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Two-magnon Raman scattering provides important information about electronic correlations in the insulat-
ing parent compounds of high: materials. Recent experiments have shown a strong dependence of the
Raman signal inB,, geometry on the frequency of the incoming photon. We present an analytical and
numerical study of the Raman intensity in the resonant regime. It has been previously argued by Chubukov and
Frenkel that the most relevant contribution to the Raman vertex at resonance is given by the triple resonance
diagram. We derive an expression for the Raman intensity in which we simultaneously include the enhance-
ment due to the triple resonance and a final-state interaction. We compute the two-magnon peak height
(TMPH) as a function of incident frequency and find two maximavg~2A +3J and 02~2A +8J. We
argue that the high-frequency maximum is cut only by a quasiparticle damping, while the low-frequency
maximum has a finite amplitude even in the absence of damping. We also obtain an evolution of the Raman
profile from an asymmetric form around(®) to a symmetric form around (2. We further show that the
TMPH depends on the fermionic quasiparticle damping, the next-nearest-neighbor hoppirtg, tamd the
corrections to the interaction vertex between light and the fermionic current. We discuss our results in the
context of recent experiments by Blumbesgal. on SL,CuO,Cl, and YBgCu;Og ; and Ribhauseret al. on
PrBaCu;0; and show that the triple resonance theory yields a qualitative and to some extent also quantitative
understanding of the experimental d4t80163-182@07)07837-3

I. INTRODUCTION photon frequencies, respectively. The fingerprint of antifer-
romagnetism in these experiments is the presence of a two-
In recent years a lot of efforts have been made to undemagnon peak inR(Aw).'? In the insulating parent com-
stand the pairing mechanism in high-superconductors:®  pounds of the highF, materials, this peak occurs at a
Some of the existing theories consider an effective electrontransferred frequency of about 3000 ¢ The two-magnon
electron interaction mediated by spin fluctuations as thepeak has not only been observed in the insulating com-
source of the pairing mechanishiln the parent compounds pounds, but also in electrdri-and hole-doped material§.
of the highT, materials the strong magnetic correlations Theoretically, most of the analytical and numerical stud-
lead to the occurrence of antiferromagnetism. Two-magnotes of two-magnon Raman scattering were performed within
Raman scattering is a valuable tool in probing antiferromag-
netism and can thus provide important insight into the nature

of the pairing correlation8:® a) M MY
The two-magnon Raman-scattering cross sedtitemman L b K e
intensity) is proportional to the Golden Rule transition r&te w
A N
8mie?

R= PRV Y IMpl28(hoi— o+ e—e), (D)

wherei andf are the initial and final states of the system, b)
€; + are the corresponding energies argh(e;) is the total ot Vik
' . . - MR MR ( ,Q)
energy of the two magnons in the final state.
Mg=(ef |[Mgl&) is the Raman matrix elemefRaman ver- ® - O +

tex), & ande; are the polarization unit vectors of the incident

and outgoing photons, and the summation runs over all pos- + W +
sible initial and final electronic states.
Graphically, the Raman intensity is given by the diagram

shown in Fig. 1a), where the intermediate magnofsavy FIG. 1. (a) The Raman cross section is proportional to this dia-

lines) are on the mass shell. The_dashed lines in this diagrar&ram where the intermediate magndngvy lineg are on the mass
describe the incident and outgoing photons and the shad&gle||. The dashed lines present incoming and outgoing photons and
circles represent the full Raman vertices, which include alke filled circles are the full Raman verticd". (b) The full

effects of the final-state magnon-magnon interactiom  Raman vertices include all effects of multiple magnon-magnon
conventional Raman experiments, one measures the Ramagattering. The open circles are the bare Raman veitigeand the
intensity R as a function of transferred photon frequency,open squares describe the magnon-magnon scattering vertex
Aw=w;— w; Wherew; andw; are the incident and outgoing V(k,q).
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FIG. 2. The triple resonance diagram which yields the dominan Lsr T

contribution to the Raman intensity in the resonant regime. Solic
and dashed lines represent fermions from conduction and valenc 1 2 3 4 5 6 7 8 9
bands, respectively. Notice that this diagram contains intraban . . .

scattering at the fermion-magnon vertices. ®j - 2A in units of J

the conventional phenomenological Loudon-FleuyF) FIG. 3. The shaded area represent the region in theXw)
theoryls which assumes that the matrix eleméag, for the plane in which the triple resonance occurs. The horizontal line cor-
interaction between photons and magnons is frequency indéesponds td »=2.8] at which the two-magnon profile has a peak.
pendent. This implies that the theory neglects the internal
structure which the matrix element possesses since the spibies above the two-magnon peak, i.e., fow>2.8J. This
p_hoton interaction is aCtua”y-mediated by fermions: the in'feature has been observed around the first resonan@l‘égat
cident photon creates a particle-hole pair which emits twqt practically disappears when the frequency of the incident
spin e>_<citations and annihilates into an outgoing phoim_ _photon approaches the second resonanaé@t Motivated
e.g., Fig. 2 Despite this yveakness, the LF theory was origi-py these findings, several groups studied two-magnon Ra-
nally considered as a suitable theory for Raman scattering i 5n, scattering beyond the LF approximatfdr® It has
the parent hight. materials because it predicts that the two-peen shown that the validity of the LF theory is restricted to
magnon profile should have a peak at a transferred frequengje nonresonant regime, when the frequency of the incident
of about 2.8 whereJ is the magnetic exchange interaction. light is much smaller than the charge-transfer gap$24
A comparison with the dat&'®!"then yieldsJ=0.12 eV post of the experiments, however, are performed with pho-
which is fully consistent with the the value for in-plane ex- {4, frequencies slightly above the charge-transfer gap. In this
change |nt1(3ract|on extracted from neutron scattefired resonantregime the internal structure of the Raman matrix
NMR data: _ _ element cannot be neglected. Chubukov and Frefiiese-
Recent experiments on single-layer ,QuO,Cl, and  after referred to as QFdeveloped a diagrammatic approach
double-layer YBaCu;Os, (Ref. 20 as well as on g Raman scattering in the framework of the latgespin-
PrBaCu;0;,%! however, presented some qualitative featuresdensity-wave(SDV\/) approach to the Hubbard model at
of the Raman signal which cannot be explained within thenat-filling.2* They identified those diagrams which repro-
framework of the LF theory. In these experiments, the Ragyce the LF vertex, and in addition identified a new diagram
man intensity was measured both as a function of transferregnich is not included in the LF theory but yields the domi-
frequency at a given incident frequeney (the two-magnon  pant contribution to the scattering process in the resonant
profile), and as a function ob; at a fixed transferred fre- regime. This new diagram has the largest amplitude when
quencyA w~2.8] at which the two-magnon profile exhibits |w; s—2A|=0(J), and in addition, also diverges in the ab-
a maximum. In the latter case one in fact measures the varigence of a fermionic damping in a small regitrearly a
tion of the two-magnon peak heighftMPH) with w;. The  gingle critical ling in the (w;,Aw) plane where all three
experin_‘nental features which are in disagreement with the Lkgrms in the denominator vanish simultaneousle Fig. 3.
theory include: _ Due to this property, the new diagram identified by CF is
(1) A strong dependence of the TMPH a@# with two  called the triple resonance diagram. The inclusion of a fer-
distinct maxima at w=w(@~2A+3) and at mionic damping eliminates the divergence, but the Raman
wi=w§§§~2A+8J, where 2A~1.7eV is the charge- matrix element remains strongly peaked along the critical
transfer gag? Despite quantitative differences between vari-line. Since the computation of the full Raman intensity with
ous compounds, the second maximum in all compounds ithe triple diagram for the Raman vertex is rather involved,
always stronger than the first one. The LF theory, on theCF used a semiphenomenological approach to analyze the
contrary, predicts that the intensity should only undergo alependence of the TMPH an, . They considered the final-
weak (logarithmica) enhancement atw;=2A and state magnon-magnon interaction and the triple resonance
w;j=2A+2.8] (ingoing and outgoing resonange®No en- enhancement separately, and conjectured that the experimen-
hancement, however, has been experimentally observed &lly observed two maxima in the TMPH occur af for
w;=2A. which the Raman vertex resonates at the same transferred
(2) The shape of the two-magnon profile is asymmetricfrequencyA w=2.8] at which the two-magnon profile has a
and possesses a shoulderlike feature for transferred frequepeak. By analyzing where the resonant line for the Raman
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vertex crossed o=2.8J, they obtained two resonance fre-  We compare our results with the experimental data on on
quenciesw{}~2.91+2A and w{2~7.93+2A which both  SLCuOCl, and YBaCu;Og, by Blumberget al. and on
agree with the experimental data. PrBaCu;0; by Ribhauseret al. and demonstrate that all the
The analysis in Ref. 24, however, left several issues operieatures in the two-magnon profile and the TMPH observed
First, the validity of the semiphenomenological approachn Raman experiments can be qualitatively described by the
needs to be verified. Second, the quantitative behavior of thsiple resonance diagram. At the same time, we see that
TMPH as a function ofv; and, in particular, the form of the quantitative agreement with the data is not always perfect.
peaks atl) andw!Z) and their relative amplitudes have not ~ The paper is organized as follows. In Sec. Il, we present
been studied yet. CF merely conjectured, without performinghe formalism and the expressions for the Raman vertex both
explicit calculations, that the resonance aift) should be N the LF approximation and near the resonance. In Szt)ec. i
weaker than the one at'2) because neas(l), there existsa W€ present our analytical results for the vertex nefy;

strong restriction on the possible directions of the magnotnd demonstrate that the divergence is much stronger near
momenta which satisfy the resonance condition at a givelf!® UPPer resonance frequency. We also discuss in this sec-
magnon energy. No such restriction exists neéjg This  tion how the inclusion of a next-nearest-neighbor hopping

conjecture also has to be verified by explicit calcuIations."’“cfeCtS the resonance ber_]awor of the Raman vertex. _In Sec.
IV we present our numerical results f@) the Raman line

