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Resonant Raman scattering in antiferromagnets
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Two-magnon Raman scattering provides important information about electronic correlations in the insulat-
ing parent compounds of high-Tc materials. Recent experiments have shown a strong dependence of the
Raman signal inB1g geometry on the frequency of the incoming photon. We present an analytical and
numerical study of the Raman intensity in the resonant regime. It has been previously argued by Chubukov and
Frenkel that the most relevant contribution to the Raman vertex at resonance is given by the triple resonance
diagram. We derive an expression for the Raman intensity in which we simultaneously include the enhance-
ment due to the triple resonance and a final-state interaction. We compute the two-magnon peak height
~TMPH! as a function of incident frequency and find two maxima atv res

(1)'2D13J andv res
(2)'2D18J. We

argue that the high-frequency maximum is cut only by a quasiparticle damping, while the low-frequency
maximum has a finite amplitude even in the absence of damping. We also obtain an evolution of the Raman
profile from an asymmetric form aroundv res

(1) to a symmetric form aroundv res
(2) . We further show that the

TMPH depends on the fermionic quasiparticle damping, the next-nearest-neighbor hopping termt8, and the
corrections to the interaction vertex between light and the fermionic current. We discuss our results in the
context of recent experiments by Blumberget al. on Sr2CuO2Cl2 and YBa2Cu3O6.1 and Rübhausenet al. on
PrBa2Cu3O7 and show that the triple resonance theory yields a qualitative and to some extent also quantitative
understanding of the experimental data.@S0163-1829~97!07837-5#
e

o
th
s
ns
no
ag
ur

m

te

nt
o

m

ra
d
a

m
y

g

er-
two-
-
a

m-

d-
hin

ia-

and

on

ertex
I. INTRODUCTION

In recent years a lot of efforts have been made to und
stand the pairing mechanism in high-Tc superconductors.1–3

Some of the existing theories consider an effective electr
electron interaction mediated by spin fluctuations as
source of the pairing mechanism.4,5 In the parent compound
of the high-Tc materials the strong magnetic correlatio
lead to the occurrence of antiferromagnetism. Two-mag
Raman scattering is a valuable tool in probing antiferrom
netism and can thus provide important insight into the nat
of the pairing correlations.6–9

The two-magnon Raman-scattering cross section~Raman
intensity! is proportional to the Golden Rule transition rate10

R5
8p3e4

\3V2v iv f
( uMRu2d~\v i2\v f1e i2e f !, ~1!

where i and f are the initial and final states of the syste
e i , f are the corresponding energies and (e i2e f) is the total
energy of the two magnons in the final sta
MR5^êf* uMRuêi& is the Raman matrix element~Raman ver-
tex!, êi andêf are the polarization unit vectors of the incide
and outgoing photons, and the summation runs over all p
sible initial and final electronic states.

Graphically, the Raman intensity is given by the diagra
shown in Fig. 1~a!, where the intermediate magnons~wavy
lines! are on the mass shell. The dashed lines in this diag
describe the incident and outgoing photons and the sha
circles represent the full Raman vertices, which include
effects of the final-state magnon-magnon interaction.11 In
conventional Raman experiments, one measures the Ra
intensity R as a function of transferred photon frequenc
Dv5v i2v f wherev i andv f are the incident and outgoin
560163-1829/97/56~14!/9134~19!/$10.00
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photon frequencies, respectively. The fingerprint of antif
romagnetism in these experiments is the presence of a
magnon peak inR(Dv).12 In the insulating parent com
pounds of the high-Tc materials, this peak occurs at
transferred frequency of about 3000 cm21. The two-magnon
peak has not only been observed in the insulating co
pounds, but also in electron-13 and hole-doped materials.14

Theoretically, most of the analytical and numerical stu
ies of two-magnon Raman scattering were performed wit

FIG. 1. ~a! The Raman cross section is proportional to this d
gram where the intermediate magnons~wavy lines! are on the mass
shell. The dashed lines present incoming and outgoing photons
the filled circles are the full Raman verticesMR

tot . ~b! The full
Raman vertices include all effects of multiple magnon-magn
scattering. The open circles are the bare Raman verticesMR and the
open squares describe the magnon-magnon scattering v
V(k,q).
9134 © 1997 The American Physical Society
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56 9135RESONANT RAMAN SCATTERING IN ANTIFERROMAGNETS
the conventional phenomenological Loudon-Fleury~LF!
theory15 which assumes that the matrix elementMR for the
interaction between photons and magnons is frequency i
pendent. This implies that the theory neglects the inter
structure which the matrix element possesses since the
photon interaction is actually mediated by fermions: the
cident photon creates a particle-hole pair which emits t
spin excitations and annihilates into an outgoing photon~see
e.g., Fig. 2!. Despite this weakness, the LF theory was ori
nally considered as a suitable theory for Raman scatterin
the parent high-Tc materials because it predicts that the tw
magnon profile should have a peak at a transferred freque
of about 2.8J whereJ is the magnetic exchange interactio
A comparison with the data12,16,17 then yieldsJ50.12 eV
which is fully consistent with the the value for in-plane e
change interaction extracted from neutron scattering18 and
NMR data.19

Recent experiments on single-layer Sr2CuO2Cl2 and
double-layer YBa2Cu3O6.1 ~Ref. 20! as well as on
PrBa2Cu3O7,

21 however, presented some qualitative featu
of the Raman signal which cannot be explained within
framework of the LF theory. In these experiments, the R
man intensity was measured both as a function of transfe
frequency at a given incident frequencyv i ~the two-magnon
profile!, and as a function ofv i at a fixed transferred fre
quencyDv'2.8J at which the two-magnon profile exhibit
a maximum. In the latter case one in fact measures the va
tion of the two-magnon peak height~TMPH! with v i . The
experimental features which are in disagreement with the
theory include:

~1! A strong dependence of the TMPH onv i with two
distinct maxima at v i5v res

(1)'2D13J and at
v i5v res

(2)'2D18J, where 2D;1.7 eV is the charge-
transfer gap.22 Despite quantitative differences between va
ous compounds, the second maximum in all compound
always stronger than the first one. The LF theory, on
contrary, predicts that the intensity should only undergo
weak ~logarithmical! enhancement at v i52D and
v i52D12.8J ~ingoing and outgoing resonances!. No en-
hancement, however, has been experimentally observe
v i52D.

~2! The shape of the two-magnon profile is asymme
and possesses a shoulderlike feature for transferred freq

FIG. 2. The triple resonance diagram which yields the domin
contribution to the Raman intensity in the resonant regime. S
and dashed lines represent fermions from conduction and val
bands, respectively. Notice that this diagram contains intrab
scattering at the fermion-magnon vertices.
e-
al
in-
-
o

-
in
-
cy

s
e
-

ed

ia-

F

-
is
e
a

at

c
en-

cies above the two-magnon peak, i.e., forDv.2.8J. This
feature has been observed around the first resonance atv res

(1) ;
it practically disappears when the frequency of the incide
photon approaches the second resonance atv res

(2) . Motivated
by these findings, several groups studied two-magnon R
man scattering beyond the LF approximation.23–25 It has
been shown that the validity of the LF theory is restricted
the nonresonant regime, when the frequency of the incid
light is much smaller than the charge-transfer gap 2D.23,24

Most of the experiments, however, are performed with ph
ton frequencies slightly above the charge-transfer gap. In t
resonantregime the internal structure of the Raman matr
element cannot be neglected. Chubukov and Frenkel~here-
after referred to as CF! developed a diagrammatic approac
to Raman scattering in the framework of the large-U, spin-
density-wave~SDW! approach to the Hubbard model a
half-filling.24 They identified those diagrams which repro
duce the LF vertex, and in addition identified a new diagra
which is not included in the LF theory but yields the dom
nant contribution to the scattering process in the reson
regime. This new diagram has the largest amplitude wh
uv i , f22Du5O(J), and in addition, also diverges in the ab
sence of a fermionic damping in a small region~nearly a
single critical line! in the (v i ,Dv) plane where all three
terms in the denominator vanish simultaneously~see Fig. 3!.
Due to this property, the new diagram identified by CF
called the triple resonance diagram. The inclusion of a fe
mionic damping eliminates the divergence, but the Ram
matrix element remains strongly peaked along the critic
line. Since the computation of the full Raman intensity wit
the triple diagram for the Raman vertex is rather involve
CF used a semiphenomenological approach to analyze
dependence of the TMPH onv i . They considered the final-
state magnon-magnon interaction and the triple resona
enhancement separately, and conjectured that the experim
tally observed two maxima in the TMPH occur atv i for
which the Raman vertex resonates at the same transfe
frequencyDv52.8J at which the two-magnon profile has a
peak. By analyzing where the resonant line for the Ram

t
d
ce
d

FIG. 3. The shaded area represent the region in the (v i ,Dv)
plane in which the triple resonance occurs. The horizontal line c
responds toDv52.8J at which the two-magnon profile has a peak
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9136 56DIRK K. MORR AND ANDREY V. CHUBUKOV
vertex crossesDv52.8J, they obtained two resonance fre
quencies,v res

(1);2.9J12D and v res
(2);7.9J12D which both

agree with the experimental data.
The analysis in Ref. 24, however, left several issues op

First, the validity of the semiphenomenological approa
needs to be verified. Second, the quantitative behavior of
TMPH as a function ofv i and, in particular, the form of the
peaks atv res

(1) andv res
(2) and their relative amplitudes have n

been studied yet. CF merely conjectured, without perform
explicit calculations, that the resonance atv res

(1) should be
weaker than the one atv res

(2) because nearv res
(1) , there exists a

strong restriction on the possible directions of the magn
momenta which satisfy the resonance condition at a gi
magnon energy. No such restriction exists nearv res

(2) . This
conjecture also has to be verified by explicit calculatio
Third, the anisotropy of the two-magnon profile and its ev
lution with varying incident frequency has not been studi
Fourth, the calculations in CF were performed in the fram
work of a mean-field, large-U, spin-density-wave~SDW! ap-
proach to the Hubbard model with only nearest-neigh
hopping. This theory, however, has the weakness that it
dicts that the maximum of the valence band is degene
along the boundary of the magnetic Brillouin zone. Mea
while, experiments on Sr2CuO2Cl2 have demonstrated tha
the valence fermions possess a strong dispersion along
magnetic Brillouin-zone boundary with maxima
(p/2,p/2) and symmetry-related points.26,27 This dispersion
can easily be reproduced in the SDW formalism if one
cludes a next-nearest-neighbor hopping,t8. This, however,
changes the energy denominator in the triple resonance
gram, and one therefore has to reexamine the conclusion
CF by performing their calculations for the (t2t82U)
model. The inclusion oft8 is particularly relevant for com-
putations nearv res

(1) since the dominant contribution to th
Raman vertex in this frequency range comes from fermi
near the top of the valence band whose degeneracy is l
by t8.

