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Ground-state phase diagram of the one-dimensional extended Hubbard model:
A density-matrix renormalization-group approach

G. P. Zhang*
Max-Planck-Institut fu¨r Physik komplexer Systeme, Bayreuther Strasse 40, D-01187 Dresden, Germany

~Received 5 May 1997; revised manuscript received 26 June 1997!

We use the density-matrix renormalization group to calculate the phase diagram of the one-dimensional
extended Hubbard chain at half filling. We find that for one specificU, the critical value ofVc for the
charge-density-wave versus spin-density-wave phase transition is smaller than that predicted from the Monte
Carlo simulation. Our results are consistent with the strong- and weak-coupling limit results, whereas the
previous results from the Monte Carlo simulations deviate from the weak-coupling limit result. AsU increases,
we find that the first-order phase transition develops gradually. The tricritical point is estimated to occur at
Uc54 – 6, notUc53 as previously predicted from the Monte Carlo simulation. Due to the topological differ-
ence, we observe that with the periodic boundary condition, the phase transition is more abrupt for finite chains
of lengthN54M than for chains ofN54M12, whereM is an integer, for the sameU andV. The difference
will diminish in the thermodynamic limit.@S0163-1829~97!08839-5#
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Ground-state properties of the extended Hubbard mod
half filling have been extensively studied. Both the weak1,2

and strong-coupling approximations3 revealed that charge
density wave~CDW! to spin-density wave~SDW! phase
transition occurs atU52V for all values ofU. However, the
exact results from small clusters show that the phase bo
ary is slightly deviated from the lineU52V, especially for
larger U.4 Monte Carlo ~MC! calculation confirms this
deviation.5 In addition, the transition is found to be continu
ous for smallU and discontinuous for largeU, with a cross-
over aroundU;3. Cannon, Scalettar, and Fradkin4 con-
firmed the presence of a tricritical point. But the tricritic
point is found aboveUc53.5 and possibly as high asUc

55.0, which is larger than the MC estimation. They al
found that the tricritical point greatly depends on theDt and
inverse temperature~b! of the MC simulation. Even forDt
as low as 0.125, the indicated position of the tricritical po
increases asDt decreases and lattice size increases at c
stantb. We noticed thatDt50.25 was used in Ref. 5. Thu
one should be careful in accepting their results. Up to n
there is no alternative scheme to evaluate the MC res
Especially around the phase transition, the transition poin
very sensitive to numerical errors. Furthermore as the
simulation becomes an important tool to many-body s
tems, one should have a clear idea about its performanc

In this paper, we employ a density-matr
renormalization-group~DMRG! approach to calculate th
CDW-SDW phase transition.6 DMRG is well suited for a
one-dimensional system and its accuracy renders its w
application. Previous applications involve the Hubbard ch
and Heisenberg model. It is expected that the DMRG ca
lation should give some definite results for the CDW-SD
transition. As far as we know, this is the first application
DMRG to the CDW-SDW transition. We find many interes
ing features and rectify several previous ambiguous or wr
results.~1! We have confirmed that the CDW-SDW trans
tion occurs aroundU52V. The deviation fromU52V is
found to be smaller than that from MC calculation. The M
560163-1829/97/56~15!/9189~4!/$10.00
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calculation overestimated the deviation and predicted
wrong tendency for the weak-coupling limit.~2! With the
periodic boundary condition and at the sameU and V, the
phase transition is more abrupt for chains of lengthN54M
than that for chains ofN54M12. But the situation is just
the reverse if one uses the antiperiodic boundary conditio
is expected that this difference will vanish in the thermod
namical limit. ~3! The first-order phase transition develo
gradually. The tricritical pointUc is estimated to be aroun
4–6.

