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Locally self-consistent Green’s function approach to the electronic structure problem
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The locally self-consistent Green’s function~LSGF! method is an order-N method for calculation of the
electronic structure of systems with an arbitrary distribution of atoms of different kinds on an underlying
crystal lattice. For each atom Dyson’s equation is used to solve the electronic multiple scattering problem in a
local interaction zone~LIZ ! embedded in an effective medium judiciously chosen to minimize the size of the
LIZ. The excellent real-space convergence of the LSGF calculations and the reliability of its results are
demonstrated for a broad spectrum of metallic alloys with different degree of order. The relation of the
convergence of our method to fundamental properties of the system, that is, the effective cluster interactions,
is discussed.@S0163-1829~97!06740-4#
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I. INTRODUCTION

Within the past two decades, density functional theo1

~DFT! has become a standard method of calculation in s
eral branches of physics, including that of calculati
ground-state properties of solids. In the latter branch alm
all calculations rely on the Kohn-Sham approach2 in which
one solves a set of effective one-electron equations wit
particular choice of basis functions. In a periodic system t
leads to a Hamiltonian matrix, which upon Fourier transf
mation to reciprocalk space has a dimension proportional
the number of atomsN in the unit cell. The computationa
effort of the corresponding eigenvalue problem scales
proximately asO(N3) and most current DFT methods a
therefore limited to unit cells with a few hundred atom
Hence, if one needs to calculate the total energy of sev
thousand atoms, as one may in studies of local environm
effects in alloys or simulations of nanoscale materials,
scaling properties of the computational technique must
improved.

Several computational techniques with better scal
properties, so-calledO(N) methods for DFT, have bee
proposed.3–22 They are all based on the assumption, tac
assumed in most solid-state calculations, that a change i
external potential at sufficiently large distances has no eff
on the property, e.g., the total energy, under considerat
One example is the neglect of surface effects in ordin
bulk calculations. This has been elevated recently to a p
ciple of nearsightedness22 and should not be confused wit
the length scale expressed, for instance, in the form of lo
ized orbitals,3–7 short-ranged density matrices,8–12 or tight-
binding models.13–15

The O(N) techniques based on a Green’s function a
proach in Refs. 14 and 18–21 owe their favorable sca
properties to the fact that the electron density, which is
fundamental quantity in DFT, is obtained solely from t
site-diagonal blocks of the Green’s function matrix. It fo
lows that the conventional approach, i.e., diagonalization
a Hamiltonian or inversion of a Green’s function matri
560163-1829/97/56~15!/9319~16!/$10.00
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involves large amounts of data that are needed only by
mathematical diagonalization, hence theO(N3) scaling, and
not by DFT in the construction of the electron density a
total energy. As we shall show, the site-diagonal block of
Green’s function matrix for a particular atom in a large sy
tem may be obtained with sufficient accuracy by consider
only the electronic multiple scattering processes in a fin
region of space containingM atoms and called the loca
interaction zone~LIZ !.19,20 This multiple scattering problem
scales asO(M3), but when it is applied, in turn, to eac
atom in the unit cell the combined computational proced
exhibits the desired linear scaling inN with a prefactor de-
termined byM and by the number of basis functions.

In the O(N) methods based on the Green’s function a
proach suggested in Refs. 14 and 18–20 this prefacto
determined either by the convergence of the truncated se
of the recursion method14,18or by the real-space convergenc
of the multiple scattering processes of the locally se
consistent multiple scattering method.19,20 In both cases,
however, the system beyond the truncated region is
glected and one needs relatively largeM values to obtain an
accurate total energy. Recently, Abrikosovet al.21 showed
that the size of the LIZ and hence the computational eff
may be considerably reduced by embedding the trunca
region in an effective medium. This embedding may be
tablished by means of the Dyson equation connecting
desired Green’s function to the Green’s function of a ref
ence system that may have much higher symmetry than
system under consideration. The problem is thereby redu
to that of finding an effective medium that at the short
possible distance is viewed by the central atom of the LIZ
the system under consideration, i.e., the effective med
that makes the central atom in the LIZ nearsighted.

In the present paper we discuss the recent locally s
consistent Green’s function~LSGF! technique proposed by
Abrikosov et al.21 We make a detailed analysis of the tec
nique and demonstrate that it is numerically efficient, sca
linearly with the number of atoms in the system under co
sideration, and provides an equally adequate descriptio
9319 © 1997 The American Physical Society
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ordered, random, and segregated phases. The analysis
lustrated by results for the total energy and state dens
derived from a broad spectrum of intermetallic compoun
formed between simple, transition, and noble metals hav
different crystal structures, degree of order, or tendency
wards ordering. Where possible we compare our results w
those obtained by other first-principles methods to justify
reliability and generality of the present LSGF method.

The LSGF method turns out to be especially fruitful a
effective for systems with arbitrarily distributed atoms
several components on an underlying crystal lattice. In
LSGF such systems are modeled by a supercell with peri
boundary conditions and due to the order-N scaling of the
computational efforts with respect to the size of the super
we may choose this cell sufficiently large to represent
physical properties of the problem at hand. The efficienc
achieved by a combination of the concept of a local inter
tion zone, which leads to the order-N scaling, a judiciously
chosen effective medium, which reduces the size of the lo
interaction zone and thereby reduces the prefactor in
order-N scaling, and the application of the linear on
electron methods of Andersen,23 which typically reduces the
computational effort by an order of magnitude. The limit
tion is that one is restricted to a lattice supercell.

II. LOCALLY SELF-CONSISTENT
GREEN’S FUNCTION METHOD

In this section we outline ourO(N) technique, which is
based on a Green’s function approach in conjunction wit
linear muffin-tin orbital~LMTO! basis in the atomic spher
approximation~ASA! of Andersen and co-workers.23–27 We
first write down the expression for the total energy in t
local density approximation~LDA ! and its spatial decompo
sition into atomic spheres. We then reformulate the prob
in the Green’s function language, which only requires
solution of the multiple scattering problem in a finite regi
of space, the LIZ, and thereby leads to anO(N) technique.
We subsequently introduce the concept of an effective
dium and show how this may be used to obtain a minim
local interaction zone and lead to a considerable increas
computational efficiency. Finally, we show how the re
space convergence ofO(N) techniques of the present kin
may be understood in terms of interatomic potentials a
how these may be used to establish the optimal size of
LIZ for a given system.

A. Total energy in the ASA

Let us consider the problem of calculating the total ene
of a system ofN atoms in a supercell subjected to period
boundary conditions such as illustrated in Fig. 1. We assu
that the atoms may be of different types and distributed w
a specified degree of order. Within the LDA to DFT~Refs. 1
and 2! we may solve the Kohn-Sham equations

S 2¹21(
R

VR~r ! Dc i~r !5« ic i~r !, ~1!

wherer is a radius vector,c i is the one-electron wave func
tion, « i is the corresponding one-electron energy,VR is an
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atom centered effective potential, and the sum runs over
all atomic sitesR in the system. Given the electron densit

nR~r !5(
i

occ

uc i~r !u2, ~2!

calculated from the solution to Eq.~1!, the potentialsVR may
be obtained in the ASA as23,26

VR~r !52E
SR

d3r 8
nR~r 8!

ur2r 8u
2

2ZR

r
1Vxc@nR~r !#

1
1

S (
R8

MRR8QR8 . ~3!

Here the integral is over the atomic sphere of radiusSR cen-
tered atR, ZR is the atomic number of the atom atR, nR is
the electron density obtained from the Kohn-Sham o
electron wave functions,Vxc is the exchange-correlation po
tential, S the average Wigner-Seitz radius,MRR8 is the
Madelung matrix for the supercell ofN atoms, andQR is the
net charge of an atomic sphere given by

QR5E
SR

d3rnR~r !2ZR . ~4!

With the above assumptions the desired total energy
atom may be calculated as the average over allN atoms in
the system, i.e.,

Etot5~N!21 (
R51

N

ER , ~5!

where the site projected energyER has the form26

ER5EEF
dEENR~E!2E

SR

d3rnR~r !VR~r !1E
SR

d3rnR~r !

3S E
SR

d3r 8
nR~r 8!

ur2r 8u
2

2ZR

r
1exc@nR~r !# D

1
1

2S (
R,R8

MRR8QRQR8 . ~6!

