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The locally self-consistent Green's functiehSGF method is an ordeld method for calculation of the
electronic structure of systems with an arbitrary distribution of atoms of different kinds on an underlying
crystal lattice. For each atom Dyson’s equation is used to solve the electronic multiple scattering problem in a
local interaction zon€LIZ) embedded in an effective medium judiciously chosen to minimize the size of the
LIZ. The excellent real-space convergence of the LSGF calculations and the reliability of its results are
demonstrated for a broad spectrum of metallic alloys with different degree of order. The relation of the
convergence of our method to fundamental properties of the system, that is, the effective cluster interactions,
is discussed.S0163-18207)06740-4

I. INTRODUCTION involves large amounts of data that are needed only by the
mathematical diagonalization, hence BéN?) scaling, and

Within the past two decades, density functional théory not by DFT in the construction of the electron density and
(DFT) has become a standard method of calculation in seviotal energy. As we shall show, the site-diagonal block of the
eral branches of physics, including that of calculatingGreen’s function matrix for a particular atom in a large sys-
ground-state properties of solids. In the latter branch almogem may be obtained with sufficient accuracy by considering
all calculations rely on the Kohn-Sham approaghwhich  only the electronic multiple scattering processes in a finite
one solves a set of effective one-electron equations with aegion of space containinyl atoms and called the local
particular choice of basis functions. In a periodic system thisnteraction zongL1Z).2%2° This multiple scattering problem
leads to a Hamiltonian matrix, which upon Fourier transfor-scales agd(M?), but when it is applied, in turn, to each
mation to reciprocak space has a dimension proportional to atom in the unit cell the combined computational procedure
the number of atoms! in the unit cell. The computational exhibits the desired linear scaling kh with a prefactor de-
effort of the corresponding eigenvalue problem scales aptermined byM and by the number of basis functions.
proximately asO(N®) and most current DFT methods are  In the O(N) methods based on the Green’s function ap-
therefore limited to unit cells with a few hundred atoms.proach suggested in Refs. 14 and 18-20 this prefactor is
Hence, if one needs to calculate the total energy of severaletermined either by the convergence of the truncated series
thousand atoms, as one may in studies of local environmemf the recursion methd&*8or by the real-space convergence
effects in alloys or simulations of nanoscale materials, theof the multiple scattering processes of the locally self-
scaling properties of the computational technique must beonsistent multiple scattering methtt?® In both cases,
improved. however, the system beyond the truncated region is ne-

Several computational techniques with better scalingylected and one needs relatively lafdevalues to obtain an
properties, so-called(N) methods for DFT, have been accurate total energy. Recently, Abrikoseval?! showed
proposed~2? They are all based on the assumption, tacitlythat the size of the LIZ and hence the computational effort
assumed in most solid-state calculations, that a change in anay be considerably reduced by embedding the truncated
external potential at sufficiently large distances has no effectsegion in an effective medium. This embedding may be es-
on the property, e.g., the total energy, under consideratiortablished by means of the Dyson equation connecting the
One example is the neglect of surface effects in ordinarydesired Green'’s function to the Green'’s function of a refer-
bulk calculations. This has been elevated recently to a prinence system that may have much higher symmetry than the
ciple of nearsightedne€sand should not be confused with system under consideration. The problem is thereby reduced
the length scale expressed, for instance, in the form of localto that of finding an effective medium that at the shortest
ized orbitals’~’ short-ranged density matricBs? or tight-  possible distance is viewed by the central atom of the LIZ as
binding modeld3-1° the system under consideration, i.e., the effective medium

The O(N) techniques based on a Green’s function ap-that makes the central atom in the LIZ nearsighted.
proach in Refs. 14 and 18-21 owe their favorable scaling In the present paper we discuss the recent locally self-
properties to the fact that the electron density, which is theonsistent Green’s functioLSGF technique proposed by
fundamental quantity in DFT, is obtained solely from the Abrikosov et al?! We make a detailed analysis of the tech-
site-diagonal blocks of the Green’s function matrix. It fol- niqgue and demonstrate that it is numerically efficient, scales
lows that the conventional approach, i.e., diagonalization ofinearly with the number of atoms in the system under con-
a Hamiltonian or inversion of a Green’s function matrix, sideration, and provides an equally adequate description of
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ordered, random, and segregated phases. The analysis is il-

| |
lustrated by results for the total energy and state densities Q O:. ‘ O O:. .

derived from a broad spectrum of intermetallic compounds n [
formed between simple, transition, and noble metals having O .'Q O O .'Q Q

different crystal structures, degree of order, or tendency to- Q Q:_‘ O Q O:_. Q

wards ordering. Where possible we compare our results with

those obtained by other first-principles methods to justify the ‘ O:O O ' @:O O
reliability and generality of the present LSGF method. O O:‘ . @ O:‘ ‘

The LSGF method turns out to be especially fruitful and

effective for systems with arbitrarily distributed atoms of O ‘:Q O O ‘:O O

several components on an underlying crystal lattice. In the O Q:—. O Q O:_‘ O

LSGF such systems are modeled by a supercell with periodic | |
boundary conditions and due to the orderscaling of the . Q'O Q . O‘O O
| |

computational efforts with respect to the size of the supercell

we may choose this cell sufficiently large to represent the F|G. 1. In the LSGF method an infinite system with an arbitrary
physical properties of the problem at hand. The efficiency isjistribution of atoms of different kinds on an underlying crystal
achieved by a combination of the concept of a local interactattice is modeled by a supercell bfatoms with periodic boundary
tion zone, which leads to the ordirscaling, a judiciously conditions.

chosen effective medium, which reduces the size of the local

interaction zone and thereby reduces the prefactor in thatom centered effective potential, and the sum runs over the
orderN scaling, and the application of the linear one-all atomic sitesR in the system. Given the electron density
electron methods of Anderséhwhich typically reduces the
computational effort by an order of magnitude. The limita- B 2
tion is that one is restricted to a lattice supercell. nR(r)—Z (NI, 2)

occ

calculated from the solution to E€{l), the potential&/g may
Il. LOCALLY SELF-CONSISTENT be obtained in the ASA 3%26

GREEN’'S FUNCTION METHOD
ng(r')y 2Zg
|r—r’|_ r +ch[nR(r)]

In this section we outline ouD(N) technique, which is VR(r)zgf d3r’
based on a Green'’s function approach in conjunction with a Sr
linear muffin-tin orbital(LMTO) basis in the atomic sphere

approximation(ASA) of Andersen and co-workefs-2’ We 4 1 S MrrQr' . @)
first write down the expression for the total energy in the S®

qual dgnsity approximatio(LDA) and its spatial decompo- Here the integral is over the atomic sphere of radgsen-
sition into atomic spheres. We then reformulate the probler‘qereol atR, Zx, is the atomic number of the atom Bt Ny is
) R R

in the Green’s function language, which only requires thethe electron density obtained from the Kohn-Sham one-

solution of the multiple scattering problem in a finite region : . .
i electron wave functions/, is the exchange-correlation po-
of space, the LIZ, and thereby leads to @GN) technique. : e . : .
' " : tential, S the average Wigner-Seitz radiu , is the
We subsequently introduce the concept of an effective me; ’ 9 g M re

) : . e adelung matrix for the supercell &f atoms, and)y is the
dium and show how this may be used to obtain a m|n|m<'i_t\]/|et charge of an atomic sphere given by

local interaction zone and lead to a considerable increase in
computational efficiency. Finally, we show how the real-
space convergence @(N) techniques of the present kind QR:J' d3rng(r)—Zg. (4)
may be understood in terms of interatomic potentials and SR
how these may be used to establish the optimal size of thevith the above assumptions the desired total energy per
LIZ for a given system. atom may be calculated as the average oveNaditoms in

the system, i.e.,

A. Total energy in the ASA N

Let us consider the problem of calculating the total energy Etot=(N)‘12 Er, 5)
of a system ofN atoms in a supercell subjected to periodic R=1
boundary conditions such as illustrated in Fig. 1. We assum@here the site projected enery has the forrf?
that the atoms may be of different types and distributed with
a specified degree of order. Within the LDA to DFRefs. 1
and 2 we may solve the Kohn-Sham equations