Third, the anisotropy of the two-magnon profile and its evo- . S .

lution with varying incident frequency has not been studied.st?afe fﬁr (_il_'&egam mm?ent frquzncges (?\?CB; I\CVA) ?]nd

Fourth, the calculations in CF were performed in the frame—gigcggst i?s depen?jse r?ceur:)%“ct)k?e feirgni?)(r;l.ic da)rﬁpir?gt aenr:j the
k of -field, | in- ity- D - > )

work of a mean-field, larg#}, spin-density-waveSDW) ap nclusion oft’ (Sec. IV Q. In Sec. IV D we consider vertex

proach to the Hubbard model with only nearest-neighborl . , . . o
orrections to the interaction between light and the fermionic

hopping. This theory, however, has the weakness that it pré:- t Finally. in Sec. V its with th
dicts that the maximum of the valence band is degenerat(éurren - minally, In Sec. V- we compare our resufts wi €

along the boundary of the magnetic Brillouin zone. Mean-€XPerimental data.
while, experiments on SCuO,Cl, have demonstrated that

the valence fermions possess a strong dispersion along the Il. THE FORMALISM
magnetic Brillouin-zone boundary with maxima at ] o
(w/2,m/2) and symmetry-related poirt&2’ This dispersion The two-magnon Raman-scattering cross section is given

can easily be reproduced in the SDW formalism if one in-PY Ed. (1). In this paper, we focus on thB,, scattering
cludes a next-nearest-neighbor hoppitig, This, however, 9€0metry where most experiments have been performed. In
changes the energy denominator in the triple resonance di#}iS geometry, the polarization unit vectors of the incident
gram, and one therefore has to reexamine the conclusions 8f'd outgoing light are both redlinearly polarized light,

CF by performing their calculations for thet<(t'—U) perpendicular to each other, and directed at 45° to the crys-
model. The inclusion of’ is particularly relevant for com- tallographic directions, le.&=(X+ty)/V2, &=(X-y)/
putations neaw?) since the dominant contribution to the v2.7° Other scattering geometries for linearly polarized light

Raman vertex in this frequency range comes from fermionéri'f‘lg Whefe ei|=|ef=(>|<+.y)/d\/7|_, ﬁnthZG wherg &i=X,
near the top of the valence band whose degeneracy is liftel ~ Y- For circularly polarized 19 t, the scattering geom-
by t'. etries areLL where g;=€;=(x+iy)/v2, and LR where

The goal of the present paper is to address the abO\/%:(XJr'y)/‘é’ ele(x—ly)/ﬁ. . . .
issues. We compute below the Raman intensity includin As we alrea_dy Q|scussed in the infroduction, we consider
both a final-state interaction and the enhancement of the R&&Man scattering in the framework of the latgeSDW for-
man vertex due to the triple resonance. We study the RamdR@/ism for the one-band Hubbard model. In this approach,
profile and the TMPH numerically and analytically and dem-©On€ introduces a long-range antiferromagnetic order and de-
onstrate that the two peaks in the TMPH survive the effectieoumes the electronic dispersion into two subbands of va-

of the magnon-magnon interaction. We analyze the relativ n‘lgﬁeagqa;?;gl::gt(')cn ;‘;rgi)o;csﬁ to the Raman scattering in
amplitude of the TMPH nean'%) and ) and show that ! nati ing |
P res Pres the SDW formalism was developed by CF. An example for

although the ?Zl;/ergent piece neaf] is much weaker than . diagrams which contribute to the bare Raman vertex is
th‘i one neawre , the nondivergent term is much larger near gnown in Fig. 2. This diagram contains two types of vertices:
). As a result, the relative amplitude of the two peaks ingne for the interaction between fermions and light, and one
the TMPH turns out to be strongly dependent on the quasifor the interaction between fermions and magnons. The in-
particle damping which cuts the divergent part but does noferaction with light appears in the SDW theory as a result of
affect the Subleading term SUbStantia”y. We also show thaﬂhe modulation of the hoppmg matrix element by the vector
both peaks in the TMPH are anisotropic—the intensity dropsotential of the electromagnetic field. The spin-fermion ver-
much faster on the high-frequency side of each of the peaksices can be straightforwardly obtained from the full expres-
Further, we study the effects on the TMPH of a next-nearestsjon of the spin susceptibility which in the SDW theory is
neighbor hoppind” and vertex corrections to the interaction given by the random-phase approximation RPA series of
between light and fermionic quasiparticles. bubble diagrams. In each of theses bubbles one fermion is

We also study how the two-magnon line shape evolvegrom the valence band and the other is from the conduction

with the incident frequency, and show that it changes frompand.
an asymmetric form foro;=w(3) to a symmetric form To obtain the Raman intensity, we need to know the full

aroundo;~ ‘2. Raman vertex which includes a whole series of magnon-
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magnon interaction events. It has already been emphasizedattering at the magnon-fermion vertices. At photon fre-
several times in the literature that the dominant contributiorquencies small compared to the SDW gap, these diagrams
to the magnon-magnon scattering comes from the regiohave the largest overall factor. One can easily checkNhat
near the magnetic Brillouin-zone boundary where the antiis finite only in theB,4 scattering geometry and for LR po-
ferromagnetic magnons behave almost as free partitfds. larized light. In both cases we obtalg=—AT7,. For this

In this situation, the only relevant interaction term has twoparticular form ofMg, only the second term in E¢3) con-

creation and two annihilation magnon operators: tributes to the magnon-magnon scattering process. With this
43 simplification, the summation of the ladder series for the full
™ t ot Raman intensity can be reduced to solving an algebraic equa-
Him=~ 2 ; % V- @B 1B -q8 - @ fion, Doing this we obtain for the full Raman intensity in the
. . . B4 channel
We can now decompose the interaction vertex into
Vi q= Vi 0+ v+ v, 3 R(w)eIm 1+ I/4S}’ ©
where the different symmetry factors are given by whereS is the value of the spin, and

I_4JS2 (cosgy—cosqy)?
TN 4 Ae—2w4+id

1 _ - 1 _ with Aw=w;— of and wq=4JS{1- qu is the magnon dis-
=5 (sinketsinky);  w=5(sinkc=sinky). (4 persion. Equation$5) and (6) yield a two-magnon peak at
Aw=2.8] (for S=1/2), butR(w) clearly contains no depen-
Before we discuss our calculations for the full Raman intendence on the incident photon frequensy.**°

sity at resonance, we briefly review the calculation of the As mentioned earlier, the LF theory is only valid for small
Raman intensity in the nonresonant regime when the LRy, . Whenw; is comparable to the gap between the conduc-
theory is valid. In the LF theory, the bare Raman vertextion and valence bandsvhich in the cuprates is the charge-
[open circle in Fig. tb)] is assumed to be independent of thetransfer gap it turns out that diagrams with intraband scat-
photon frequencies, while its dependence on the magnon meering at the fermion-magnon verticen contrast to
mentumgq has the forrf® interband scattering in the LF diagrarsecome dominant.
The most relevant of these diagrams is shown in Fig. 2. This
diagram is called the triple resonance diagram because it
contains three terms in the denominator which can all vanish
simultaneously if we adjust the incident and final photon
whereA is a constant. In the diagrammatic approach, the LHrequencies. The analytical expression for this diagram is
vertex is obtained by collecting the diagrams with interbandgiven by

1 -~ 1
vkzz(cos kx+cosk,); vkzi(coskx—cos Ky);

(6)

Mg=A[ Vq(eixe?x_’_ eiye?y)

— (ejx€fy COSqy+ eiye?y cosqy)],

M :_ii , [(de] IK) e ][ (ex—ql IK) ]l qek—q— Nqexl?
RN (0= 2E+iT) (wf—2E4_o+il)
X ! + ! 7
(wi—w—Ek—Ek_q+iF) (wf+w—Ek—Ek_q+iF) ' ( )
|
wherew is the external magnon frequency, the first two are the vertex functions for the interaction be-
tween light and fermions, while the third term is the product
ex=—2t(cosky+cosky) = —4tyy, E,= JAZ+ et of the two vertices for the interaction between fermions and
magnons. As follows from EdZ7), the resonant Raman ver-
12 12 tex Mg depends on the magnon momentum, but also, via the
_ 1 1 i1 A= E 1 1 denominator, on the incident and outgoing photon frequen-
Ha= |2 ,/1_,,3 ' @12 ,/1_,,3 ' cies and on the magnon frequency. The frequency depen-

dence ofMg can only be eliminated in the artificial limit
and the prime indicates summation over the magnetic Brilwhen the fermionic damping is very large and overshadows
louin zone. Thd T term represents the fermionic quasiparti- all other terms in the denominator. For small and moderate
cle damping which we assume for simplicity to be indepen-damping, the frequency-dependent and also momentum-
dent of momentum. The actual damping, indeed, should havdependent terms in the denominator cannot be ignored, and
some momentum dependence, particularly near the top of thtéis makes the computation of the full Raman intensity rather
valence band?*3Out of the three terms in the numerator, involved. We found, however, that the diagram which is
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Mg (q) Mr (k) V(k,q)
q
° o