The goal of the present paper is to address the ab
issues. We compute below the Raman intensity includ
both a final-state interaction and the enhancement of the
man vertex due to the triple resonance. We study the Ra
profile and the TMPH numerically and analytically and de
onstrate that the two peaks in the TMPH survive the effe
of the magnon-magnon interaction. We analyze the rela
amplitude of the TMPH nearv res

(1) and v res
(2) and show that

although the divergent piece nearv res
(1) is much weaker than

the one nearv res
(2) , the nondivergent term is much larger ne

v res
(1) . As a result, the relative amplitude of the two peaks

the TMPH turns out to be strongly dependent on the qu
particle damping which cuts the divergent part but does
affect the subleading term substantially. We also show
both peaks in the TMPH are anisotropic—the intensity dro
much faster on the high-frequency side of each of the pe
Further, we study the effects on the TMPH of a next-near
neighbor hoppingt8 and vertex corrections to the interactio
between light and fermionic quasiparticles.

We also study how the two-magnon line shape evol
with the incident frequency, and show that it changes fr
an asymmetric form forv i>v res

(1) to a symmetric form
aroundv i'v res

(2) .
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We compare our results with the experimental data on
Sr2CuO2Cl2 and YBa2Cu3O6.1 by Blumberg et al. and on
PrBa2Cu3O7 by Rübhausenet al.and demonstrate that all th
features in the two-magnon profile and the TMPH observ
in Raman experiments can be qualitatively described by
triple resonance diagram. At the same time, we see
quantitative agreement with the data is not always perfec

The paper is organized as follows. In Sec. II, we pres
the formalism and the expressions for the Raman vertex b
in the LF approximation and near the resonance. In Sec
we present our analytical results for the vertex nearv res

(1,2)

and demonstrate that the divergence is much stronger
the upper resonance frequency. We also discuss in this
tion how the inclusion of a next-nearest-neighbor hoppingt8
affects the resonance behavior of the Raman vertex. In
IV we present our numerical results for~a! the Raman line
shape for different incident frequenciesv i ~Sec. IV A! and
~b! for the TMPH as a function ofv i ~Sec. IV B!. We then
discuss its dependence on the fermionic damping and
inclusion of t8 ~Sec. IV C!. In Sec. IV D we consider vertex
corrections to the interaction between light and the fermio
current. Finally, in Sec. V we compare our results with t
experimental data.

II. THE FORMALISM

The two-magnon Raman-scattering cross section is gi
by Eq. ~1!. In this paper, we focus on theB1g scattering
geometry where most experiments have been performed
this geometry, the polarization unit vectors of the incide
and outgoing light are both real~linearly polarized light!,
perpendicular to each other, and directed at 45° to the c
tallographic directions, i.e.,êi5( x̂1 ŷ)/&, êf5( x̂2 ŷ)/
&.28 Other scattering geometries for linearly polarized lig
are A1g where êi5êf5( x̂1 ŷ)/&, and B2g where êi5 x̂,
êf5 ŷ. For circularly polarized light, the scattering geom
etries areLL where êi5êf5( x̂1 i ŷ)/&, and LR where
êi5( x̂1 i ŷ)/&, êf5( x̂2 i ŷ)/&.

As we already discussed in the introduction, we consi
Raman scattering in the framework of the large-U SDW for-
malism for the one-band Hubbard model. In this approa
one introduces a long-range antiferromagnetic order and
couples the electronic dispersion into two subbands of
lence and conduction fermions.

The diagrammatic approach to the Raman scattering
the SDW formalism was developed by CF. An example
the diagrams which contribute to the bare Raman verte
shown in Fig. 2. This diagram contains two types of vertic
one for the interaction between fermions and light, and o
for the interaction between fermions and magnons. The
teraction with light appears in the SDW theory as a result
the modulation of the hopping matrix element by the vec
potential of the electromagnetic field. The spin-fermion v
tices can be straightforwardly obtained from the full expre
sion of the spin susceptibility which in the SDW theory
given by the random-phase approximation RPA series
bubble diagrams. In each of theses bubbles one fermio
from the valence band and the other is from the conduc
band.

To obtain the Raman intensity, we need to know the f
Raman vertex which includes a whole series of magn
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56 9137RESONANT RAMAN SCATTERING IN ANTIFERROMAGNETS
magnon interaction events. It has already been emphas
several times in the literature that the dominant contribut
to the magnon-magnon scattering comes from the reg
near the magnetic Brillouin-zone boundary where the a
ferromagnetic magnons behave almost as free particles11,29

In this situation, the only relevant interaction term has t
creation and two annihilation magnon operators:

Hint52
4J

N2 (
k

(
q

nk2qak
†b2k

† b2qaq . ~2!

We can now decompose the interaction vertex into

nk2q5nkn l1 ñkñ l1 n̄kn̄ l1 ñ̄kñ̄ l , ~3!

where the different symmetry factors are given by

nk5
1

2
~coskx1cosky!; ñk5

1

2
~coskx2cosky!;

n̄k5
1

2
~sin kx1sin ky!; ñ̄k5

1

2
~sin kx2sin ky!. ~4!

Before we discuss our calculations for the full Raman int
sity at resonance, we briefly review the calculation of t
Raman intensity in the nonresonant regime when the
theory is valid. In the LF theory, the bare Raman ver
@open circle in Fig. 1~b!# is assumed to be independent of t
photon frequencies, while its dependence on the magnon
mentumq has the form23,24

MR5A@nq~eixef x* 1eiyef y* !

2~eixef x* cosqx1eiyef y* cosqy!#,

whereA is a constant. In the diagrammatic approach, the
vertex is obtained by collecting the diagrams with interba
ri
ti-
n
a
f t
r,
ed
n
n
i-

-
e
F
x

o-

F
d

scattering at the magnon-fermion vertices. At photon f
quencies small compared to the SDW gap, these diagr
have the largest overall factor. One can easily check thatMR
is finite only in theB1g scattering geometry and for LR po
larized light. In both cases we obtainMR52Añq . For this
particular form ofMR , only the second term in Eq.~3! con-
tributes to the magnon-magnon scattering process. With
simplification, the summation of the ladder series for the f
Raman intensity can be reduced to solving an algebraic e
tion. Doing this we obtain for the full Raman intensity in th
B1g channel

R~v!}ImF I

11I /4SG , ~5!

whereS is the value of the spin, and

I 5
4JS

N (
q

~cosqx2cosqy!2

Dv22vq1 id
~6!

with Dv5v i2v f andvq54JSA12nq
2 is the magnon dis-

persion. Equations~5! and ~6! yield a two-magnon peak a
Dv52.8J ~for S51/2!, but R(v) clearly contains no depen
dence on the incident photon frequencyv i .11,15

As mentioned earlier, the LF theory is only valid for sma
v i . Whenv i is comparable to the gap between the cond
tion and valence bands~which in the cuprates is the charge
transfer gap!, it turns out that diagrams with intraband sca
tering at the fermion-magnon vertices~in contrast to
interband scattering in the LF diagrams! become dominant.
The most relevant of these diagrams is shown in Fig. 2. T
diagram is called the triple resonance diagram becaus
contains three terms in the denominator which can all van
simultaneously if we adjust the incident and final phot
frequencies. The analytical expression for this diagram
given by
MR52
4i

N ( 8
k

@~]ek /]k!ei #@~]ek2q /]k!ef #@mqek2q2lqek#
2

~v i22Ek1 iG!~v f22Ek2q1 iG!