FIG. 1. In the LSGF method an infinite system with an arbitra
distribution of atoms of different kinds on an underlying crys
lattice is modeled by a supercell ofN atoms with periodic boundary
conditions.
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Here NR(E) is the local state density at siteR calculated
from the one-electron spectrum of Eq.~1!, exc the exchange-
correlation energy density, andEF the Fermi energy. A de-
tailed derivation of the total energy expression in the AS
LDA, and frozen core approximation has been given for
impurity case by Gunnarssonet al.26

B. Green’s function formulation

The Kohn-Sham equations~1! and~2! may be formulated
in terms of Green’s functions. This problem has been d
cussed by a number of authors.28–30 Within the LMTO for-
malism the two equations are replaced by26

@P~z!2S„k…#g~k,z!51, ~7!

and

nR~r !5 REF i

p
G~r ,r ,z!dz. ~8!

HereP is the diagonal LMTO potential-function matrix,S„k…

the structure constant matrix in the tight-binding represen
tion, andg(k,z) the Korringa-Kohn-Rostoker~KKR! -ASA
Green’s function matrix in reciprocal space and defined fo
complex energyz. The corresponding real-space Green
function G(r ,r ,z) may be obtained fromg as26,29

G~r1R,r 81R8,z!

5(
L

f l~r ,Cl !f l~r 8,Cl !

z2Cl
YL~ r̂ !YL~ r̂ 8!dRR8

1 (
L,L8

f l~r ,z!Ṗl~z!1/2YL~ r̂ !@gRL,R8L8~z!

2Pl~z!21dL,L8# Ṗl 8~z!1/2f l 8~r 8,z!YL8~ r̂ 8!, ~9!

wherer is restricted to the atomic sphere centered atR, f is
a partial wave evaluated at the complex energyz or at the
centerCl of the l band,Y is the lattice harmonics,Ṗ is the
energy derivative of the LMTO potential function, andL is
the combined angular-momentum quantum numbers (l ,m).
The real-space KKR-ASA Green’s function matr
gRL,R8L8(z) that enters Eq.~9! is obtained fromg(k,z) by
integration over the Brillouin zone

gRL,R8L8~z!5~VBZ!21E
BZ

dkeik•~T2T8!gUL,U8L8~k,z!,

~10!

whereU is a basis vector of the unit cell and connected to
lattice siteR by a translationT, i.e., R5U1T.

The most efficient way to obtain the necessary elect
density is provided by the LMTO one-center expansion

nR~r !5~4p!21(
L

$@fRl~r !#2mRLL
00

12@fRl~r !ḟRl~r !#mRLL
10 1@ḟRl~r !ḟRl~r !

1fRl~r !f̈Rl~r !#mRLL
20 %, ~11!
,
e

-

-

a

e

n

written in terms of the partial wavesf(r ) of angular mo-
mentuml , their energy derivativesḟ(r ) and f̈(r ), and the
moments of the state density calculated as the contour i
gral over the occupied valence states

mRL8L9
q8q9 5

1

2p i REF
dz~z2EnRl8!

q8GRL8,RL9
g

~z!~z2EnRl9!
q9,

~12!

whereEnRl is the energy used in the LMTO expansion.
this case the real-space Green’s function matrixGg is ob-
tained fromg by the LMTO transformation theory24 and the
relevant equations for the present implementation may
found in Ref. 31. Finally, the sum of the one-electron en
gies may be obtained from

EEF
dEENR~E!5(

R
(
L

~EnRlmRLL
00 1mRLL

10 ! ~13!

and we have the necessary information to calculate the t
energy~6!.

A direct solution of the Kohn-Sham equations in the co
ventional formulation~1! using a basis withNL orbitals per
atom requires the solution of an eigenvalue problem of or
N3NL , the computational effort of which scales approx
mately asO(N3). Similarly, a direct solution of the Kohn
Sham equations in the Green’s function formulation~7! re-
quires the inversion of matrices@P2S# also of orderN3NL
and the computational effort again scales approximately
O(N3). Hence, so far we have gained nothing in terms
computational efficiency relative to the conventional form
lation.

At this stage we note that it is only the site-diagonal blo
GRR

g ~or gRR! of the Green’s function matrix that is require
in the construction of the key quantities, i.e., electron den
and total energy, through the energy moments of the s
density ~12!. It follows that if there exists a procedur
whereby onlyGRR

g may be calculated without the inversio
of the complete Green’s function implied in Eq.~7!, one has
sufficient information for the LDA self-consistency proc
dure.

C. O„N…, local interaction zone, and effective medium

The experience gained in the application of real-sp
cluster methods in electronic structure calculations sho
that for a large cluster the properties of an atom deep ins
the cluster are very close to those given by band struc
methods. This suggests that the electron density and the
sity of states on a particular atom within a large conden
system may be obtained with sufficient accuracy by cons
ering only the electronic multiple scattering processes i
finite spatial region centered at that atom. As a result,
may introduce the concept of a local interaction zone app
by Nicholsonet al.19,20 in the framework of the locally self-
consistent multiple scattering~LSMS! method and later by
Abrikosovet al.21 in their preliminary account of the presen
work. The latter authors also introduced the concept of
effective medium, which we shall now describe.

Let us choose a reference system, which we will call
effective medium, by placing effective atoms on the latti
underlying the original supercell shown in Fig. 1. The effe
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tive atoms are represented by their potential functionsP̃R ,
which on the average describe the properties of the orig
system as close as possible, and their Green’s functiong̃ may
be obtained fromP̃R and the structure constantsS̃ of the
underlying lattice by solving Eq.~7! in the conventional
manner. Since the effective medium constructed in this w
has the full symmetry of the underlying lattice and may
specified by a small unit cell containingÑ effective atoms,
the corresponding matrix inversion problem is only of ord
Ñ3NL . Hence the computational effort of constructing t
effective medium, which scales asO(Ñ3), may be neglected
in the limit N@Ñ.

Following Nicholsonet al.,19,20we now surround an atom
at siteR by M21 neighboring atoms, forming anM -atom
local interaction zone. However, instead of solving the lo
multiple scattering problem directly, as it is done in t
LSMS method, we embed each local interaction zone in
effective medium constructed above. The procedure is il
trated in Fig. 2. As a result, the Green’s function for the L
is now given by the Dyson equation, which for the Gree
function matrixgRR at the central siteR may be written as

gRR5g̃RR1 (
R851

M

g̃RR8~ P̃R82PR8!gR8R , ~14!

FIG. 2. Main idea of the LSGF method. In~a! we show effective
atoms distributed on the same underlying lattice as the atoms o
original system in Fig. 1. The local interaction zone around sitei ,
embedded in the effective medium, is shown in~b!. In ~c! the LIZ is
moved to another sitej and it will be moved through all the sites o
the supercell. Note that the distribution of atoms in the LIZ is
sentially the same as in the original system and we make use o
periodic boundary conditions when forming the LIZ for the atom
close to the boundaries of the supercell. The size of the LIZ can
different, as shown in~d!, and it depends on the types of the atom
constituting the alloy, on the degree of order, etc., but not on
size of the supercell. See the text for a complete discussion.
al

y

r

l

e
s-

s

where the sum runs over theM atoms in the LIZ.32 Note that,
although the entire Green’s function matrixgR8R does not in
general correspond to that of the system under considera
the site-diagonal blockgRR will approach that of the rea
atom atR for a sufficiently large LIZ. In this sensegRR will
be locally self-consistent. The matrix problem in Eq.~14! is
of order M3NL and the computational effort scales
O(M3), which upon a judicious choice of the effective m
dium may be considerably reduced relative to the conv
tional O(N3) procedure~7!.

Since it is only the site-diagonal blocks of the Green
function matrix that are needed to determine the charge d
sity, the one-electron potential, and the total energy of
supercell, we may now devise the followingO(N) method.
CalculategRR for a particular atom in the supercell by form
ing the associated LIZ and solving Eq.~14!. Then move to a
different atom and repeat the procedure. Continue until
atoms in the supercell have been exhausted. Thereby,
solution of the Kohn-Sham equations~7! for the entire
N-atom system is decomposed intoN independent problems
The procedure is clearly one way to calculate the s
diagonal blocks of the Green’s function matrix for the ent
N-atom system without calculating a large number of uni
portant off-diagonal elements and without introducing a
proximations such as the diagonal disorder model.