FIG. 4. The effective Raman verteM &' includes a single _
magnon-magnon scattering event. e /\

conduction band

I
o

most difficult to compute is the one without a final-state @ |

interaction. At the same time, the series of diagrams with at P o) valence band
least two scattering events can easily be summed up becaus L \LﬁL'

the Raman vertex renormalized by the inclusion of just a o -q

single magnon-magnon scattering event no longer depend: NL:L\

on the magnon frequency, while its dependence on the ex- -9

ternal magnon momentuinreduces to a simple; form for

Blg scattering. This effective Raman VerteM,Eﬁ='17|M§ﬁ is FIG. 5. Quasiparticles at the bottom of the valence band con-

shown in Fig. 4. We now remind the reader that the experifribute to the Raman vertex at(2), whgreas quasiparticles at the

mentally measured Raman profile for any incident photorfoP Of the valence band contribute ég; . The dashed and wavy

frequency contains a prominent two-magnon peak which iéines represent the excited quasiparticles and the emitted magnons,

solely due to magnon-magnon scattering. In this situation ©SPEctively.
the diagrams without and with a single magnon-magnon o |
scattering are most likely to be less relevant than the dia- R(w; ,cuf)oclmHME’}ff 2 171/4S
grams with multiple-scattering events. For our analytical o
considerations, we neglect the diagrams with zero or onlyvherel is the same as in Ed6), and|\/|gff is obtained by
one magnon-magnon scattering event. In this approximatiorsubstituting Eq(7) into the diagram in Fig. 4 and performing
we can formally rewrite the full Raman intensity in the samethe integration over the intermediate magnon frequency and

, ®

form as for the LF theory: momenta. We then obtain
M—eﬁ( . )=i 128] , [(aEklak)ei][(&Ek_q/ak)ef][/.tqfk_q_)\qu]Z ’;q
RA@H@I=ITN2 2 (@— 2E,+iT) (@~ 2E_q+il) (Aw—2wq+10) (0~ wq—Er—Ey_q+til)"

(€)

It is essential however tha#l & still possesses a complex hole symmetry by including a hopping term between next-
dependence on the external incident and outgoing photoR€earest neighbors. Our point of departure is the approximate
frequencies. This in turn implies that the full intensity €xpression for the Raman intensity, Ef), in terms of the
R(w;,wy) is a function of both frequencies rather than of effective Raman verteM ' . We first study the form oM &'
wij— ws as in the LF theory. A very similar approach was nearwﬁgg and then discuss the form of the vertex neéjg
used by Schafeld et al?®
In our numerical calculations of the full Raman intensity
we considered all diagrams, i.e., diagrams with zero, one or A. Resonance aiw,2)
multiple magnon-magnon scattering events. The details of As e discussed in the introduction, the upper resonance
this computation are presented in the Appendlx._We found ?requencngg is close to the maximum possible incident
go_od qualitative agreement bgtween our T‘”me“.c.a' apd an requency A+ 8J for which the resonance condition can
lytical rgsglts and consider this as a partlaI_Justlflcanon .for til be satisfied[we assume here thah is large, i.e.,
the omission of the lowest-order dlagrams in our gnalytlca k=A+J(coskx+cosky)2]. The resonance at the highest in-
cons@eraﬂons. We now proceed with the dlSpUSSlon of OUEident frequency corresponds to a process in which light
analytical results, and then present our numerical data. causes a transition of a quasiparticle from the bottom of the
valence band to the top of the conduction bésee Fig. .
. ANALYTICAL RESULTS Since the bottom of the valence band iskat (0,0) and is
not degenerate at the mean-field level, it is reasonable to
In this section, we present the results of our calculationsissume that the corrections to the mean-field fermionic dis-
of the Raman intensity near the two resonant frequenciesersion near the bottom of the band will only give rise to a
(&) and 0@ . We first consider the casé=0 and then finite lifetime, but will not introduce any new qualitative

res -
discuss how the intensity changes if we break the particlefeatures into the fermionic spectrum. We therefore restrict
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our considerations to the mean-field form of the fermionicresonance the bosonic momentgms also small such that
dispersion and model the fluctuation effects by introducing dhe expansion near the bottom of the band holds for Bgth
guasiparticle dampingy. and Ey, 4. This last assumption will be verified after we

To simplify the presentation, we first neglect the numera{erform our calculations. Further, for smglwe can expand
tor in Eq. (9) and focus on the resonance behavior of thew, as w,=Jv2q. Substituting the expanded forms Bf,
effective vertex due to the vanishing denominator. Near thd, ., and wq into Eq. (9), neglecting the numerator, and
bottom of the band, we can expand the fermionic dispersiointroducing the dimensionless variablas=(w;—2A)/2]
and obtairE,=A +4J— 2Jk?. We will assume that near the and A\ =A w/2J we obtain

o f . dalg 1
o " = N
R (AN—qv2+iT) (\i—4+2K*+iT)[\j—4—AN+2(K—q)*+iT]

1
X .
[2N—8—AN+2k2+ 2(K— @)%+ (AN —qv2) +il']

(10

A similar expansion has been performed by CF. They how- C,=X[ko—(29%—AN)/4ko];
ever considered only the bare Raman veftar one without
a final-state interactignin which case the Golden Rule re- C,=C;+Kkox+(AN—qv2)/4.

quires the magnons to be on the mass shell, i.e. . ) . )

q=qo=AMN/v2. For on-shell magnons, the integration overThe integration ovey can be done explicitly and yields

d?q just yields a factor 2%iq,. Furthermore, fog=qq, the

last term in the denominator in E¢LO) is the sum of the G(q)=27-rf

second and the third term, so one can tknand the angle

betweerk andq such that all three terms in the denominator

of Eg. (10) vanish simultaneously. Expanding near this point, x[ 1

CF obtainedVig= (N —Ared ~ 2 e V2Ko0Q Cy— (KoQ)Z SI? b +iT
We now show that the fully renormalizéd ;" possesses

the same functional form as the bare vertex obtained by CF 1

since the integration over by itself is confined to the vicin- - > -

ity of go. To demonstrate this, we expand near the point V2ot Co = (kot)” sint" go+iT

where the second and the third term vanish and then inte/e immediately see that if si#, is finite, one can expand

grate ovek andg. The conditions that the two denominators the square root in the integrand in E43) in C; , and find

vanish simultaneously at a givenare 2k2:2k§:4—)\i and  after simple manipulations that the Raman vertex is free

COS p=C0S ¢hy=(207— AN)/(4kyq). We will see below that in  from singularities. To obtain a divergent, resonant contribu-

order to obtain the most singular contribution Mg, one  tion to the vertex, we therefore have to set gjy+0. For any

has to expand arouridy and ¢, to linear order ixk=k—k,  diveng, this singles out a line in thex{,A\) plane with

dx
(X+iD)[kox+(AN—qv2)/4+iT']

. (13

and to quadratic order in= ¢— ¢. Performing this expan- " AN 2

sion, we obtain Ai=N2(g,AN)=4— > |1 Z—qz) : (14
— d?qG(q) Furthermore, we also have to require that the poles and
Mg > —A)\—q\/i+il“' (1D pranch cuts in the integrand in E@.3) be in different half-

planes, since otherwise, the integral ovwelfust vanishes.
where This requirement is satisfied €, ,, which both are linear
functions ofx, have negative derivativetC, ,/9x. Near the

L resonance lina; =12, we have

_ X 4g9*—(AN)?

G(Q)=de , ;
(X+iT)[kox+(AN—QqVv2)/4+iT] Coe
Y4k 497

xfdy

 C,+Koq Sin oy +KeqyX/2+il |’

1
C1+Kkoq sin ¢y +koqy?/2+iT X (2g2—AN)AN . AN—V2q

C = —
1 27 4k 29° 4
(12

We see that both derivatives are negativedf2 A\. If, as
we assumey is close togg=AN/v2, then the derivatives are
andC; andC, are given by negative providedA\>1. For transferred frequencies near
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the two-magnon peak, we hawe\ ~ 1.4, i.e., the above con- onic current vanishes and the numerator turns to zero. A
dition is satisfied. Performing then the integration oxewe  simple analysis similar to the one performed by CF shows
obtain keeping sip, small but finite that the numerator vanishes as #; for \;—4. The full M &
then behaves as

&) 1672 1 | \sir? ¢o— (AN—qv2)/2koq+iT
q)= a . — —Ai
A)\_Q‘Q koq |sm2 ¢O_(A)\_q‘/2)/2k0q| MgﬁIA(A)\)_—(zl)g/z. (29
1 |)\i )\resl
— —] (15) Restoring all numerical factors in the expression for the Ra-
[sin ol man vertex, we find thaA(A\) has the form
We now express st in terms of deviation from the criti- J 4
cal line as A(AN)= —123 (1+AN)Z(AN). (20
Sir? o= 5_(A)\_qﬁ)m, (16) At some distance away from;g;, the difference between

4—\; and \{2)—\; is irrelevant andM & can be approxi-

where we introduced=\;—\‘2). We now substitute Eqs. mated by

(15 and(16) into Eq.(11) and perform the integration over

g. Introducingz= (AN —qv2)/ 6 we finally obtain neff_ A(AM) (21)
RNy, |72

res

—. Z(AN) 1

Eﬁ“ N (17)  This is the final expression for the effective Raman vertex.

