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In this paper, the electric-dipole transition induced by exchange is used to explain the strong dependence of
spin- and parity-forbidden transitions of Gron the sublattice magnetization of an antiferromagnet host.
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[. INTRODUCTION ment yelds a site with spatial inversion symmetry, although

without magnetic inversion symmetry, fob).
The GdAIG; is an antiferromagnetic crystal and the dop-  For an electric-dipole transition between two stalés

ant Cr"3 ion replaces an AP in the center of an almost I'} of (b) with the same parity and different spins, TSM is

perfect cube with eight G& in vertices' This system has expressed as
been studied over the past thirty yearsand in previous

papers the strong dependence of spin- and parity-forbidden . . <Fiul|Vex|T%1)
4A,—2E transitions with temperatutend applied magnetic (F?,LIPexll“%]):E <F3L|P|F}‘L>?
field” was reported. Empirically, the dependence was fit to Y| (Ery;=Erg)

the sublattice magnetization square. Recent results have

shown that this behavior can be applied only to parity-spin- +2 (|5‘:>Vex), (1)
forbidden transitions. Since the intensity of the electric- Y

dipole transition due to crystal-field distortion and spin-orbit :
coupling is independent of temperature or magnetic field,wherel'}'|, 1“].“] are odd-parity excited states ib) Ve iS
another mechanism should be responsible for this behavior, . exchange term between)(and (), P is the electric-
A mechanism involving electric-dipole transitions in- > s ' ]
duced by exchange is used to explain this experimental béliPole operator, andR=V,,) is the converse expression.
havior. Such a mechanism was proposed by Taealké® to As a tridimensional array is considered, should be
explain magnon side bands in transition-metal fluorides with&dded for all @) neighbors of b) resulting in
out inversion symmetry and will be referred in this paper as
TSM. u ga\_ u g
Some considerations about how to apply this mechanism (I Ved g1 >_Ek (IL (@ Ved 31 o(@1l)
to a high-symmetric system are made. A simple model is
developed which fits the experimental data. for the flip of both spins, where(a) is ground state of the

k-(a) neighbor andV,, is the two-electron Coulomb opera-

tor. Here no excitation to another level foa)(will be con-
sidered. The same applies b2 ||V, T'1).

Let (a) be a magnetic atom placed at the vertices of a Now one must consider thé)-site point symmetry prop-
simple cubic lattice with an antiferromagnetic phase transierties. Since lf) has a spatial inversion symmetry, the

Il. THEORY

tion. Let (b) be also a magnetic doping atom, which replacegerms of Eq.(2) can be arranged in pairs of opposite atoms,

a nonmagnetic one located in the cube center. This arrangésr instancek andk+1:
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TU[[V Ty =eM(H,T), 5
(TAVaITE)= 3, (He(@] VedS] ol@)kl) (TLVe3D =eMH.T) ©

+(I'!'],o(a VedI'91,0(a . ) . .
(Il (@)l Ved ploel Jer1l)) where 6=M =<1 is related to the spin-down occupation. Ap-
(3 plying Eq.(5) to Eq. (1) results in
As ¢(a), ande(a), 1 differ just by a translation anB}'| is
an odd function,

M(H,T)

(Tl e(@)d[VedTHl.e(@)) (TEUPaIT3) =2 (PALIPITY) >m
:_<Fiu Le(a)k+1] |Vee|r%1 v (@)ir1l), 4
so Eq.(3) should be zero. However, ib) has no magnetic +2 (converse ©

inversion symmetry, the number ad),-neighbors with, e.g., o
spin downwill not be equal to the number ofa), . ; in the i
same configuration and E3) will not be zero. This hap-
pens, e.g., by antiferromagnetic ordering in the lattice.

To discuss this point, two different situations will be con-
sidered.

(1) The exchange interaction between (a)-(b) is weaker
than (a)-(a): Supposing there is a strong magnetic field ap- -
plied to the crystal, and the spins are all aligned up, Bj. Wy o (T [P TG Pec| 2| 2(M(H,T))>.
will be zero(regardless of the symmetry breaking induced by
thermal fluctuations Decreasing the applied field to the
spin-flip phase will mean that soma)(atoms in the lattice
will present spin-down electrons. Sincd'd magnetic sym-
metry should be present, the spin-down will be more likely,
e.g., in @), than @), 1 resulting in

and for the transition probability,

2. The exchange interaction between (a)-(b) is stronger
than (a)-(a): Now, for the same situation described previ-
ously, the spins of &), and @)1 will remain parallel.
However their neighborhood, consisting &f)(atoms out-
side the cube considered until now, will keep the antiferro-
magnetic ordering, thus perturbing th&){ and @)1 spin

(T VedTY] >=k_20dd (TP () [VedT 1, o(a)kl)

—(=0) state but with different intensities: if one remains more likely
and as the number of spin-down sites is proportional to subspin up, the other will remain spin down. Thus, one can write
lattice magnetization for the last

a )| Vexa—a)l®(a a))
p@E-le@g=3 L@ Wera ale@id-e@U 1oy, @

where|¢(a)1)f is the a,-atom perturbed staté\E is the energy difference betweén(a) L)E and|¢(a)] )E, and the sum
involves all thel first neighbors. Again, the number of spin-down sites is proportional to the sublattice magnetization.
Applying Eq. (7) to Eqg.(3) and assuming that allterms are equal, we have