EszEFdEEhh(E)—fS d3rnR(r)VR(r)+L d3rng(r)

s NR(I')  2Zg
-V VR(r)><pi(r)=si¢i(r), (1) X O = T e nR(D]
R R
. . . 1
wherer is a radius vectory; is the one-electron wave func- + — E Mgr QrQk' - (6)
tion, g; is the corresponding one-electron eneryg, is an 2SR
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Here Ng(E) is the local state density at si® calculated written in terms of the partial waveg(r) of angular mo-

from the one-electron spectrum of E@), ¢,. the exchange-
correlation energy density, arik the Fermi energy. A de-

mentuml, their energy derivativeg(r) and ¢(r), and the
moments of the state density calculated as the contour inte-

tailed derivation of the total energy expression in the ASA,gral over the occupied valence states
LDA, and frozen core approximation has been given for the

impurity case by Gunnarssat al?®

B. Green’s function formulation

[

qa'q 1 Er q’ y qu
mRL/L//:ﬁ dZ(Z_EvRV) GRL/,RL//(Z)(Z_ EVRIIV) ,
(12)

The Kohn-Sham equatiorf¢) and(2) may be formulated whereE, g, is the energy used in the LMTO expansion. In
in terms of Green's functions. This problem has been disthis case the real-space Green’s function maBiXis ob-

cussed by a number of authdfs3° Within the LMTO for-
malism the two equations are replacedy

[P(2)-S(k)]g(k,2) =1, @)

and

ng(r)= %EF%G(r,r,z)dz. (8

HereP is the diagonal LMTO potential-function matrig(k)

tained fromg by the LMTO transformation theof§ and the
relevant equations for the present implementation may be
found in Ref. 31. Finally, the sum of the one-electron ener-
gies may be obtained from

Er
f dEEI\h(E>=;§<EVR|m%°LL+mé%L (13)

and we have the necessary information to calculate the total
energy(6).
A direct solution of the Kohn-Sham equations in the con-

the structure constant matrix in the tight-binding representaventional formulation(1) using a basis wittN, orbitals per

tion, andg(k,z) the Korringa-Kohn-RostoketKKR) -ASA

atom requires the solution of an eigenvalue problem of order

Green’s function matrix in reciprocal space and defined for aNx N, , the computational effort of which scales approxi-
complex energyz. The corresponding real-space Green’smately asO(N®). Similarly, a direct solution of the Kohn-

function G(r,r,z) may be obtained frony as’®?°
G(r+R,r'+R’,2)

B H(r,Ce(r',Cy)
_; Z_C|

YL(P)YL(T') rpe

+ 2 (1, 2P (DY (P grLprii(2)

L,L’
—Pi(2) 2L PH(2) Y2y (1 2) YL (F), 9

wherer is restricted to the atomic sphere centere®ap is
a partial wave evaluated at the complex enezgyr at the
centerC, of thel band,Y is the lattice harmonics is the
energy derivative of the LMTO potential function, ahdis
the combined angular-momentum quantum numbgns)(
The real-space KKR-ASA Green’s
OrLrL(2) that enters Eq(9) is obtained fromg(k,z) by
integration over the Brillouin zone

QRL,R'L'(Z)=(VBz)_lfBdeeik'(T_T,)QUL,U'L'(k.Z),
(10

function matrix

Sham equations in the Green’s function formulati@n re-
quires the inversion of matric¢®— S] also of ordeMN X N

and the computational effort again scales approximately as
O(N®). Hence, so far we have gained nothing in terms of
computational efficiency relative to the conventional formu-
lation.

At this stage we note that it is only the site-diagonal block
Gkg (or grr) Of the Green’s function matrix that is required
in the construction of the key quantities, i.e., electron density
and total energy, through the energy moments of the state
density (12). It follows that if there exists a procedure
whereby onlyGkr may be calculated without the inversion
of the complete Green'’s function implied in E@), one has
sufficient information for the LDA self-consistency proce-
dure.

C. O(N), local interaction zone, and effective medium

The experience gained in the application of real-space
cluster methods in electronic structure calculations shows
that for a large cluster the properties of an atom deep inside
the cluster are very close to those given by band structure
methods. This suggests that the electron density and the den-
sity of states on a particular atom within a large condensed
system may be obtained with sufficient accuracy by consid-

whereU is a basis vector of the unit cell and connected to theering only the electronic multiple scattering processes in a

lattice siteR by a translatiori, i.e., R=U+T.

finite spatial region centered at that atom. As a result, one

The most efficient way to obtain the necessary electromay introduce the concept of a local interaction zone applied

density is provided by the LMTO one-center expansion

nR<r)=<4w>*1§ {[ri(r) 1m0,

+2[ $ri(1) bri(1) IMEL L + [ ri(r) bri(T)

+ pri(F) ri(r)Im (11)

by Nicholsonet al'*#in the framework of the locally self-
consistent multiple scattering.SMS) method and later by
Abrikosovet al?! in their preliminary account of the present
work. The latter authors also introduced the concept of an
effective medium, which we shall now describe.

Let us choose a reference system, which we will call the
effective medium, by placing effective atoms on the lattice
underlying the original supercell shown in Fig. 1. The effec-
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(a) where the sum runs over thé atoms in the LIZ2* Note that,
. . [ although the entire Green’s function matgy. g does not in
S0000000 v e considerat
e < ) : general correspond to that of the system under consideration,
6000000 OO __ the site-diagonal bloclkygg will approach that of the real
: : atom atR for a sufficiently large LIZ. In this sensgy g will
) OO be locally self-consistent. The matrix problem in E#4) is
EPld) @& of order MXN, and the computational effort scales as
__i___i__ __+ __ Q(M3), which upon a judicious choice of .the effective me-
: : . : ;ji:)unrgl g?%sg)eprc;%rgsi(a?t))ly reduced relative to the conven-
l 1 ) :
T ) ' & Since it is only the site-diagonal blocks of the Green’s
(b) @ function matrix that are needed to determine the charge den-
| N | 0 sity, the one-electron potential, and the total energy of the
i) OO GO &S supercell, we may now devise the followii@(N) method.
__LA_‘L__ __L___L__ Calculategrg for a particular atom in the supercell by form-
: : @ : 7: |(;1fgf the associateciljI LIZ and :;olving E(g_4). Then move to _'T\ A
GEOOO@DOD .(Q.@l ifferent atom and repeat the procedure. Continue until the
: C YO QI :;. @ Oi atoms in the supercell have been exhausted. Thereby, the
:Q: :f } o solution of the Kohn-Sham equation§) for the entire
PO OO OO -1 —“Q—Q,*—— N-atom system is decomposed iMandependent problems.
: : : : The procedure is clearly one way to calculate the site-
OOOOOHOO QOOOBOB®

diagonal blocks of the Green’s function matrix for the entire
N-atom system without calculating a large number of unim-
portant off-diagonal elements and without introducing ap-
h;?roximations such as the diagonal disorder model.

The cogmputational effort of the complete procedure scales
i L : asO(NM*®) and we expect the size of the elementary com-
moved to another siteand it will be moved through all the sites of putational problem connected with the LIZ, .84, to de-

the supercell. Note that the distribution of atoms in the LIZ is es- d h . . h derlving latti b
sentially the same as in the original system and we make use of gfaend on the atomic species, the underlying lattice, but not on

periodic boundary conditions when forming the LIZ for the atomsN- We note that thé\ elementary problems are independent
close to the boundaries of the supercell. The size of the LIZ can b@f @ach other and that the algorithm therefore is ideal for
different, as shown ittd), and it depends on the types of the atoms implementation on massive parallel computers.

constituting the alloy, on the degree of order, etc., but not on the
size of the supercell. See the text for a complete discussion.