Substituting this expression into E(), one obtains for the

where Raman intensity
zian=20+a0) [ 2212 ROy A Al (22
(AN)=2(1+AN) e T S b INZ—\i| 1+1/4S°

1 wherel is given in Eq.(6). This result forR is in fact very
— ] similar to what CF conjectured: the full intensity is a product

J1—z+ (z—iT)/2(1+AN) of two terms, one|/(1+1/4S), depends oA\ and has the

. . i i -\ (2)]-1
is a very smootf{nearly a constapfunction of the momen- Same form as in the LF theory, while the othier,—Areg| ",

tum transfer. Clearly, the integral ovexr comes from in essence reflects the enhancement of the bare Raman ver-
z=0(1) which in turn implies that the actual integral oxgr tex. This last term ((jze)pends m but also on the transferred
is confined to the regioA\ —qv2=0(5). The fact thaq is freqyency through\ ;&2 . There is however an extra feature:
confined to the vicinity of its on-shell value implies that one the interplay between triple resonance and magnon-magnon

can setg=AN/v2 in Eq. (14) which yields interaction gives rise to an extra dependence of the intensity
on A\, through the factoA. However, we found thaA is a
(AN—1)2 smooth function of momentum transfer, so this extra depen-

Niaa(AN) =4 — (18)  gence is not that relevant. This is particularly true reg?
where the two-magnon peak is rather narrow so one probes
For AN=1.4, which, we remind the reader, corresponds toa only in a narrow range of\\ around 1.4. We already
the position of the two-magnon peak, we obtaf)=3.93.  mentioned in the introduction that the inverse linear depen-
Also, for this AN we haveq~1. Thisq is not small enough dence of the TMPH nean{2) was experimentally observed
to fully justify our expansion in magnon momentum. How- by Blumberget al. for YBa,CuyOg ; (Ref. 20 and later by
ever, forg,=q, , the approximation ok by a linear termis  Ribhauseret al. for PrBg,Cu,0,.* This is fully consistent
incorrect only by 8%. with our result. We, however, performed our calculations
We see thaM§' diverges ass~ 32 when the incident fre- only in the vicinity of the resonance and therefore cannot
guency approaches the resonance valﬁié. The same re- provide a theoretical estimate for the width of the region
sult has been obtained by CF who neglected the final-statehere the inverse linear behavior holds. The data for
interaction. In this respect, our result shows that the finalSr,CuO,Cl, are a bit less conclusive because in this material,
state interaction does not destroy the triple resonance which(2) is larger than the largest experimentally accessile
occurs along the same line as in the absence of the magnoand one cannot unambiguously conclude from the data that

magnon scattering. - the Raman intensity follows an inverse linear behavior in a
We now consider the effect of the numeratorNtf'. In~ wide range of frequencies.
principle, the numerator is finite at=\(2 so that thes /2 Besides the behavior of the TMPH nesf?, Eq. (22

behavior should survive close to the resonance line. In pracglso describes the form of the two-magnon profile at a given
tice, however, for transferred frequencies arodnd=1.4,  \;. The conventional factdr'(1+1/4S) produces a symmet-
the resonance value af is close to the maximum possible ric peak in the intensity aAX=1.4. The other two factors
resonance value of 4. At this maximum valueNgfthe ma-  which contribute to the peak line shape are the dependences
trix element for the interaction between light and the fermi-on A\ in the overall factoA and in\ (2. Near the resonance
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value\;=3.93, we found that the two extra contributions to A peculiarity associated with the expansion of the fermi-
the line shape cancel each other and the resulting twoenic dispersion near the top of the valence band is that the
magnon profile is chiefly given bl (1+1/4S) and therefore position of the band maximum is degenerate at the mean-
symmetric. For incident frequencies smaller thgs=3.93,  field level. Numerous analytical and numerical calculations,
the triple resonance in the Raman vertex occurs at transferragbwever, have demonstrated that this degeneracy is an arti-
frequencies larger thatth = 1.4. This obviously gives rise to fact of the mean-field treatment-3*-38_the actual fermi-
an asymmetry of the two-magnon line shape with a largepnic dispersion possesses a maximum af2(z/2) and
intensity at higher frequencies. The evolution from an asymsymmetry-related points. Recent photoemission experiments
metric to a symmetric form of the two-magnon profile when o 5,cuO,Cl, confirmed this result and in addition have
\; approaches the resonance value from below is consisteghqn that the dispersion near the top of the valence band is
with the expenmgntal data. We WI|| also demonstrate thlshearly isotropic around/2,m/2).2527 At the moment it is
effect when we discuss our numerical results. still a topic of controversy, whether one needs a substantially
@ large next-nearest-neighbor hopping to explain an almost
B. Resonance neawyes isotropic dispersion, or whether it is a property of the
The triple resonance theory of CF predicts that the TMPHnearest-neighbor model in the strong-coupling limit, as was
measured as a function af,=2A+2J\; exhibits a second suggested by Laughliff. The set of parameters suitable to
maximum at a relatively small frequen §g=2A+3J (see  SLCuOCl,, namely J/t~0.4, corresponds to an
Fig. 3. For this low-frequency resonance CF found a muchintermediate-coupling regime in which case the next-nearest-
smaller range of magnon momenta for which the resonanceeighbor exchange is probably needed to account for the
conditions are satisfied and therefore concluded that thigotropy of the spectrurff. This second-neighbor hopping
resonance should be weaker than the one&. We now  breaks the particle-hole symmetry and causes substantial
discuss this issue in more detail and will show that while thecomplications for the calculation of the Raman vertex since
divergent term aw!g) is almost completely suppressed, the Eq. (9) is no longer valid. At the same time, we know that
subleading terms are larger thanaafﬁg. the degeneracy along the magnetic Brillouin-zone boundary
In the previous subsection, we expanded the fermionidés already lifted in the nearest-neighbor model due to self-
dispersion around the bottom of the valence band saasf@ energy corrections. One can therefore argue that the inclu-
is close to the maximum possible incident frequency for thesion oft’ only aids in fitting the ratio of the effective masses
triple resonance. Here, on the contrary, we will make use obut doesotintroduce any new qualitative features. To avoid
the fact that the low-frequency resonance occurs atinnecessary complications, we will assume that the particle-
w§§g~2A+3J which is not far from the minimum incident hole symmetry is preserved, and that the experimentally
frequency &2A+2J) for which a triple resonance is pos- measured nearly isotropic quasiparticle dispersion around the
sible. Accordingly, we will study the behavior of the Ramantop of the valence band is due to strong self-energy correc-
intensity by expanding the fermionic dispersion up to qua-tions. In other words, we will still use Eq9) and will also
dratic order around the top of the valence band. As in thesssume that near the top of the valence band we can expand
previous subsection, we will also expand the magnon dispethe fermionic dispersion a&,= A +Jk?, wherek measures
sion to linear order in the momenta. We will see that in thisthe deviation from ¢/2,7/2). Substituting the expansion for
approximation the Raman vertex is free from actual diverE, into Eq.(9) and neglecting the numerator which is finite

gencies. near the low-frequency resonance, we obtain
—. (, d*kdq 1 1
MRMJ T (N —KZHIT)[N,— AN—(K—G)2+iT 2 (R—q)? T @
AN—qv2+iT (M=K +HID) [N —AN=(R=@)“+il ][ 2N, — AN —K2— (K= )2+ (AN—qv2) +iT']

To study whether the effective Raman vertex diverges at some particylave perform the same analysis as in the previous
section, i.e., expand near a particular fermionic momentynwhere the second and third terms in the denominator vanish
simultaneously at a giveq. Forky and ¢, which is the angle betwedq, andg we find k?):)\i and cosgy=(0?+AN)/(2ky0).
Expanding, as before, aroutkg and ¢ to linear order ink=k—Kk, and to quadratic order ig= ¢— ¢y, we obtain

— G
VEE f P — (24)
AN—qgV2+il
where
~ 1 1 1
G- [ ax— — [ oy = e |,
(X+i)[kox+ (AN—qv2)/4+iT] C1+Kkoq sin ¢y —koqy?/2+iT  Cy+koq Sin ¢oy — koqy?/2+iT

(25

andal andEz are given by
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Cy=x[Ko— (g2+AN)/2K,],

C,=Cy+kox+ (AN—qv2)/4.
The integration ovey can again be performed explicitly, and we obtain
1 1 1

(xHIT)[kox+ (AN = QV2)/4+iTT | 2koqCy+ (Ko@)? SIP bo il \2koQCy+ (Kot)? SITE b +IT |
(26)

G(q)=—27i f dx

This expression is similar to E¢13) and we again find that onstrate this, it is not sufficient to expand near particular
if sin ¢y is finite, one can expand the square root and obtaivalues ofk, and ¢, and we thus need to study the full form
that G(q) is free from singularities. The expansion does notof the Raman vertex. The full form dfi; neari (2 was
work, however, if sing,=0. In this case, a power counting obtained by CF and we now have to perform the same analy-
argument indicates that the Raman vertex may diverge. Thsis near\ (). There is, however, a subtlety related to these
condition singy=0 singles out a line in the\j,A\) plane calculations. CF had to assume that the magnons are on-
with shell, i.e.,q=0go=AN/2, since a full analytical consideration

is not possible without this last assumption. In the previous
subsection, we found that the divergent piece of the vertex is
intrinsically confined to a narrow range arouqg, and the
results with and without the restriction to only on-shell mag-
nons are roughly the same. Neq%), the situation is less

1+ AM®
92

The very existence of the critical line along which the Ra-

man vertex diverges by the power counting argument, hOWFigorous since the divergent piece is absent. At the same

ever, does not guarantee that the.divergenc_e is actually 9€Nme, it still looks reasonable to estimate the value of the
ine. Indeed, the arguments displayed in the previous .~

@) py i icting wi ;
subsection show that the vertex diverges only if the pole%%ritfx tﬂ?ﬁ;ﬁé?%ﬂ? rtisetrgxgu\tﬂgg;ﬁ;} :the eIIS ?3%22335
and the branch cuts in E6) are located in different half- 9 9 P P y

