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Generalized simulated annealing: Application to silicon clusters
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We have compared the recently introduced generalized simulated annealing~GSA! with conventional simu-
lated annealing~CSA!. GSA was tested as a tool to obtain the ground-state geometry of molecules. We have
used selected silicon clusters (Sin , n54 – 7,10) as test cases. Total energies were calculated through tight-
binding molecular dynamics. We have found that the replacement of Boltzmann statistics~CSA! by Tsallis’s
statistics~GSA! has the potential to speed up optimizations with no loss of accuracy. Next, we applied the GSA
method to study the ground-state geometry of a 20-atom silicon cluster. We found an original geometry,
apparently lower in energy than those previously described in the literature.@S0163-1829~97!06239-5#
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To predict ground-state geometries of molecular syste
one must determine the global minimum of the total ene
of the system. It is well known that, even for simple system
the number of local minima increases exponentially with
number of atoms. For instance, a molecule composed o
atoms, interacting through a Lennard-Jones pair poten
has an estimated number1 of 108 local minima. Clearly, ge-
ometry optimization of realistic systems represents a v
difficult optimization problem. Local minimization proce
dures such as conjugate gradient2 and steepest descent3 are
not efficient to solve this class of problems because they
not designed to overcome potential barriers.

Methods based on the simulation of natural proces
such as simulated annealing4 and genetic algorithm5 have
emerged as promising tools to solve NP optimizat
problems.6 The simulated annealing~SA! algorithm is a nu-
merical simulation method based on the dynamics of crys
lization. Consider heating a solid until its constituents c
move freely and it melts. Then the melt is allowed to co
very slowly until it solidifies in a certain arrangement. Th
heating and slow cooling can be repeated many times
enhance the chance to find the configuration correspon
to the global energy minimum. SA was created by Kir
patrick, Gellar, and Vechi4 to search for the global extremum
of generic objective functions by simulating the anneal
process. Geman and Geman7 proved that if the temperatur
is reduced slowly enough conventional simulated annea
is guaranteed to find the global minimum. Unfortunate
such a slow pace makes the method inapplicable to se
for the ground-state geometry of molecules with even a sm
number of atoms.

Recently, Penna8 has introduced another method, gener
ized simulated annealing~GSA!. This procedure is based o
Tsallis’s9 statistics. Penna proved that the recently develo
method could find a near optimum path for the ‘‘travelin
salesperson’’ problem efficiently, i.e., faster than the conv
tional SA ~CSA!. Here we have performed a comparis
between CSA and GSA in order to determine whether or
GSA is a convenient optimization procedure to predict
ground-state geometry of molecular systems. Specifica
we chose silicon clusters (Sin , n54 – 7 and 10! as test cases
GSA performed extremely well in these test cases. Next
used GSA to perform geometry optimization of Si20. We
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s,
y
,

e
0
l,

y

re

s,

l-
n
l

to
ng

g
,
ch
ll

-

d

-

t
e
y,

e

were able to find an original geometry that, according to o
tight-binding model, is lower in energy than those previou
described in the literature.

Prediction of ground-state geometries of large molecu
is hindered by time-consuming procedures, namely,
quantum-mechanical calculation of total energies and
large number of local minima. Currently, simulated anne
ing is one of the most promising techniques to tackle t
class of problems because transitions out of local minima
allowed. To make use of SA, one must provide the followi
elements:~i! a criterion to describe possible system config
rations, specifically, for molecular geometry optimizatio
simply a set of atomic coordinates that can be either Ca
sian or internal;~ii ! a generator of changes in configuratio
in our case, random changes in atomic coordinates;~iii ! an
objective function, whose optimization is the goal of the pr
cedure~here the total energyE has to be minimized!; and
~iv! a fictitious temperatureT as well as an annealing sche
ule that controls howT is reduced during optimization. Her
CSA was implemented using a stepwise-exponential
crease of temperature. For a fixed temperatureT, the atomic
coordinates were changed according to a Gaussian dist
tion whose standard deviation isa. Whenever five consecu
tive steps were rejected, the value ofa was halved. This
proceeds untila reachesa0/16; then the temperature is re
adjusted to a lower value according to an exponential coo
schedule anda returns toa0 .

