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Ground-state phase diagram of the one-dimensional extended Hubbard model:
A density-matrix renormalization-group approach
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We use the density-matrix renormalization group to calculate the phase diagram of the one-dimensional
extended Hubbard chain at half filling. We find that for one spedificthe critical value ofV, for the
charge-density-wave versus spin-density-wave phase transition is smaller than that predicted from the Monte
Carlo simulation. Our results are consistent with the strong- and weak-coupling limit results, whereas the
previous results from the Monte Carlo simulations deviate from the weak-coupling limit resllt.idgeases,
we find that the first-order phase transition develops gradually. The tricritical point is estimated to occur at
U.=4-6, notU.=3 as previously predicted from the Monte Carlo simulation. Due to the topological differ-
ence, we observe that with the periodic boundary condition, the phase transition is more abrupt for finite chains
of lengthN=4M than for chains oN=4M + 2, whereM is an integer, for the sarig andV. The difference
will diminish in the thermodynamic limitfS0163-1827)08839-3

Ground-state properties of the extended Hubbard model afalculation overestimated the deviation and predicted a
half filling have been extensively studied. Both the wédk- wrong tendency for the weak-coupling limi2) With the
and strong-coupling approximatichsevealed that charge- periodic boundary condition and at the satheandV, the
density wave(CDW) to spin-density wavgSDW) phase phase transition is more abrupt for chains of leniyth 4M
transition occurs at) =2V for all values ofU. However, the  than that for chains oN=4M +2. But the situation is just
exact results from small clusters show that the phase boundbe reverse if one uses the antiperiodic boundary condition. It
ary is slightly deviated from the lin& =2V, especially for is ex_pect(_ad_that this difference will vanish in_t_he thermody-
larger U.* Monte Carlo (MC) calculation confirms this namical limit. (3) The first-order phase transition develops
deviation® In addition, the transition is found to be continy- gradually. The tricritical pointJ is estimated to be around

ous for smallU and discontinuous for largd, with a cross-
over aroundU~3. Cannon, Scalettar, and Fradkinon-
firmed the presence of a tricritical point. But the tricritical
point is found abovdJ.=3.5 and possibly as high dd, )
=5.0, which is larger than the MC estimation. They also H=—t2 (E:ng?:ilawL H.c.)+UZ ﬁiTﬁi1+V2 NNy,
found that the tricritical point greatly depends on theand he ' '
inverse temperatur€s) of the MC simulation. Even foAr @
as low as 0.125, the indicated position of the tricritical point
increases adr decreases and lattice size increases at conwhere all the operators have their common meanings. Here-
stantB. We noticed that 7=0.25 was used in Ref. 5. Thus after we note that) andV are in units oft. The periodic
one should be careful in accepting their results. Up to nhowboundary condition and the half-filling case are considered.
there is no alternative scheme to evaluate the MC resultdVe use the infinite-system DMRG algorithm and truncate
Especially around the phase transition, the transition point ighe space by keeping= 160 states in each block. Although
very sensitive to numerical errors. Furthermore as the MQGhe periodic boundary condition is a less favorable case for
simulation becomes an important tool to many-body sysDMRG, the discarded density matrix weight is typically be-
tems, one should have a clear idea about its performance. low 108, We constantly choose a larger to check our

In this paper, we employ a density-matrix results. Our numerical tests show that there is no significant
renormalization-groupf DMRG) approach to calculate the change of our results even if we keep more states in each
CDW-SDW phase transitioch.DMRG is well suited for a  block.
one-dimensional system and its accuracy renders its wide After truncation, we found that the Hamiltonian matrix
application. Previous applications involve the Hubbard chairbecomes dense, which becomes even denserWeith and
and Heisenberg model. It is expected that the DMRG calcuthe periodic boundary condition. This strongly appeals for a
lation should give some definite results for the CDW-SDW powerful diagonalization algorithm while the convergence of
transition. As far as we know, this is the first application ofthe traditional Lanczdsand Davidson algorithms is very
DMRG to the CDW-SDW transition. We find many interest- poor. We recently have developed a very efficient method to
ing features and rectify several previous ambiguous or wrongalculate eigenvalues and eigenvectors. The detailed algo-
results.(1) We have confirmed that the CDW-SDW transi- rithm will be reported elsewhefehut the main idea is to find
tion occurs aroundJ =2V. The deviation fromU=2V is  an optimized Lanczos chain length and collect all previous
found to be smaller than that from MC calculation. The MC useful information along the chain just as one does in the