The computational effort of the complete procedure sca
asO(NM3) and we expect the size of the elementary co
putational problem connected with the LIZ, i.e.,M , to de-
pend on the atomic species, the underlying lattice, but no
N. We note that theN elementary problems are independe
of each other and that the algorithm therefore is ideal
implementation on massive parallel computers.

D. Choice of effective medium

Provided one applies a sufficiently large LIZ, the loc
interaction-zone concept does not include any new appr
mations in the solution of the KKR-ASA equations~7! and
the introduction of an effective medium may be seen a
device to reduce the size of the LIZ as much as possi
Since the Dyson equation is exact, there exists a numbe
different choices for the effective medium, all of which wi
lead to the same solution to Eq.~7! but have different con-
vergence properties in real space. One may therefore tr
find an effective medium that is localized in the sense t
g̃RR8!1 for R8 outside the smallest possible LIZ centered
R; and in that case the summation in Eq.~14! may be trun-
cated at a very smallM value. However, there exists a min
mum lengthD that is the range over which a perturbatio
such as a single impurity in an ideal host28,26,29,33 or an
interface,34–38 makes its presence felt, and this ultimate
determines the size of the LIZ that may therefore be lar
than the range over whichg̃RR8 is localized. We discuss this
issue in Sec. II E.

In choosing an effective medium we try to satisfy thr
criteria. First, we look for an effective medium with scatte
ing properties as viewed by from the central atom of the L
as close as possible to those of the supercell system a
shortest possible distance. Second, the Green’s functio
the effective medium must be localized in real space at
range of the screening lengthD of a perturbation in the po-
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tential energy. Finally, we require the effective medium to
as simple as possible, i.e., a single site.

If we consider the trivial example of a monatomic so
with a Bravais lattice, e.g., fcc Cu, one may immediate
specify a perfect effective medium. We simply identify th
effective atoms with the host Cu atoms, and in this cas
LIZ with M51, i.e., a single-site LIZ including only the
atom atR, is sufficient for an exact solution of the electron
structure problem. If, on the other hand, we consider an
dered or partially ordered intermetallic compound, e.g., N
in theB2 structure, there are at least two obvious choices
the effective medium. First, one may view the compound
a distribution of atoms on the underlyingB2 lattice with two
types of effective atoms, one for thea ~i.e., Ni! sublattice
and another for theb ~i.e., Al! sublattice. This will, by defi-
nition, lead to a single-site LIZ, essentially as in the previo
case of a pure element. However, the effective medium it
becomes more complicated because the unit cell of the
derlying lattice consists of two atoms. Alternatively, o
may view the compound as a distribution of atoms on
underlying bcc lattice with one type of effective atom th
must be defined as some kind of ‘‘average’’ atom.

The last example leads us to the well-known alloy pro
lem with its hierarchy of single-site approximations for t
effective medium increasing in accuracy from the virtu
crystal approximation over the averaget-matrix approxima-
tion ~ATA ! to the coherent potential approximation~CPA!.39

All of these approximations may be used to generate
effective medium, and we will specifically compare the n
merical results obtained with the ATA and CPA effecti
media in Sec. VI B. From the experience gained in the st
of alloys one expects the CPA to lead to the fastest con
gence with respect to the size of the LIZ, at least for co
pletely random alloys. In fact, the CPA effective mediu
fulfills all three criteria listed above and in particular gives
very good description of the scattering properties of a co
pletely random alloy, whereby the central atom of the L
starts to ‘‘see’’ the effective medium as the real system
soon as an interchange of alloy components on the la
sites becomes unimportant. This should be contrasted
the conventionalO(N) schemes where the central atom do
not see anything beyond its own LIZ. Finally, the CP
Green’s function decays, apart from an oscillating factor,
ponentially asR21e2R/ l , wherel is the mean free path,40 and
the CPA effective medium is a single site.

Our original goal is to calculate the total energy ofN
atoms in a supercell. Although this supercell may cont
atoms of, for instance, only two types, sayA andB, all theN
atoms will in general be inequivalent due to differences
their local environment. These differences are completely
nored in the two component CPA, but may to some exte
restricted by the single-site approximation, be accounted
in the framework of the multicomponent generalization. F
example, Johnson and Pinski employed this idea in th
charge-correlated CPA.41 Here we will define the effective
medium to be used in the embedding of the LIZ as that gi
by the CPA for a multicomponent and, if necessary, mu
sublattice alloy. The number of components at each sub
tice will be equal to the number of equivalent positions in t
supercell formed from the underlying lattice, i.e., in the si
plest case of a monatomic underlying lattice each atom in
e
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supercell is considered to be a component of anN-atom al-
loy. On the other hand, in theB2 alloy mentioned above

there will beNa5 1
2 N components in the alloy formed by th

sites of thea sublattice andNb5 1
2 N components in the alloy

formed by theb sites. We thereby assume that the atoms
randomly distributed on their sublattices and neglect the
that they occupy definite positions in the system. The diff
ence between different atoms~or alloy components! will en-
ter through their one-electron potentials.

To determine the potential functions for the effective
oms and the Green’s function of the effective medium o
must solve the following system of coupled single-site eq
tions for the a sites in the unit cell of the underlying
lattice:31,42

g̃aa5~VBZ!21E
BZ

dk$@P̃2S~k!#21%aa ,

gRa
0 5g̃aa1g̃aa~ P̃a2PR!gRa

0 ,

g̃aa5~Na!21 (
RPa

gRa
0 , ~15!

and similarly for theb sites. HereVBZ is the volume of the
Brillouin zone of the underlying unit cell and the integratio
is over the corresponding Brillouin zone. An efficient tec
nique to solve these equations is discussed in the Appen

It is important to note that the Green’s functiongRa
0 de-

fined in Eq.~15! is not equal to the desired Green’s functio
gRR because the former is determined by the solution of
single-site Dyson equation while the latter is the si
diagonal block of the Green’s function matrix determined
the cluster, non-single-site Dyson equation~14! for the LIZ.
Consequently, the LSGF method with the CPA effective m
dium must not be considered as a simple generalization
the CPA, such as the molecular CPA. In the present con
the effective medium is used only to improve the conv
gence in real space, i.e., reduce the size of the local inte
tion zone. Hence it is unimportant whether or not the effe
tive medium describes the average alloy properties exa
because a slightly larger LIZ may compensate for the in
curacy. In addition, by keeping our effective medium
single site we obviously also keep the correct analyti
properties of all the Green’s functions involved in the LSG
technique, i.e., the effective medium Green’s function a
those for the LIZ.

E. Relation to interatomic interactions

The properties of the effective medium are not the o
factors that determine the real-space convergence of a
energy calculation. In fact, it has been shown by Gunnars
et al.26 for the impurity case that to obtain an accura
change in the total energy upon the introduction of an im
rity at a particular site one must sum only over the si
where the potential is perturbed. Although this range
smaller than the range of the perturbation of the wave fu
tions, it may be larger than the localization range of t
effective medium and thereby effectively determine the s
of the LIZ. Here we demonstrate that the convergence of
total energy in the LSGF method is also governed by



om
s

he
iu

ta

a

ir

s-
ny
A

an

nd
m
th
ra

on

rc
a

in
n

n
er
n

th
p
ze

ea
c

nt

e
s,
m-
nine
MS
a

the
he

f an

the
at-

m
of
an

or-

ve
en

ole

tive
the
the

9324 56ABRIKOSOV, SIMAK, JOHANSSON, RUBAN, AND SKRIVER
potential and that the size of the LIZ may be estimated fr
the range of the effective interatomic interactions. To do
we will apply a simplified model that, however, reflects t
basic features of the physics outside of the effective med
and the LIZ concept.

Let us first consider a pure element in an ideal crys
lattice and assume that the total energy of a crystal withN
sites may be written

Etot5(
i 51

N

e i , ~16!

wheree i is the energy of the atom at thei th site, which in
turn may be defined in terms of the interatomic potentials

e i5v i
~1!1

1

2 (
j Þ i

v i j
~2!1

1

3! (
j Þ i ;kÞ i , j

v i jk
~3!1••• . ~17!