3H 1

~v i2v2Ek2Ek2q1 iG!
1

1

~v f1v2Ek2Ek2q1 iG! J , ~7!
e-
ct
nd
-
the
en-
en-

t
ws
ate
um-
and

her
is
wherev is the external magnon frequency,

ek522t~coskx1cosky!524tnk , Ek5AD21ek
2,

mq5F1

2 S 1

A12nq
2

11D G 1/2

, lq5F1

2 S 1

A12nq
2

21D G 1/2

,

and the prime indicates summation over the magnetic B
louin zone. TheiG term represents the fermionic quasipar
cle damping which we assume for simplicity to be indepe
dent of momentum. The actual damping, indeed, should h
some momentum dependence, particularly near the top o
valence band.30–33 Out of the three terms in the numerato
l-

-
ve
he

the first two are the vertex functions for the interaction b
tween light and fermions, while the third term is the produ
of the two vertices for the interaction between fermions a
magnons. As follows from Eq.~7!, the resonant Raman ver
tex MR depends on the magnon momentum, but also, via
denominator, on the incident and outgoing photon frequ
cies and on the magnon frequency. The frequency dep
dence ofMR can only be eliminated in the artificial limi
when the fermionic damping is very large and overshado
all other terms in the denominator. For small and moder
damping, the frequency-dependent and also moment
dependent terms in the denominator cannot be ignored,
this makes the computation of the full Raman intensity rat
involved. We found, however, that the diagram which
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9138 56DIRK K. MORR AND ANDREY V. CHUBUKOV
most difficult to compute is the one without a final-sta
interaction. At the same time, the series of diagrams with
least two scattering events can easily be summed up bec
the Raman vertex renormalized by the inclusion of jus
single magnon-magnon scattering event no longer depe
on the magnon frequency, while its dependence on the
ternal magnon momentuml reduces to a simpleñ l form for
B1g scattering. This effective Raman vertex,MR

eff5ñlM̄R
eff is

shown in Fig. 4. We now remind the reader that the exp
mentally measured Raman profile for any incident pho
frequency contains a prominent two-magnon peak which
solely due to magnon-magnon scattering. In this situat
the diagrams without and with a single magnon-magn
scattering are most likely to be less relevant than the
grams with multiple-scattering events. For our analyti
considerations, we neglect the diagrams with zero or o
one magnon-magnon scattering event. In this approximat
we can formally rewrite the full Raman intensity in the sam
form as for the LF theory:

FIG. 4. The effective Raman vertexMR
eff includes a single

magnon-magnon scattering event.
x
t

ty
of
s

ity

d
an
fo
ca
ou

n
ie

cle
t
use
a
ds
x-

i-
n
is
,

n
-
l
ly
n,

R~v i ,v f !}ImH UM̄R
effU2

I

11I /4SJ , ~8!

where I is the same as in Eq.~6!, and M̄R
eff is obtained by

substituting Eq.~7! into the diagram in Fig. 4 and performin
the integration over the intermediate magnon frequency
momenta. We then obtain

FIG. 5. Quasiparticles at the bottom of the valence band c
tribute to the Raman vertex atv res

(2) , whereas quasiparticles at th
top of the valence band contribute tov res

(1) . The dashed and wavy
lines represent the excited quasiparticles and the emitted magn
respectively.
M̄R
eff~v i ,v f !5 i

128J

N2 ( 8
k,q

@~]ek /]k!ei #@~]ek2q /]k!ef #@mqek2q2lqek#
2

~v i22Ek1 iG!~v f22Ek2q1 iG!

ñq

~Dv22vq1 id!~v i2vq2Ek2Ek2q1 iG!
.

~9!
xt-
ate
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nt
n

-
ght
the

to
dis-

a
e
rict
It is essential however thatM̄R
eff still possesses a comple

dependence on the external incident and outgoing pho
frequencies. This in turn implies that the full intensi
R(v i ,v f) is a function of both frequencies rather than
v i2v f as in the LF theory. A very similar approach wa
used by Scho¨nfeld et al.25

In our numerical calculations of the full Raman intens
we considered all diagrams, i.e., diagrams with zero, one
multiple magnon-magnon scattering events. The details
this computation are presented in the Appendix. We foun
good qualitative agreement between our numerical and
lytical results and consider this as a partial justification
the omission of the lowest-order diagrams in our analyti
considerations. We now proceed with the discussion of
analytical results, and then present our numerical data.

III. ANALYTICAL RESULTS

In this section, we present the results of our calculatio
of the Raman intensity near the two resonant frequenc
v res

(1) and v res
(2) . We first consider the caset850 and then

discuss how the intensity changes if we break the parti
on

or
of
a
a-
r
l
r

s
s,

-

hole symmetry by including a hopping term between ne
nearest neighbors. Our point of departure is the approxim
expression for the Raman intensity, Eq.~8!, in terms of the
effective Raman vertexM̄R

eff . We first study the form ofM̄R
eff

nearv res
(2) and then discuss the form of the vertex nearv res

(1) .

A. Resonance atv res
„2…

As we discussed in the introduction, the upper resona
frequencyv res

(2) is close to the maximum possible incide
frequency 2D18J for which the resonance condition ca
still be satisfied @we assume here thatD is large, i.e.,
Ek5D1J(coskx1cosky)

2]. The resonance at the highest in
cident frequency corresponds to a process in which li
causes a transition of a quasiparticle from the bottom of
valence band to the top of the conduction band~see Fig. 5!.
Since the bottom of the valence band is atk5(0,0) and is
not degenerate at the mean-field level, it is reasonable
assume that the corrections to the mean-field fermionic
persion near the bottom of the band will only give rise to
finite lifetime, but will not introduce any new qualitativ
features into the fermionic spectrum. We therefore rest
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56 9139RESONANT RAMAN SCATTERING IN ANTIFERROMAGNETS
our considerations to the mean-field form of the fermio
dispersion and model the fluctuation effects by introducin
quasiparticle dampingG.

To simplify the presentation, we first neglect the nume
tor in Eq. ~9! and focus on the resonance behavior of
effective vertex due to the vanishing denominator. Near
bottom of the band, we can expand the fermionic dispers
and obtainEk5D14J22Jk2. We will assume that near th
w

-
i.e
er

to
nt

C

in
nt
rs
a

-
e
e
n

resonance the bosonic momentumq is also small such tha
the expansion near the bottom of the band holds for bothEk
and Ek1q . This last assumption will be verified after w
perform our calculations. Further, for smallq we can expand
vq as vq5J&q. Substituting the expanded forms ofEk ,
Ek1q and vq into Eq. ~9!, neglecting the numerator, an
introducing the dimensionless variablesl i5(v i22D)/2J
andDl5Dv/2J we obtain
M̄R
eff}E 8

d2kd2q

~Dl2q&1 iG!

1

~l i2412k21 iG!@l i242Dl12~kW2qW !21 iG#

3
1

@2l i282Dl12k212~kW2qW !21~Dl2q& !1 iG#
. ~10!
ree
u-

and

ar
A similar expansion has been performed by CF. They ho
ever considered only the bare Raman vertex~the one without
a final-state interaction! in which case the Golden Rule re
quires the magnons to be on the mass shell,
q5q05Dl/&. For on-shell magnons, the integration ov
d2q just yields a factor 2p2iq0 . Furthermore, forq5q0 , the
last term in the denominator in Eq.~10! is the sum of the
second and the third term, so one can tunek and the angle
betweenk andq such that all three terms in the denomina
of Eq. ~10! vanish simultaneously. Expanding near this poi
CF obtainedMR}(l i2l res)

23/2.
We now show that the fully renormalizedM̄R

eff possesses
the same functional form as the bare vertex obtained by
since the integration overq by itself is confined to the vicin-
ity of q0 . To demonstrate this, we expand near the po
where the second and the third term vanish and then i
grate overk andq. The conditions that the two denominato
vanish simultaneously at a givenq are 2k252k0

2542l i and
cosf5cosf05(2q22Dl)/(4k0q). We will see below that in
order to obtain the most singular contribution toM̄R

eff , one
has to expand aroundk0 andf0 to linear order inx5k2k0
and to quadratic order iny5f2f0 . Performing this expan-
sion, we obtain

M̄R
eff}E d2qG~q!

Dl2q&1 iG
, ~11!

where

G~q!5E dx
1

~x1 iG!@k0x1~Dl2q& !/41 iG#

3E dyF 1

C11k0q sin f0y1k0qy2/21 iG

2
1

C21k0q sin f0y1k0qy2/21 iG G , ~12!

andC1 andC2 are given by
-

.,

r
,

F

t
e-

C15x@k02~2q22Dl!/4k0#;

C25C11k0x1~Dl2q& !/4.

The integration overy can be done explicitly and yields

G~q!52pE dx

~x1 iG!@k0x1~Dl2q& !/41 iG#

3F 1

A2k0qC12~k0q!2 sin2 f01 iG

2
1

A2k0qC22~k0q!2 sin2 f01 iG
G . ~13!

We immediately see that if sinf0 is finite, one can expand
the square root in the integrand in Eq.~13! in C1,2 and find
after simple manipulations that the Raman vertex is f
from singularities. To obtain a divergent, resonant contrib
tion to the vertex, we therefore have to set sinf050. For any
given q, this singles out a line in the (l i ,Dl) plane with

l i5l res
~2!~q,Dl!542

q2

2 S 12
Dl

2q2D 2

. ~14!

Furthermore, we also have to require that the poles
branch cuts in the integrand in Eq.~13! be in different half-
planes, since otherwise, the integral overx just vanishes.
This requirement is satisfied ifC1,2, which both are linear
functions ofx, have negative derivatives]C1,2/]x. Near the
resonance linel i5l res

(2) , we have

C152
x

4k0

4q42~Dl!2

4q2 ,

C252
x

4k0

~2q22Dl!Dl

2q2 1
Dl2&q

4
.

We see that both derivatives are negative if 2q2.Dl. If, as
we assume,q is close toq05Dl/&, then the derivatives are
negative providedDl.1. For transferred frequencies ne



-

.
r

ne

t

-

ta
a
hi
n

ra

e

i

. A
ws

a-

ex.

ct

ver-
d
e:
non
sity

en-

bes

en-
d

ns
not
on
for
ial,

that
a

en
-

nces

9140 56DIRK K. MORR AND ANDREY V. CHUBUKOV
the two-magnon peak, we haveDl;1.4, i.e., the above con
dition is satisfied. Performing then the integration overx, we
obtain keeping sinf0 small but finite

G~q!5
16p2

Dl2q&

1

k0q FAsin2 f02 ~Dl2q& !/2k0q1 iG

usin2 f02~Dl2q& !/2k0qu

2
1

usin f0uG . ~15!

We now express sin2 f0 in terms of deviation from the criti-
cal line as

sin2 f05d2~Dl2q& !
Dl11

Dl~Dl21!
, ~16!

where we introducedd5l i2l res
(2) . We now substitute Eqs

~15! and~16! into Eq. ~11! and perform the integration ove
q. Introducingz5(Dl2q&)/d we finally obtain

M̄R
eff}

Z~Dl!