L ) o ~ CF, we obtain after some lengthy calculations
planes. This is the case if the derivatives oxesf C, , are gty

q2
Ni=A&(q,AN) = —

7 (27)

negative. However, near's) we have —y D, [ 1-V2o-iT
o« = n —
s _x2EM R8P 14 25+iT
=%k, 4 (2—AN),

1—-2258/(2+AN) —iT
—In =
AN—QV2 1+2V258/(2+AN) +iT

C,=Cy+xko+
4 =
N D, | 1++V26+iT
Since (2= A\) is always positive, the derivatives are clearl = n =
( ) ys p y 15132 | 1—\J2e—ir

positive in which case the divergent contribution vanishes
after the integration ovex. We see therefore that the triple = .
resonance does not yield a divergence in the Raman vertex at —In 1+2\/2_f/(2—A7\) +ir
A=A, contrary to what we have found nes). 1-2\28/(2—AN) —iT

We then studied the form of the Raman vertex in more _ ’ _ )
detail and found that the absence of a divergence is a resdﬁhef?Dl_l(2+A)‘)/[‘/2(Ai‘)_]’ Do=(2-AN/[V2(AN)],
of the restriction to a quadratic dispersion around the top ofNd 6=\{2—\; where \{Z) is given by Eq.(27) with g
the band. Expanding further ik and redoing the calcula- Substituted bydo:
tions, we obtained a divergence My resulting from the
integration over a small region of fermionic momenta. A )\(l)(A)\):E (1+A_)‘
similar result was also obtained by CF who used a somewhat res 2 2
different technique. However, the phase factor associated ) ) ~ 3
with the divergent contribution tMp, is very small, and the 11ough both terms in Eq28) contain a terms|>%, the
divergence is already eliminated by a small fermionic damp<£ombination of logarithms vanishes whémpproaches zero.
ing. Moreover, expanding i®, we find that the terms dd(5?)

So far, we have found that the Raman vertex exhibits a&lso cancel each other. Consequently, there is not even a
regular behavior arountl%). Experimentally, however, the weak triple resonance at{3), and the Raman vertex turns
TMPH clearly displays a second maximumt=1.5. We  out to be a regular function of; in the immediate vicinity of
will now show that this maximum can in fact be describedthe would-be resonance lingl). This indeed agrees with
within the triple resonance theory since the Raman vertexur expansion nedty and ¢,. At the same time, it follows
turns out to be very strongly enhanced nﬁ%g. To dem- from Eq. (28) that at frequencies only slightly smaller than

; (28)

2
(29
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AL namely at (2- AN)/2< 25, one of the logarithms intensity at larger frequencies. Indeed, fok>1.4 we have
contains an extras factor associated with the branch cut. MZ>\;, and the Raman vertex is strongly enhanced. No
Due to this extra factom/l%ﬁ in fact scales ayl_?’/z, i_e_, the such effeCt, however, exists foAN<<1.4. Both above-

vertex possesses the same functional dependence on the mentioned aniSOtrOpieS are consistent with the eXperimental

cident frequency as if the triple resonancé\&i’@ were actu- data_. ) )
ally present. Near the two-magnon peak we have=1.4 Finally, consider the numerator in the Raman vertex. Near
. A. ) Vel
In this case the singular behavior actually starts very close tfes the numerator was small due to the proximity to the
AL namely at\{2)—\,~0.045. This singular behavior ex- bottom of the band, and effectively reduced the divergence
i~0.045.

res? res —-1/2 ; —3/2
ists, with decreasing amplitude, up to 821 or of the Raman vertex(%ﬁ instead ofs™ *'<. The lower

AL —\,~0.5, though at such high deviations frodft) the resonance frequency,,; however, is rather far from the
) ~ bottom of the band so that the humerator does not possess
regular and singular parts &(q) are of the same order. We

, : any smallness. As a result, the strong enhancement of the
see therefore that despite the absence of a true dlvergencng man vertex as one approachéég from below turns out
A1), the TMPH still possesses a maximum very close to it

1) (1) _ to be comparable, and for some values of parameters even
M((igeover, for AN=1.4, we havehrs=\es~1.45, .., |arger than the intensity near the high-frequency resonance.

wres~2A+3J which is in good agreement with the experi- we will explicitly demonstrate this feature in our numerical
mentally observed location of the low-frequency peak in theresults in Sec. IV B.

TMPH.
For experimental comparisons, it is essential that the en-
hancement due to the branch cutMy is asymmetric—it C. Raman intensity at finite t’

exists for)\i<A§e§ but ”9‘ for Ai>\fey. This shoulc)i obvi- We now consider how the inclusion of a next-nearest-
ously yield an asymmetric form of the TMPH neelpl—the neighbor hopping modifies the resonant behavior of the Ra-
m(tle)nsny should increase continuously as one approachgsan vertex. We already discussed above that a nortzero
Ares from below and drop down rather fast whknexceeds preaks the particle-hole symmetry. In this case, the expres-
AL In addition we should also obtain an asymmetry of thesjon for the Raman vertex is more complex than &g.and

two-magnon line shape at exact}y,:)\ﬁég with a higher has the form

i BURNY [(dex/ IK) &1 (Tex—q/ IK) ef][ q€k—q— Nqexl?
R N (wi—ZEk-l—iF)(wf—ZEk_q-i—iF)
X ! + ! (30
(0j—0+Eg—Eg_4+il)  (oito—+E;_—Eg+il) |’ )
|
wheree, andE, are defined as before and resonance into a set of double resonances. Obviously, there

exist five combinations of terms for which the denominator
can vanish. One of these, namely the one with- 2E,=0
and ws—2Ey_4=0, yields a resonance in exactly the same

€= — 4ty — 4t cogk,)cogk,),

Epf== VAZJFE&_‘”, cogky)cogky). region of the @;,Aw) plane where the resonance occurs
HereEF" describes the energy dispersion of the conductiorwithoutt’. We will show that of the remaining four combi-
and valence bands, respectively. nations only two are truly divergent in the vicinity ofgs)

One can easily see that at finite only two out of the In order to obtain some analytical results we again have to

three terms in the denominator in E§1) can vanish simul- calculate the effective Raman vertex which now has a more
taneously. A nonzert/ thus effectively transforms the triple complex form:

i 04 o < [(d&d k) e[ (Jex—q/IK) el mqek—q— Ngexl® 1
MR'=i§z 3 % (0— 2E,+iT)(w;—2E,_ot+iT Aw— i
i K W k—qTil) (Aw—2wq+iT’)
X ! + ! 31
(wj— wgq+Eg— ﬁ_q+ir) (0j— wgq— %+Eﬁ_q+ir)' @D

We first observe that while the energy dispersion of the quasiparticles depends linetrJyttem magnon dispersion and the
magnon-magnon scattering vertékk,q) depend only ont()2. Since ¢'/t)2<0.25(otherwise, the antiferromagnetic state is
unstablg, we will just neglectt’ in wq andV(k,q).
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Consider first the situation nearl?) when there is a true resonancel\il_ﬁﬁ. Performing now the same manipulations as
before, i.e., expanding near the bottom of the band and neglecting the numerator IN3Bg.we obtain
M =M (@) + ME(—a))/2, wherea=t'/J and

— Ga(q)
e chdz _ S 32
R @) A i) 2
with
G —f d%k .
a(@)= (N — 4+ 2K2HIT)[N—4— AN+ 2(R—G) 21T ]

1
X .
2\ —8—AN+2k3(1+a)+2(K—§)%(1—a)+(AN—qv2)+iT

Expanding near the point where the first two terms in the denominat@i,f) vanish and integrating over the deviations
from the resonance values, we obtain €&y(q)

(33

1
V2koqC8 cos ¢po— (koq)? Sir? ¢g+il’

1
Ga(q)=27TJ dx(x+iI‘)[kox(1+a)/(1—a)+z+iF]

1

— . 34
V2koqC8 cos ¢o— (koq)? Sir? ¢g+il’ (34

res*

Hereko=[(4—\;)/2]"? and COS¢0=(2q2—A7\)/4qu arethe ), approaches\"™=4 which is very close toAZ2). We
same as for the resonance  witht'=0,  checked that the same functional behavior also holds for

z=[AN(1+a)—qv2]/4(1—-a), andC], are given by ME(—a).
The second singular contribution MeRﬁ(a) comes from
Ci=x(ko—q cos ¢y), the q integration over the region whereis nearly zero. The
conditionsz=0 and singy,=0 specify a line in the X; ,A\)
S=x(2ko/(1+a)—q cos ¢gz). plane with
_ _ o _ 2 [1-AN(1+a)?]?
One can easily verify that the derivatives®@f , are negative Ni=Njee(8,AN)=4— (36)

, 2
in which case the poles and branch cuts in B4) are lo- 4(1+a)

cated in different half-planes. This implies that the integralyye found that near this line, the Raman vertex also diverges
over X is finite. Performing the explicit integration over as 6~ 12 where 8§ now measures the deviation fro Zg(a).