Here v i
(1) , v i j

(2) , and v i jk
(3) are the on-site interaction, pa

potential, and three-body potential acting among atoms
sitesi , j , andk and all summations run over the entire cry
tal. Without loss of generality we may assume that all ma
body potentials starting from three-body terms vanish.
least they normally fall off much faster with distance th
the pair potentials.

Similar to the LSGF method, we introduce a LIZ arou
each atomic site and inside this LIZ we have the real ato
of the system and outside we place effective atoms. If
LIZ includesn coordination shells, the energy of the cent
atom in each LIZ is given by

e i
~n!5v i

~1!1
1

2 (
j51

n

mjvj1
1

2 (
j5n11

`

mjṽj , ~18!

wherevj[v i j
(2) with j in thejth coordination shell,ṽj is the

pair potential between the real atom ati and an effective
atom in thejth coordination shell, andmj is the coordination
number. Therefore, an increase in the size of the LIZ by
coordination shell, i.e., fromn to n11, will cause the energy
of each atom in the crystal to change by

d i
~n11!5e i

~n11!2e i
~n!5

mn11

2
~vn112 ṽn11!. ~19!

This is illustrated in Figs. 2~b! and 2~d!, where the LIZ of
two different sizes centered at the same site of the supe
are shown. Note that the regions inside the first shell of ne
est neighbors and outside the second shell are the same
two figures. Thus the only difference is found in the seco
shell, where the effective atoms in Fig. 2~b! are replaced by
real atoms in Fig. 2~d!.

Equation~19! shows that the convergence of the total e
ergy with respect to the size of the LIZ is completely det
mined by the difference between the effective medium a
the real system: The closer the effective medium is to
real system, the better the convergence. This means in
ticular that if one chooses a reference system with locali
interatomic interactions for whichṽj50 starting from any
coordination shell, one would in fact not achieve fast r
space convergence because in this case the convergen
governed by the bare interatomic potentialsv(r ). For simple
metals these potentials are estimated in pseudopote
o

m

l

s

at

-
t

s
e
l

e

ell
r-
the
d

-
-
d
e
ar-
d

l
e is

ial

theory and they usually decay very slowly,'cos(2kFr)/r3

with distancer .43,44 For transition metals the decay of th
pair potentials may be estimated from surface calculation38

which show that the perturbation from the surface is co
pletely screened at distances corresponding to seven to
coordination shells. This agrees with the results of the LS
method of Wanget al.,20 in which the reference system is
free electron gas and henceṽj50 for all shells.

In the case of a monotomic solid the convergence of
present LSGF method is trivial: The effective medium is t
real atom, i.e.,ṽn11[vn11 , and thereforee i

(n)[e i , wheree i

is the exact value~17! of the energy of the atom on sitei . To
show the convergence of the LSGF method in the case o
alloy we consider a model alloyAcB12c with two compo-
nents under the condition that all theA atoms and all theB
atoms in the crystal are equivalent. This is, for instance,
case for a completely ordered alloy with two type of subl
tices, where the local environment of all theA sites as well
as all theB sites is exactly the same. The effective mediu
in the LSGF method is now the completely random alloy
A andB atoms and therefore the change in the energy of
A atom upon an increase in the size of the LIZ by one co
dination shell is

d iA
~n11!5e iA

~n11!2e iA
~n!

5
mn11

2
@cn11

A vn11
AA 1~12cn11

A !vn11
AB 2 ṽn11

AX #.

~20!

Herevn11
AB is the pair potential betweenA andB atoms at the

distance of the (n11)th coordination shell,cn11
A the concen-

tration of theA components in the (n11)th coordination
shell of theA atom, andṽn11

AX the pair potential between
atom A and the chosen effective medium. If the effecti
medium is exactly that of the completely random alloy th
ṽn11

AX 5cvn11
AA 1(12c)vn11

AB , and if we note that for a given
atomic distribution the concentrationcn11

A may be expressed
through the Warren-Cowley short-range order parameteraj

ascj
A5c1(12c)aj we find that

d iA
~n11!5

mn11

2
~12c!an11~vn11

AA 2vn11
AB !. ~21!

Similarly, we find the change in the total energy of atomB in
the LIZ to be

d iB
~n11!5

mn11

2
can11~vn11

BB 2vn11
AB ! ~22!

and therefore the change in the total energy of the wh
crystal is

dEtot
n115N@cd iA

~n11!1~12c!d iB
~n11!#

5N
mn11

2
c~12c!an11~vn11

AA 1vn11
BB 22vn11

AB !.

~23!

We note that the last parentheses contain simply the effec
pair interactions as defined in alloy theory and therefore
convergence of the total energy in the LSGF method in
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case of an alloy is exactly the same as the convergence o
effective interactions. However, it also depends on the
gree of the order in an alloy.

In the case of a completely random alloy all the sho
range-order parameters are zero,aj50, and it follows from
Eq. ~23! that it is sufficient to use a LIZ of only one atom
i.e., the single-site approximation, to find the exact value
the total energy. However, this is true only in the case wh
the chosen effective medium represents the random allo
given species exactly, because Eq.~23! is derived under this
assumption. In general, the conditionṽ n11

AX 5cvn11
AA

1(12c)vn11
AB is not satisfied and one may only conclu

that the difference in the total energy of the completely r
dom alloy calculated by the LSGF method in the single-s
approximation or ‘‘exactly’’ with a sufficiently large LIZ is
given by the error in the approximation used in the definit
of the effective medium of the completely random alloy. T
numerical examples to be presented later show that the C
in fact gives a good description of the electronic structure
a completely random alloy.

On the other hand, it is obvious from Eq.~23! that the
worst possible convergence of the LSGF method should
cur in a completely ordered alloy where allajÞ0. In this
case the convergence of the total energy with respect to
LIZ size is reached at the distance over which the effec
interactions in the system converge and the change of
total energy of a completely ordered alloy as a function
the LIZ size may be used as an estimate of the value of
corresponding effective pair interactions. However, since
Madelung potential and energy of the supercell in the LS
method are determined exactly and independently of the
size, such an estimate does not include the electrostatic
tribution to pair interactions similar to those defined in R
45. Finally, we note that the electrostatic contributions
also neglected in the generalized perturbation met
~GPM!.40,46

Concluding this section, we would like to point out th
the LSGF method gives us the opportunity not only to che
the convergence of the effective cluster interactions but a
to calculate them and in particular to calcula
concentration-dependenteffective cluster interactions. Thi
may be done by using the idea behind the well-kno
Connolly-Williams method.47 That is, we calculate the tota
energies of alloys with different sets of correlation functio
but for some fixed concentrations of the alloy compone
and then map these energies onto the corresponding cl
expansion. Since these calculations are fast one may per
a large number of them and thereby increase the accurac
the interaction parameters obtained. The resulting effec
cluster interactions will include not only the so-called ban
energy term as in the GPM but all contributions to the to
energy. Preliminary calculations have been carried out, b
discussion is beyond the scope of the present paper and
be presented elsewhere.

III. COMPUTATIONAL DETAILS

The complete self-consistent procedure of the LSGF-C
method may now be summarized. We start with a guess
the charge density of all the atoms in the system. This co
be a renormalized atomic density, but we find it more e
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cient to start from the result of a conventional CPA calcu
tion for a random alloy with the same composition as t
supercell. We then determine the potential function for
effective scatterersP̃ by solving Eq.~15! and constructing
the effective medium Green’s function for the LIZ by E
~10!. Note thatU in Eq. ~10! is a basis vector in the unit ce
of the underlying lattice. We proceed by solving Eq.~14! for
eachR. Now the site-diagonal blocksgRR are known for all
atoms in the system and we calculate the site-decompo
Green’s functionGRL8,RL

g (z), the moments of the state den
sity Eq. ~12!, and the new charge density Eq.~11!. Subse-
quently, we solve Poissons equation for the electrostatic
tential, add the exchange-correlation potential, and repea
procedure until self-consistency is reached.

The actual calculations were performed by means of
scalar relativistic LMTO method in the tight-binding repr
sentation employings, p, andd orbitals in conjunction with
the atomic sphere approximation.23–27The complex integrals
were evaluated on a semi-circular contour using 16–25
ergy points distributed so as to increase the sampling n
the Fermi level. Exchange and correlation were includ
within the local density approximation using the Perde
Zunger parametrization48 of the many-body calculations o
Ceperley and Alder.49 The reciprocal space integrals we
calculated by means of 200–500k points in the irreducible
part of the bcc or fcc Brillouin zone and the off-diagon
elements of the effective medium Green’s function were c
structed by means of the symmetrization technique descr
in Ref. 50. An effective two-step procedure for the char
self-consistency that speeds up the solution of the electr
structure problem by an order of magnitude is described
the Appendix.