Our model Hamiltonian is

Ĥ52t(
i ,s

~ ĉi 11,s
† ĉi ,s1H.c.!1U(

i
n̂i↑n̂i↓1V(

i
n̂i n̂i 11 ,

~1!

where all the operators have their common meanings. H
after we note thatU and V are in units oft. The periodic
boundary condition and the half-filling case are consider
We use the infinite-system DMRG algorithm and trunca
the space by keepingm5160 states in each block. Althoug
the periodic boundary condition is a less favorable case
DMRG, the discarded density matrix weight is typically b
low 1028. We constantly choose a largerm to check our
results. Our numerical tests show that there is no signific
change of our results even if we keep more states in e
block.

After truncation, we found that the Hamiltonian matr
becomes dense, which becomes even denser withVÞ0 and
the periodic boundary condition. This strongly appeals fo
powerful diagonalization algorithm while the convergence
the traditional Lanczos7 and Davidson algorithms is ver
poor. We recently have developed a very efficient method
calculate eigenvalues and eigenvectors. The detailed a
rithm will be reported elsewhere,8 but the main idea is to find
an optimized Lanczos chain length and collect all previo
useful information along the chain just as one does in
9189 © 1997 The American Physical Society
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9190 56BRIEF REPORTS
conjugate gradient algorithm. This new algorithm accelera
the convergent rate, as we found, at least six times comp
to traditional algorithms. The improvement becomes m
significant for hardly converged states.

To determine the transition point, we first study the b
havior of correlation functions for CDW and SDW. Th
CDW structure factor is defined as

C~q!5
1

N (
i , j

eiq•~Ri2Rj !^n̂i n̂ j&, ~2!

wheren̂i5(sĉi ,s
† ĉi ,s . The SDW structure factor is define

as

S~q!5
1

N (
i , j

eiq•~Ri2Rj !^Si
zSj

z&, ~3!

whereSi
z[(n̂i↑2n̂i↓) and ^ & denotes the expectation valu

in the ground state.
In order to obtain a critical valueVc at a fixedU for the

CDW-SDW transition precisely, we choose steps forV as
small as 0.01 or even 0.005 while Hirsch chose the step
Such small steps help us to visualize the details around
transition point, but the total cpu time needed is expensive
is worth noting that due to this tiny step, it is not easy
observe the sharp transition even for a discontinuous tra
tion. Surely on a broader region, one must see such dis
tinuity more clearly.

For the finite chains, there is a topological difference b
tween chains with lengthsN54M and 4M12. Previously
Kivelson et al.9 have found that this difference leads to
absolute instability of 4M rings with respect to dimerization
while rings with 4M12 members will only dimerize if
a2/Kt0 exceeds anN-dependent critical value. The differ
ence betweenN54M and 4M12 vanishes asN→`. We
found that actually this very difference also results in a d
ferent phase transition behavior. For the periodic bound
condition, the CDW-SDW phase transition appears m
abrupt for chains ofN54M than that for chains ofN54M
12 ~see Fig. 1!. This conclusion holds true for both period
and antiperiodic boundary conditions. But for the antipe

FIG. 1. At U53 CDW and SDW structure factors vsV for
different chain lengths. Passing over the transition regime,
structure factors change more abrupt for the chain ofN524.
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odic boundary condition, the conclusion is just the rever
To illustrate this, in Fig. 1 we plot the correlation function
at q5p for N522 andN524 size systems withU53 and
periodic boundary condition. Away from the transition poi
the main features of the phase diagrams for these two ch
are roughly similar, but around the transition point, co
pared with the chain with lengthN522, the phase transition
is more abrupt for the chain of lengthN524.