Dl

1

d3/2, ~17!

where

Z~Dl!52~11Dl!E
2`

1 dz

~z2 iG!2 H 1

A12z

2
1

A12z1 ~z2 iG!/2~11Dl!
J

is a very smooth~nearly a constant! function of the momen-
tum transfer. Clearly, the integral overz comes from
z5O(1) which in turn implies that the actual integral overq
is confined to the regionDl2q&5O(d). The fact thatq is
confined to the vicinity of its on-shell value implies that o
can setq5Dl/& in Eq. ~14! which yields

l res
~2!~Dl!542

~Dl21!2

4
. ~18!

For Dl51.4, which, we remind the reader, corresponds
the position of the two-magnon peak, we obtainl res

(2)53.93.
Also, for thisDl we haveq'1. Thisq is not small enough
to fully justify our expansion in magnon momentum. How
ever, forqx5qy , the approximation ofvq by a linear term is
incorrect only by 8%.

We see thatM̄R
eff diverges asd23/2 when the incident fre-

quency approaches the resonance valuel res
(2) . The same re-

sult has been obtained by CF who neglected the final-s
interaction. In this respect, our result shows that the fin
state interaction does not destroy the triple resonance w
occurs along the same line as in the absence of the mag
magnon scattering.

We now consider the effect of the numerator inM̄R
eff . In

principle, the numerator is finite atl i5l res
(2) so that thed23/2

behavior should survive close to the resonance line. In p
tice, however, for transferred frequencies aroundDl51.4,
the resonance value ofl i is close to the maximum possibl
resonance value of 4. At this maximum value ofl i the ma-
trix element for the interaction between light and the ferm
o

te
l-
ch
on-

c-

-

onic current vanishes and the numerator turns to zero
simple analysis similar to the one performed by CF sho
that the numerator vanishes as 42l i for l i→4. The full M̄R

eff

then behaves as

M̄R
eff5A~Dl!

42l i

ul i2l res
~2!u3/2. ~19!

Restoring all numerical factors in the expression for the R
man vertex, we find thatA(Dl) has the form

A~Dl!5
J

p S t

2JD 4

~11Dl!Z~Dl!. ~20!

At some distance away froml res
(2) , the difference between

42l i and l res
(2)2l i is irrelevant andM̄R

eff can be approxi-
mated by

M̄R
eff5

A~Dl!

ul res
~2!2l i u1/2. ~21!

This is the final expression for the effective Raman vert
Substituting this expression into Eq.~8!, one obtains for the
Raman intensity

R~l i ,Dl!}
uA~Dl!u2

ul res
~2!2l i u

I

11I /4S
, ~22!

whereI is given in Eq.~6!. This result forR is in fact very
similar to what CF conjectured: the full intensity is a produ
of two terms, one,I /(11I /4S), depends onDl and has the
same form as in the LF theory, while the other,ul i2l res

(2)u21,
in essence reflects the enhancement of the bare Raman
tex. This last term depends onl i but also on the transferre
frequency throughl res

(2) . There is however an extra featur
the interplay between triple resonance and magnon-mag
interaction gives rise to an extra dependence of the inten
on Dl, through the factorA. However, we found thatA is a
smooth function of momentum transfer, so this extra dep
dence is not that relevant. This is particularly true nearl res

(2)

where the two-magnon peak is rather narrow so one pro
A only in a narrow range ofDl around 1.4. We already
mentioned in the introduction that the inverse linear dep
dence of the TMPH nearv res

(2) was experimentally observe
by Blumberget al. for YBa2Cu3O6.1 ~Ref. 20! and later by
Rübhausenet al. for PrBa2Cu3O7.

21 This is fully consistent
with our result. We, however, performed our calculatio
only in the vicinity of the resonance and therefore can
provide a theoretical estimate for the width of the regi
where the inverse linear behavior holds. The data
Sr2CuO2Cl2 are a bit less conclusive because in this mater
v res

(2) is larger than the largest experimentally accessiblev i ,
and one cannot unambiguously conclude from the data
the Raman intensity follows an inverse linear behavior in
wide range of frequencies.

Besides the behavior of the TMPH nearl res
(2) , Eq. ~22!

also describes the form of the two-magnon profile at a giv
l i . The conventional factorI /(11I /4S) produces a symmet
ric peak in the intensity atDl51.4. The other two factors
which contribute to the peak line shape are the depende
on Dl in the overall factorA and inl res

(2) . Near the resonance
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valuel i53.93, we found that the two extra contributions
the line shape cancel each other and the resulting t
magnon profile is chiefly given byI /(11I /4S) and therefore
symmetric. For incident frequencies smaller thanl i53.93,
the triple resonance in the Raman vertex occurs at transfe
frequencies larger thanDl51.4. This obviously gives rise to
an asymmetry of the two-magnon line shape with a lar
intensity at higher frequencies. The evolution from an asy
metric to a symmetric form of the two-magnon profile wh
l i approaches the resonance value from below is consis
with the experimental data. We will also demonstrate t
effect when we discuss our numerical results.

B. Resonance nearv res
„1…

The triple resonance theory of CF predicts that the TM
measured as a function ofv i52D12Jl i exhibits a second
maximum at a relatively small frequencyv res

(1)52D13J ~see
Fig. 3!. For this low-frequency resonance CF found a mu
smaller range of magnon momenta for which the resona
conditions are satisfied and therefore concluded that
resonance should be weaker than the one atv res

(2) . We now
discuss this issue in more detail and will show that while
divergent term atv res

(1) is almost completely suppressed, t
subleading terms are larger than atv res

(2) .
In the previous subsection, we expanded the fermio

dispersion around the bottom of the valence band sincev res
(2)

is close to the maximum possible incident frequency for
triple resonance. Here, on the contrary, we will make use
the fact that the low-frequency resonance occurs
v res

(1)'2D13J which is not far from the minimum inciden
frequency (52D12J) for which a triple resonance is pos
sible. Accordingly, we will study the behavior of the Ram
intensity by expanding the fermionic dispersion up to qu
dratic order around the top of the valence band. As in
previous subsection, we will also expand the magnon dis
sion to linear order in the momenta. We will see that in t
approximation the Raman vertex is free from actual div
gencies.
o-

ed

r
-

nt
s

h
ce
is

e

ic

e
f
t

-
e
r-

s
-

A peculiarity associated with the expansion of the ferm
onic dispersion near the top of the valence band is that
position of the band maximum is degenerate at the me
field level. Numerous analytical and numerical calculatio
however, have demonstrated that this degeneracy is an
fact of the mean-field treatment5,30,34–36—the actual fermi-
onic dispersion possesses a maximum at (p/2,p/2) and
symmetry-related points. Recent photoemission experim
on Sr2CuO2Cl2 confirmed this result and in addition hav
shown that the dispersion near the top of the valence ban
nearly isotropic around (p/2,p/2).26,27 At the moment it is
still a topic of controversy, whether one needs a substanti
large next-nearest-neighbor hopping to explain an alm
isotropic dispersion, or whether it is a property of th
nearest-neighbor model in the strong-coupling limit, as w
suggested by Laughlin.33 The set of parameters suitable
Sr2CuO2Cl2, namely J/t;0.4, corresponds to an
intermediate-coupling regime in which case the next-near
neighbor exchange is probably needed to account for
isotropy of the spectrum.37 This second-neighbor hoppin
breaks the particle-hole symmetry and causes substa
complications for the calculation of the Raman vertex sin
Eq. ~9! is no longer valid. At the same time, we know th
the degeneracy along the magnetic Brillouin-zone bound
is already lifted in the nearest-neighbor model due to s
energy corrections. One can therefore argue that the in
sion of t8 only aids in fitting the ratio of the effective masse
but doesnot introduce any new qualitative features. To avo
unnecessary complications, we will assume that the parti
hole symmetry is preserved, and that the experiment
measured nearly isotropic quasiparticle dispersion around
top of the valence band is due to strong self-energy cor
tions. In other words, we will still use Eq.~9! and will also
assume that near the top of the valence band we can ex
the fermionic dispersion asEk5D1Jk2, wherek measures
the deviation from (p/2,p/2). Substituting the expansion fo
Ek into Eq. ~9! and neglecting the numerator which is fini
near the low-frequency resonance, we obtain
us
nish
M̄R
eff}E 8

d2kd2q

Dl2q&1 iG

1

~l i2k21 iG!@l i2Dl2~kW2qW !21 iG#

1

@2l i2Dl2k22~kW2qW !21~Dl2q& !1 iG#
. ~23!

To study whether the effective Raman vertex diverges at some particularl i , we perform the same analysis as in the previo
section, i.e., expand near a particular fermionic momentum,k0 where the second and third terms in the denominator va
simultaneously at a givenq. Fork0 andf0 , which is the angle betweenk0 andq we findk0

25l i and cosf05(q21Dl)/(2k0q).
Expanding, as before, aroundk0 andf0 to linear order inx5k2k0 and to quadratic order iny5f2f0 , we obtain

M̄R
eff}E d2q

G̃~q!

Dl2q&1 iG
, ~24!

where

G̃~q!5E dx
1

~x1 iG!@k0x1~Dl2q& !/41 iG#
E dyF 1

C̃11k0q sin f0y2k0qy2/21 iG
2

1

C̃21k0q sin f0y2k0qy2/21 iG
G ,

~25!

and C̃1 and C̃2 are given by
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C̃15x@k02~q21Dl!/2k0#,

C̃25C11k0x1~Dl2q& !/4.

The integration overy can again be performed explicitly, and we obtain

G̃~q!522p i E dx
1

~x1 iG!@k0x1~Dl2q& !/41 iG#
F 1

A2k0qC̃11~k0q!2 sin2 f01 iG
2

1

A2k0qC̃21~k0q!2 sin2 f01 iG
G .