According to CSA, a new configuration was promptly a
cepted if it produced a decrease in total energy. Otherw
Boltzmann10 statistics is applied, i.e., a higher-energy co
figuration could be accepted with probability

Pa exp~DE/KT!.

The pseudo-Boltzmann factor (K521/ln0.5) was adjusted
to produced 50% acceptation wheneverDE5T. This way
we associate some physical meaning with the fictitious te
peratureT. The CSA’s performance is strongly dependent
parameters such as the initial and final fictitious tempe
tures, cooling scheme, and step length.11

On the other hand, GSA takes advantage of Tsall
statistics.12 Thus the rearranged configuration is accep
with probability
9279 © 1997 The American Physical Society



lu
in

o

te
S

ly
re
is
c
f

lcu-
a
ure
at

he
tal-
the

la-

an
for
ns
t in-
ove
e-
ing

la-
nd

on
ore
5.

he
of
for

ain
y

nly
en-

s.
e.,
er
ergy
in
ach

i

of
a

9280 56BRIEF REPORTS
P5@12~12q!DE/kT#1/~12q!.

One can prove that in the limit forq→1, Boltzmann statis-
tics is recovered. Penna8 has pointed out that values ofq
,1, accelerate the optimization procedure, but large abso
values ofq lead to large roundoff errors. Therefore, to obta
a compromise between speed and accuracy, we chose t
q522 ~GSA2! and q525 ~GSA5!. In order to maintain
consistency, the same procedure was applied to reduce
perature and to generate new configurations for both C
and GSA.

Specifically, we chose small silicon clusters (Sin , n
54 – 7 and 10! to test GSA. To make the test particular
stringent, we have selected a starting geometry very diffe
from the ~known! ground-state configuration. Thus, as it
well known that silicon clusters form rather compact stru
tures, in-line geometries were chosen as starting points

FIG. 1. Time evolution of the geometry optimization of S6

using the CSA~dotted line!, GSA2 ~dashed line!, and GSA5~solid
line!. The cohesive energy per atom as a function of time~total-
energy calculation is shown!. The inset shows the early stages
the simulation to stress the differences between the GSA2
GSA5.
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the optimization procedures. The binding energy was ca
lated by the tight-binding13 model because it combines
quantum-mechanical treatment of the electronic struct
with a very efficient computational procedure. Notice th
our optimizations are limited to the realm of this model. T
most time-consuming step in the procedure is the to
energy calculation; thus we use one such calculation as
time unit. Figure 1 shows the time evolution of the simu
tion for Si6 . It is clear that both GSA2 (q522) and GSA5
(q525) find the ground-state configuration faster th
CSA. Figure 1 also shows a distinct oscillatory pattern
each simulation. More frequent and stronger oscillatio
mean higher rates of acceptance of rearrangements tha
crease the energy. Clearly, CSA accepts this kind of m
more frequently than GSA2 or GSA5. This is relevant b
cause it defines the change of the algorithm to avoid be
trapped in a local minimum, but it slows down the calcu
tion. The inset permits a comparison between GSA2 a
GSA5. Particularly in the early stages of the optimizati
procedure, GSA2 approaches the desired minimum m
slowly because it clearly oscillates more often than GSA
This pattern is typical for all the tests performed. As t
number of minima depends dramatically on the number
atoms, it is necessary to test the performance of GSA
other clusters.