we obtain after some simple manipulations This square-root divergence nea=0 also holds for
M‘f{f(—a) for which the resonance incident frequency is
_Am® 1 | {si ¢o— (22 cOS g /Koq) +iT given by Eq.(36) with a replaced by—a. We see therefore
Ga()= Z koq| [SIM ¢ho— (2Z COS o /koQ)] that a nonzerd’ splits the strong resonance X} with a
6732 singularity into three weaker resonances with'/?
1 (35) singularities. One of these weaker resonances still occurs at
|sin ¢l | A2 while the two new resonances occundf)(+a). For

a=0, the three resonance lines coincide and we recover the
Now we are left with the integral over in Eq.(32). In Sec.  result of Sec. lll A.
Il A, the g integration was confined to a narrow region For a=—0.5, which is relevant to the cuprates, and
around go=ANVZ and yielded Mg'x|532 where AM=1.4 we have \{?)=3.93 while \{2(a)~3.49 and
s=X\;—\ 2. Atfinite t’, an analysis of Eq(35) shows that  A{2(—a)~3.58. We see that the new resonance frequencies
there exist two regions in momentum space which yield sinare further away from "™ than\ (2 and therefore should be
gular contributions toM E“(a). The first region is still the less effected by the smallness of the numeratdw&ff. Na-
vicinity of q=qgo=AMN/v2. However, sincez is finite for ively, this should make the new resonances stronger than the
d=qo, this region yields a weakerd 2 singularity in  one at\(2. However, we found that the overall numerical
Mgﬁ(a). In practice, everywhere except for the immediatefactor is larger neakﬁgg than near the two new resonance
vicinity of the resonance, this divergence is fully compen-lines. In this situationt’ just reduces and broadens the peak

sated by the numerator M‘;“(a) which vanishes linearly as at )\SQ without actually producing comparable peaks at the



56 RESONANT RAMAN SCATTERING IN ANTIFERROMAGNETS 9145
two new resonance frequencies. Our numerical findings i
Sec. IV C are fully consistent with this result. B1g geometry

Finally, we shortly discuss the effect of on the low-
frequency resonance. We found that the inclusiot ahifts
the frequency range for the enhancement due to the branc
cut but does not introduce any new physics nedt. We
again obtained that there is no real divergence of the Rame
vertex in this frequency range but that slightly bela\&),
the vertex acquires a branch cut enhancement which mimic
the resonance behavior. The calculations nég are, how-
ever, rather involved, and we did not succeed in fully solving
the problem analytically. We will discuss our numerical re-

sults nean %) in Sec. IV C.
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IV. NUMERICAL RESULTS

In the following subsections we will present our numeri-
cal results for the Raman line shape and the TMPH. In Sec:
IV A and IV B we first consider a system with particle-hole
symmetry. In Sec. IV C we study how the form of the TMPH
is modified due to a finite next-nearest hopping term
which breaks the particle-hole symmetry. Finally, in Sec.
IV D we discuss how the renormalization of the interaction
between light and quasiparticles due to vertex correction
affects the form of the TMPH. We summarize all relevant .
formulas for the numerical computation of the Raman inten-
sity with the final-state interaction in the Appendix.

Before we proceed, we want to point out the differences
in our numerical and analytical considerations égr o!Z) .
For our numerical calculations we use the mean-field form o (b) .
the fermionic excitation spectrum, which in the case 0 is . M

degenerate along the boundary of the magnetic Brillouir 0 275 —

zone. This particular form of the dispersion yields, besides Transferred Frequeﬁcy (in units of J)
an enhancement due to a branch cut, also a real divergence
Mg at (2}, though with a small overall factor. In our ana- o _
lytical calculations in Sec. Il B we replaced this mean-field G- 6. The Raman intensity as a function of transferred fre-
form by a quadratic dispersion around the top of the band, ifiuencyAw for wi~w{gl (@) without and(b) with a final-state inter-
which case the divergence transforms into a strong enhanc@6tion: The inset in(b) shows the experimental line shape in
ment. We therefore expect that our numerical results wil[P2CUOLl for ;=24 =2.9], taken from Ref. 20.
overestimate the strength of the low-frequency resonance.

Finally, we shortly discuss some technical aspects of ouslightly asymmetric form aib;~ w{2) to a strongly asymmet-
numerical calculations. It follows from E¢A1) that the ex-  ric form atw{{)<w;< {2, and then back to an almost sym-

pression for the Raman intensity contains four-dimensionametric form atwiwwgfsln order to show this we present
integrals with strong singularities. In order to make a nu-the results for three incident frequencies;~2A+2.9J,
merical evaluation possible, one has to include a fermionig, ~2A +6J, andw;~2A +7.8J. In the first and third case
damping, which cuts the singularities. However, if the damp+he triple resonance and the two-magnon peak positions co-

ing is too large, subleading terms become stronger than thgcide, whereas in the second case they are well separated.
triple resonance effect. We found, for example, that a fermi-

onic dampingl’=0.4J, which was used in Ref. 25 almost 1. o~od
. : res -
destroys the resonance @f2). We therefore only consider

relatively small fermionic dampings with 0.051'<0.10J. N i . : L
Furthermore, in order to ensure sufficient accuracy of théluency without and W't.h a final-state Interaction Is presented
' Figs. Ga,b, respectively. The main difference between

results, we evaluated the necessary integrals on lattices upt Wo fi is th f hvsical sinqularity i
1000x 1000 sites. We verified in each case that the conver: ¢ WO TIGUres IS the presence of an unphysical singuiarity in

gence of the results was satisfactory. Fig. 6@ at Awma=4J which is due to a divergent density of
states at the boundary of the magnetic Brillouin zone. As in

. . the LF theory, the inclusion of a magnon-magnon interaction
A. Raman line shape inB,4 geometry eliminates this singularity as is seen in Figh A more
We first present our numerical results for the Raman lingelevant point is that both figures contain a strong peak at
shape as a function dfw for fixed ;. Our main result is Aw=2.8]. While the peak in Fig. @) is solely due to the
that the Raman line shape evolves with increasihdrom a  divergence in the Raman vertexw@), the peak in Fig. &)
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FIG. 7. The Raman intensity as a function of transferred fre- .5 .
quencyAw for w;—2A=6.00 in the interacting case. The inset g sor .
shows the experimental line shape in ,&Q@OCl, for S !
w;—2A=5.9], taken from Ref. 20. 5 60 b
>
is a combined effect of the resonance in the Raman verte: 'z [ ¢ c e 200 4000
and multiple magnon-magnon scattering. We see that thi § 40 - * 0;-2A = 786 1
peak in Fig. §a) is strongly enhanced by the final-state in- .5 3| . TC=005] _
teraction. g Ll |
Furthermore, we see that the Raman line shape in Fig & .
6(b) is slightly asymmetric with a larger intensity at higher n‘z 101 * . .. 7
transferred frequencies. This asymmetry is most likely to be 0 . . *
a property of the Raman vertex since the final-state interac >3 } 33
tion yields a symmetric peak. One can indeed see this asyn Transferred Frequency (in units of J)

metry already in Fig. @. The two-magnon line shape ob-
tained numerically is consistent with our analytical results in - £ g The Raman intensity as a function of transferred fre-
Sec. Il B. There we attributed the asymmetry of the tWo-g ency Aw for wi=w@, (@ without and (b) with a final-state

magnon profile to th_e branch cut in the Raman vertex whichnteraction. The inset irth) shows the experimental line shape in
for w;j=2A+2.9 exists only forAw>2.8J. YBa,Cu04 1 for w;= w2, taken from Ref. 20.

2. W< W< Wieg

magnon scattering. Neas'Z), however, this divergence is

The form of the Raman profile changes quite strongly aggnfined to a very narrow region neai.4
one moves fromw ;) to intermediate incident frequencies. In  Furthermore, we obtain that in both figures the peak at
Fig. 7 we present, as an example, the Raman intensity inaroundA w=2.8J is almost symmetric. This is also consis-
C|Ud|ng a final-state interaction fOI)|:2A+6OJ A com- tent with our ana|ytica| results in Sec. Il A.
parison with Figs. 6 shows that the anisotropy of the inten- |n addition to the peak ak w=2.8J, both intensities also
sity is now much stronger. This result is quite expected sinc@ossess a slight maximum aroundBvghich probably origi-
in this range of incident frequencies, the Raman vertex resthates from subleading, branch cut terms in the intensity.
nates at transferred frequencies above the two-magnon peak. The evolution of the Raman profile with increasiag

In particular, forw;=2A+6J, the triple resonance occurs fom slightly asymmetric form aroundﬁelg to a pronounced

near the maximum transferred frequenty =4J (see Fig.  shoulderlike behavior for intermediate frequencies, to a sym-
3. metric form close taw'Z) is fully consistent with the experi-

_t'rll'hethtwcz-_mlagnon proflletk:‘or |ntermed|a}_te frﬁ?qeng'ebsmental results on $CuO,Cl, and YBaCu;Og 1. We con-
within thé tripie resonance theory was earlier oblained by, 1is agreement with the data as yet additional evidence
Schafeld et al. Our results are in full agreement with theirs.

that the triple resonance diagram dominates the scattering
@ process in the resonance regime.

