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Static and dynamic properties of stacked Josephson junctions: Analytic solution
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Static and dynamic properties of stacked Josephson junctions are studied theoretically. An approximate
analytic solution for a stack with arbitrary junction parameters was obtained. The analytic solution is in good
agreement with numerical simulations. Characteristic penetration depths, Swihart velocities, the lower critical
field, the first integral, and the free energy for a stack of nonidentical junctions were derived and studied for
different parameters of the stack. We show that attractive interaction of fluxons in adjacent junctions exists in
the dynamic state of the stack, leading to appearance ofithplasé state with fluxons on top of each other.

In a given external magnetic field the Gibbs free energy has a number of local minima corresponding to
particular fluxon distributiongmodes in the stack each representing a quasiequilibrium state. For a statk of
junctions each mode would result Mdistinct flux-flow branches in the current-voltage characteristic. Taking
into account that different modes with equal total number of fluxons are not identical we conclude that the total
possible number of flux-flow branches can be much larger than the number of junctions in the stack.
[S0163-18297)02337-0

[. INTRODUCTION coupling between atomic layers in HTSC’s we mention
observation of multiple “quasiparticle” branches in the

Stacked Josephson junctiof®JJ’$ have attracted much c-axis current-voltage 1¢V) characteristicd? Here, each
attention in the last years because they are promising objecksanch is assumed to be caused by switching of an additional
for application in cryoelectronics and they exhibit a lot of SJJ from the zero voltage state to the quasiparticle branch
interesting physical phenomena. A particular interest in SJJ'with its characteristic superconducting gap voltage. Such be-
was stimulated by the discovery of the intrinsic Josephsomavior is typical for SIS Josephson junctions connected in
effect in highT, superconductor§HTSC's) and organic serie€ and was observed for Nb/AlONb SJJ's>* The total
superconductors? The intrinsic Josephson effect in those number of quasiparticle branches in the/ curve in this
compounds is attributed to Josephson coupling betweecase is equal to the number of junctions in the stdak.
atomic scale superconducting layers; e.g., isSBICaCyOg  Observation of Fraunhofer oscillations of theaxis critical
the Josephson coupling is believed to exist between theurrent!®!with the periodicity in magnetic field defined by
copper-oxide double planes through the barrier formed byhe space periodicity of superconducting layers. Clear Fraun-
the Bi-O and Sr-O layers. Indeed, the intrinsic Josephsohofer oscillations of this type have been observed in Nb/Cu
effect in HTSC’s exhibit many similarities with the behavior multilayers® (i) Observation of flux-flow-typd-V curves
of Josephson coupled loW; superconducting(LTSC's)  in magnetic field parallel to thab planel? Very rich flux-
structures. flow phenomena with phase locking and multip}&/ curve

For Josephson coupled LTSC's layered structures trangsranches have been observed for LTSC's Nb/AIb SJJ's
verse transport and magnetic properties are well studie(Ref. 4 and Nb/Cu multilayer§.For Nb/Cu multilayers the
for stacked Nb/AIQ/Nb  superconductor-insulator- number of observed flux-flow branches in th& character-
superconductor(SIS) tunnel junctiond™> and for Nb/Cu istic exceeds the number of junctions in the multila¥éi)

proximity coupled superconductor—normal-metal—observation of Josephson plasma wave resonances in
superconductofSNS multilayers®—8 In Nb/Cu multilayers HTSC's!®
(like in the case of HTSC's intrinsic SJJ'the layer thick- Theoretically, properties of layered superconductors with

ness is much less than the London penetration depth while ilosephson coupling between layers were studied in a number
Nb/AIO, /Nb SJJ's the superconducting layer thickness isof papers, see, e.g., Refs. 14—21. Among the recent develop-
typically of the order of the London penetration depth. Inde-ments in this direction we mention realization of collective
pendent of the nature of the coupling between layers, thelasma exitatiorfS and charging effectsin HTSC's SJJ’s.
behavior of both Nb/AIQ/Nb SJJ's and Nb/Cu multilayers In the current paper we study theoretically the static and
are characterized by a pronounced phase locking phenondynamic properties of SJJ's using the formalism of Sakai,
enon due to mutual coupling of SJJ's. For example, in Nb/CuBodin, and Pederséfi.A simple approximate analytic solu-
multilayers phase locking of ten SJJ's was achieved by aption for a stack with arbitrary parameters was obtained. The
plying a small external RF powér. analytic solution is in good agreement with humerical simu-
Among the experimental evidence for the Josephson-typktions. Characteristic penetration depths and Swihart veloci-
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FIG. 1. Schematic drawing of the stacked Josephson junctions. H
ties, the lower critical field, the first integral, and the free -S
energy were derived and studied for different parameters of A=l 0 A 0 2)
the stack. ! ’
From our analysis we show the existence atfractive ~Sy+1
fluxon interactionin the adjacent junctions in the dynamic A B 0 0
state of the SJJ so that the “in-phase” stit&ith fluxons on 1 S
top of each other become possible at high enough fluxon -S A, —-S3 O
velocity. We show that in a given external magnetic field .
) g 0 0
there is a number of quasiequilibrium fluxon statesdes
corresponding to a particular fluxon distribution in SJJ's. For A= 0 -5 A =S4 O ,
a stack ofN junctions each mode would result i distinct 0 . ] 0
flux-flow branches in thé-V characteristic. Taking into ac- 0 -s A _
count that different modes with equal total number of fluxons N1 An-r TSy
are not identical we conclude that the total possible number 0 0 Sy Ay

