ignation of complex conjugates is not necessary.

5. Expansions about shifted origins

We now derive a number of useful relations connect
the Bessel functions of argumentr1a to their undisplaced
values atr . From Eq.~A26!, we have

eik•~r1a!5~n22!!! I ~0!(
l

`

i l j l
n~kur1au!

3(
m

Ylm* ~ k̂!Ylm~r1̂a!

5@~n22!!! I ~0!#2(
l1

`

i l1 j l1

n ~kr !(
m1

Yl1m1
* ~ k̂!

3Yl1m1
~ r̂ !(

l2

`

i l2 j l2

n ~kr !(
m2

Yl2m2
* ~ k̂!Yl2m2

~ r̂ !.

~A43!

Multiplying the two expansions byYl3m3
( k̂), integrating

over the angles ofk̂, and using the orthonormality propert
of the hypespherical harmonics and the definition in E
~A37!, we obtain the expansion for the shifted Bessel fun
tions

JL@k~r1a!#5~n22!!! I ~0!(
L8

gLL8~a!JL8~kr !,

~A44!

where the expansion coefficientsgLL8(a) are the matrix el-
ements in an angular momentum basis of the transla
operator31 and are defined by the expression

gLL8~ka!5~n22!!! I ~0!

3(
L9

i l82l1l9C~L,L8,L9!JL9~ka!,

~A45!

with C(L,L8,L9) being a generalized Gaunt number, or
integral of three hyperspherical harmonics,

C~L,L8,L9!5E dV YL* ~V!YL8
* ~V!YL9~V!.

~A46!

Now, Eq. ~A44! can be written in a vector/matrix notation

uJ@k~r1a!#&5g~ka!uJ@k~r !#&, ~A47!

where the symbolu & denotes a ket vector whose compone
are indexed byL, and the matrix elements ofg(a) are given
explicitly in Eq. ~A45!. We note that since the translatio
operator is unitary, we have

g~ka!g~2ka!5g~ka!g†~ka!51. ~A48!
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Expansions analogous to that foruJ@k(r )#& hold for the
modified Neumann and Hankel functions. For example, n
ing that for any vectors such thatuRu.ur u, there exist other-
wise arbitrary vectors r such that ur2ru,uRu and
uR2r u.uru, we have

G~r2r2R!5^H~kR!uJ@k~r2r!#&. ~A49!

We can also write

G~r2r2R!5^H@k~R2r !#uJ~kr!&. ~A50!

This expression can be compared to the previous one an
view of Eq. ~A47! yields the expansion
a

in

c
ta
oin

un

d

h

t-

in

uH@k~R2r !#&5g~kr !uH~kR!&5G~kR!uJ~kr !&.
~A51!

Here we have defined the real-space,n-dimensional structure
constant in terms of its matrix elements

GLL8~ka!5~n22!!! I ~0!

3(
L9

i l82l1l9C~L,L8,L9!HL9~ka!.

~A52!

These expansion relations are straightforward generalizat
of the corresponding ones in three-dimensional space.29,31
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