~26!
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This expression is similar to Eq.~13! and we again find tha
if sin f0 is finite, one can expand the square root and ob
that G̃(q) is free from singularities. The expansion does n
work, however, if sinf050. In this case, a power countin
argument indicates that the Raman vertex may diverge.
condition sinf050 singles out a line in the (l i ,Dl) plane
with

l i5l res
~1!~q,Dl!5

q2

4 S 11
Dl

q2 D 2

. ~27!

The very existence of the critical line along which the R
man vertex diverges by the power counting argument, h
ever, does not guarantee that the divergence is actually g
ine. Indeed, the arguments displayed in the previ
subsection show that the vertex diverges only if the po
and the branch cuts in Eq.~26! are located in different half-
planes. This is the case if the derivatives overx of C̃1,2 are
negative. However, nearl res

(1) we have

C̃15
x

2k0

21Dl

4
~22Dl!,

C̃25C11xk01
Dl2q&

4
.

Since (22Dl) is always positive, the derivatives are clear
positive in which case the divergent contribution vanish
after the integration overx. We see therefore that the tripl
resonance does not yield a divergence in the Raman vert
l i5l res

(1) , contrary to what we have found nearl res
(2) .

We then studied the form of the Raman vertex in mo
detail and found that the absence of a divergence is a re
of the restriction to a quadratic dispersion around the top
the band. Expanding further ink and redoing the calcula
tions, we obtained a divergence inMR resulting from the
integration over a small region of fermionic momenta.
similar result was also obtained by CF who used a somew
different technique. However, the phase factor associa
with the divergent contribution toMR is very small, and the
divergence is already eliminated by a small fermionic dam
ing.

So far, we have found that the Raman vertex exhibit
regular behavior aroundl res

(1) . Experimentally, however, the
TMPH clearly displays a second maximum atl i'1.5. We
will now show that this maximum can in fact be describ
within the triple resonance theory since the Raman ve
turns out to be very strongly enhanced nearl res

(1) . To dem-
in
t

he

-
-
u-
s
s

s

at

e
ult
f

at
ed

-

a

x

onstrate this, it is not sufficient to expand near particu
values ofk0 andf0 , and we thus need to study the full form
of the Raman vertex. The full form ofMR near l res

(2) was
obtained by CF and we now have to perform the same an
sis nearl res

(1) . There is, however, a subtlety related to the
calculations. CF had to assume that the magnons are
shell, i.e.,q5q05Dl/2, since a full analytical consideratio
is not possible without this last assumption. In the previo
subsection, we found that the divergent piece of the verte
intrinsically confined to a narrow range aroundq0 , and the
results with and without the restriction to only on-shell ma
nons are roughly the same. Nearl res

(1) , the situation is less
rigorous since the divergent piece is absent. At the sa
time, it still looks reasonable to estimate the value of t
vertex nearl res

(1) by just restricting with on-shell magnons
Doing this and following the computational steps outlined
CF, we obtain after some lengthy calculations

M̄R
eff}

D1

ud̃u3/2F ln
12A2d̃2 iG

11A2d̃1 iG

2 ln
122A2d̃/~21Dl! 2 iG

112A2d̃/~21Dl! 1 iG
G

1
D2

ud̃u3/2 F ln
11A2d̃1 iG

12A2d̃2 iG

2 ln
112A2d̃/~22Dl! 1 iG

122A2d̃/~22Dl! 2 iG
G , ~28!

whereD15(21Dl)/@&(Dl)2#, D25(22Dl)/@&(Dl)2#,
and d̃5l res

(1)2l i where l res
(1) is given by Eq.~27! with q

substituted byq0 :

l res
~1!~Dl!5

1

2 S 11
Dl

2 D 2

. ~29!

Though both terms in Eq.~28! contain a termud̃u23/2, the
combination of logarithms vanishes whend̃ approaches zero
Moreover, expanding ind̃, we find that the terms ofO( d̃1/2)
also cancel each other. Consequently, there is not eve
weak triple resonance atl res

(1) , and the Raman vertex turn
out to be a regular function ofl i in the immediate vicinity of
the would-be resonance linel res

(1) . This indeed agrees with
our expansion neark0 andf0 . At the same time, it follows
from Eq. ~28! that at frequencies only slightly smaller tha
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l res
(1) , namely at (22Dl)/2,A2d̃, one of the logarithms

contains an extraip factor associated with the branch cu
Due to this extra factor,M̄R

eff in fact scales asud̃u23/2, i.e., the
vertex possesses the same functional dependence on th
cident frequency as if the triple resonance atl res

(1) were actu-
ally present. Near the two-magnon peak we haveDl51.4.
In this case the singular behavior actually starts very clos
l res

(1) , namely atl res
(1)2l i;0.045. This singular behavior ex

ists, with decreasing amplitude, up to 2d̃51 or
l res

(1)2l i;0.5, though at such high deviations froml res
(1) the

regular and singular parts ofG̃(q) are of the same order. W
see therefore that despite the absence of a true divergen
l res

(1) , the TMPH still possesses a maximum very close to
Moreover, for Dl51.4, we havel res

(1)5l res
(1);1.45, i.e.,

v res
(1);2D13J which is in good agreement with the expe

mentally observed location of the low-frequency peak in
TMPH.

For experimental comparisons, it is essential that the
hancement due to the branch cut inMR is asymmetric—it
exists forl i,l res

(1) but not for l i.l res
(1) . This should obvi-

ously yield an asymmetric form of the TMPH nearl res
(1)—the

intensity should increase continuously as one approac
l res

(1) from below and drop down rather fast whenl i exceeds
l res

(1) . In addition we should also obtain an asymmetry of t
two-magnon line shape at exactlyl i5l res

(1) with a higher
io

e

in-

to

at
t.

e

n-

es

e

intensity at larger frequencies. Indeed, forDl.1.4 we have
l res

(1).l i , and the Raman vertex is strongly enhanced.
such effect, however, exists forDl,1.4. Both above-
mentioned anisotropies are consistent with the experime
data.

Finally, consider the numerator in the Raman vertex. N
l res

(2) , the numerator was small due to the proximity to t
bottom of the band, and effectively reduced the diverge
of the Raman vertex tod21/2 instead ofd23/2. The lower
resonance frequencyl res

(1) however, is rather far from the
bottom of the band so that the numerator does not pos
any smallness. As a result, the strong enhancement of
Raman vertex as one approachesl res

(1) from below turns out
to be comparable, and for some values of parameters e
larger than the intensity near the high-frequency resona
We will explicitly demonstrate this feature in our numeric
results in Sec. IV B.

C. Raman intensity at finite t8

We now consider how the inclusion of a next-neare
neighbor hopping modifies the resonant behavior of the
man vertex. We already discussed above that a nonzert8
breaks the particle-hole symmetry. In this case, the exp
sion for the Raman vertex is more complex than Eq.~7! and
has the form
MR852
4i

N ( 8
k

@~]ẽk /]k! ei #@~]ẽk2q /]k! ef #@mqek2q2lqek#
2

~v i22Ek1 iG!~v f22Ek2q1 iG!

3H 1

~v i2v1Ek
v2Ek2q

c 1 iG!
1

1

~v f1v21Ek2q
v 2Ek

c1 iG! J , ~30!
here
tor

e
rs
-

to
ore
whereek andEk are defined as before and

ẽk524tnk24t8 cos~kx!cos~ky!,

Ek
c,v56AD21ek

224t8 cos~kx!cos~ky!.

HereEk
c,v describes the energy dispersion of the conduct

and valence bands, respectively.
One can easily see that at finitet8, only two out of the

three terms in the denominator in Eq.~31! can vanish simul-
taneously. A nonzerot8 thus effectively transforms the tripl
n

resonance into a set of double resonances. Obviously, t
exist five combinations of terms for which the denomina
can vanish. One of these, namely the one withv i22Ek50
and v f22Ek2q50, yields a resonance in exactly the sam
region of the (v i ,Dv) plane where the resonance occu
without t8. We will show that of the remaining four combi
nations only two are truly divergent in the vicinity ofv res

(2) .
In order to obtain some analytical results we again have

calculate the effective Raman vertex which now has a m
complex form:
e
is
M̄R
eff5 i

64J

N2 ( 8
k ( 8

q

@~]ẽk /]k! ei #@~]ẽk2q /]k! ef #@mqek2q2lqek#
2

~v i22Ek1 iG!~v f22Ek2q1 iG!

1

~Dv22vq1 iG!

3F 1

~v i2vq1Ek
v2Ek2q

c 1 iG!
1

1

~v i2vq2Ek
c1Ek2q

v 1 iG!G . ~31!

We first observe that while the energy dispersion of the quasiparticles depends linearly ont8, the magnon dispersion and th
magnon-magnon scattering vertexV(k,q) depend only on (t8)2. Since (t8/t)2,0.25~otherwise, the antiferromagnetic state
unstable!, we will just neglectt8 in vq andV(k,q).
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Consider first the situation nearv res
(2) when there is a true resonance inM̄R

eff . Performing now the same manipulations
before, i.e., expanding near the bottom of the band and neglecting the numerator in Eq.~31!, we obtain
M̄R

eff5@M̄R
eff(a)1M̄R

eff(2a)#/2, wherea5t8/J and

M̄R
eff~a!}E d2q

Ga~q!

~Dl2q&1 iG!
~32!

with

Ga~q!5E d2k
1

~l i2412k21 iG!@l i242Dl12~kW2qW !21 iG#

3
1

2l i282Dl12k2~11a!12~kW2qW !2~12a!1~Dl2q& !1 iG
. ~33!

Expanding near the point where the first two terms in the denominator inGa(q) vanish and integrating over the deviation
from the resonance values, we obtain forGa(q)

Ga~q!52pE dx
1

~x1 iG!@k0x~11a!/~12a!1z1 iG# F 1

A2k0qC1
a cosf02~k0q!2 sin2 f01 iG

2
1

A2k0qC2
a cosf02~k0q!2 sin2 f01 iG

G . ~34!
ra
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Herek05@(42l i)/2#1/2 and cosf05(2q22Dl)/4k0q are the
same as for the resonance with t850,
z5@Dl(11a)2q&#/4(12a), andC1,2

a are given by

C1
a5x~k02q cosf0!,

C2
a5x~2k0 /~11a!2q cosf0z!.