FIG. 2. Main idea of the LSGF method. (8) we show effective
atoms distributed on the same underlying lattice as the atoms of t
original system in Fig. 1. The local interaction zone around isite
embedded in the effective medium, is showrtbin In (c) the LIZ is

D. Choice of effective medium

tive atoms are represented by their potential functibps ~ Provided one applies a sufficiently large LIZ, the local

which on the average describe the properties of the origindteraction-zone concept does not include any new approxi-
system as close as possible, and their Green’s fungtiomy ~ Mations in the solution of the KKR-ASA equatiofig) and

be obtained fromER and the structure constan&of the the _mtroductlon of an gffectwe medium may be seen as a
underlying lattice by solving Eq(7) in the conventional dgwce to reduce the size .Of the LIZ as muph as possible.
manner. Since the effective medium constructed in this way> 1c€ the Dyson equation is exact, there exists a number of

. . different choices for the effective medium, all of which will
has t.h.e full symmetry O.f the underl.ylln_g Iattlce. and may beIead to the same solution to E() but have different con-
specified by a small unit cell containing effective atoms,

. L : . vergence properties in real space. One may therefore try to
the corresponding matrix inversion problem is only of orderg "o effective medium that is localized in the sense that
NXN_. Hence the computational effort of constructing theg__ <1 for R’ outside the smallest possible LIZ centered at
effective medium, which scales &N®), may be neglected R: and in that case the summation in Ei4) may be trun-
in the limit N>N. cated at a very smaM value. However, there exists a mini-

Following Nicholsonet al,**?°we now surround an atom mum lengthD that is the range over which a perturbation,
at siteR by M —1 neighboring atoms, forming ai-atom  such as a single impurity in an ideal H8t*?°330or an
local interaction zone. However, instead of solving the localinterface® % makes its presence felt, and this ultimately
multiple scattering problem directly, as it is done in the determines the size of the LIZ that may therefore be larger
LSMS method, we embed each local interaction zone in théhan the range over whidfirg is localized. We discuss this
effective medium constructed above. The procedure is illusissue in Sec. Il E.
trated in Fig. 2. As a result, the Green'’s function for the LIZ  In choosing an effective medium we try to satisfy three
is now given by the Dyson equation, which for the Green’scriteria. First, we look for an effective medium with scatter-
function matrixgrg at the central sit®R may be written as  ing properties as viewed by from the central atom of the LIZ

as close as possible to those of the supercell system at the
M shortest possible distance. Second, the Green’s function of
grr=Orrt 2 'QRR,(ER,_ Pr)OR'R, (14) the effective medium must be localized in r_eal space at the
R'=1 range of the screening lengih of a perturbation in the po-
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tential energy. Finally, we require the effective medium to besupercell is considered to be a component oNaatom al-

as simple as possible, i.e., a single site. loy. On the other hand, in thB2 alloy mentioned above
If we consider the trivial example of a monatomic solid there will beN,= 3N components in the alloy formed by the

with a Bravais lattice, e.g., fcc Cu, one may immediately

. . . . . . sites of thex sublattice andN ;= N components in the allo
specify a perfect effective medium. We simply identify the B2 P y

. . : . formed by theg sites. We thereby assume that the atoms are
effecﬂ_vE atoins V.V'th the .hoft C_u atoms, and_ in this case fandomly distributed on their sublattices and neglect the fact
LIZ with M=1, i.e,, a single-site LIZ including only the h4t they occupy definite positions in the system. The differ-
atom atR, is sufficient for an exact solution of the electronic gnce petween different atonfsr alloy componentswill en-
structure problem. If, on the other hand, we consider an orgg, through their one-electron potentials.

dered or partially ordered intermetallic compound, e.g., NiIAl 14 getermine the potential functions for the effective at-
in the B2 structure, there are at least two obvious choices fop s and the Green’s function of the effective medium one
the effective medium. First, one may view the compound asnst solve the following system of coupled single-site equa-
a distribution of atoms on the underlyi8p lattice with two  tjons for the a sites in the unit cell of the underlying
types of effective atoms, one for the (i.e., Ni) sublattice |gttice3142

and another for thg (i.e., Al) sublattice. This will, by defi- '
nition, lead to a single-site LIZ, essentially as in the previous - 4 ~ _
case of a pure element. However, the effective medium itself Jaa=(Ve2) fBde{[P—S(k)] Faas
becomes more complicated because the unit cell of the un-
derlying lattice consists of two atoms. Alternatively, one
may view the compound as a distribution of atoms on an
underlying bcc lattice with one type of effective atom that
must be defined as some kind of “average” atom. Tua=(N) 1> 0%, (15

The last example leads us to the well-known alloy prob- Rea
lem with its hierarchy of single-site approximations for the 4 similarly for theg sites. HereVg; is the volume of the
effective medium increasing in accuracy from the virtualgyjiouin zone of the underlying unit cell and the integration
crystal approximation over the averagenatrix approxima- - js gver the corresponding Brillouin zone. An efficient tech-
tion (ATA) to the coherent potential approximatig@PA). nique to solve these equations is discussed in the Appendix.
All of these approximations may be used to generate the It is important to note that the Green’s functigﬁa de-

eﬁepuvle meclitlum,btand \(/jve V\t/w ;}peit:_(f"y goggire ]ffhetnu'fined in Eq.(15) is not equal to the desired Green’s function
merical resulls obtained wi N an efiective rr because the former is determined by the solution of the

media in Sec. VI B. From the experience gained in the StUdzingle-site Dyson equation while the latter is the site-

of aIons_one expecis the CPA to lead to the fastest COnver(fiiagonal block of the Green'’s function matrix determined by
gence with respect to the size of the LIZ, at least for com-, o cluster, non-single-site Dyson equatidd) for the LIZ.

pIe_ter random "’P”OYS- .In fact, the CPA effective med'umConsequentIy the LSGF method with the CPA effective me-
fulfills all three criteria listed above and in particular gives a4ium must no’t be considered as a simple generalization of

very good description of the scattering properties of a COMine CPA, such as the molecular CPA. In the present context
pletely random alloy, whereby the central atom of the I‘Izthe effective medium is used only to improve the conver-

starts to “see the effective medium as the real system a3ence in real space, i.e., reduce the size of the local interac-
soon as an mterchange of aIIo_y components on the Iatt|_c on zone. Hence it is unimportant whether or not the effec-
tsrl]tes becor?esa%m’ilnporthant. Th'ShShof[Jrlld be ;:orlmtr?ste?j Withve medium describes the average alloy properties exactly
eiconven '9{2. ( b) sC g”_‘tes w erle_IZeI(::_en Irla ihomcgisbecause a slightly larger LIZ may compensate for the inac-
no se,e anything beyond 1ts own - Fnally, the curacy. In addition, by keeping our effective medium a
Green's function decays, apart from an oscillating factor, ex—Sirlgle site we obviously also keep the correct analytical

: 1R -
ponentially aR “*e”™", wherel is the mean free pafft.and properties of all the Green’s functions involved in the LSGF

the CPA gﬁfectlve me_dium Is a single site. technique, i.e., the effective medium Green’s function and
Our original goal is to calculate the total energy Bf . ot the LIZ.

atoms in a supercell. Although this supercell may contain
atoms of, for instance, only two types, sayandB, all theN
atoms will in general be inequivalent due to differences in
their local environment. These differences are completely ig- The properties of the effective medium are not the only
nored in the two component CPA, but may to some extentfactors that determine the real-space convergence of a total
restricted by the single-site approximation, be accounted foenergy calculation. In fact, it has been shown by Gunnarsson
in the framework of the multicomponent generalization. Foret al?® for the impurity case that to obtain an accurate
example, Johnson and Pinski employed this idea in theichange in the total energy upon the introduction of an impu-
charge-correlated CPR.Here we will define the effective rity at a particular site one must sum only over the sites
medium to be used in the embedding of the LIZ as that givenwhere the potential is perturbed. Although this range is
by the CPA for a multicomponent and, if necessary, multi-smaller than the range of the perturbation of the wave func-
sublattice alloy. The number of components at each sublations, it may be larger than the localization range of the
tice will be equal to the number of equivalent positions in theeffective medium and thereby effectively determine the size
supercell formed from the underlying lattice, i.e., in the sim-of the LIZ. Here we demonstrate that the convergence of the
plest case of a monatomic underlying lattice each atom in théotal energy in the LSGF method is also governed by the

g%azaaa+§aa(5a_ PR)g%a’

E. Relation to interatomic interactions
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potential and that the size of the LIZ may be estimated fromheory and they usually decay very slowkhgcos(gr)/r®

the range of the effective interatomic interactions. To do sawith distancer.*>** For transition metals the decay of the

we will apply a simplified model that, however, reflects the pair potentials may be estimated from surface calculations,

basic features of the physics outside of the effective mediunyhich show that the perturbation from the surface is com-

and the LIZ concept. pletely screened at distances corresponding to seven to nine
Let us first consider a pure element in an ideal crystatoordination shells. This agrees with the results of the LSMS

lattice and assume that the total energy of a crystal With method of Wanget al,?% in which the reference system is a

sites may be written free electron gas and hengg=0 for all shells.
N In the case of a monotomic solid the convergence of the
_E present LSGF method is trivial: The effective medium is the
Ewt= 2, €, (16) S~ n)_
i=1 real atom, i.e.y,1=v,+1, and therefore;’=¢; , whereg;

is the exact valuél?) of the energy of the atom on site To
show the convergence of the LSGF method in the case of an
%Iloy we consider a model alloj.B;_. with two compo-

wheree; is the energy of the atom at théh site, which in
turn may be defined in terms of the interatomic potentials a