To have a clear vision of the above difference, w
calculate the derivativesC85]C(q5p)/]VuV5Vc

, and

S85]S(q5p)/]VuV5Vc
at the transition pointVc . In Fig. 2,

we show these derivatives forU53 as the function of the
chain length. A staggering behavior for bothS8 and C8 is
observed. For chains of lengthN54M , the corresponding
derivatives are smaller than that for chains ofN54M12,
for example, for N516, S852.0 and N518, S850.45,
which reflects that the phase transition is more abrupt
chains of N54M . This difference is more obvious from
]S(q5p)/]VuV5Vc

. We also use antiperiodic boundary co
dition to check the results. Now the phase change for cha
with length 4M12 becomes more sharp. Exact diagonaliz
tion for N56 system shows that a typical SDW configur
tion dominates up to the transition point, and after the tr
sition point CDW configuration appears almost sudden
For chains withN54 or 8, the CDW configuration graduall
competes with the SDW configuration asV approaches the
transition point. In order to explain this, Meinderset al.10

discussed that near the phase transition, states that ha
three-site unit cell, such as, for instance, the st
u0I↑I ↑↓0I↑I ↑↓&, become important. These states are frustra
in four and eight sites while for six sites they are not fru
trated. But we think that this difference is a finite-size effe
In the thermodynamic limit, this difference will vanish a
one may see that, in Figs. 2~a! and 2~b!, the difference of the
derivatives between chains with lengths 4M and 4M12 be-
comes smaller as the chain length increases. For exam
the difference ofS8 between chainsN518 and 20 is 1.1,
while the difference betweenN522 and 24 is 0.7. A finite-

e
FIG. 2. The derivatives of the SDW and CDW structure facto

with respect toV at Vc and U53 are staggering for chains o
lengthsN54M and 4M12.
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size scaling analysis shows that the difference vanis
as N→` ~see Fig. 3!. In Fig. 3, we show D(N)
5uS(q5p,N)2S(q5p,N12)u as the function of 1/N (N
54M ) for U54 and V52. A polynomial fit reveals that
D(N) scales like 4.7N21.8420.04N20.71.

The tiny step forV enables us to determine the transiti
point precisely and we obtained the critical valuesVc of the
infinite chain limit by extrapolation. We estimate that th
critical value Vc for U53 is 1.555. This value is smalle
than the MC prediction. The MC result isVc

MC51.675. Here-
after Vc

MC refers to the critical value from the Monte Car
simulation. Actually we find that the MC results are alwa
larger than our DMRG results. ForU52, our result isVc

51.028, while the MC simulation predictedVc
MC51.15; U

54, Vc52.082 (Vc
MC52.163); U56, Vc53.112 (Vc

MC

53.158). It is known that both weak- and strong-coupli
theories predict the CDW-SDW transition to occur atU
52V, i.e., U/V52. It should be pointed out that Hirsch’
results are only consistent with the strong-coupling limit, n
the weak-coupling one.

In Fig. 4, both our results and Hirsch’s data are show

FIG. 3. The differenceD(N) betweenS(N) and S(N12)(N
54M ) diminishes as the chain length increases. HereU54 and
V52.

FIG. 4. Our data~dots! have a correct asymptotic behavior
they approach 2 in both weak- and strong-coupling limits, but
MC results~boxes! failed to reproduce the weak-coupling tendenc
es

t

.

Our data are well consistent with both the weak- and stro
coupling theoretical predictions, namely, at both large a
small U limits, U/Vc approaches 2. But for largeU, the
convergence to 2 withU is much slower than that for sma
U. A minimum point appears aroundU54, which we as-
cribe to a typical intermediate strength regime. The MC
sults predict a roughly correct tendency for largeU, but the
asymptotic behavior ofU/Vc to 2 is faster than our results
For smallU, a great deviation ofU/Vc from 2 is noted. We
suspect that such a strong deviation may become even w
in higher-dimensional systems. It is suggested that
should be careful in accepting some MC results.

One of the main reasons for the above difference betw
our results and the MC data is largely due to the fact that M
simulation results are hardly converged to the low tempe
ture ~small Dt! limit. In Ref. 5, Hirsch did not provide an
extrapolation study by choosing differentDt, thus one has no
idea about how good his approach is. But from Ref. 4, o
may notice that the tricritical point, which will be discusse
in the next paragraph, is really dependent onDt. Thus it is
believable that this is one of the major reasons for the
error above. To evaluate our results, we have caref
checked our scheme by keeping more states in the su
blocks. But no significant qualitative difference has been
served.