IV. SUPERCELL APPROACH TO THE ALLOY PROBLEM

The efficiency of the LSGF method allows us to tre
supercells with several hundred atoms of different typ
Thereby the method is particularly suitable for the investig
tion of substitutional alloys over a broad spectrum of atom
configurations ranging from random to order with arbitra
degree of short-range-order effects. The question is now h
one performs the necessary average over all possible
figurations to determine the alloy properties of interest. H
we are helped by the principle of spatial ergodicity, acco
ing to which all possible finite atomic arrangements are
alized in a single infinite sample. What makes this princip
work in practice, in fact as well as the LSGF method itself,
the fact that for a given physical propertyP, here the site-
diagonal block of the one-electron Green’s function mat
for each atom in the supercell, all the correlations in t
atomic distribution become unimportant at some dista
and hence the sample may be chosen finite.

The principle may be formulated more explicitly in term
of correlation functionsP f , which are the Gibbs averages o
the products of site occupation numbers in a particular g
metrical configuration of sites, or a figuref . In the case of
binary alloys it is convenient to determine the correlati
functions as the product of spin variablessi taking on values
11 and21 depending on whether sitei is occupied by one
or the other component, i.e.,
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P f5^sisj •••sk& f . ~24!

It was shown by Sanchezet al.51 that any measurable prop
ertyP of the system may be rigorously expanded in terms
the ensemble averages of the correlation functions~24!

P5(
f

P f pf , ~25!

where summation runs over all possible figures. The coe
cientspf in the expansion~25!, which are, for instance, the
effective cluster interactions ifP is the total energy, are usu
ally nonzero only for some finite set of figures of near
sites. This means thatP is only sensitive to the atomic dis
tributions inside the figuresf for which pfÞ0, and to deter-
mine the quantityP corresponding to the ensemble avera
values ofP f one may simply design afinite N-atom periodic
structure, the distinct correlation functionsP̃f of which are
equal to the ensemble averageP f for all the figures for
which pfÞ0. For all other figures the conditionP̃f5P f may
be not satisfied, but this cannot influence the physical pr
erty P.

The approach described above is the so-called spe
quasirandom structure~SQS! method suggested by Zunge
et al.52 and applied in the framework of conventional ba
structure techniques. Because of the problem withO(N3)
scaling, only a few SQS’s withN<32 have been considere
for fcc and bcc lattices for two concentrations, 50% a
25%, and for a completely random atomic distribution ins
the first few coordination shells. The LSGF method allo
us to calculate systems with up to 500 atoms even o
moderate workstation. With such a number of atoms in
supercell one may consider practically any random al
composition with fixed correlation functions up to the six
shell. Of course, the value of the concentration may only
rational fractions with an accuracy of 1/N, but for many
alloy problems such an accuracy is quite reasonable.

To generate a supercell with required correlation fu
tions, we make use of a Metropolis-like algorithm. TheNk
correlation functions that we want to match determine a v
tor j in an Nk-dimensional space. Starting from an arbitra
initial configuration corresponding to some vectorj8, a par-
ticular pair of atoms of different kind, chosen at random,
considered and a vectorj 9 corresponding to an exchange
the two atoms is calculated. If the distance in t
Nk-dimensional space betweenj 9 andj is less than the dis
tance betweenj8 andj, the exchange is accepted; otherwi
the initial configuration is kept. The procedure is repea
until we have generated a configuration sufficiently close
the one required. We point out that the manner in which
substitutional alloys are constructed is independent of
LSGF method itself. The former is a statistical proble
while the latter is a method to solve the electronic struct
problem for a given supercell with a given atomic distrib
tion.

V. NUMERICAL ASPECTS

A. Convergence with respect to the size of the supercell

Within the special quasirandom structure approach
question is how large the supercell has to be for the LS
f
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method to yield converged total energies. Here we show
in the case of a supercell with specified correlations the
rameters that determine the convergence with respect to
size of the supercell are the correlation functions up to
range of nonzero effective cluster interactions. To do so,
choose two fcc alloys, Cu50Zn50 and Cu75Au25, where the
most important effective interactions are those of the fi
coordination shell as discussed in Sec. II E. This means
discussed in Sec. IV, that to model a completely rand
alloy in these systems it is sufficient to consider a sm
supercell and that an increase in system size will leave
total energy unchanged.

In Fig. 3 we present the calculated total energy of rand
fcc Cu50Zn50 and Cu75Au25 alloys as a function of the num
ber of atoms in the supercells. These supercells are c
structed to have zero correlation functions for the first a
second coordination shells, while the correlation functio
for the following coordination shells are allowed to be arb
trary. In fact, they turn out to be close to those of the rand
alloy due to the initial random mixing of atoms. We find th
converged results are obtained with a LIZ of one shell
nearest neighbors for the Cu-Zn alloy, corresponding to
atoms in the LIZ, and with a LIZ of two shells of neare
neighbors for the Cu-Au alloy, corresponding to 19 atoms
the LIZ. When the number of atoms in the supercell sub
quently is changed for a fixed number of atoms in the L
we find for both alloys that the total energy of the superc
with only 32 atoms is within 0.1 mRy of the result for su
percell with 256 atoms. Since the distributions of atoms
the different supercells are by construction different, the
results confirm the SQS approach to the averaging prob
described in Sec. IV.

B. Timing of the LSGF method

As already discussed in Sec. II C, the computational ef
of the LSGF method is expected to scale asO(N). That this

FIG. 3. Total energies of random fcc Cu50Zn50 ~circles! and
Cu75Au25 ~squares! alloys calculated by the LSGF-CPA metho
relative to the energy of the corresponding ordered phase~L10 for
Cu-Zn andL12 for Cu-Au! as a function of the number of atoms i
the system. The energies for the ordered phases were calculat
the conventional LMTO-GF method. The Wigner-Seitz radiiRWS

52.70 a.u.~Cu-Zn! and 2.80 a.u.~Cu-Au! were used for both the
ordered and random alloys. The LIZ consists of one and two sh
of nearest neighbors for the Cu-Zn and Cu-Au systems, res
tively.
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is indeed true is illustrated in Fig. 4, where we plot the co
puter time per LSGF iteration as a function of the size of
supercell for the fcc Cu50Zn50 alloy. In these calculations we
used a LIZ consisting of only one shell of nearest neighbo
which is sufficient for convergence in the LIZ size. Howev
an increase in the sizeM of the LIZ leads only to an increas
in slope, reflecting theO(M3) prefactor in the scaling, bu
does not influence the linear behavior seen in Fig. 4.
make the computer time-scale machine independent we
normalized the time per LSGF iteration to that of a conve
tional CPA iteration. It is worth mentioning that not only d
we find a linear increase in the computational effort w
increasing system size, but we also find that in the limit o
small supercell the LSGF to CPA time ratio approach
unity. In fact, the absolute time per LSGF iteration is qu
reasonable even though we have used only a moderatel
ficient work station. Note that, due to the efficient ‘‘two
step’’ iteration procedure described in the Appendix, we
not need more than 10–20 iterations to reach 1026 Ry con-
vergence.