3. wi~wgg

The results for the intensity with and without final-state
interaction are presented in Figstb&), respectively. The
intensity without a final-state interaction again exhibits an We now discuss the TMPH as a function ©f. For the
unphysical divergence at the maximum transferred frequencgalculation of the TMPH, we fix the transferred frequency at
Aw=4J which disappears when one includes a magnona value which corresponds to the maximum of the two-

B. Two-magnon peak height
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FIG. 9. The TMPH as a function of incident frequenoy. The  calculated the TMPH for several frequencies in the vicinity
inset shows the experimental result for the TMPH inCSI0,Cl,, of wﬁg and present the results in Fig. libe dashed line in
taken from Ref. 20. this figure is a guide to the eyewithin our numerical accu-

racy, we indeed found an inverse linear dependence which,

magnon profile(which, depending onw;, occurs between however, only exists for a small region neafZ), namely
Aw=2.8] andAw=2.90) and plot the intensity of the maxi- for 0.LJ<w{z)—;<0.25). Experimentally, this region ex-
mum as a function ok, . We present the results in Fig. 9 for tends over a much wider frequency range of about 1 eV.
two different values of the fermionic dampirig In both  Very close tow{2), the divergence is cut by the fermionic
cases we clearly observe two maxima @f)~2.9) and ~damping, and it is impossible to verify the predicted inverse
0@~7.9]. The positions of these maxima are in good Cubic behavior. _

agreement with the analytical predictions and the experimen- We already mentioned tha;c one to the reasons for the
tal data. The form of the TMPH neas{l) is clearly asym-  INCOITect ratio of intensities(w{d)/1 (fed) lies in the over-
metric: the intensity drops faster above the peak than belowpiMmPlified mean-field form of the fermionic dispersion, and,
This form agrees with our analytical results. For intermediatdn Particular, in the degeneracy along the boundary of the
incident frequencief4.00< (w;— 2A)<7.5J] the TMPH re- ~ magnetic Brillouin zone. One would thus expect a better
mains basically constant and, in addition, is practicdlly agreement with experiments if this degeneracy is lifted, e.g.,
independent. This behavior, we believe, results from the facpy the introduction of a finite next-nearest hoppirig We
that in this frequency range the triple resonance occurs gddress this issue in the next subsection.

Aw=4J which is too far away from the two-magnon peak to

influence its height. Upon increasing, we find that the C. Raman intensity for a nonzerot’
TM;DHT?OL_Jn?QI’ISQg d“’PS much r:nore rap'ld'Y tTan alrouhnd In Sec. lll C we found that a nonzetd splits the triple
wres- THIS IS Tully consistent with our analytical result that \o.q,nance around{2) into three double resonances one of
the Q|vgrgence in thg Raman vertex, Wh')Ch IS only cut b_y th(?Nhich occur in the same region of the;(,Aw) plane as the
fermionic daTP'”Q’ is present only neaf) while the maxi-  yinje resonance in the absence t6fwhile the other two
mum nearwg) is just an enhancement which does not cru-gceyrs in different regions of thes ,Aw) plane. In Fig. 11
cially depend on the damping. we plot the region of thedj; ,Aw) plane in which one of the

We also obtained two results which are not fully consis-remaining double resonances occurs. The form of the shaded
tent with the experimental data. The first one is the ratio of

. - _ , OBrea is similar to Fig. 3. We see that in the vicinity of)
intensities at the two maxima. We (fzc))und that while the di-yne e resonant region reduces to a single line, just as the
vergence inMg exists only nearw the nondivergent

y s - resonance for’ =0. Near(}) the situation is more complex
terms are much stronger arounéf). As a result, the ratio of since the different double resonances overlap.
intensities! (w{g2)/1 (w{22) for I'=0.08) is ~ 1, while experi- In Fig. 12 we present the result for the TMPH for
mentally, this ratio is clearly smaller than one, though thet’/t=—0.16. A comparison with Fig. 9 for the TMPH at
actual number differs between BuOCl, and  t'=0 shows that a finit¢’ reduces the TMPH at both reso-

YBa,Cuy0s 1. The second discrepancy concerns the behavnant frequencies»!$?. This reduction is fully consistent

ior of the TMPH in the vicinity ofwﬁgg: Analytically, we  with our analytical calculations since now only two terms in
found that the TMPH should follow an inverse linear behav-the denominator of the Raman vertex vanish simultaneously
ior at some distance fromﬁgs) and an inverse cubic behavior while the third scales a®(t’/t). The reduction, however, is

in the immediate vicinity ofwﬁgg. To verify this result, we not uniform, and the TMPH around the high-frequency reso-
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8 w0} . FIG. 13. The lowest-order vertex corrections to the light-
< guasiparticle interaction. The solid and dashed lines represent the
16 1 conduction- and valence-band quasiparticles, respectively. The in-
ternal wavy line describes the exchange of a magnon.
12 1 1 1 1

2 4 6 8

. . : We see therefore that the inclusion of a finiteactuall
®Wi-2A 1in units of J y

worsens the agreement with the experiments since the ratio

of intensities increases. In the next subsection we will con-
FIG. 11. The shaded area describes the region of ¢hew) sider whether vertex corrections can possibly reverse the ef-

plane in which a double resonance occurs égr-2E,=0 and fects oft’ and restore the correct quantitative behavior of the

wi— Aw/2+ Eﬁ_q—E§=O. The solid line corresponds tg,=g, TMPH.

and the dashed line g, =0.

nance decreases much more rapidly than the one around the D. Vertex corrections

low-frequency resonance. Most probably, the increase of the There are several vertices in the diagram for the Raman
ratio is caused by two effelcts. First, the regions of doublenatrix element, each of which is renormalized by vertex cor-
resonance overlap arounefg, but not ar_oundwﬁeé- Sec-  rections which are generally not small at laide The cal-
ond, a nonzerd’ also affects the interaction verté; be-  cyjation of all vertex corrections is beyond our computa-
tween light and fermions and reduces it much more strongl¥iong abilities and in this section we will therefore focus on
aroundw(z) than aroundo(g). To see this, we recall that in the corrections to the vertex between light and fermionic
the mean-field approximation we hawg;=(dec/dK)€ ¢  quasiparticlesyV;;. Some evidence that the vertex between
with €= — 2t(cosk,+cosk,)+4|t'|cosk, cosk,. Nearo&,  light and fermions nean@ is larger than in the mean-field
the dominant contribution to the Raman vertex comes ffon"theory comes from the measurements of the optical conduc-
fermions near the bottom of the banki~<0) in which case tivity in Gd,CuQ,, PrCuQ,, and YBaCu;Os2? These ex-

the vertex between light and fermions is reduced by a factoperiments have demonstrated that the measured conductivity

of (1—2[t'[/t). In contrast, the resonance nesf) is domi- s larger than the one calculated with the mean-field form for
nated by fermions near the top of the valence band/, even though it basically follows the same frequency de-
[k=(*7/2,%m/2)] in which case the effect df is negli- pendence. We will study the vertex correctionsvip semi-
gible. phenomenologically and our goal will be to illustrate how
they can, in principle, reverse the effectstof
Two-Magnon Peak Height The lowest-order correction td; in a formal perturba-
tive expansion in B is presented in Fig. 13. A simple analy-
120 ' ' ' ' ' : sis shows that the relative vertex correction scaled &kS,
¢ i.e., it is small only in the limit of a very large spin. For
100 |- T T realisticS, however, we hav&)/JS>1, and the corrections
! to V; are large. This clearly implies that one should sum up
30 | : - an infinite series of corrections to obtain the proper renor-

: malization of the vertex between light and fermions. We will
: . t. not do this but rather model the effect of the vertex correc-
; tions phenomenologically by introducing an effective vertex

Raman Intensity (arb. units)

. . in the form
40 - 5 L3 7 8 -
eff Jek . 2
20 | . . Vi (k)= 7R Sif (1+avy) (37)
0 ! . v 2 L s 0oL with a as a parameter. The effective vertex in Egj7) still
2 3 4 3 6 7 8 possesses the same symmetry as the bare Vi) and
®; - 2A (in units of J) therefore still vanishes at the bottom of the band. However,

the slope of\/ﬁ“(k) aroundk=0 can now be quite different
FIG. 12. The TMPH as a function of the incident frequengy ~ from the mean-field result.
for t'/J=—0.3 andI'=0.05). The inset shows that despite the =~ We computed the TMPH with the effective vertex using
strong reduction one can still observe a maximum aroufgd. various values of.. The result fora= 0.5 is presented in Fig.
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Two-Magnon Peak Height ¥vith Iarger_intensity at higher frequencies. As the incident
. : . . . : requency increases, the asymmetry becomes stronger, and
390 F . |  thetwo-magnon profile acquires a shoulderlike feature above
b | the peak. This is consistent with earlier res@hgor fre-
=05 quencies aroun2), however, we found that the anisot-
250 T=005] 4 ropy disappear_s, and the Raman profile agquires almost the
same form as in the nonresonance, LF regime.
200 T We then proceeded to a more detailed study of the two-
magnon peak height. We verified that the inverse linear be-
150 - - . . 2) .
. havior of the Raman intensity neaf?2) survives the effect of
100 1 ] the final-state interaction. Furthermore, we considered the
behavior of the Raman vertex neafég. We found in our
50 - . . analytical considerations for which we assumed an isotropic
. . . . . . dispersion near the top of the band that the divergence is
0, N 4 S P . 8 almost completely suppressed. However, the Raman vertex
A (i its of J contains a branch cut which gives rise to an enhancement of
0; - (in units of J) the intensity in some range of frequencies< o2} which

terminates only slightly belows(Z). In our numerical calcu-

lations, for which we considered a mean-field form of the

_ I di ion, btained k singularitysf) but al
14. A comparison with Fig. 9 shows that the effect of the ISpersion, we obfained a weak singurar W#S utaso a

o . (1) @) strong enhancement of the Raman intensity dgrslightly
vertex correction is rather strong; the rat{@es)/l(wres) is smaller thanwﬁés). This last enhancement is virtually inde-

Raman Intensity (arb. units)

FIG. 14. The TMPH forl"=0.05) and «=0.5.

res res.

decreased by a factor of about 2.5. In addition, we also ob- .
T ’ . pendent of the damping.
serve a relative increase of the TMPH for |ntermed_|ate We found that the ratio of the Raman intensities
4.5)<(w;—2A)=<5.5]. This last effect leads to an extension (1) N .
)/1(ws2) is already rather large for small damping,

A X . . (@
of the region in which the Raman intensity possesses an: 'es ) I
inverse Iir?ear behavior y P contrary to the assertion by CF. A much smaller ratio is

The decrease of the ratio of the intensities and the exterﬂeeded for a quantitative agreement with the experimental
sion of the frequency range of the inverse linear behavior argata' We attribute the large ratio to an unexr;ectedly strong
both in agreement with the experimental restfltgVe there- enhancement of the two-magnon peak neqf! due to a
fore see that by adjusting the vertex correctionsvig(k) ~ Pranch-cut anomaly in the Raman vertex. _ _
without violating the symmetry requirements of the model, W€ further studied how the the triple resonance 15 modi-
one can, in principle, not only obtain good qualitative, butfied by a next-nearest hopping terth Around wiel, we
also quantitative agreement with the experimental data. ThEund that the triple resonance is split into three double reso-
question is, however, whether, e.g.=0.5, which we used nances, but the linear divergence of the Raman intensity near
in Fig. 14, can be obtained in a microscopic calculation.®e is not changed. This splitting, however, reduces the in-
These studies are clearly called for. tensity aroundw(2) relative to the intensity around2)
where the effect of a finité’ is rather weak. As a result, the
ratio of the intensities (w{2)/1(»Z) increases.