1 1 nents under the condition that all theatoms and all th@®
e=vV+ > > viP+ 3 > v¥+--. (17 atoms in the crystal are equivalent. This is, for instance, the
17 kL] case for a completely ordered alloy with two type of sublat-

Here v(®, Ui(jZ)! and Ul(le»k) are the on-site interaction, pair tices, where the local environment of all thesites as well
potential, and three-body potential acting among atoms &S all theB sites is exactly the same. The effective medium
sitesi, j, andk and all summations run over the entire crys- 1" the LSGF method is now the completely random alloy of
tal. Without loss of generality we may assume that all many/ @ndB atoms and therefore the change in the energy of an
body potentials starting from three-body terms vanish. At™ &0m upon an increase in the size of the LIZ by one coor-
least they normally fall off much faster with distance thandination shellis

the pair potentials. SHD_ (4 ()
Similar to the LSGF method, we introduce a LIZ around A iA A
each atomic site and inside this LIZ we have the real atoms m
. . _ o ntl- A AA A AB _ ~AX
of the system and outside we place effective atoms. If the =5 [Cnravnii T (1=Chig)vnii—vnial-
LIZ includesn coordination shells, the energy of the central
atom in each LIZ is given by (20
10 s Herev/h2, is the pair potential betweeh andB atoms at the
eM=pM+ = > M+ = > Mo, (18  distance of therf+ 1)th coordination shelkh, ; the concen-
21 ! tration of the A components in then+1)th coordination

shell of theA atom, andv’4%, the pair potential between

wherev =v{? with j in the &h coordination shelly is the : _ )
atom A and the chosen effective medium. If the effective

pair potential between the real atomiaand an effective J e
atom in theth coordination shell, anah, is the coordination Medium is exactly that of the completely random alloy then
¢ AX =cuh® +(1—c)vhB,, and if we note that for a given

number. Therefore, an increase in the size of the LIZ by on&n+17 “Un+17 )

coordination shell, i.e., from to n+ 1, will cause the energy atomic distribution the concentratiag, ; may be expressed

of each atom in the crystal to change by through the Warren-Cowley short-range order parameter
asci=c+(1—c)e, we find that

My ~
= Wns1=Tne). (19

5i(n+1): ei(n+1)_ €

Mn+1
S =5 (I=Can(vnt—onf). (D

This is illustrated in Figs. @) and Zd), where the LIZ of o . ) .

two different sizes centered at the same site of the supercefiimilarly, we find the change in the total energy of atBrm

are shown. Note that the regions inside the first shell of nearthe LIZ to be

est neighbors and outside the second shell are the same in the

two figures. Thus the only difference is found in the second 5_(g+1>:m”“CanH(UBEl_vAEl (22)

shell, where the effective atoms in Figbg are replaced by ' 2 " "

real atoms in Fig. @). and therefore the change in the total energy of the whole
Equation(19) shows that the convergence of the total eN-crystal is

ergy with respect to the size of the LIZ is completely deter-

mined by the difference between the effective medium and 5E{‘0§1=N[05§R+1)+(1—c)5f§+1)]

the real system: The closer the effective medium is to the

real system, the better the convergence. This means in par- N Mp+1

ticular that if one chooses a reference system with localized 2

interatomic interactions for which ;=0 starting from any 23

coordination shell, one would in fact not achieve fast real (23

space convergence because in this case the convergenceN® note that the last parentheses contain simply the effective

governed by the bare interatomic potentia{s). For simple  pair interactions as defined in alloy theory and therefore the

metals these potentials are estimated in pseudopotentiabnvergence of the total energy in the LSGF method in the

AA BB AB
C(l-C)ani1(vnr1tUns1—20011)-
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case of an alloy is exactly the same as the convergence of tlegent to start from the result of a conventional CPA calcula-
effective interactions. However, it also depends on the detion for a random alloy with the same composition as the
gree of the order in an alloy. supercell. We then determine the potential function for the

In the case of a completely random alloy all the short-gffective scatterer® by solving Eq.(15) and constructing
range-order parameters are zesigi=0, and it follows from  the effective medium Green'’s function for the LIZ by Eq.
Eq. (23) that it is sufficient to use a LIZ of only one atom, (1) Note thatU in Eq. (10) is a basis vector in the unit cell
i.e., the single-site approximation, to find the exact value oty te underlying lattice. We proceed by solving Ety) for
the total energy. However, this is true only in the case wherg,;cnR. Now the site-diagonal blockgxg are known for all

the chosen effective medium represents the random alloy ofioms in the system and we calculate the site-decomposed

given species exactly, because Ezf) is denv%j( undeg/t\ms Green’s functiorGFﬁ,_,’RL(z), the moments of the state den-

assumption. In general, the conditiomy’,=Cvni1 i Eq (12), and the new charge density EG.D). Subse-
+(1—c)v,y, is not satisfied and one may only conclude yany we solve Poissons equation for the electrostatic po-
that the difference in the total energy of the completely ranygnia|” add the exchange-correlation potential, and repeat the
dom alloy calculated by the LSGF method in the S'ngle's'teprocedure until self-consistency is reached.

approximation or “exactly” with a sufficiently large LIZis " the actual calculations were performed by means of the
given by the error in the approximation used in the definitiong.515r relativistic LMTO method in the tight-binding repre-
of the effective medium of the completely random alloy. Thegantation employing, p, andd orbitals in conjunction with

numerical examples to be presented later show that the CPA\q atomic sphere approximatiéi2’ The complex integrals
in fact gives a good description of the electronic structure of,ore evaluated on a semi-circular contour using 16—25 en-

a completely random alloy. er ; ot ; ;
e ) gy points distributed so as to increase the sampling near

On the pther hand, it is obvious from E(®3) that the  yhe"Formi level. Exchange and correlation were included
worst possible convergence of the LSGF method should 0Ggihin the local density approximation using the Perdew-
cur in a completely ordered alloy where all#0. In this 7, ,nger parametrizatiéf of the many-body calculations of
case the convergence of the total energy with respect to tr@epeﬂey and Aldef® The reciprocal space integrals were
LIZ size is reached at the distance over which the effective. ;- jated by means of 200—5@0points in the irreducible
interactions in the system converge and the change_ of tart of the bec or fec Brillouin zone and the off-diagonal
total energy of a completely ordered alloy as a function Ofgjements of the effective medium Green’s function were con-
the LIZ size may be used as an estimate of the value of they,cteq by means of the symmetrization technique described

corresponding effective pair interactions. However, since the, pat 50 An effective two-step procedure for the charge

Madelung potential and energy of the supercell in the LSGFsgj¢ consistency that speeds up the solution of the electronic

method are determined exactly and independently of the LIZ,ctyre problem by an order of magnitude is described in
size, such an estimate does not include the electrostatic cogsq Appendix.

tribution to pair interactions similar to those defined in Ref.
45. Finally, we note that the electrostatic contributions are
?ESM)r.IL%,ngCted in the generalized perturbation memoclk/. SUPERCELL APPROACH TO THE ALLOY PROBLEM
Concluding this section, we would like to point out that The efficiency of the LSGF method allows us to treat
the LSGF method gives us the opportunity not only to checksupercells with several hundred atoms of different types.
the convergence of the effective cluster interactions but alsghereby the method is particularly suitable for the investiga-
to calculate them and in particular to calculatetion of substitutional alloys over a broad spectrum of atomic
concentration-dependemffective cluster interactions. This configurations ranging from random to order with arbitrary
may be done by using the idea behind the well-knowndegree of short-range-order effects. The question is now how
Connolly-Williams method. That is, we calculate the total one performs the necessary average over all possible con-
energies of alloys with different sets of correlation functionsfigurations to determine the alloy properties of interest. Here
but for some fixed concentrations of the alloy componentsye are helped by the principle of spatial ergodicity, accord-
and then map these energies onto the corresponding clusti@g to which all possible finite atomic arrangements are re-
expansion. Since these calculations are fast one may perforglized in a single infinite sample. What makes this principle
a large number of them and thereby increase the accuracy @fork in practice, in fact as well as the LSGF method itself, is
the interaction parameters obtained. The resulting effectivehe fact that for a given physical properB; here the site-
cluster interactions will include not only the so-called band-diagonal block of the one-electron Green’s function matrix
energy term as in the GPM but all contributions to the totalfor each atom in the supercell, all the correlations in the
energy. Preliminary calculations have been carried out, but atomic distribution become unimportant at some distance
discussion is beyond the scope of the present paper and wilind hence the sample may be chosen finite.
be presented elsewhere. The principle may be formulated more explicitly in terms
of correlation functiondI; , which are the Gibbs averages of
the products of site occupation numbers in a particular geo-
metrical configuration of sites, or a figufe In the case of
The complete self-consistent procedure of the LSGF-CPAinary alloys it is convenient to determine the correlation
method may now be summarized. We start with a guess founctions as the product of spin variablggaking on values
the charge density of all the atoms in the system. This could-1 and—1 depending on whether sitds occupied by one
be a renormalized atomic density, but we find it more effi-or the other component, i.e.,