To implement anO(N) method one typically introduce
extra computational steps, which for small supercell si
make the method less efficient than the conventionalO(N3)
method. The question is therefore at which cell size
crossover occurs. As we shall see, the LSGF method ma
favorable cases, depending on the kinds of atoms in the
tem, be as efficient as conventional techniques already
one atom per unit cell. To analyze the question we h
performed a series of test calculations, but before we disc
these in detail we point out that the comparison we m
obviously is computer-code dependent simply because
codes even for the same LMTO method have slightly diff
ent efficiencies. To represent a conventional band struc
program we have used the LMTO Green’s-function~GF!
method described in Ref. 31, which allows us to treat
dered compounds and random alloys, in the framework
the CPA, on an equal footing. Due to a two-step iterat

FIG. 4. Elapsed time for the LSGF-CPA calculations for a ra
dom fcc Cu50Zn50 alloy with the Wigner-Seitz radiusRWS

52.70 a.u. as a function of the number of atoms in the system. T
time scales are used. The left axis shows the time per LSGF-C
iteration normalized to that of the conventional LMTO-CP
method and the right axis denotes real time in seconds per itera
The local interaction zone consists of one shell of nearest neigh
~13 atoms!.
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procedure, this code is approximately as efficient as the c
ventional LMTO code in the Hamiltonian formulation.27

If we neglect that part of the LSGF problem that is co
nected with the determination of the effective medium~see
Sec. II D!, the computer time for the LSGF and th
LMTO-GF method may be written as

tLSGF5aNM3 ~26!

and

tLMTO-GF5bKN3, ~27!

respectively, wherea,b are proportionality constants,N is
the number of atoms in the system,M is the size of the LIZ,
andK is the number ofk points in the Brillouin zone for the
supercell. The latter may decrease with increasingN, so for
a while the scaling of the LMTO-GF technique is in fa
O(N2) rather thanO(N3). However, we do not believe tha
K should be much smaller than 10 and therefore assume
estimate

K5
300

N
110. ~28!

From our test calculations we have determineda/b;1/5,
which together with Eqs.~26!–~28! leads to the following
estimate for the number of atomsNmin in the supercell for
which the LSGF method becomes more efficient than
LMTO-GF method:

Nmin5A2251M3/50215. ~29!

Values forNmin as a function of the LIZ sizeM are listed in
Table I for the fcc structure. The calculations to be presen
in Sec. VI show that we need to include at most three to f
coordination shells in the LIZ to obtain a total energy with
accuracy of 0.1 mRy. It therefore follows from Table I that
we need a 100-atom supercell we are always in the reg
where the LSGF method is substantially more efficient th
conventional band structure calculations.

In the analysis presented above we did not consider
use of a parallel computer. It is in fact not easy to cre
efficient parallel algorithms for conventional band structu
methods because the only obvious choice is a paralleliza
in k points and when a minimal number of such points
used the application of parallel computers becomes ine

-

o
A

n.
rs

TABLE I. Estimated number of atoms in the supercellNmin at
which the LSGF method becomes more efficient than
LMTO-GF method as a function of the number of atomsM in the
local interaction zone for a fcc underlying lattice.

Number
of shells M Nmin

0 1 1
1 13 2
2 19 4
3 43 28
4 55 45
5 79 86
6 87 101
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cient. In contrast, the LSGF method allows for an efficie
parallelization in the sites of the supercell, exactly as in
LSMS method. This point has been thoroughly discussed
Wanget al.20

VI. RESULTS AND DISCUSSION

In this section we discuss several aspects of the LS
method on the basis of calculations for a number of suita
chosen alloy systems. In particular, we discuss the two c
tral concepts: the local interaction zone and the effective
dium.

A. The local interaction zone concept: OrderedB2 NiAl alloy

As stated in Sec. II C, the concept of a local interact
zone is based on the suggestion that the site-diagonal bl
of the Green’s function or, equivalently, the local density
states~DOS! for a particular atom within a large condens
system may be obtained by considering only the electro
multiple scattering processes in a finite spatial region,
LIZ, centered at that atom. In Fig. 5 we illustrate how w

FIG. 5. Density of states for the orderedB2 NiAl alloy calcu-
lated by the LSGF-CPA method with different numbers of neig
boring shells included in the LIZ. LIZ50 corresponds to the single
site LIZ. The fully converged density of states calculated by
conventional LMTO-GF technique is also shown in each panel
full line.
t
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the concept works by comparing the DOS calculated for
orderedB2 NiAl alloy by means of the LSGF-CPA metho
for different LIZ sizes with the result of a convention
LMTO-GF calculation. The underlying lattice in the LSG
calculations is bcc and the NiAl system is chosen becaus
exhibits the slowest convergence with LIZ size among all
alloys we have considered so far.

We observe in Fig. 5 that a single-site LIZ, i.e., a LI
consisting of only the central atom and zero shells of nea
neighbors, leads to a qualitatively incorrect electronic str
ture. In fact, we obtain a DOS with a two-peak structu
typical of a random bcc alloy. This is not surprising becau
in the single-site approximation the electronic spectrum
flects mainly the properties of the effective medium, which
an effective medium for a random alloy. In contrast, t
DOS calculated by the LMTO-GF method, which is the co
verged result, has a pronounced peak positioned in a va
between the two random alloy peaks. If we now include
first shell of nearest neighbors in the LIZ, the LSGF-CP
DOS shows a single-peak structure in much better agreem
with the LMTO-GF calculations. As the size of the LIZ in
creases the agreement between two methods gradually
proves to the extent that for five shells of nearest neighb
the density of states calculated by the LSGF-CPA is w
converged.

The relatively slow convergence of the density of sta
with respect to the size of the LIZ may be contrasted with
convergence of the total energy for theB2 NiAl alloy shown
in Fig. 6. In the case of the ordered atomic distribution on
the single-site LSGF-CPA result is more than 20 mRy
error and already from a one-shell LIZ the difference is le
than 1 mRy/atom. This result reflects the variational pr
ciple, which ensures that the total energy converges ov
length scale determined by the perturbation of t
potential.26 As discussed in Sec. II E, this length scale m

-

e
a

FIG. 6. Total energies of ordered~B2 structure, squares! and
random~circles! bcc Ni50Al50 alloys (RWS52.65 a.u.) as a function
of the number of neighboring shells included in the local interact
zone. Values obtained by the LSGF-CPA~filled symbols! and by
the LSGF-ATA ~open symbols! calculations are shown togethe
with the reference calculations presented as a dashed line~LMTO,
ordered sample! and a dot-dashed line~LMTO-CPA, random
sample!. The LSGF calculations for the random alloy have be
performed for a supercell with 128 atoms. The LMTO-CPA calc
lations employed the screened impurity model~SIM! ~Ref. 53! to
account for the large charge transfer effects in NiAl alloy, and
prefactorb50.6 was used.
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be estimated from the decay of the effective pair interacti
and is quite dependent on the atomic species forming
alloy. In contrast, the density of states does not obey a va
tional principle and the convergence may be much slo
than that of the total energy.

The total energy of a random distribution of 50% Ni a
50% Al atoms on the bcc lattice of a 128-atom superc
converges even faster than that of the ordered alloy; see
6. We notice that the large and negative ordering energ
the NiAl alloy is correctly reproduced. Further, our result f
the random alloy is in good agreement with that obtained
the LMTO-CPA method in conjunction with the screen
impurity model ~SIM! CPA using a prefactorb50.6.53,42

The SIM allows us to account approximately for the cha
transfer effects that are neglected in the conventional C
but of course correctly included in the LSGF-CPA calcu
tions. Finally, we observe in Fig. 6 that the total energy
the random alloy is very well reproduced already for
single-site LIZ. This confirms our expectation that the CP
like effective medium is a particularly good choice, at lea
for a random alloy.

B. Use of different effective media

The second important component of the LSGF metho
the effective medium, the role of which is to reduce the s
of the LIZ by improving the boundary condition for the finit
region where the multiple scattering problem is solved
actly. This means, in particular, that LSGF calculations w
different effective media must converge to the same re
but with different LIZ sizes. This is illustrated in Fig. 6
which includes results obtained by an ATA effective m
dium constructed by assuming that the potential functionP̃a
for the effective scatterers on thea sites is given by the
average

P̃a
215~Na!21 (

RPa
PR

21 , ~30!

with a similar expression for the potential function on theb
sites. Hence we do not solve Eqs.~15! but obtain the Green’s
function for the effective scatterers fromP̃2S.

One may see in the figure that for the five-shell LIZ t
two different effective media give essentially the same
sults for both the ordered and the random phases. Howe
the results obtained by the LSGF-CPA are somewhat m
stable and converge faster than those of the LSGF-ATA
particular, the total energy of the random alloy for the sing
site LIZ and the ATA effective medium is substantial
smaller than that obtained by the CPA effective mediu
Note that the time one needs to solve the CPA equations~15!
is not a dominant part of the calculations and one does
save a substantial amount of time by substituting the C
effective medium by the ATA effective medium, especia
when the LIZ is large. In fact, the decrease of the LIZ s
one may obtain within the LSGF-CPA compared to t
LSGF-ATA will more than compensate for the time spent
solving the CPA equations.