Finally, we have demonstrated that the ratio of the inten-

We first summarize our results. The intent of this paper issities at the two resonance values af is sensitive to the
to study the full Raman intensity in the resonant regime byactual form of the vertex between light and fermions. We
simultaneously considering the effects of the triple resonancBave shown that the corrections to the mean-field vertex are
in the Raman vertex and the final-state magnon-magnon idarge and modeled their effect by introducing an extra factor
teraction. We derived an explicit expression for the full Ra-(1+ avf) into the vertex. We consideredas an adjustable
man intensity in the resonant regime as a function of bottparameter and showed that the ratio of the intensities can be
transferred frequenchw and incoming frequencw;. We  substantially reduced already for moderate valuea.of
obtained analytically and numerically the two-magnon Ra- We now discuss our results in the context of the key ex-
man profile as a function of the transferred photon frequencyperimental features that we listed in the introduction as being
Aw and the dependence of the two-magnon peak height oim disagreement with the LF theory:
the incident photon frequenay; . We found that the reso- (1) Changing lineshape witl;. Our results for the evolu-
nant behavior of the Raman vertex survives the inclusion ofion of the Raman profile witlw; is in complete agreement
a magnon-magnon interaction and obtained two maxima imvith the experimental results by Blumbergt al?® on
the peak height ab{Z)~2A+2.9) and ato@~2A+7.90.  YBa,Cu;Og 1. For S,CUOLCl,, the highest experimentally
The position of the two maxima are the same as in the sem@ccessible frequency is smaller thaf§) and we therefore do
phenomenological approach by CF which considered th@ot know whether the Raman profile eventually becomes
triple resonance enhancement and final-state interaction isymmetric neamw(2). For intermediates; , however, our re-
dependent of each other. We first studied in detail the twosults agree with the experimental data.
magnon profile at various incident frequencies. We found An issue which we have not addressed in our approach is

that the two-magnon peak is slightly asymmetric neéj'g the actual rather than relative width of the two-magnon peak.

V. DISCUSSION
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FIG. 15. The Raman intensity as a function of transferred fre-
quencyAw for constant denominator. 20
Experimentally, it is much broader than in our model. Previ-
ous studies by Weber and Féfénd by Knollet al.*® how- 20
ever, have shown that the broadening may be due to a ma
non damping. They demonstrated that a small damping du 10
to, e.g., an interaction with phonons already gives rise to -
considerable broadening of the two-magnon peak. This resu 0 LT e e e
has also been obtained in numerical studfes. 0 1000 2000 3000 4000 5000 6000 7000 8000
(2) The TMPH as a function ob;. The two key experi- Raman Shift (cm)

mental results for the TMPH, we note, are the presence c.
two maxima in the TMPH, of which the higher frequency

LnezarlX;r\z(l;l:n()I? fﬁ;org;rgg]na&fggﬁounnéj;; ?hned 3” Ig\r/erresseolr:r;iaérZCuOZCIz and YBgCu;0g 1 at room temperature in different scat-
y PP %ring geometries. Courtesy of the authors of Ref. 41. The labels

frequencngg. In our ar_lalyti_cal and numerical calcuIaFi_ons indicate:xx (Brg+Arg), X'y’ (Big+Asg), X'x' (Agg+Bsy), and
we found the two maxima in the TMPH whose positions,, (Baog+Agg)- The excitation energy is 2.73 eV. The peak at
fully agree with the experimental data. In addition we foundaround 1000 cmt is likely due to phonon scattering.

that the low-frequency maximum in the TMPH is anisotropic
with a higher intensity at lower frequencies which is also
consistent with the experimental results.

r numerical data, however, differ ntitatively from .
theo:x elrjim?en(tzzl r(jaasalts i?w teha‘i ,th((je reatigr(?))/l? (%; iso SrL,CuOCl,. However, we also found that the rangewgfin
P res) 1 Wres which this behavior was observed experimentally is much

too large. On the basis of our analytical results we would1 rger than in our analysis. The inclusion of the vertex cor-

expect the ppposite behav_ior since we fqund that the actugh tions improves the agreement with the data but does not
resonance in the Raman intensifye., a divergence in the make it perfect. This issue requires further study.

absence of a fe{mloplc dampingxists only nearo;c) while In conclusion we have provided a detailed study of Ra-
the peak neaw(s! is just the enhancement due to nonsingu-man scattering in the resonant regime. We confirmed that the
lar terms in the Raman vertex. It turns out, however, thakey experimental features of magnetic Raman scattering can
these nonsingular terms are anomalously large. Naively, onge explained qualitatively, and to some extent quantitatively
would expect that the inclusion of a next-nearest-neighbojyithin the triple resonance theory. We believe that the re-
hoppingt” would lead to an improved agreement of the ratiomaining quantitative discrepancies are due to insufficient
with the eXperimental data. In contrast, we found that a ﬁnitQ(now|edge of the quasipartic|e energy dispersion, lifetime
t’ suppresses the high-frequency resonance even further. Qiffects, and the form of the vertex function between light and
the other hand, we have demonstrated that the inclusion Gérmions.
the corrections to the interaction between light and fermions A final remark. In this paper we considered the scattering
may substantially increase the vertex nedf) compared to  in the B4y geometry. In the LF theory, this is the only chan-
the vertex neaw(l). This eventually yields a much better nel where the Raman vertex is finite. The triple resonance
ratio of 1 (0{&)/1(»{Z)) which can be made fully consistent diagram, however, yields a finite intensity in all scattering
with the experimental data by adjusting the magnitude of th@eometries. To illustrate this point, we compute the two-
vertex correction. magnon line shape iB,4, Byy, Ay, andA,, geometries
Our analytical and numerical computations also reprofor intermediate incident frequenciasic.< w<w{2). In this
duced the inverse linear behavior of the Raman intensityfrequency range, the triple resonance occurs relatively far

FIG. 16. Two-magnon Raman scattering spectra from

which was observed in YBE&u;Og,; (Ref. 20 and
PrBaCu;0; (Ref. 21 and, to a certain extent, also in
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from the two-magnon peak and, to first approximation, doed he research was supported by NSF-DMR 9629839. A. Ch.
not influence the two-magnon line shape. In other words, irthanks the A. P. Sloan foundation for financial support.
calculating the line shape, one can, with reasonable accuracy,

set the denominator in the triple resonance diagram in'Bqg. APPENDIX: THE RAMAN INTENSITY

to a constant. The Raman vertices for different scattering WITH MAGNON-MAGNON INTERACTION

geometries are then given Igeglecting identical prefactgrs In this appendix we present the formulas for the numeri-

1 1 10 cal computation of the full Raman intensity. Our starting
M 2192 7 ',jqwq< 1— _) MB2o— 5 w_‘; sin g, sin g, point is the Golden Rule formula, E@L)

2 R
4wq 5

dq
R(wi,Awwf 72 IMRY(@; Aw,q)[?6(Aw—2w,),

1
A A
=7 Va%> M29=0. (A1)

19
MR

_ . _ whereM¥" is diagrammatically presented in Fig(blL The
Using the above vertices, we computed the full Raman ingoigen Rule formula for the intensity corresponds to the

tensity in the same way as in the LF theory. The results ofjiagram in Fig. ) in which the intermediate magnons are
our calculations are presented in Fig. 15. These results hay§, the mass shell.

to be compared with the experimental data foyCRO,Cl, The analytical expression fon'<! has the form

and YBaCuzOg ; from Ref. 41 which we reproduce in Fig. L

16. SinceJ~1000 cm!, the comparison with Fig. 15 is o Mgy

valid only for Aw=<4000 cn®. A finite scattering intensity MR'=Mg+ 171/4S" (A2)

at largerAw is probably due to multimagnon scattering. We o _ _ _
consider the agreement between the two figures as rathéerel is given in Eq.(6), andMg and My are given by
good and view it as an another piece of evidence in favor oEgs. (7) and(9) for t’=0 and by Eqs(30) and(31) for t’

the triple resonance theory. #0, respectively.
Note that we use the full form d¥l z and do not project it

on 'Zq as was done in Ref. 25. Our numerical computations
show that especially for small, the B;; component oM g

It is our pleasure to thank J. Betouras, G. Blumberg, Dhas a more complex dependence on the magnon momentum
Frenkel, R. Joynt, and M. V. Klein for helpful conversations. than just7q.
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