IIl. COMPUTATIONAL DETAILS
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Hf:<SiSj"'Sk>f. (24) 15 v T v T

It was shown by Sancheat al>! that any measurable prop-
erty P of the system may be rigorously expanded in terms of CuzsAuL
the ensemble averages of the correlation functi@ds i,

£
™
L=

P=2, M;ps, (25)
f Cug,Zn,,

@)

where summation runs over all possible figures. The coeffi-
cientsp; in the expansior{25), which are, for instance, the
effective cluster interactions # is the total energy, are usu- ) ,
ally nonzero only for some finite set of figures of nearest 100 200
sites. This means th& is only sensitive to the atomic dis- Number of atoms
tributions inside the figures for which p;# 0, and to deter- _ ]
mine the quantityP corresponding to the ensemble average F!G- 3. Total energies of random fec Eins, (circles and
values ofll; one may simply design finite N-atom periodic CusAu,s (squarep alloys calculated by the LSGF-CPA method

structure, the distinct correlation functiohk of which are relative to the energy of the corresponding ordered phiase for

| h bl f Il the fi f Cu-Zn andL 1, for Cu-Au) as a function of the number of atoms in
equal to the ensemble averagk for all t € Tigures 1or  ihe system. The energies for the ordered phases were calculated by

which p;# 0. For all other figures the conditidid;=1II; may  the conventional LMTO-GF method. The Wigner-Seitz reRljjs
be not satisfied, but this cannot influence the physical prop=2.70 a.u.(Cu-zr) and 2.80 a.u(Cu-Au) were used for both the
erty P. ordered and random alloys. The LIZ consists of one and two shells

The approach described above is the so-called speciaf nearest neighbors for the Cu-Zn and Cu-Au systems, respec-
guasirandom structuréSQS method suggested by Zunger tively.
et al>? and applied in the framework of conventional band
structure techniques. Because of the problem v@iN®) method to yield converged total energies. Here we show that
scaling, only a few SQS’s with<32 have been considered in the case of a supercell with specified correlations the pa-
for fcc and bec lattices for two concentrations, 50% andrameters that determine the convergence with respect to the
25%, and for a completely random atomic distribution insidesize of the supercell are the correlation functions up to the
the first few coordination shells. The LSGF method allowsrange of nonzero effective cluster interactions. To do so, we
us to calculate systems with up to 500 atoms even on ghoose two fcc alloys, GgZns, and CysAu,s, where the
moderate workstation. With such a number of atoms in thénost important effective interactions are those of the first
Superce” one may consider practica”y any random a||0)poordination shell as discussed in Sec. Il E. This means, as
composition with fixed correlation functions up to the sixth discussed in Sec. 1V, that to model a completely random
shell. Of course, the value of the concentration may only bélloy in these systems it is sufficient to consider a small
rational fractions with an accuracy of N/ but for many supercell and that an increase in system size will leave the
alloy problems such an accuracy is quite reasonable. total energy unchanged.

To generate a supercell with required correlation func- In Fig. 3 we present the calculated total energy of random
tions, we make use of a Metropolis-like algorithm. TRe  fcc CuspZnsg and CysAuys alloys as a function of the num-
correlation functions that we want to match determine a vecber of atoms in the supercells. These supercells are con-
tor £ in an N-dimensional space. Starting from an arbitrarystructed to have zero correlation functions for the first and
initial Conﬁguration Corresponding to some Vec&jr a par- second coordination She||S, while the correlation functions
ticular pair of atoms of different kind, chosen at random, iSfor the fOIIOWing coordination shells are allowed to be arbi-
the two atoms is calculated. If the distance in thealloy due to the initial random mixing of atoms. We find that
N,-dimensional space betwegfi and & is less than the dis- converged_results are obtained with a LIZ of one_sheII of
tance betweed’ and &, the exchange is accepted: otherwisenearESt_ neighbors for thg Cu-Zn alloy, corresponding to 13
the initial configuration is kept. The procedure is repeateditoms in the LIZ, and with a LIZ of two shells of nearest
until we have generated a configuration sufficiently close td*€ighbors for the Cu-Au alloy, corresponding to 19 atoms in
the one required. We point out that the manner in which théh€ LIZ. When the number of atoms in the supercell subse-
substitutional alloys are constructed is independent of théluently is changed for a fixed number of atoms in the LIZ
LSGF method itself. The former is a statistical problem,We find for both alloys that the total energy of the supercell
while the latter is a method to solve the electronic structurdVith only 32 atoms is within 0.1 mRy of the result for su-

problem for a given supercell with a given atomic distribu- Percell with 256 atoms. Since the distributions of atoms in
tion. the different supercells are by construction different, these

results confirm the SQS approach to the averaging problem
described in Sec. IV.

V. NUMERICAL ASPECTS
A. Convergence with respect to the size of the supercell B. Timing of the LSGF method

Within the special quasirandom structure approach the As already discussed in Sec. Il C, the computational effort
guestion is how large the supercell has to be for the LSGFof the LSGF method is expected to scaleCq(N). That this
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T - T TABLE |. Estimated number of atoms in the superdél};, at
30 b ) | which the LSGF method becomes more efficient than the
DECo-3000/600 1800 — LMTO-GF method as a function of the number of atolsin the
< > local interaction zone for a fcc underlying lattice.
o [0]
O .
<<20 600 % Number
& @ of shells M Nmin
L 4 400
%10 o 0 1 1
h fcc Cu.Zn.. 1 200 2 1 13 2
CC LUg2Ng, ] 2 19 4
\ ) . ) 3 43 28
0 50 100 150 4 55 45
Number of atoms 5 79 86
6 87 101

FIG. 4. Elapsed time for the LSGF-CPA calculations for a ran-
dom fcc CuypZngy alloy with the Wigner-Seitz radiusRyg
f2.70 a.u. as a function of the number of atoms_ln the system. Twi rocedure, this code is approximately as efficient as the con-
time scales are used. The left axis shows the time per LSGF-CP{antional LMTO code in the Hamiltonian formulatigh.
iteration normalized to that of the conventional LMTO-CPA ¢ we neglect that part of the LSGF problem that is con-
method and the right axis denotes real time in seconds per iteratio'ﬁected with the determination of the effective medi(see
The local interaction zone consists of one shell of nearest neighboréecl IlD, the computer time for the LSGF and the

(13 atoms. LMTO-GF method may be written as

is indeed true is illustrated in Fig. 4, where we plot the com- tiser= aNM? (26)
puter time per LSGF iteration as a function of the size of the, 4

supercell for the fcc Gygznsg alloy. In these calculations we

used a LIZ consisting of only one shell of nearest neighbors, t mTo-cr= BKN3, (27)
which is sufficient for convergence in the LIZ size. However

an increase in the si2d of the LIZ lead ly t i X . ;
cads only fo an Increase the number of atoms in the systeM, is the size of the LIZ,

. . 3 . .
in slope, reflecting th@(M") prefactor in the scaling, but andK is the number ok points in the Brillouin zone for the

does not influence the linear behavior seen in Fig. 4. Tosupercell. The latter may decrease with increasingso for

make the compqter time-scale r'nach.me independent we ha\é\ewhile the scaling of the LMTO-GF technique is in fact
ryormahzed 'the tl.me per LSGF |terat!on'to that of a conven-O(Nz) rather tharO(N3). However, we do not believe that
tional CPA iteration. It is worth mentioning that not only do should be much smaller than 10 and therefore assume the
we find a linear increase in the computational effort with ostimate

increasing system size, but we also find that in the limit of a

small supercell the LSGF to CPA time ratio approaches 300

unity. In fact, the absolute time per LSGF iteration is quite K= W’Llo- (28)
reasonable even though we have used only a moderately ef-

ficient work station. Note that, due to the efficient “two- From our test calculations we have determinegs~1/5,
step” iteration procedure described in the Appendix, we dovhich together with Eqs(26)—(28) leads to the following

not need more than 10—20 iterations to reach®lBy con-  €Stimate for the number of atonéy, in the supercell for
vergence. which the LSGF method becomes more efficient than the