As mentioned in the Introduction, the MC results revea
that the tricritical transition appears atUc53. But the exact
Lanczos results for small clusters suggested a largerUc .
Before we go further, we should go back to the definitions
the first- and second-order phase transitions. Theoretic
the first-order transition requires that the first derivative
physical quantity with respect to its variable is diverge
while the second-order transition means a finite value
the first derivative. Thus it is expected that for the firs
order transition, C85]C(q)/]VuV5Vc

→`, or S85]S(q)/

]VuV5Vc
→`. Numerically, however, one mostly observes

large number instead of a real divergence. The reason is
~a! numerically one cannot changeV by an infinitely small
number, and~b! the difference between twoC(q)’s or
S(q)’s is always finite. Eventually the derivatives are finit
Thus one has difficulty with the above definition. In order
circumvent this difficulty, we try a moderate definition. F
two different U1 and U2 , one can get two derivatives,S18
and S28 or C18 and C28 . If the ratio betweenS28 and S18 or
betweenC28 andC18 exceeds an amount, for instance, 4, t
first-order phase transition is defined for that with the larg
derivative.

In Fig. 5, we plot the derivatives]S(q5p)/]VuV5Vc
for

differentU and different chain lengths. ForU52, a stagger-
ing behavior versusN is observed, which reflects again th
difference between chains of lengthsN54M and N54M
12. But for chains ofN54M , as chain length increases, th
amplitude decreases, while for chains ofN54M12 it
slightly increases. In the infinite chain limit both amplitud
should settle down to a finite value. It is estimated that
U52 in the infinite length limit,]S(q5p)/]VuV5Vc

is less

than 1.0. Such a small value indicates that forU52, the
CDW-SDW phase transition is of second order. ForU53, if
the MC results are reliable, we are in the first-order transit
regime. Comparing the derivative of the structure factor
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U53 with that forU52, one cannot see an obvious diffe
ence between them, although a slightly large derivative
observed forU53, which reveals that the phase transition
still second order.

After U54, the derivative increases sharply, which m
signify that the first-order transition is established. One m
notice for shorter chains and theN54M system that the
increase is more significant; i.e., the phase transition is m
likely to be in a first-order transition regime. This is consi
tent with the conclusion of Ref. 4. They discovered that
lattice size increases, the tricritical point increases and wo
approach an asymptotic value. Since the largest size

FIG. 5. The derivative ofS(q5p) vs U changes smoothly, bu
a rapid increase comes afterU54, which may indicate that the
first-order transition develops.
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used is 12 sites, it is not possible for them to determine t
from their data. But here we are able to address this prob
more clearly. Since finite chains with lengthsN54M and
4M12 have different asymptotic behaviors, the asympto
value of]S(q5p)/]VuV5Vc

for eachU at the infinite chain
length limit should lie in the area that is bounded by the
corresponding derivatives for finite chains ofN54M and
4M12. Based on this, we estimate that atU56 and in the
infinite chain limit, the derivative]S(q5p)/]VuV5Vc

is
about 4 times larger than that ofU52, which may suggest
that the phase transition atU56 is already in the first-order
regime. From Fig. 5, one may notice that the first-ord
phase transition develops continuously, and there is no s
clear cut as one may expect initially; thus it is very difficu
to determineUc precisely. We suggest thatUc lie in the
range, 4–6, but never below 3. Our results support Can
et al.’s earlier speculation.4

In conclusion, we exploit a density-matrix
renormalization-group approach to study the phase diag
of the one-dimensional extended Hubbard model. It is fou
that the critical valuesVc are smaller than the previous MC
results. ForU52, the critical valueVc is 1.028;Vc51.555,
2.082, 3.112 forU53,4,6, respectively. Our data have a co
rect asymptotic behavior that coincides with both the wea
and strong-coupling predictions, while the MC results are
consistent with the results of the weak-coupling limit. Th
tricritical point Uc is estimated to lie between 4 and 6, b
never as small as 3.
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