In the case of bcc NiAl, for instance, it is sufficient to u
a LIZ of one shell of nearest neighbors and the CPA eff
tive medium if the accuracy one is interested in is of t
s
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order of 1 mRy~or about 2% of the ordering energy!. At the
same time within the LSGF-ATA one has to go to two
three shells of nearest neighbors to obtain the same accu
Of course, one may save a little time by applying the AT
effective medium for the five-shell LIZ if higher accuracy
needed. However, in that case there is a better way to s
the problem, and we will illustrate this by the example of t
off-stoichiometric partially ordered bcc Ni~Ni9.375Al90.625! al-
loy.

When there is an excess of Ni atoms in a partially orde
B2 NiAl alloy these atoms are known experimentally to o
cupy Al sites, while the Ni sublattice is completely order
and occupied only by Ni atoms. As we have already m
tioned in Sec. II D, to deal with such a system we have t
possible choices for the underlying lattice. Either we co
sider it as a bcc lattice with just one atom per unit cell or
treat it closer to the real situation, namely, as aB2 lattice
with two different sublattices and, of course, two types
effective atoms. By definition a single-site LIZ will suffic
for ordered NiAl. In Fig. 7 we show how the total energy
partially ordered Ni~Ni9.375Al90.625! converges with respect to
the size of the LIZ for the bcc andB2 effective medium. It is
clearly seen that by making the effective medium sligh
more complicated the size of the LIZ is substantially reduc
and we obtain an accurate result already for a single-site L
It is also seen that for a larger LIZ the two effective med
lead to the same result.

The examples in this section demonstrate the possib
to vary the effective medium to suit the problem at hand a
in particular to minimize the size of the LIZ and thereby t
computational effort. The examples also demonstrate tha
final results are independent of the choice of effective m
dium, as should be the case.

C. Total energy calculations for a general atomic distribution:
Rh-Pd alloy

To illustrate the possibility to calculate accurate total e
ergies for systems with any distribution of atoms on the u

FIG. 7. Total energy of a partially orderedB2 Ni~Ni9.375Al90.625!
alloy ~RWS52.65 a.u., 128 atomic supercell! as a function of the
number of neighboring shells included in the local interaction zo
Values obtained by the LSGF-CPA calculations with effective
oms of one kind placed in a bcc underlying lattice~filled circles!
and with effective atoms of two kinds placed in aB2 underlying
lattice ~open squares! are shown. The reference energyEre f is the
converged result~five shells! for the B2 effective medium.
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derlying lattice by means of the LSGF-CPA method we ha
performed self-consistent calculations for the fcc Rh50Pd50
alloy with three different atomic configurations: complete
ordered in theL10 structure, completely random, and seg
gated. We have considered a supercell with 144 atomic s
periodic boundary conditions, and the atomic distributio
shown in Fig. 8. In setting up a particular atomic distributi
we have specified the first five Warren-Cowley short-ran
order parametersa i , ~Ref. 40! according to the values in
Table II. In particular, for the segregated sample shown
the lower panel of Fig. 8,a i is positive up to the fifth shell,
indicating good phase separation. The results of the LS
CPA calculations are then compared with those of
LMTO Green’s function method for an ordered sample,

FIG. 8. Three different distributions of Rh~dark gray! and Pd
~light gray! atoms in an equiatomic fcc Rh-Pd alloy. The order
sample~L10 structure, top!, the random sample~middle!, and the
segregated sample~bottom! were constructed on the fcc underlyin
lattice for the 144-atom supercell. The values of the short-ra
order parameter for each of these structures are given in Table

TABLE II. Warren-Cowley short-range-order parametersa i for
the first five shells in three fcc Rh-Pd samples shown in Fig. 8

Sample

a i , i 51 – 5

1 2 3 4 5

ordered,L10 21/3 1 21/3 1 21/3
random 0 0 0 0 0
segregated 2/3 2/3 1/3 1/3 1/3
e

-
s,

s

-

n

F-
e
s

well as with LMTO-CPA results for the random sample
We expect the CPA to give reliable total energies for Rh-
alloys independent of the value of the prefactorb used in the
screened impurity model because the charge transfer in
system is very small. Finally, the segregated sample is m
up from four~010! layers of pure Rh and four~010! layers of
pure Pd and its total energy may be calculated not only
the LSGF method but also by the interface Green’s funct
technique.37

In Fig. 9 we show the total energies of the three samp
as a function of the number of neighboring shells included
the LIZ. In agreement with the experimental phase diagr
for the Rh-Pd system, which has a miscibility gap, we fi
the segregated sample to have the lowest total energy. T
follows the random alloy, and the ordered phase has
highest total energy. The excellent real-space convergenc
the LSGF-CPA method may again be judged from Fig.
We observe that already for the LIZ that includes just o
shell of nearest neighbors, i.e., 13 atoms, the total ener
are converged to within 0.5 mRy, and for four shells t
difference between the LSGF method and the reference
culations, i.e., bulk LMTO and interface Green’s functio
technique, is below 0.1 mRy. The difference between
LSGF and CPA calculations is expected to be larger, and
a matter of fact one may judge the accuracy of the la
rather than the former from this comparison.

We note that the LSGF method allows us to obtain re
able total energies for systems that normally would ha
been treated by three different techniques, e.g., the b
LMTO, the LMTO-CPA, and the interface LMTO Green’
function techniques. Moreover, the LSGF method allows
to consideranyatomic distribution on the underlying lattice
Therefore, the total energy of a large class of important al
systems may be treated on the same footing by means
single computational technique thereby adding to the faith
the results.

In Fig. 9 one observes a stepwise behavior of the to
energy as a function of the LIZ size for the ordered and

e
I.

FIG. 9. Total energies of ordered~L10 structure, squares!, ran-
dom ~circles!, and segregated~triangles! fcc Rh50Pd50 alloys ~RWS

52.92 a.u.) as a function of the number of neighboring shells
cluded in the local interaction zone. Supercells are shown in Fig
Values obtained by the LSGF-CPA method are shown by fil
symbols and full lines. The energies obtained by the reference
culations are shown by a dashed line~LMTO, ordered sample!, a
dotted line~LMTO-CPA, random sample!, and a dot-dashed line
~interface Green’s function technique, segregated sample!.
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segregated samples. Thus the change in the total ener
largest when we include the first shell of neighbors, alm
zero when we include the second and the fourth shells,
slightly nonzero when we include the third shell. This co
vergence behavior of the LSGF-CPA method may be
scribed in terms of the effective pair interactions discusse
Sec. II E. In the present Rh-Pd alloy system Wolvert
et al.54 found effective pair interactions that were apprecia
for the first and third coordination shells but small for t
second and fourth shells, in complete agreement with
convergence pattern shown in Fig. 9. This is not a coin
dence and in all the cases considered in the present pape
find that the convergence in terms of the LIZ size follows t
range of the effective pair interactions.

One also observes in Fig. 9 that the total energy of
random sample, as in the case of the Ni-Al alloy, conver
faster than for the ordered and segregated samples, indic
that the CPA effective medium in fact forms a perfect re
resentation of the average of a random atomic distribut
Finally, when we compare only the ordered and the seg
gated samples we observe that these two samples ex
similar convergence properties with respect to the size of
LIZ. This means that we do not have to test the converge
for each new atomic distribution but only for, e.g., the o
dered sample.

D. Convergence in real space: Ordering energies of alloys

In Fig. 10 we present convergence tests for different al
systems, fcc Cu75Zn25, Cu75Au25, Cu50Au50, Ni75Al25, and
bcc Li50Mg50 and W50Al50. Here we have calculated th
total energy of two phases, the random and the simples
dered phase for a given concentration, i.e.,L12 or L10 for
the fcc alloys andB2 for the bcc alloys. In addition to the
LSGF calculations, the ordered samples have also b
treated by the LMTO-GF technique and the energies
tained in the latter calculations serve as reference.