LMTO-GF method:

"respectively, wherey,8 are proportionality constantd\ is

To implement anO(N) method one typically introduces
extra computational steps, which for small supercell sizes 225+ M350~
make the method less efficient than the conventi@@®) Nimin= 225+ M*/50~ 15. (29
method. The question is therefore at which cell size thevalues forN,,, as a function of the LIZ siz# are listed in
crossover occurs. As we shall see, the LSGF method may ifable | for the fcc structure. The calculations to be presented
favorable cases, depending on the kinds of atoms in the sy# Sec. VI show that we need to include at most three to four
tem, be as efficient as conventional techniques already farzoordination shells in the LIZ to obtain a total energy with an
one atom per unit cell. To analyze the question we haveccuracy of 0.1 mRy. It therefore follows from Table | that if
performed a series of test calculations, but before we discusge need a 100-atom supercell we are always in the regime
these in detail we point out that the comparison we makevhere the LSGF method is substantially more efficient than
obviously is computer-code dependent simply because theonventional band structure calculations.
codes even for the same LMTO method have slightly differ- In the analysis presented above we did not consider the
ent efficiencies. To represent a conventional band structurese of a parallel computer. It is in fact not easy to create
program we have used the LMTO Green's-functi(®F) efficient parallel algorithms for conventional band structure
method described in Ref. 31, which allows us to treat or-methods because the only obvious choice is a parallelization
dered compounds and random alloys, in the framework oin k points and when a minimal number of such points is
the CPA, on an equal footing. Due to a two-step iterationused the application of parallel computers becomes ineffi-
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FIG. 6. Total energies of ordere®2 structure, squargsnd
random(circles bcc NigpAl 5o alloys (Rys=2.65 a.u.) as a function
of the number of neighboring shells included in the local interaction
zone. Values obtained by the LSGF-CRlled symbolg and by
the LSGF-ATA (open symbols calculations are shown together
with the reference calculations presented as a dashedUM&O,
ordered samp)e and a dot-dashed linédLMTO-CPA, random
samplg. The LSGF calculations for the random alloy have been
performed for a supercell with 128 atoms. The LMTO-CPA calcu-
lations employed the screened impurity mod®8IM) (Ref. 53 to
account for the large charge transfer effects in NiAl alloy, and a
prefactor3=0.6 was used.

Density of states (states/Ry/atom)

the concept works by comparing the DOS calculated for an
orderedB2 NiAl alloy by means of the LSGF-CPA method
for different LIZ sizes with the result of a conventional
LMTO-GF calculation. The underlying lattice in the LSGF
calculations is bcc and the NiAl system is chosen because it
exhibits the slowest convergence with LIZ size among all the

FIG. 5. Density of states for the order&® NiAl alloy calcu-  &lloys we have considered so far. . .
lated by the LSGF-CPA method with different numbers of neigh- We observe in Fig. 5 that a single-site LIZ, i.e., a LIZ
boring shells included in the LIZ. LIZ0 corresponds to the single- Consisting of only the central atom and zero shells of nearest
site LIZ. The fully converged density of states calculated by then€ighbors, leads to a qualitatively incorrect electronic struc-
conventional LMTO-GF technique is also shown in each panel as &re. In fact, we obtain a DOS with a two-peak structure
full line. typical of a random bcc alloy. This is not surprising because
in the single-site approximation the electronic spectrum re-
cient. In contrast, the LSGF method allows for an efficientflects mainly the properties of the effective medium, which is
parallelization in the sites of the supercell, exactly as in thean effective medium for a random alloy. In contrast, the
LSMS method. This point has been thoroughly discussed b{OS calculated by the LMTO-GF method, which is the con-
Wanget al?° verged result, has a pronounced peak positioned in a valley
between the two random alloy peaks. If we now include the
first shell of nearest neighbors in the LIZ, the LSGF-CPA
DOS shows a single-peak structure in much better agreement

In this section we discuss several aspects of the LSGRith the LMTO-GF calculations. As the size of the LIZ in-
method on the basis of calculations for a number of suitablFréases the agreement between two methods gradually im-
chosen alloy systems. In particular, we discuss the two cerRroves to the extent that for five shells of nearest neighbors

tral concepts: the local interaction zone and the effective methe density of states calculated by the LSGF-CPA is well
dium. converged.

The relatively slow convergence of the density of states
with respect to the size of the LIZ may be contrasted with the
convergence of the total energy for tB& NiAl alloy shown

As stated in Sec. Il C, the concept of a local interactionin Fig. 6. In the case of the ordered atomic distribution only
zone is based on the suggestion that the site-diagonal blockise single-site LSGF-CPA result is more than 20 mRy in
of the Green'’s function or, equivalently, the local density oferror and already from a one-shell LIZ the difference is less
states(DOS) for a particular atom within a large condensed than 1 mRy/atom. This result reflects the variational prin-
system may be obtained by considering only the electroniciple, which ensures that the total energy converges over a
multiple scattering processes in a finite spatial region, théength scale determined by the perturbation of the
LIZ, centered at that atom. In Fig. 5 we illustrate how well potential?® As discussed in Sec. Il E, this length scale may

-06 -04 -0.2 0.0
E-E. (Ry)

VI. RESULTS AND DISCUSSION

A. The local interaction zone concept: OrderedB2 NiAl alloy
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be estimated from the decay of the effective pair interactions 20 —— T —
and is quite dependent on the atomic species forming the B2 Ni(Ni, . Al.. ...}
alloy. In contrast, the density of states does not obey a varia- 15 o878 Ts0eest ]

tional principle and the convergence may be much slower —
than that of the total energy. n>:‘
The total energy of a random distribution of 50% Ni and 3
LIIJQ

w

@—@bcc effective medium
[OJ—{1B2 effective medium

50% Al atoms on the bcc lattice of a 128-atom supercell
converges even faster than that of the ordered alloy; see Fig.
6. We notice that the large and negative ordering energy in
the NiAl alloy is correctly reproduced. Further, our result for
the random alloy is in good agreement with that obtained by
the LMTO-CPA method in conjunction with the screened 0 ’ y * 5 ’ 3 * 4 ’ 5
impurity model (SIM) CPA using a prefactop=0.634
The SIM allows us to account approximately for the charge
transfer effects that are neglected in the conventional CPA, FIG. 7. Total energy of a partially order&P Ni(Nig 576l g 629

but of course correctly included in the LSGF-CPA calcula-alloy (Rys=2.65 a.u., 128 atomic superdelis a function of the
tions. Finally, we observe in Fig. 6 that the total energy ofnumber of neighboring shells included in the local interaction zone.
the random alloy is very well reproduced already for aValues obtained by the LSGF-CPA calculations with effective at-
single-site LIZ. This confirms our expectation that the CPA-oms of one kind placed in a bcc underlying lattig#led circles

like effective medium is a particularly good choice, at leastand with effective atoms of two kinds placed inB2 underlying
for a random alloy. lattice (open squargsare shown. The reference enerfgy,; is the

converged resulffive shellg for the B2 effective medium.