One can easily verify that the derivatives ofC1,2
a are negative

in which case the poles and branch cuts in Eq.~34! are lo-
cated in different half-planes. This implies that the integ
over x is finite. Performing the explicit integration overx,
we obtain after some simple manipulations

Ga~q!5
4p2

z

1

k0q FAsin2 f02 ~2z cosf0 /k0q! 1 iG

usin2 f02 ~2z cosf0 /k0q!u

2
1

usin f0uG . ~35!

Now we are left with the integral overq in Eq. ~32!. In Sec.
III A, the q integration was confined to a narrow regio
around q05Dl/& and yielded M̄R

eff}udu23/2 where
d5l i2l res

(2) . At finite t8, an analysis of Eq.~35! shows that
there exist two regions in momentum space which yield s
gular contributions toM̄R

eff(a). The first region is still the
vicinity of q5q05Dl/&. However, sincez is finite for
q5q0 , this region yields a weaker,d21/2 singularity in
M̄R

eff(a). In practice, everywhere except for the immedia
vicinity of the resonance, this divergence is fully compe
sated by the numerator inM̄R

eff(a) which vanishes linearly as
l

-

-

l i approachesl i
max54 which is very close tol res

(2) . We
checked that the same functional behavior also holds
MR

eff(2a).
The second singular contribution toM̄R

eff(a) comes from
theq integration over the region wherez is nearly zero. The
conditionsz50 and sinf050 specify a line in the (l i ,Dl)
plane with

l i5l res
~2!~a,Dl!542

@12Dl~11a!2#2

4~11a!2 . ~36!

We found that near this line, the Raman vertex also diver
asd21/2 whered now measures the deviation froml res

(2)(a).
This square-root divergence nearz50 also holds for
M̄R

eff(2a) for which the resonance incident frequency
given by Eq.~36! with a replaced by2a. We see therefore
that a nonzerot8 splits the strong resonance atl res

(2) with a
d23/2 singularity into three weaker resonances withd21/2

singularities. One of these weaker resonances still occur
l res

(2) , while the two new resonances occur atl res
(2)(6a). For

a50, the three resonance lines coincide and we recover
result of Sec. III A.

For a520.5, which is relevant to the cuprates, an
Dl51.4 we have l res

(2)53.93 while l res
(2)(a)'3.49 and

l res
(2)~2a!'3.58. We see that the new resonance frequen

are further away froml i
max thanl res

(2) and therefore should be
less effected by the smallness of the numerator inM̄R

eff . Na-
ively, this should make the new resonances stronger than
one atl res

(2) . However, we found that the overall numeric
factor is larger nearl res

(2) than near the two new resonanc
lines. In this situation,t8 just reduces and broadens the pe
at l res

(2) without actually producing comparable peaks at t
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two new resonance frequencies. Our numerical findings
Sec. IV C are fully consistent with this result.

Finally, we shortly discuss the effect oft8 on the low-
frequency resonance. We found that the inclusion oft8 shifts
the frequency range for the enhancement due to the bra
cut but does not introduce any new physics nearl res

(1) . We
again obtained that there is no real divergence of the Ra
vertex in this frequency range but that slightly belowl res

(1) ,
the vertex acquires a branch cut enhancement which mim
the resonance behavior. The calculations nearl res

(1) are, how-
ever, rather involved, and we did not succeed in fully solv
the problem analytically. We will discuss our numerical r
sults nearl res

(1) in Sec. IV C.

IV. NUMERICAL RESULTS

In the following subsections we will present our nume
cal results for the Raman line shape and the TMPH. In S
IV A and IV B we first consider a system with particle-ho
symmetry. In Sec. IV C we study how the form of the TMP
is modified due to a finite next-nearest hopping termt8
which breaks the particle-hole symmetry. Finally, in Se
IV D we discuss how the renormalization of the interacti
between light and quasiparticles due to vertex correcti
affects the form of the TMPH. We summarize all releva
formulas for the numerical computation of the Raman int
sity with the final-state interaction in the Appendix.

Before we proceed, we want to point out the differenc
in our numerical and analytical considerations forv i'v res

(1) .
For our numerical calculations we use the mean-field form
the fermionic excitation spectrum, which in the caset850 is
degenerate along the boundary of the magnetic Brillo
zone. This particular form of the dispersion yields, besid
an enhancement due to a branch cut, also a real divergen
MR at v res

(1) , though with a small overall factor. In our ana
lytical calculations in Sec. III B we replaced this mean-fie
form by a quadratic dispersion around the top of the band
which case the divergence transforms into a strong enha
ment. We therefore expect that our numerical results w
overestimate the strength of the low-frequency resonanc

Finally, we shortly discuss some technical aspects of
numerical calculations. It follows from Eq.~A1! that the ex-
pression for the Raman intensity contains four-dimensio
integrals with strong singularities. In order to make a n
merical evaluation possible, one has to include a fermio
damping, which cuts the singularities. However, if the dam
ing is too large, subleading terms become stronger than
triple resonance effect. We found, for example, that a fer
onic dampingG50.4J, which was used in Ref. 25 almos
destroys the resonance atv res

(2) . We therefore only conside
relatively small fermionic dampings with 0.05J<G<0.10J.
Furthermore, in order to ensure sufficient accuracy of
results, we evaluated the necessary integrals on lattices u
100031000 sites. We verified in each case that the conv
gence of the results was satisfactory.

A. Raman line shape inB1g geometry

We first present our numerical results for the Raman l
shape as a function ofDv for fixed v i . Our main result is
that the Raman line shape evolves with increasingv i from a
in
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slightly asymmetric form atv i'v res
(1) to a strongly asymmet-

ric form atv res
(1),v i,v res

(2) , and then back to an almost sym
metric form atv i'v res

(2) . In order to show this we presen
the results for three incident frequencies:v i'2D12.9J,
v i'2D16J, andv i'2D17.8J. In the first and third case
the triple resonance and the two-magnon peak positions
incide, whereas in the second case they are well separat

1. v i'v res
„1… .

The Raman intensity as a function of transferred fr
quency without and with a final-state interaction is present
in Figs. 6~a,b!, respectively. The main difference betwee
the two figures is the presence of an unphysical singularity
Fig. 6~a! at Dvmax54J which is due to a divergent density o
states at the boundary of the magnetic Brillouin zone. As
the LF theory, the inclusion of a magnon-magnon interacti
eliminates this singularity as is seen in Fig. 6~b!. A more
relevant point is that both figures contain a strong peak
Dv52.8J. While the peak in Fig. 6~a! is solely due to the
divergence in the Raman vertex atv res

(1) , the peak in Fig. 6~b!

FIG. 6. The Raman intensity as a function of transferred fr
quencyDv for v i'v res

(1) ~a! without and~b! with a final-state inter-
action. The inset in~b! shows the experimental line shape i
Sr2CuO2Cl2 for v i22D52.9J, taken from Ref. 20.



te
th
-

i
r
b
a

-
in

c

a

i

n
c
s
e

s
b
.

e

n

n

s

at
s-

m-

nce
ring

at
o-

e
t

re-

in

9146 56DIRK K. MORR AND ANDREY V. CHUBUKOV
is a combined effect of the resonance in the Raman ver
and multiple magnon-magnon scattering. We see that
peak in Fig. 6~a! is strongly enhanced by the final-state in
teraction.

Furthermore, we see that the Raman line shape in F
6~b! is slightly asymmetric with a larger intensity at highe
transferred frequencies. This asymmetry is most likely to
a property of the Raman vertex since the final-state inter
tion yields a symmetric peak. One can indeed see this asy
metry already in Fig. 6~a!. The two-magnon line shape ob
tained numerically is consistent with our analytical results
Sec. III B. There we attributed the asymmetry of the two
magnon profile to the branch cut in the Raman vertex whi
for v i52D12.9J exists only forDv.2.8J.

2. v res
„1…<v i<v res

„2…

The form of the Raman profile changes quite strongly
one moves fromv res

(1) to intermediate incident frequencies. In
Fig. 7 we present, as an example, the Raman intensity
cluding a final-state interaction forv i52D16.0J. A com-
parison with Figs. 6 shows that the anisotropy of the inte
sity is now much stronger. This result is quite expected sin
in this range of incident frequencies, the Raman vertex re
nates at transferred frequencies above the two-magnon p
In particular, forv i52D16J, the triple resonance occurs
near the maximum transferred frequencyDv54J ~see Fig.
3!.

The two-magnon profile for intermediate frequencie
within the triple resonance theory was earlier obtained
Schönfeld et al. Our results are in full agreement with theirs

3. v i'v res
„2…

The results for the intensity with and without final-stat
interaction are presented in Figs. 8~b,a!, respectively. The
intensity without a final-state interaction again exhibits a
unphysical divergence at the maximum transferred frequen
Dv54J which disappears when one includes a magno

FIG. 7. The Raman intensity as a function of transferred fr
quency Dv for v i22D56.0J in the interacting case. The inse
shows the experimental line shape in Sr2CuO2Cl2 for
v i22D55.9J, taken from Ref. 20.
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magnon scattering. Nearv res
(2) , however, this divergence i

confined to a very narrow region near 4J.
Furthermore, we obtain that in both figures the peak

aroundDv52.8J is almost symmetric. This is also consi
tent with our analytical results in Sec. III A.

In addition to the peak atDv52.8J, both intensities also
possess a slight maximum around 3.3J which probably origi-
nates from subleading, branch cut terms in the intensity.