Our model Hamiltonian is
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FIG. 1. At U=3 CDW and SDW structure factors W for N
different chain lengths. Passing over the transition regime, the
structure factors change more abrupt for the chaiil ef24. FIG. 2. The derivatives of the SDW and CDW structure factors

with respect toV at V., and U=3 are staggering for chains of
conjugate gradient algorithm. This new algorithm acceleratetengthsN=4M and 4V + 2.
the convergent rate, as we found, at least six times compared
to traditional algorithms. The improvement becomes moreddic boundary condition, the conclusion is just the reverse.
significant for hardly converged states. To illustrate this, in Fig. 1 we plot the correlation functions
To determine the transition point, we first study the be-atq=m for N=22 andN =24 size systems with)=3 and
havior of correlation functions for CDW and SDW. The periodic boundary condition. Away from the transition point
CDW structure factor is defined as the main features of the phase diagrams for these two chains
are roughly similar, but around the transition point, com-
1 g (R—R:)/a A pared with the chain with lengtN= 22, the phase transition
Cla)= N |§1: e RRI(y), @ is more abrupt for the chain of lengtih=24.
' To have a clear vision of the above difference, we
wheref;==,¢&! & ,. The SDW structure factor is defined calculate the derivativesC’ =aC(q= m1V]y_v,, and

1,0
as S'=3S(q=m)/3V|y-v, at the transition poin¥.. In Fig. 2,

1 _ we show these derivatives fd&f=3 as the function of the
S(q)= N > e'q‘(Ri’RU(SIZSJ—Z}, (3)  chain length. A staggering behavior for bofh and C’ is
b observed. For chains of lengthi=4M, the corresponding
where SIZE(ﬁiT_ﬁu) and () denotes the expectation value derivatives are smaller than that for chainsM&E4M + 2,
in the ground state. for example, forN=16, S'=2.0 and N=18, S'=0.45,
In order to obtain a critical valu¥,, at a fixedU for the which reflects that the phase transition is more abrupt for

CDW-SDW transition precisely, we choose steps Yoms chains of N=4M. This difference !s more obvious from
small as 0.01 or even 0.005 while Hirsch chose the step 0.7S(4=m)/dV|y—y_. We also use antiperiodic boundary con-
Such small steps help us to visualize the details around thdition to check the results. Now the phase change for chains
transition point, but the total cpu time needed is expensive. Iwith length 4V +2 becomes more sharp. Exact diagonaliza-
is worth noting that due to this tiny step, it is not easy totion for N=6 system shows that a typical SDW configura-
observe the sharp transition even for a discontinuous transtion dominates up to the transition point, and after the tran-
tion. Surely on a broader region, one must see such discomsition point CDW configuration appears almost suddenly.
tinuity more clearly. For chains wittN=4 or 8, the CDW configuration gradually
For the finite chains, there is a topological difference be-competes with the SDW configuration ®sapproaches the
tween chains with lengthsl=4M and 4Vl + 2. Previously transition point. In order to explain this, Meindees al1°
Kivelson et al® have found that this difference leads to andiscussed that near the phase transition, states that have a
absolute instability of M rings with respect to dimerization, three-site unit cell, such as, for instance, the state
while rings with 4M+2 members will only dimerize if |071/017|), become important. These states are frustrated
a?/Kt, exceeds arN-dependent critical value. The differ- in four and eight sites while for six sites they are not frus-
ence betweetN=4M and 4V +2 vanishes atlN—«. We trated. But we think that this difference is a finite-size effect.
found that actually this very difference also results in a dif-In the thermodynamic limit, this difference will vanish as
ferent phase transition behavior. For the periodic boundargne may see that, in Figs(® and 2b), the difference of the
condition, the CDW-SDW phase transition appears moralerivatives between chains with lengthisl4and 4M + 2 be-
abrupt for chains oN=4M than that for chains oN=4M comes smaller as the chain length increases. For example,
+ 2 (see Fig. L This conclusion holds true for both periodic the difference ofS’ between chaind=18 and 20 is 1.1,
and antiperiodic boundary conditions. But for the antiperi-while the difference betweeN=22 and 24 is 0.7. A finite-
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-0.10 . ' y Our data are well consistent with both the weak- and strong-
coupling theoretical predictions, namely, at both large and
0.08 | small U limits, U/V. approaches 2. But for largg, the
convergence to 2 withJ is much slower than that for small
006 | U. A minimum point appears around =4, which we as-
Z cribe to a typical intermediate strength regime. The MC re-
a8 sults predict a roughly correct tendency for latde but the
004 T asymptotic behavior ob)/V; to 2 is faster than our results.
For smallU, a great deviation of)/V, from 2 is noted. We
0.02 suspect that such a strong deviation may become even worse
in higher-dimensional systems. It is suggested that one
0.00 Lomss=s . . : should be careful in accepting some MC results.
0.00 0.04 0.08 0.12