In Fig. 10 it is seen that already for a single-shell LIZ a
alloys, except W-Al, are converged to within 1 mRy. Mor
over, in Sec. V B it is shown that the LSGF technique
most efficient when the size of the LIZ does not exceed th
or four shells of nearest neighbors for the fcc underly
lattice and five shells for the bcc underlying lattice. F
LIZ’s of these sizes we see in the figure that the total ene
for all alloy systems including the ordered samples are c
verged to within 0.1 mRy. This conclusion does not depe
on whether we deal with alloys of transition or of simp
metals, with large or small charge transfers, or with syste
that have a tendency towards order or phase separation.
it does not depend on the alloy concentration, as illustra
by the examples of Cu-Zn~Ref. 55! and Cu-Au alloys. Fi-
nally, the numerical tests, including the results for the b
and partially orderedB2 NiAl alloys and for the Rh-Pd al-
loys presented in previous sections, cover a broad spec
of systems and we believe our results demonstrate the
eral applicability of the LSGF method.

Finally, we note that in all the cases considered in
present study we correctly reproduce the ordering tenden
Thus, for Cu-Zn, Cu-Au, Ni-Al, and Li-Mg alloys we find
that the ordered phase has a lower energy than the ran
phase, while for the Rh-Pd and W-Al alloys we find that t
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ordered phase has a higher energy than the random ph
Experimentally, it is known that the stability of the ordere
phases is very high in Ni-Al and intermediate in Cu-A
while no ordered phases are formed for fcc Cu75Zn25 and bcc
Li50Mg50. The values for the ordering energies found in o
calculations are in qualitative agreement with this tren
However, it should be noted that in Fig. 10 we present
total energies of the random and ordered phases at the s
lattice parameter, while in fact the degree of order may
fluence the interatomic distances.42 On the other hand this
effect is usually small and it is unlikely that it will substan
tially change the results shown in Fig. 10.

VII. SUMMARY

We have presented and discussed the order-N LSGF
method for electronic structure calculations in systems w
many atoms distributed arbitrarily on an underlying crys
lattice. The method is formulated in the framework of t
LMTO-GF technique and is based on the local interact
zone concept. Each local interaction zone is embedded i
effective medium, and we find that the CPA effective m
dium for a multicomponent alloy where each atom of t
original supercell is considered to be an independent com
nent of a completely random alloy on the same underly
lattice forms an optimal effective medium. The method h
been applied in total energy calculations for a number

FIG. 10. Total energies of simplest ordered phases~L1 2 for fcc
A75B25, L10 for fcc A50B50, andB2 for bcc A50B50 alloys! shown
as squares and random phases~circles! as a function of the numbe
of neighboring shells included in the local interaction zone for d
ferent alloy systems. Values are given relative to the results
conventional LMTO-GF calculation for the corresponding order
phase.
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9332 56ABRIKOSOV, SIMAK, JOHANSSON, RUBAN, AND SKRIVER
different substitutional alloys with different degrees of ord
and is found to exhibit rapid convergence in terms of the s
of the local interaction zone. In general the method yie
results in excellent agreement with those obtained by a
native first-principles techniques. The number of atoms
which the LSGF method becomes more efficient than c
ventional band structure methods lies in the range 1–50
all the systems considered in the present work. The e
figure depends on the degree of order, the required accu
and the atomic species forming the alloy. This latter conv
gence dependence in terms of the atomic species is foun
be accurately characterized by the range of the so-called
fective cluster interactions~ECI’s!, and we find that the real
space convergence of the LSGF method is directly de
mined by the convergence of the ECI’s in the system.
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APPENDIX: EFFECTIVE TWO-STEP PROCEDURE FOR
THE CHARGE SELF-CONSISTENCY AND THE

SOLUTION OF THE CPA EQUATION

In this appendix we discuss one way to accelerate e
tronic structure calculations based on the Green’s func
technique. The actual equations are written in an LMTO
sis, but a generalization to any other basis, e.g., KKR
straightforward.

The most time-consuming step of all first-principl
reciprocal-space-based one-electron methods is the inte
tion over the Brillouin zone, which is needed, for instanc
when calculating the KKR-ASA Green’s function in Se
II B. This problem becomes even more serious in the ca
lations of random alloys within the framework of the CP
In that case thek-space integration has to be repeated sev
times at each complex energy~and at the same LDA itera
tion! during the iterative solution of the CPA equation.

In conventional LMTO calculations27 the number of time-
consuming band iterations is greatly reduced by the LM
scaling principle. For surface calculations one may introd
a similar technique based on the solution of the lineari
Dyson equation, which reduces the number of times
complete Dyson equation must be solved by one orde
magnitude.38 The principle is that the complete electron
structure is only recalculated when charge self-consiste
has been obtained by means of an approximate state de
or Green’s function.

In Green’s function calculations we find the followin
‘‘two-step’’ scheme to be very efficient. The Green’s fun
tion at the (n11)th iteration is related to that at thenth
iteration by the Dyson equation

g~n11!~z!5gn~z!1gn~z!@Pn~z!2P~n11!~z!#g~n11!~z!,
~A1!

which must be solved for each complex energy and either
eachk point in the Brillouin zone or for an infinitely large
cluster in real space. We now assume that a good appr
r
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r-
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mation to the complete solution of Eq.~A1! is given by the
single-site cluster in real space, i.e., we replace Eq.~A1! by

gRR
~n11!~z!5gRR

n ~z!1gRR
n ~z!@PR

n~z!2PR
~n11!~z!#gRR

~n11!~z!,
~A2!

where the initial value ofgRR
n51 is the on-site Green’s function

given by the complete Brillouin zone integral or by th
LSGF, Eq.~14!. The smaller the difference in potential func
tions between different iterations, the better the approxim
tion works. In fact, at self-consistency

DPR5PR
n2PR

~n11!→0 ~A3!

and the single-site approximation~A2! to Eq. ~A1! becomes
exact.

Within this approximation one may find an analytical s
lution to the CPA equation. Suppose we have obtained
Green’s functionsg̃aa andgRa

0 in Eq. ~15! using some guess
for P̃. We now choose the potential function for the ne
CPA iteration in the form

P̃a
new~z!5 P̃a~z!1$^gaa

0 &212@ g̃aa~z!#21% ~A4!

and calculate the new effective medium Green’s funct
g̃aa

new from Eq. ~A2! and insert into Eq.~15!, which shows
that

gRa
0,new~z!5gRa

0 ~z!. ~A5!

Therefore, from the Eqs.~A2!, ~A4!, and~A5! we may write,
omitting subsripta ~or b!,

g̃new~z!5@12g̃~z!D P̃~z!#21g̃~z!

5„11g̃~z!$^g~z!&212@ g̃~z!#21%…21g̃~z!

5^g~z!&5^gnew~z!&, ~A6!

which means that the CPA condition given by the third
Eqs.~15! is fulfilled. Although Eq.~A2! is only an approxi-
mation, and therefore Eqs.~A5! and ~A6! do not hold ex-
actly, the updating of the coherent potential function by E
~A4! gives us a very rapid convergence when solving
CPA equation~15!. We never need more than five CPA i
erations to solve the CPA equation with a reasonable ac
racy. In fact, there is no need for a very high accuracy at
beginning of the LDA self-consistency iterations, and t
wards the end the approximation~A2! to Eq.~A1! and there-
fore also Eq.~A4! becomes increasingly accurate.

During the iterations toward the LDA self-consistency w
also use Eq.~A2!. First we solve the complete set of LSG
equations, the so-called big iteration. We then perfo
‘‘small’’ LDA iterations, typically between 40 and 300 de
pending on the problem, with a small admixture, typica
1–5%, of a new charge density. During these iterations
determine the on-site element of the Green’s function at e
sitegRR by solving only Eq.~A2!. When the small iterations
are converged, we perform the next big iteration. At this s
it may be desirable to mix the potentials between differ
big iterations, typically 70% of the new potential, and
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keep a minimal number of small iterations, between 10 a
20, to compensate for the small mixing close to the end
the self-consistent procedure. Note that a completely an
gous two-step procedure may be used in any calculat
based on a Green’s function approach. In particular, it is u
in our bulk and interface CPA Green’s function codes.31

We illustrate the efficiency and the accuracy of the tw
,

.

s.:
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n,
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step approach by LMTO-CPA Green’s function calculatio
for a partially ordered~Ni92Hf08!3Al alloy in the L12 struc-
ture. The self-consistency criterion for the total energy w
1026 Ry/atom. The one-step calculations required 118~big!
iterations and gave a total energy of256.379 166 Ry/atom,
while the two-step procedure converged after 18~big! itera-
tions and gave a total energy of256.379 177 Ry/atom.
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