The evolution of the Raman profile with increasingv i

from slightly asymmetric form aroundv res
(1) to a pronounced

shoulderlike behavior for intermediate frequencies, to a sy
metric form close tov res

(2) is fully consistent with the experi-
mental results on Sr2CuO2Cl2 and YBa2Cu3O6.1. We con-
sider this agreement with the data as yet additional evide
that the triple resonance diagram dominates the scatte
process in the resonance regime.

B. Two-magnon peak height

We now discuss the TMPH as a function ofv i . For the
calculation of the TMPH, we fix the transferred frequency
a value which corresponds to the maximum of the tw

-

FIG. 8. The Raman intensity as a function of transferred f
quency Dv for v i5v res

(2) , ~a! without and ~b! with a final-state
interaction. The inset in~b! shows the experimental line shape
YBa2Cu3O6.1 for v i5v res

(2) , taken from Ref. 20.



d

t

o

t
h

u

s
o
i

v
r

ity

ich,

V.
c
se

the

d,
the
ter
.g.,

of

ded

the

r
t
-

in
sly

o-

56 9147RESONANT RAMAN SCATTERING IN ANTIFERROMAGNETS
magnon profile~which, depending onv i , occurs between
Dv52.8J andDv52.9J! and plot the intensity of the maxi-
mum as a function ofv i . We present the results in Fig. 9 for
two different values of the fermionic dampingG. In both
cases we clearly observe two maxima atv res

(1)'2.9J and
v res

(2)'7.9J. The positions of these maxima are in goo
agreement with the analytical predictions and the experime
tal data. The form of the TMPH nearv res

(1) is clearly asym-
metric: the intensity drops faster above the peak than belo
This form agrees with our analytical results. For intermedia
incident frequencies@4.0J,(v i22D),7.5J# the TMPH re-
mains basically constant and, in addition, is practicallyG
independent. This behavior, we believe, results from the fa
that in this frequency range the triple resonance occurs
Dv54J which is too far away from the two-magnon peak t
influence its height. Upon increasingG, we find that the
TMPH aroundv res

(2) drops much more rapidly than around
v res

(1) . This is fully consistent with our analytical result tha
the divergence in the Raman vertex, which is only cut by t
fermionic damping, is present only nearv res

(2) while the maxi-
mum nearv res

(1) is just an enhancement which does not cr
cially depend on the damping.

We also obtained two results which are not fully consi
tent with the experimental data. The first one is the ratio
intensities at the two maxima. We found that while the d
vergence inMR exists only nearv res

(2) , the nondivergent
terms are much stronger aroundv res

(1) . As a result, the ratio of
intensitiesI (v res

(1))/I (v res
(2)) for G50.05J is '1, while experi-

mentally, this ratio is clearly smaller than one, though th
actual number differs between Sr2CuO2Cl2 and
YBa2Cu3O6.1. The second discrepancy concerns the beha
ior of the TMPH in the vicinity ofv res

(2) . Analytically, we
found that the TMPH should follow an inverse linear beha
ior at some distance fromv res

(2) and an inverse cubic behavio
in the immediate vicinity ofv res

(2) . To verify this result, we

FIG. 9. The TMPH as a function of incident frequencyv i . The
inset shows the experimental result for the TMPH in Sr2CuO2Cl2,
taken from Ref. 20.
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calculated the TMPH for several frequencies in the vicin
of v res

(2) and present the results in Fig. 10~the dashed line in
this figure is a guide to the eye!. Within our numerical accu-
racy, we indeed found an inverse linear dependence wh
however, only exists for a small region nearv res

(2) , namely
for 0.1J,v res

(2)2v i,0.25J. Experimentally, this region ex-
tends over a much wider frequency range of about 1 e
Very close tov res

(2) , the divergence is cut by the fermioni
damping, and it is impossible to verify the predicted inver
cubic behavior.

We already mentioned that one of the reasons for
incorrect ratio of intensitiesI (v res

(1))/I (v res
(2)) lies in the over-

simplified mean-field form of the fermionic dispersion, an
in particular, in the degeneracy along the boundary of
magnetic Brillouin zone. One would thus expect a bet
agreement with experiments if this degeneracy is lifted, e
by the introduction of a finite next-nearest hoppingt8. We
address this issue in the next subsection.

C. Raman intensity for a nonzerot8

In Sec. III C we found that a nonzerot8 splits the triple
resonance aroundv res

(2) into three double resonances one
which occur in the same region of the (v i ,Dv) plane as the
triple resonance in the absence oft8 while the other two
occurs in different regions of the (v i ,Dv) plane. In Fig. 11
we plot the region of the (v i ,Dv) plane in which one of the
remaining double resonances occurs. The form of the sha
area is similar to Fig. 3. We see that in the vicinity ofv res

(2)

the new resonant region reduces to a single line, just as
resonance fort850. Nearv res

(1) the situation is more complex
since the different double resonances overlap.

In Fig. 12 we present the result for the TMPH fo
t8/t520.16. A comparison with Fig. 9 for the TMPH a
t850 shows that a finitet8 reduces the TMPH at both reso
nant frequenciesv res

(1,2) . This reduction is fully consistent
with our analytical calculations since now only two terms
the denominator of the Raman vertex vanish simultaneou
while the third scales asO(t8/t). The reduction, however, is
not uniform, and the TMPH around the high-frequency res

FIG. 10. The inverse Raman intensity forDv52.9J as a func-
tion of v res

(2)2v i .
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nance decreases much more rapidly than the one around
low-frequency resonance. Most probably, the increase of t
ratio is caused by two effects. First, the regions of doub
resonance overlap aroundv res

(1) , but not aroundv res
(2) . Sec-

ond, a nonzerot8 also affects the interaction vertexVl f be-
tween light and fermions and reduces it much more strong
aroundv res

(2) than aroundv res
(1) . To see this, we recall that in

the mean-field approximation we haveVl f 5(]ek /]kW )êi , f

with ek522t(coskx1cosky)14ut8ucoskx cosky . Nearv res
(2) ,

the dominant contribution to the Raman vertex comes fro
fermions near the bottom of the band (k'0) in which case
the vertex between light and fermions is reduced by a fac
of (122ut8u/t). In contrast, the resonance nearv res

(1) is domi-
nated by fermions near the top of the valence ban
@k5(6p/2,6p/2)# in which case the effect oft8 is negli-
gible.

FIG. 11. The shaded area describes the region of the (v i ,Dv)
plane in which a double resonance occurs forv i22Ek50 and
v i2 Dv/21Ek2q

v 2Ek
c50. The solid line corresponds toqx5qy

and the dashed line toqx50.

FIG. 12. The TMPH as a function of the incident frequencyv i

for t8/J520.3 andG50.05J. The inset shows that despite the
strong reduction one can still observe a maximum aroundv res

(2) .
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We see therefore that the inclusion of a finitet8 actually
worsens the agreement with the experiments since the
of intensities increases. In the next subsection we will c
sider whether vertex corrections can possibly reverse the
fects oft8 and restore the correct quantitative behavior of
TMPH.

D. Vertex corrections

There are several vertices in the diagram for the Ram
matrix element, each of which is renormalized by vertex c
rections which are generally not small at largeU. The cal-
culation of all vertex corrections is beyond our compu
tional abilities and in this section we will therefore focus o
the corrections to the vertex between light and fermio
quasiparticles,Vl f . Some evidence that the vertex betwe
light and fermions nearv res

(2) is larger than in the mean-field
theory comes from the measurements of the optical cond
tivity in Gd2CuO4, Pr2CuO4, and YBa2Cu3O6.

22 These ex-
periments have demonstrated that the measured conduc
is larger than the one calculated with the mean-field form
Vl f even though it basically follows the same frequency d
pendence. We will study the vertex corrections toVl f semi-
phenomenologically and our goal will be to illustrate ho
they can, in principle, reverse the effects oft8.

The lowest-order correction toVl f in a formal perturba-
tive expansion in 1/S is presented in Fig. 13. A simple analy
sis shows that the relative vertex correction scales asU/JS,
i.e., it is small only in the limit of a very large spin. Fo
realisticS, however, we haveU/JS@1, and the corrections
to Vl f are large. This clearly implies that one should sum
an infinite series of corrections to obtain the proper ren
malization of the vertex between light and fermions. We w
not do this but rather model the effect of the vertex corr
tions phenomenologically by introducing an effective vert
in the form

Vl f
eff~k!5S ]ek

]kW
êi , f D ~11ank

2! ~37!

with a as a parameter. The effective vertex in Eq.~37! still
possesses the same symmetry as the bare vertexVl f (k) and
therefore still vanishes at the bottom of the band. Howev
the slope ofVl f

eff(k) aroundk50 can now be quite differen
from the mean-field result.

We computed the TMPH with the effective vertex usin
various values ofa. The result fora50.5 is presented in Fig

FIG. 13. The lowest-order vertex corrections to the ligh
quasiparticle interaction. The solid and dashed lines represen
conduction- and valence-band quasiparticles, respectively. The
ternal wavy line describes the exchange of a magnon.
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14. A comparison with Fig. 9 shows that the effect of the
vertex correction is rather strong; the ratioI (v res

(1))/I (v res
(2)) is

decreased by a factor of about 2.5. In addition, we also o
serve a relative increase of the TMPH for intermediat
4.5J<(v i22D)<5.5J. This last effect leads to an extension
of the region in which the Raman intensity possesses a
inverse linear behavior.

The decrease of the ratio of the intensities and the exte
sion of the frequency range of the inverse linear behavior a
both in agreement with the experimental results.20 We there-
fore see that by adjusting the vertex corrections toVl f (k)
without violating the symmetry requirements of the model
one can, in principle, not only obtain good qualitative, bu
also quantitative agreement with the experimental data. Th
question is, however, whether, e.g.,a50.5, which we used
in Fig. 14, can be obtained in a microscopic calculation
These studies are clearly called for.