One of the main reasons for the above difference between
our results and the MC data is largely due to the fact that MC

FIG. 3. The differenceD(N) betweenS(N) and S(N+2)(N simulation results are hardly converged to the low tempera-
=4M) diminishes as the chain length increases. Hére4 and  ture (small A7) limit. In Ref. 5, Hirsch did not provide an
V=2. extrapolation study by choosing differeft, thus one has no

idea about how good his approach is. But from Ref. 4, one

size scaling analysis shows that the difference vanishemay notice that the tricritical point, which will be discussed
as N—x (see Fig. 3 In Fig. 3, we show D(N) in the next paragraph, is really dependentfon Thus it is
=|9g=mN)—Sg=mN+2)| as the function of ™M (N believable that this is one of the major reasons for the big
=4M) for U=4 andV=2. A polynomial fit reveals that error above. To evaluate our results, we have carefully
D(N) scales like 4.K~18—0.04N"%"%, checked our scheme by keeping more states in the super

The tiny step forV enables us to determine the transition blocks. But no significant qualitative difference has been ob-
point precisely and we obtained the critical valiésof the served.
infinite chain limit by extrapolation. We estimate that the ~As mentioned in the Introduction, the MC results revealed
critical valueV, for U=3 is 1.555. This value is smaller that the tricritical transition appears d{.=3. But the exact
than the MC prediction. The MC resulti4'®=1.675. Here- Lanczos results for small clusters suggested a latdjer
afterV('\:"C refers to the critical value from the Monte Carlo Before we go further, we should go back to the definitions of
simulation. Actually we find that the MC results are alwaysthe first- and second-order phase transitions. Theoretically
larger than our DMRG results. Fdy =2, our result isV, the first-order transition requires that the first derivative of

—1.028. while the MC simulation predictédﬁ"czl 15 U physical quantity with respect to its variable is divergent
_4 \V.—2082 VMC=2163); U=6, V=3 112 (V"V'C while the second-order transition means a finite value of
[l C . C . 1 1 Cc " Cc

=3.158). It is known that both weak- and strong-coupIing;hrze?rsttaiirilt\i/;tllvg; :;g(s ;t/ (;\s/|expe_c)toeod ér;atS,f(iratSfEe);lrst-
theories predict the CDW-SDW transition to occur at o q V=Ve T q
—2V, i.e., U/V=2. It should be pointed out that Hirsch's ?V|v=v,—%. Numerically, however, one mostly observes a
results are only consistent with the strong-coupling limit, notlarge number instead of a real divergence. The reason is that
the weak-coupling one. (a) numerically one cannot changéby an infinitely small
In Fig. 4, both our results and Hirsch’'s data are shownnumber, and(b) the difference between tw&(q)’s or
S(q)’s is always finite. Eventually the derivatives are finite.
2.00 . . , Thus one has difficulty with the above definition. In order to
circumvent this difficulty, we try a moderate definition. For
two differentU, and U,, one can get two derivative§;
“\'\./ and S, or C; and C;. If the ratio betweerS, and S; or
' betweenC;, andC; exceeds an amount, for instance, 4, the
1.90 f first-order phase transition is defined for that with the larger
derivative.
In Fig. 5, we plot the derivativesS(q=m)/dV|y-y,_ for