of flux-flow branches can be much larger than the number of

junctions in the stack. and

Il. GENERAL RELATIONS

We consider a stack dfl Josephson junctiondJ’s with
the tunnel barrier parallel to the-y plane and thez-axis

Si=\g; coseclid; /\g;).

3

Aj=tj+ \gj coth(d; /N gj) + Ngirq1 cOth(di1/Ngi1), (4)

®)

directed perpendicular to the barrier. An external magnetid e inner part of the matrid;, Eqg.(2), is identical to the

field, H, is applied parallel to the junction plane in theaxis ~ Matrix A, Eq. (3).
direction.L, andL, are the junction lengths along tixeand

Differentiating Egs.(1a) and (1b) with respect to thex

y axes, respectively. A sketch of the stack is shown in Fig. 18nd y coordinate we obtain the coupled “sine-Gordon”

We will assume that , is smaller than the Josephson pen-
etration depth\;. We number the junctions in the stack

equation describing the behavior of stacked 3¥'s:

. : - T . Do [ 3?5
incremental in thez-axis direction so that the bottom junc- 0 ( + ) =A-J,, 6
tion has the numbér=1 and the top junction corresponds to 82 \ax? * ay? ¢ ’ ©
i=N. Superconducting layers composing the JJ's are alsqnere
numbered in the-axis direction so that the bottom layer has
the numberi=1 and the top layer has the numbiet N N
+ 1. Thus the JJ numbeéris composed by the layers number Jp
i andi+1, see Fig. 1. The superconducting layers are char- :
acterized by the London penetration depth and the thick- J=| 3.
nessd; and junctions are characterized by the tunnel barrier - 2o
thicknesst; and the critical current density,;. Hereafter, :
the subscript on the quantity represent its number. Jon-1
Integration of the vector potential over the contour cover- AN
ing the tunnel barrier provides a relationship between the 5
gauge-invariant phase differengg and the local magnetic 3,=Jq sin(e) + DoC;i ¢ Dy % R
inductanceB; inside the junctiort? 2i= Ve SINPUT D0c a2 T 2meR, at
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HereJ,; is the Josephson current in junctionC; andR; are ANda [(eD? Ay (eh)? S, o
the junction capacitance and the quasiparticle resistance, re- v el + = 1
: : - (1-591 2 Ay 2 A
spectively, per unit area of the junction.
Equation(6) can be simplified for the case of smalj . 431608 @) + Jop COS 0p) =C, (1)

We restrict ourselves to consider the “overlap” geometry for
the stack. Ledy; be the bias current uniformly injected in the
layeri along they axis, see Fig. 1. Using the Biot-Savart law
we can write for thex component of the magnetic induction

which for identical junctions reduces to that of Ref. 22.

B. Approximate analytic solution

In general the solution of Eq6) is quite complicated.
i N+l However, it is possible to construct an approximate solution
B :2_77 {E | E | } ) providing a fairly good approximation in the whole space-
S O e £ e B time region. We will show the procedure for obtaining the
approximate solution for the example of double stacked JJ’s.

) ) ) The extension for the case of an arbitrary number of stacked
wherel ;= [J,;dz . Having substituted Ed8) into Eq.(1b)  jyg s straightforward.

and differentiating with respect tp we obtain For low viscosity the system of equations for double SJJ's
is

Doc 7 1 i e Po, 1 e CyS, &

— ——— 0i=— | (A =S — Al — Al 2 1 - 1 2 P2

472 5y2 Pi 2L, [( i~ S Si+1)( |+22 17 21 yi AJy g wgl P + ClAlw,z)l pre

+(Ai—S§+S )ALy 1~ (A +S NS )
R :Sir‘(¢1)_%3m(¢2),

" : , @) C2A2i62<p2+ S
ax® CiAy oy T Ajwp, dt?
In deriving this equation we have substituted the derivative A
of Iy by the finite differencedl,;/dy~Aly;/Ly, where — 2 sin(<p2)—%sin(<p1). (12)
Alyi=1yi(Ly)—1,;(0). Equation (9) makes it possible to Je1 g Ay