V. DISCUSSION

We first summarize our results. The intent of this paper i
to study the full Raman intensity in the resonant regime b
simultaneously considering the effects of the triple resonanc
in the Raman vertex and the final-state magnon-magnon i
teraction. We derived an explicit expression for the full Ra
man intensity in the resonant regime as a function of bot
transferred frequencyDv and incoming frequencyv i . We
obtained analytically and numerically the two-magnon Ra
man profile as a function of the transferred photon frequenc
Dv and the dependence of the two-magnon peak height
the incident photon frequencyv i . We found that the reso-
nant behavior of the Raman vertex survives the inclusion o
a magnon-magnon interaction and obtained two maxima
the peak height atv res

(1)'2D12.9J and atv res
(2)'2D17.9J.

The position of the two maxima are the same as in the sem
phenomenological approach by CF which considered th
triple resonance enhancement and final-state interaction
dependent of each other. We first studied in detail the two
magnon profile at various incident frequencies. We foun
that the two-magnon peak is slightly asymmetric nearv res

(1)

FIG. 14. The TMPH forG50.05J anda50.5.
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with larger intensity at higher frequencies. As the incide
frequency increases, the asymmetry becomes stronger,
the two-magnon profile acquires a shoulderlike feature ab
the peak. This is consistent with earlier results.25 For fre-
quencies aroundv res

(2) , however, we found that the aniso
ropy disappears, and the Raman profile acquires almos
same form as in the nonresonance, LF regime.

We then proceeded to a more detailed study of the tw
magnon peak height. We verified that the inverse linear
havior of the Raman intensity nearv res

(2) survives the effect of
the final-state interaction. Furthermore, we considered
behavior of the Raman vertex nearv res

(1) . We found in our
analytical considerations for which we assumed an isotro
dispersion near the top of the band that the divergenc
almost completely suppressed. However, the Raman ve
contains a branch cut which gives rise to an enhancemen
the intensity in some range of frequenciesv i<v res

(1) which
terminates only slightly belowv res

(1) . In our numerical calcu-
lations, for which we considered a mean-field form of t
dispersion, we obtained a weak singularity atv res

(1) but also a
strong enhancement of the Raman intensity forv i slightly
smaller thanv res

(1) . This last enhancement is virtually inde
pendent of the damping.

We found that the ratio of the Raman intensiti
I (v res

(1))/I (v res
(2)) is already rather large for small dampin

contrary to the assertion by CF. A much smaller ratio
needed for a quantitative agreement with the experime
data. We attribute the large ratio to an unexpectedly str
enhancement of the two-magnon peak nearv res

(1) due to a
branch-cut anomaly in the Raman vertex.

We further studied how the the triple resonance is mo
fied by a next-nearest hopping termt8. Around v res

(2) , we
found that the triple resonance is split into three double re
nances, but the linear divergence of the Raman intensity n
v res

(2) is not changed. This splitting, however, reduces the
tensity aroundv res

(2) relative to the intensity aroundv res
(1)

where the effect of a finitet8 is rather weak. As a result, th
ratio of the intensitiesI (v res

(1))/I (v res
(2)) increases.

Finally, we have demonstrated that the ratio of the inte
sities at the two resonance values ofv i is sensitive to the
actual form of the vertex between light and fermions. W
have shown that the corrections to the mean-field vertex
large and modeled their effect by introducing an extra fac
(11ank

2) into the vertex. We considereda as an adjustable
parameter and showed that the ratio of the intensities ca
substantially reduced already for moderate values ofa.

We now discuss our results in the context of the key
perimental features that we listed in the introduction as be
in disagreement with the LF theory:
~1! Changing lineshape withv i . Our results for the evolu-
tion of the Raman profile withv i is in complete agreemen
with the experimental results by Blumberget al.20 on
YBa2Cu3O6.1. For Sr2CuO2Cl2, the highest experimentally
accessible frequency is smaller thanv res

(2) and we therefore do
not know whether the Raman profile eventually becom
symmetric nearv res

(2) . For intermediatev i , however, our re-
sults agree with the experimental data.

An issue which we have not addressed in our approac
the actual rather than relative width of the two-magnon pe
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Experimentally, it is much broader than in our model. Previ
ous studies by Weber and Ford38 and by Knollet al.,39 how-
ever, have shown that the broadening may be due to a ma
non damping. They demonstrated that a small damping d
to, e.g., an interaction with phonons already gives rise to
considerable broadening of the two-magnon peak. This res
has also been obtained in numerical studies.40

~2! The TMPH as a function ofv i . The two key experi-
mental results for the TMPH, we note, are the presence
two maxima in the TMPH, of which the higher frequency
maximum is stronger in all compounds, and an inverse line
behavior of the Raman intensity near the upper resonan
frequencyv res

(2) . In our analytical and numerical calculations
we found the two maxima in the TMPH whose positions
fully agree with the experimental data. In addition we found
that the low-frequency maximum in the TMPH is anisotropic
with a higher intensity at lower frequencies which is also
consistent with the experimental results.

Our numerical data, however, differ quantitatively from
the experimental results in that the ratioI (v res

(1))/I (v res
(2)) is

too large. On the basis of our analytical results we woul
expect the opposite behavior since we found that the actu
resonance in the Raman intensity~i.e., a divergence in the
absence of a fermionic damping! exists only nearv res

(2) while
the peak nearv res

(1) is just the enhancement due to nonsingu
lar terms in the Raman vertex. It turns out, however, tha
these nonsingular terms are anomalously large. Naively, o
would expect that the inclusion of a next-nearest-neighbo
hoppingt8 would lead to an improved agreement of the ratio
with the experimental data. In contrast, we found that a finit
t8 suppresses the high-frequency resonance even further.
the other hand, we have demonstrated that the inclusion
the corrections to the interaction between light and fermion
may substantially increase the vertex nearv res

(2) compared to
the vertex nearv res

(1) . This eventually yields a much better
ratio of I (v res

(1))/I (v res
(2)) which can be made fully consistent

with the experimental data by adjusting the magnitude of th
vertex correction.

Our analytical and numerical computations also repro
duced the inverse linear behavior of the Raman intensit

FIG. 15. The Raman intensity as a function of transferred fre
quencyDv for constant denominator.
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which was observed in YBa2Cu3O6.1 ~Ref. 20! and
PrBa2Cu3O7 ~Ref. 21! and, to a certain extent, also i
Sr2CuO2Cl2. However, we also found that the range ofv i in
which this behavior was observed experimentally is mu
larger than in our analysis. The inclusion of the vertex c
rections improves the agreement with the data but does
make it perfect. This issue requires further study.

In conclusion we have provided a detailed study of R
man scattering in the resonant regime. We confirmed that
key experimental features of magnetic Raman scattering
be explained qualitatively, and to some extent quantitativ
within the triple resonance theory. We believe that the
maining quantitative discrepancies are due to insuffici
knowledge of the quasiparticle energy dispersion, lifetim
effects, and the form of the vertex function between light a
fermions.

A final remark. In this paper we considered the scatter
in the B1g geometry. In the LF theory, this is the only chan
nel where the Raman vertex is finite. The triple resonan
diagram, however, yields a finite intensity in all scatterin
geometries. To illustrate this point, we compute the tw
magnon line shape inB1g , B2g , A1g , and A2g geometries
for intermediate incident frequencies,v res

(1),v,v res
(2) . In this

frequency range, the triple resonance occurs relatively

-

FIG. 16. Two-magnon Raman scattering spectra fro
Sr2CuO2Cl2 and YBa2Cu3O6.1 at room temperature in different sca
tering geometries. Courtesy of the authors of Ref. 41. The lab
indicate:xx (B1g1A1g), x8y8 (B1g1A2g), x8x8 (A1g1B2g), and
xy (B2g1A2g). The excitation energy is 2.73 eV. The peak
around 1000 cm21 is likely due to phonon scattering.
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from the two-magnon peak and, to first approximation, d
not influence the two-magnon line shape. In other words
calculating the line shape, one can, with reasonable accur
set the denominator in the triple resonance diagram in Eq~7!
to a constant. The Raman vertices for different scatter
geometries are then given by~neglecting identical prefactors!

MR
B1g5

1

4
ñqvqS 12

1

4vq
2D , MR

B2g5
1

8

nq

vq
sin qx sin qy ,

MR
A1g5

1

4
nqvq , MR

A2g50.

Using the above vertices, we computed the full Raman
tensity in the same way as in the LF theory. The results
our calculations are presented in Fig. 15. These results h
to be compared with the experimental data for Sr2CuO2Cl2
and YBa2Cu3O6.1 from Ref. 41 which we reproduce in Fig
16. SinceJ;1000 cm21, the comparison with Fig. 15 is
valid only for Dv<4000 cm21. A finite scattering intensity
at largerDv is probably due to multimagnon scattering. W
consider the agreement between the two figures as ra
good and view it as an another piece of evidence in favo
the triple resonance theory.
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APPENDIX: THE RAMAN INTENSITY
WITH MAGNON-MAGNON INTERACTION

In this appendix we present the formulas for the nume
cal computation of the full Raman intensity. Our startin
point is the Golden Rule formula, Eq.~1!

R~v i ,Dv!}E d2q

4p2 uMR
tot~v i ,Dv,q!u2d~Dv22vq!,

~A1!

whereMR
tot is diagrammatically presented in Fig. 1~b!. The

Golden Rule formula for the intensity corresponds to t
diagram in Fig. 1~a! in which the intermediate magnons a
on the mass shell.

The analytical expression forMR
tot has the form

MR
tot5MR1

M̄Rñq

11I /4S
, ~A2!

where I is given in Eq.~6!, and MR and M̄R are given by
Eqs. ~7! and ~9! for t850 and by Eqs.~30! and ~31! for t8
Þ0, respectively.

Note that we use the full form ofMR and do not project it
on ñq as was done in Ref. 25. Our numerical computatio
show that especially for smallG, the B1g component ofMR
has a more complex dependence on the magnon mome
than justñq .
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