differentU and different chain lengths. F&r=2, a stagger-
ing behavior versu§ is observed, which reflects again the
difference between chains of lengths=4M and N=4M
e + 2. But for chains oN=4M, as chain length increases, the
B—H Rl 3 amplitude decreases, while for chains N=4AM+2 it
slightly increases. In the infinite chain limit both amplitudes
) ) ) should settle down to a finite value. It is estimated that for
2 3 4 5 6 U=2 in the infinite length limit,gS(q=m)/dV|y-y,_is less
than 1.0. Such a small value indicates that b+ 2, the
FIG. 4. Our datadots have a correct asymptotic behavior as CDW-SDW phase transition is of second order. Bor 3, if
they approach 2 in both weak- and strong-coupling limits, but thethe MC results are reliable, we are in the first-order transition
MC results(boxes failed to reproduce the weak-coupling tendency. regime. Comparing the derivative of the structure factor for

I/N

urv,

1.80 |

1.70
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10 - ' - used is 12 sites, it is not possible for them to determine this
ey from their data. But here we are able to address this problem
more clearly. Since finite chains with lengths=4M and
4AM+2 have different asymptotic behaviors, the asymptotic
value of 9S(g= 7r)/aV|\,:\,C for eachU at the infinite chain

length limit should lie in the area that is bounded by their

2 corresponding derivatives for finite chains B=4M and
3 4M+2. Based on this, we estimate thatla&=6 and in the
& infinite chain limit, the derivative(9S(q=77)/¢9V|V:\,C is
[22]
[1e]

about 4 times larger than that &f=2, which may suggest
that the phase transition Bt=6 is already in the first-order
regime. From Fig. 5, one may notice that the first-order
phase transition develops continuously, and there is no such
clear cut as one may expect initially; thus it is very difficult
to determineU,. precisely. We suggest thal. lie in the
0 . ; ; range, 4-6, but never below 3. Our results support Cannon
et al’s earlier speculatiofl.

In conclusion, we exploit a density-matrix

FIG. 5. The derivative o6(q= ) vs U changes smoothly, but renormalization-group approach to study the phase diagram
a rapid increase comes after=4, which may indicate that the of the one-dimensional extended Hubbard model. It is found
first-order transition develops. that the critical value¥/, are smaller than the previous MC

) i , results. FolU =2, the critical valuev, is 1.028;V.=1.555,

U=3 with that forU =2, one cannot see an obvious differ- ; 585 3 112 fotJ=3,4,6, respectively. Our data have a cor-
ence between them, although a slightly large derivative igect asymptotic behavior that coincides with both the weak-
observed folJ = 3, which reveals that the phase transition is 4 strong-coupling predictions, while the MC results are not

still second order. , consistent with the results of the weak-coupling limit. The
_ After U=4, the derivative increases sharply, which mayyicritical point U, is estimated to lie between 4 and 6, but
signify that the first-order transition is established. One may,ayer as small as 3.

notice for shorter chains and tHé=4M system that the

increase is more significant; i.e., the phase transition is more The author wishes to express his gratitude to K. Hallberg
likely to be in a first-order transition regime. This is consis-for many fruitful conversations. He thanks S. R. White and

tent with the conclusion of Ref. 4. They discovered that asKiaoqun Wang for their enlightening communications. He

lattice size increases, the tricritical point increases and wouldlso thanks M. Van den Bossche for many helpful sugges-
approach an asymptotic value. Since the largest size theyons about the manuscript.
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