Table I compares the time required to obtain a cert
energy level~50%, 75%, or 90% of the ground-state energ!
with CSA, GSA2, and GSA5 for Sin , n54 – 7,10 clusters.
Due to the random character of simulated annealing, we o
considered that an energy level was reached if the mean
ergy remained below that level for at least 300 time step

For all tests GSA2 and GSA5 outperformed CSA, i.
they find the global minimum faster. As GSA2 has a high
acceptance rate of rearrangements that increase the en
than GSA5, it converges slower than GSA5. All entries
Table I represent the average of a set of ten simulations, e

nd
TABLE I. Results obtained during the geometry optimizations of Sin , n54 – 7 and 10.

Number of time steps required to reach
a percentage of ground-state energy

Cluster Method 50% 75% 90%

Si4 CSA 1900 21 000 28 000
GSA2 1300 7300 13 100
GSA5 500 2400 6800

Si5 CSA 17 000 24 500 32 000
GSA2 2600 13 000 18 200
GSA5 1100 11 200 18 900

Si6 CSA 13 200 33 300 39 700
GSA2 2200 15 300 18 700
GSA5 800 10 600 15 200

Si7 CSA 20 500 34 200 36 400
GSA2 4500 19 200 21 900
GSA5 4200 14 400 21 000

Si10 CSA 7900 36 600 48 300
GSA2 4100 23 400 30 200
GSA5 200 16 200 22 000
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one using a different random sequence. The three meth
showed a very high~.80%! efficiency to obtain the ground
state energy~geometry! for the test systems. This indicate
that the performance enhancement obtained with GSA is
followed by a noticeable decrease in efficiency.

Next, we submitted GSA to a more demanding calcu
tion. We used GSA to find the ground-state geometry~ac-
cording to the tight-binding model! of Si20. This is a particu-
larly interesting problem because structural candida
previously have been studied throughab initio methods.14–16

As ab initio methods are CPU time consuming, these mod
were inspired in some kind of physical insight, specifica
symmetry constrains,14 bulk structure,15 or reconstruction
surface analogies.16 This restricts drastically the configura
tion hyperspace scanned. Unfortunately, it is well known t
an unbiased procedure is fundamental in searching for
ground-state geometry. GSA coupled to tight-binding mo
for silicon may give this unbiased perspective.

The GSA algorithm was able to find a different minimum
energy structure for Si20, shown in Fig. 2. It is formed by

FIG. 2. Alternative structure of the ground-state geometry o
20-atom silicon cluster.
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three puckered planes with five, six, and five silicon atom
respectively, capped by two atoms on the bottom and one
the top. Furthermore, it contains an inner atom close to
six-atom plane.

This structure is an alternative to the ground-state geo
etry of a 20-atom silicon cluster. Using the tight-binding a
proach, we compared the present structure with those pr
ously proposed ~see Table II!. The proposed mode
represents the lower-energy configuration for a 20-atom s
con cluster within the tight-binding model. Although th
method is notab initio, it has been able to describe the ma
features of silicon systems.

In conclusion, we have shown that the recently introduc
GSA is faster than CSA in predicting the ground-state co
figuration of silicon clusters. Also, we have tested the ca
bility of GSA to obtain an alternative for the ground-sta
geometry of Si20. Our method proved to be efficient in scan
ning intelligently a wide configuration hyperspace, movin
away from deep local minima to find a different structur
model for a 20-atom silicon cluster. This model is, within th
limits of our total-energy calculation method, lower in en
ergy than previously proposed models.

M.R.L. acknowledge support from the Conselho Nacion
de Pesquisa e Desenvolvimento.
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TABLE II. Relative total energy per atom differences. The pr
posed models were relaxed under their respective symmetry
straints through the same tight-binding method. We set the ene
of the present geometry model to zero to compare with those
viously proposed.

Model
Differences in total

energy per atom~eV!

1a 0.68
2b 0.46
3c 0.25
This work 0

aReference 16.
bReference 15.
cReference 14.
*Also at Department of Physics, UNESP, Guaratingueta´, Brazil,
12500-000.
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