Number of neighboring shells

B. Use of different effective media order of 1 mRy(or about 2% of the ordering enengyAt the

The second important component of the LSGF method isame time within the LSGF-ATA one has to go to two or
the effective medium, the role of which is to reduce the sizghree shells of nearest neighbors to obtain the same accuracy.
of the LIZ by improving the boundary condition for the finite Of course, one may save a little time by applying the ATA
region where the multiple scattering problem is solved ex-<ffective medium for the five-shell LIZ if higher accuracy is
actly. This means, in particular, that LSGF calculations withneeded. However, in that case there is a better way to solve
different effective media must converge to the same resulthe problem, and we will illustrate this by the example of the
but with different LIZ sizes. This is illustrated in Fig. 6, off-stoichiometric partially ordered bcc WNig 374Alg0 629 al-
which includes results obtained by an ATA effective me-loy.

dium constructed by assuming that the potential funcRgn When there is an excess of Ni atoms in a partially ordered
for the effective scatterers on the sites is given by the B2 NiAl alloy these atoms are known experimentally to oc-
average cupy Al sites, while the Ni sublattice is completely ordered

and occupied only by Ni atoms. As we have already men-
_ tioned in Sec. Il D, to deal with such a system we have two
P;1=(Na)‘12 Pgl, (30 possible choices for the underlying lattice. Either we con-
Rea sider it as a bcc lattice with just one atom per unit cell or we
with a similar expression for the potential function on {Be treat it cIo;er o the reaIIS|tuat|on, namely, a82 lattice
sites. Hence we do not solve E@$5) but obtain the Green’s with two different subla_tu_c_es and_, of course, two types of
) , ~ effective atoms. By definition a single-site LIZ will suffice
function for the effective scatterers froR—S. for ordered NiAl. In Fig. 7 we show how the total energy of

One may see in the figure that for the five-shell LIZ the ; : ;
. . L . partially ordered NiNig 37:Al 99 629 CONVerges with respect to
two different effective media give essentially the same réyne 76 of the LIZ for the bee a2 effective medium. It is
sults for both the ordered and the random phases. Howeve

h its obtained by th h Clearly seen that by making the effective medium slightly
the results obtained by the LSGF-CPA are somewhat morg, e complicated the size of the LIZ is substantially reduced
stable and converge faster than those of the LSGF-ATA. |

. ; "ind we obtain an accurate result already for a single-site LIZ.
p_artlcular, the total energy of the random allpy for the S'.ngle'lt is also seen that for a larger LIZ the two effective media
site LIZ and the ATA effective medium is substantially lead to the same result.

smaller than that obtained by the CPA effective medium.

; , The examples in this section demonstrate the possibilit
Note that the time one needs to solve the CPA equatibb)s P b y

to vary the effective medium to suit the problem at hand and
9k particular to minimize the size of the LIZ and thereby the

s?fve a substgntial an;]ount of tifrfne .by subsj[ituting the.(:lr%omputational effort. The examples also demonstrate that the
effective medium by the ATA effective medium, especially gy resuits are independent of the choice of effective me-
when the LIZ is large. In fact, the decrease of the LIZ Size€yium. as should be the case.

one may obtain within the LSGF-CPA compared to the
LSGF-ATA will more than compensate for the time spent in _ o
solving the CPA equations. C. Total energy calculations for a general atomic distribution:

In the case of bce NiAl, for instance, it is sufficient to use Rh-Pd alloy
a LIZ of one shell of nearest neighbors and the CPA effec- To illustrate the possibility to calculate accurate total en-
tive medium if the accuracy one is interested in is of theergies for systems with any distribution of atoms on the un-
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E-E,,, (mRy)

0 1 2 3 4
Number of neighboring shells

FIG. 9. Total energies of orderdtl 1, structure, squargsran-
dom (circles, and segregate@iriangles fcc RhyPdsq alloys (Rys
=2.92 a.u.) as a function of the number of neighboring shells in-
cluded in the local interaction zone. Supercells are shown in Fig. 8.
Values obtained by the LSGF-CPA method are shown by filled
symbols and full lines. The energies obtained by the reference cal-
culations are shown by a dashed lileMTO, ordered sample a
dotted line(LMTO-CPA, random sampje and a dot-dashed line
(interface Green’s function technique, segregated sample
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well as with LMTO-CPA results for the random samples.
We expect the CPA to give reliable total energies for Rh-Pd
alloys independent of the value of the prefaggansed in the
screened impurity model because the charge transfer in this
system is very small. Finally, the segregated sample is made
up from four(010) layers of pure Rh and fo010) layers of

FIG. 8. Three different distributions of Riuark gray and pd  Pure Pd and its total energy may be calculated not only by
(light gray) atoms in an equiatomic fcc Rh-Pd alloy. The orderedthe LSGF method but also by the interface Green'’s function
sample(L1, structure, tojy the random samplémiddle), and the technique’’
segregated sampleottom) were constructed on the fcc underlying 1IN Fig. 9 we show the total energies of the three samples
lattice for the 144-atom supercell. The values of the short-rang@s a function of the number of neighboring shells included in
order parameter for each of these structures are given in Table lithe LIZ. In agreement with the experimental phase diagram

for the Rh-Pd system, which has a miscibility gap, we find
derlying lattice by means of the LSGF-CPA method we havehe segregated sample to have the lowest total energy. Then
performed self-consistent calculations for the fccsf®Mas,  follows the random alloy, and the ordered phase has the
alloy with three different atomic configurations: completely highest total energy. The excellent real-space convergence of
ordered in thd_1, structure, completely random, and segre-the LSGF-CPA method may again be judged from Fig. 9.
gated. We have considered a supercell with 144 atomic site¥y/e observe that already for the LIZ that includes just one
periodic boundary conditions, and the atomic distributionsshell of nearest neighbors, i.e., 13 atoms, the total energies
shown in Fig. 8. In setting up a particular atomic distributionare converged to within 0.5 mRy, and for four shells the
we have specified the first five Warren-Cowley short-rangedifference between the LSGF method and the reference cal-
order parameters;, (Ref. 40 according to the values in culations, i.e., bulk LMTO and interface Green’s function
Table Il. In particular, for the segregated sample shown irtechnique, is below 0.1 mRy. The difference between the
the lower panel of Fig. 8¢; is positive up to the fifth shell, LSGF and CPA calculations is expected to be larger, and as
indicating good phase separation. The results of the LSGFRa matter of fact one may judge the accuracy of the latter
CPA calculations are then compared with those of thegather than the former from this comparison.
LMTO Green’s function method for an ordered sample, as We note that the LSGF method allows us to obtain reli-
able total energies for systems that normally would have

TABLE Il. Warren-Cowley short-range-order parametergor been treated by three different techniques, e.g., the bulk
the first five shells in three fcc Rh-Pd samples shown in Fig. 8. LMTO, the LMTO-CPA, and the interface LMTO Green’s
function techniques. Moreover, the LSGF method allows us
@, i=1-5 to considerany atomic distribution on the underlying lattice.
Therefore, the total energy of a large class of important alloy
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Sample 1 2 3 4 5 .

systems may be treated on the same footing by means of a
ordered,L1, -1/3 1 -1/3 1 -1/3 single computational technique thereby adding to the faith in
random 0 0 0 0 0 the results.
segregated 2/3 213 1/3 1/3 1/3 In Fig. 9 one observes a stepwise behavior of the total

energy as a function of the LIZ size for the ordered and the
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segregated samples. Thus the change in the total energy | - T - y
largest when we include the first shell of neighbors, almost 3 [ ¢ CtsZns foo NizeAlzs
zero when we include the second and the fourth shells, anc
slightly nonzero when we include the third shell. This con- B W ordered
vergence behavior of the LSGF-CPA method may be de- | @®—@random
scribed in terms of the effective pair interactions discussed in 15
Sec. IIE. In the present Rh-Pd alloy system Wolverton 0 f----%""—scgg----g| T T o
et al®*found effective pair interactions that were appreciable
for the first and third coordination shells but small for the o CUAL. ' boo Li Mo '
X . 75" V25 50950

second and fourth shells, in complete agreement with the

convergence pattern shown in Fig. 9. This is not a coinci-I’;
dence and in all the cases considered in the present paper wg 5
find that the convergence in terms of the LIZ size follows the ¥
range of the effective pair interactions. ;

w o
One also observes in Fig. 9 that the total energy of the .-7—&-—-.—-!—-—!0

random sample, as in the case of the Ni-Al alloy, converges , ' , ' : ,
faster than for the ordered and segregated samples, indicatin fee CugeAug, bee Wi,Alg,

that the CPA effective medium in fact forms a perfect rep-
resentation of the average of a random atomic distribution.
Finally, when we compare only the ordered and the segre-
gated samples we observe that these two samples exhib
similar convergence properties with respect to the size of the
LIZ. This means that we do not have to test the convergence
for each new atomic distribution but only for, e.g., the or-

dered sample.