(e(a)kl, (@) Vexa—ale(@)kl (@) 1)

(CYIVedlE)= 2 (TTL (@) VedTh1 e(a)) AE MHT)  @®
[
> (P2][BoT8) =S (18 BTy h D)
(TP[[VedT91) = yM(H,T), 9 ) (Eruy—Erg))
h
et + > (conversg (10)
_ (e(@)kl,@(a)[|Vexa-a)le(@)kl e(@) ) T}
7_82 AE :

Applying Eq.(9) to Eq. (1) results in and finally,
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FIG. 2. The transition probability foPE—*A, from lumines-

" . 2
FIG. 1. The transition probability fofA,—2E calculated from F(ence decayup triangles. The dashed line is from Eq13).

absorption measurements done under magnetic field and at 2
(down triangles The same, but foPE—*A, and from lumines- electric-dipole matrix element between states with the same
cence decayup triangle$. Dashed and dotted lines are from Eq. parity but with different spins, which is proportional to mag-
(13). netization.

- I1l. APPLICATION
W (=TI IPeJ TGP y[2(M(H, T))?,

In Fig. 1 the transition probability results féA,—2E at
2 K and under magnetic field are presented. The measure-
ments have been done for absorpti@glown triangley and
emission(up triangle$ and normalized to 1 foH=4T. The

where|y|2 can be approximated to

<‘P(a)kL1<P(a)l Hvex(afa)ho(a)kr-@(a)l L>‘2
2__ 2
o=lef|

difference between them comes from the relation between
AE ‘ Gd-Gd and Cr-Gd exchange: for emission, Gd-Gd exchange
~|e|212? (11) is bigger than Cr-Gd; for absorption, the opposite preVails.
Figure 2 shows emission results foH=0 and
with v as an average value for the perturbation term. 1.7 Ks€T=4K.

Thus, an ion in a spatial inversion-symmetric position The electric-dipole matrix element, due to crystal-field
without magnetic inversion symmetry will always have andistortion and spin-orbit couplifigs expressed by

D(F?HVodJF%L) (T9LVs-olT31)
(Er;’L_ErgyL) (ErgL—Er%O

<Fgl| F-;odd—sAF?ﬂ )= E <Fgl| F-;|F|u

riLrd)

which will be assumed as the dominant onelfbr4 T (at 2 9 |P.TY (Epo,—Epogy)
K), or T=Ty (3.9 K,H=0T). The V44 can be a static or a { “E' odl51) _(e (ar wM(:"T) 5 i BL _
phonon-induceddynamig crystal-field operator and¥s o (I'%||Poga-sd T %1) (Ti1IVoadT9L) (T91IVs oll'31)

is the spin-orbit operator. Thus (14
|(rgt||5ex|r%1>|2 For the “A,—°E transition in GdAIQ:Cr*3 we have
rz(H,T)=| 191 [P JTI P (13 (T{1IVoadT9l)(dynamicy=100 cmy;  (T'9||Vs_o|T%1)
(TallPods-sdT'g1) ~180 cm % Ers; ~Erg; ~4000 cm ™
Y

As M(H,T) is related to the sublattices antiparallelism,

is the expression which should fit the experimental data. We have
In transition-metal ionsl';' states come fromp-d hybrid-
ization and have high energy. Consequently, the sum that
involvesT{',T'9] in Eq. (6), Eq. (10), and Eq.(12) can be
simplified by closure, resulting in M(H,T)=\o?°—0? cos(p)=0 sin(e),
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whereg is the angle between mean-field sublattice magnetiTo fit the experimental data, the following values were as-

zation and applied field ana@=(S)/S, given by sumed: 1=3; v=0.54; =3, 4"l e(a)] IVGEIF%W,
— —1. _ . _ :
R g o(a)l)=7cm J;=0.67 K; J,=—0.09 K with AK
o(M=B(STN (1= I+ AK)a(T)], equal to Ref. 10, and the dashég) and dotted(e) lines
drawn in Fig. 1, forp(H) resulting from Eq(13). The same
cod ¢)=(gugH/S)/[(2J,+AK)a]. values are applied in Fig. 2 fop(T).

1S. Quezel, J. Rossat-Mignod, and F. Tcheou, Solid State Com-'J. S. Helmaret al, Phys. Rev. B44, 6878(1991).

mun. 42, 103(1982. 8Y. Tanabe, T. Morita, and S. Sugano, Phys. Rev. LE§.1023
2J. S. Helman and W. Baltensperger, Phys. Rev2® 6847 (1965.
5 (1982. °s, Sugano, Y. Tanabe, and H. Kamimur8jultiplets of
4M' Matsuokaet al, Phys. Rev. Lett50, 204 (1983. Transition-Metal lons in Crystal§éAcademic Press, New York,
R. C. Ohlmann, Bull. Am. Phys. So08, 1019(1964). 1970

5 . . -
J. Murphy and R.' C. OhlmaniT,he Optical Properties of lons in 10¢ W, Blazey, H. Rohrer, and R. Webster, Phys. Rev, 2287
Crystals(Interscience, New York, 1969p. 239. (197D

5M. A. Aegerter, H. C. Basso, and H. J. Schéahpublishedl