E

Number of neighboring shells

_ . . FIG. 10. Total energies of simplest ordered phasds, for fcc
D. Convergence in real space: Ordering energies of alloys A;B,s, L1, for fcc AgBsg, andB2 for bee AygBsg alloys) shown

In Fig. 10 we present convergence tests for different alloy"‘:7 Sq_”";‘]fs and La'?ldo_m Fga??‘:'ek? a:S a lf‘f”CtiO” of the “”rf“be(;_f
systems, fcc CiaZnys, ClheAlys, ClspAUso, NizeAls, and of neighboring shells included in the local interaction zone for dif-
b . ferent alloy systems. Values are given relative to the results of

cc LiggMgsg and WeAlso. Here we have calculated the . ) )
. conventional LMTO-GF calculation for the corresponding ordered
total energy of two phases, the random and the simplest OBhase
dered phase for a given concentration, ilel, or L1, for '

the fcc alloys andB2 for the bcc alloys. In addition to the

LSGF calculations, the ordered samples have also beefdered phase has a higher energy than the random phase.
treated by the LMTO-GF technique and the energies 0b[ExpenmentaIIy, it is known that the stability of the ordered

tained in the latter calculations serve as reference. phgses is very high in Ni-Al and intermediate in Cu-Au,
In Fig. 10 it is seen that already for a single-shell LIz all While no ordered phases are formed for fcc,4Zm,s and bee

alloys, except W-Al, are converged to within 1 mRy. More- LisdMdso. The values for the ordering energies found in our

over, in Sec. VB it is shown that the LSGF technique iscalculations are in qualitative agreement with this trend.

most efficient when the size of the LIZ does not exceed thre&!OWeVer, it should be noted that in Fig. 10 we present the
or four shells of nearest neighbors for the fcc underlyingtOtal energies of the random and ordered phases at the same

lattice and five shells for the bcc underlying lattice. For attice parameter, while in fact the degree of order may in-
LIZ's of these sizes we see in the figure that the total energfluence the interatomic dls_ta_nc‘é?s(_)n the other hand this
for all alloy systems including the ordered samples are Cone_ffect is usually small and it is u_nllk_ely that it will substan-
verged to within 0.1 mRy. This conclusion does not dependi@!ly change the results shown in Fig. 10.
on whether we deal with alloys of transition or of simple
metals, with large or small charge transfers, or with systems
that have a tendency towards order or phase separation. Also,
it does not depend on the alloy concentration, as illustrated We have presented and discussed the olldtSGF
by the examples of Cu-Z(Ref. 55 and Cu-Au alloys. Fi- method for electronic structure calculations in systems with
nally, the numerical tests, including the results for the bcanany atoms distributed arbitrarily on an underlying crystal
and partially ordered2 NiAl alloys and for the Rh-Pd al- lattice. The method is formulated in the framework of the
loys presented in previous sections, cover a broad spectrudMTO-GF technigue and is based on the local interaction
of systems and we believe our results demonstrate the gemene concept. Each local interaction zone is embedded in an
eral applicability of the LSGF method. effective medium, and we find that the CPA effective me-
Finally, we note that in all the cases considered in thedium for a multicomponent alloy where each atom of the
present study we correctly reproduce the ordering tendenciesriginal supercell is considered to be an independent compo-
Thus, for Cu-Zn, Cu-Au, Ni-Al, and Li-Mg alloys we find nent of a completely random alloy on the same underlying
that the ordered phase has a lower energy than the randolattice forms an optimal effective medium. The method has
phase, while for the Rh-Pd and W-AI alloys we find that thebeen applied in total energy calculations for a number of

VIl. SUMMARY
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different substitutional alloys with different degrees of ordermation to the complete solution of EGAL) is given by the
and is found to exhibit rapid convergence in terms of the sizesingle-site cluster in real space, i.e., we replace(Bd) by
of the local interaction zone. In general the method yields

results in excellent agreement with those obtained by alter- _(n+1),_,_ n n n/ o\ p(n+l) (n+1)
native first-principles techniques. The number of atoms for OrR "~ (2)=0rr(2) T GrA(Z)[PR(2) PR 7(2) JOrR ((2'2)
which the LSGF method becomes more efficient than con-
ventional band structure methods lies in the range 1-50 fowhere the initial value ofig" is the on-site Green'’s function
all the systems considered in the present work. The exagfiven by the complete Brillouin zone integral or by the
figure depends on the degree of order, the required accuracySGF, Eq.(14). The smaller the difference in potential func-
and the atomic species forming the alloy. This latter convertions between different iterations, the better the approxima-
gence dependence in terms of the atomic species is found timn works. In fact, at self-consistency

be accurately characterized by the range of the so-called ef-
fective cluster interactiondECI’s), and we find that the real-

_ph_ p+1)
space convergence of the LSGF method is directly deter- APr=Pr=Pr "0 (A3)
mined by the convergence of the ECI's in the system. and the single-site approximatiéA2) to Eq. (A1) becomes
exact.
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APPENDIX: EFFECTIVE TWO-STEP PROCEDURE FOR P"(2)=P(2) +{(0%,) 1~ [Gua(2)] Y}  (A4)
THE CHARGE SELF-CONSISTENCY AND THE _ . _
SOLUTION OF THE CPA EQUATION and calculate the new effective medium Green’'s function

~new

O.. from Eg.(A2) and insert into Eq(15), which shows
In this appendix we discuss one way to accelerate elegGhat

tronic structure calculations based on the Green’s function

technique. The actual equations are written in an LMTO ba- onews - _ .0

sis, but a generalization to any other basis, e.g., KKR, is ORe  (Z2)=ORa(2)- (A5)

straightforward. _ _ _ . Therefore, from the Eq$A2), (A4), and(A5) we may write,
The most time-consuming step of all first-principles omitting subsripte (or B)

reciprocal-space-based one-electron methods is the integra- ’

tion over the Brillouin zone, which is needed, for instance, _ _ S

when calculating the KKR-ASA Green’s function in Sec. 9""(2)=[1-9(2)AP(2)] "9(2)

Il B. This problem becomes even more serious in the calcu- _ ~ Sl o =1 —1

lations of random alloys within the framework of the CPA. =(1+9(2){{9(2)) (921" H "9(2)

In that case th&-space integration has to be repeated several =(9(2))=(g"*"(2)), (AB)
times at each complex energgnd at the same LDA itera- ] N ) ]
tion) during the iterative solution of the CPA equation. which means that the CPA condition given by the third of

In conventional LMTO calculatiodéthe number of time-  Egs.(15) is fulfilled. Although Eq.(A2) is only an approxi-
consuming band iterations is greatly reduced by the LMTOMation, and therefore Eq$A5) and (A6) do not hold ex-
scaling principle. For surface calculations one may introducéctly, the updating of the coherent potential function by Eq.
a similar technique based on the solution of the linearizedA4) gives us a very rapid convergence when solving the
Dyson equation, which reduces the number of times th&PA equation(15). We never need more than five CPA it-
complete Dyson equation must be solved by one order ofrations to solve the CPA equation with a reasonable accu-
magnitude’® The principle is that the complete electronic "acy. In fact, there is no need for a very high accuracy at the
structure is only recalculated when charge self-consistenc@eginning of the LDA self-consistency iterations, and to-

has been obtained by means of an approximate state densi@rds the end the approximati¢h2) to Eq.(Al) and there-
or Green's function. fore also Eq(A4) becomes increasingly accurate.

In Green's function calculations we find the following ~ During the iterations toward the LDA self-consistency we
“two-step” scheme to be very efficient. The Green’s func- also use Eq(A2). First we solve the complete set of LSGF

tion at the i+ 1)th iteration is related to that at theth ~ €quations, the so-called big iteration. We then perform
iteration by the Dyson equation “small” LDA iterations, typically between 40 and 300 de-

pending on the problem, with a small admixture, typically
1-5%, of a new charge density. During these iterations we
¢" @)=+ (D[P"(2) - P(nﬂ)(z)]g(nﬂ)(z)Al determine the on-site glement 0>1/‘ the Grgen’s function at each
(A1) site grg by solving only Eq(A2). When the small iterations
which must be solved for each complex energy and either foare converged, we perform the next big iteration. At this step
eachk point in the Brillouin zone or for an infinitely large it may be desirable to mix the potentials between different
cluster in real space. We now assume that a good approxbig iterations, typically 70% of the new potential, and to
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keep a minimal number of small iterations, between 10 andgtep approach by LMTO-CPA Green'’s function calculations
20, to compensate for the small mixing close to the end ofor a partially orderedNig,Hfyg)3Al alloy in the L1, struc-
the self-consistent procedure. Note that a completely analdure. The self-consistency criterion for the total energy was
gous two-step procedure may be used in any calculations0™ ® Ry/atom. The one-step calculations required 14i§)
based on a Green’s function approach. In particular, it is useilerations and gave a total energy ©66.379 166 Ry/atom,

in our bulk and interface CPA Green’s function codés.

We illustrate the efficiency and the accuracy of the two-

while the two-step procedure converged after(hig) itera-

tions and gave a total energy 6f56.379 177 Ry/atom.
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