.take _into account different biasing configurations, e.g., biaS,Here)\Jl and wp; are the Josephson penetration depth and
'b”,g V'Z m,'ddklle electrogeﬁ. 'E the uslual casr(la whenfthe stack e plasma frequency, respectively, of the single junction 1,
e e o e otlom ayers e SeL O gy o (P2
. . ) The coupling strength can be described by a dimension-
Subtraction of Eq(9) from Eg. (6) yields the final one- less coupling parameter
dimensional coupled sine-Gordon equation for the phase dis-
tribution in the stack. Equatiof6) should be supplemented Sﬁ
by the boundary conditions at=0, andx=L, which are Sz:ﬁ- 13
given by Eq.(1a with By;=H. 12
As we will show below the solution of the coupled sine-  First we consider a special single fluxon solution in the
Gordon equations for SJJ’s allows different quasiequilibriumform
states(which we will refer to as “modes) characterized by
the different number of fluxons in the junctions. For the stack sin( 1) = « sin(¢y), (14)
of N Junctl_ons we will use a strlngr(l,...ni ;--NN) @S @ \yhich allows the 2 total phase shift in one JJ and zero total
short notation of those modes, whergis a number of flux-  ypase shift in the other JJ. Hereis a constant parameter
ons in the junctioni. For example, mod€l,0) represent the \yhich should be determined from E@.2). For definition we
state with a single fluxon in junction 1 for a double SJJ.  555ume that the fluxon is situated in junction 1. In this case
¢, is small for the arbitrary coupling paramet8rand the

A. The first integral left-hand side of Eq(12) can be linearized with respect to

In the static case Eq6) has a first integral which can be 2
written in a compact form PI~KQy.
After this, Egs.(12) are reduced to an ordinary sine-Gordon
doc equation
> @ *ATle + 2 Jg cogg)=C,  (10)
16m Le=Sin(F(£)), (15)

_ _ which has a well-known fluxon solution in the form of a
where C is a constant. Here the symbol “prime” on the trayeling soliton

guantity denotes its spatial derivative and the synibdle-
notes the transponation so that* is a string of¢; . For

X—ut
double SJJ’s the first integral is equal to F=4arctatexn(s). &= v (18
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Here u is the velocity of the soliton and is the Lorentz
factor, y?=1-(u/C)?, T=\,w, is the Swihart velocity.
Substituting Eq(14) into Eq. (12) we obtain that the pa-

rameterk in Eg. (14) is a solution of the quadratic equation:

S , Jeaho WP Ay (J G }
— Kkt K|l — | = 1-%2
Aq JaA1 CH A1\ Ja Cy ( )
Je2S;
— =0, 1
Jarhs (0

which always has two roots,; andx,. Herecy,= Nj1@py IS
the Swihart velocity of the single junction 1. Thus Ef2)
has two special single fluxon solutions

p1=F1(N\1), ¢2=1/ky arcsir(sin(F,)), (18a
p1=F2(N\2), ¢2=1lk, arcsir(sin(Fy)), (18b)
whereF, , are given by Eq(16) with
UZ
\3yP= )\iz( 1- =2—) : 19
Ci2
where the characteristic penetration depths are
A’Z
2 J1
)\1’2_1"‘ K2'1SZ/A1, (20)
and Swihart velocities are
=2
C
~2 01
Ci,= . 21
1 T o CIaS(Cghy) Y

For the case of identical junctions

Klyzzil, )\1’2:)\‘]/\ 1tS andrélz:’aOl/\ 1iS,

which coincides with the previous restif.

9109

The special solution Eq18) can only be realized in the
dynamic case of high fluxon velocity; <u<'c, when one of
the solutiond=,,F, becomes degenerate as will be discussed
later.

In order to find the solution for lower velocities we con-
sider the linearized Eq(12) with sin(p;)~¢; and sinfp,)
~¢,. It can be shown that the general solution of the linear-
ized equation is given by a linear combinationFof andF,

¢1=aF;+bF,, (229
p,=CF;+dF,, (22b)
where
a=x,C,
b= x,d. (23

Coefficientsa,b,c,d should be chosen for a particular fluxon
configuration in the stack from the condition of having a
particular total phase shift at=*+o (we suppose that the
JJ’s are long enough to avoid the problems related with the
fluxon interaction with the edges of the)JMNamely for a
single fluxon in junction 1 and no fluxons in junction 2 the
total phase shifte (+®)—¢@i(—*)=27 and @,(+x)

— @,(—)=0, which gives two additional conditions for the
coefficients of Eq(22),

a+b=1,

c+d=0. (24)

From Egs.(23) and(24) we finally obtain a unique solution

_K1F1_K2F2
e (25

Fi—F,

¢2 Ki— Ky
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FIG. 2. Spatial distributions af) sin(¢), and
(b) magnetic inductiorB, in the static case with a
. single fluxon in junction 1. Parameters of the
stack are J;1=1, J=0.1, Ag=Ae=Ag3
:0.1)\31, d1:d2:d3:t1:t2:0.01)\J1 S~0.5.

05

B/H,

T T T T T T T T

Mode (1,0)

0.0

! (a) Solid and dashed curves represent solutions
for sin(¢;) and sinf,) obtained by numerical
simulations. Dashed-dotted and dotted curves
represent the approximate analytical solution for
sin(¢1) and sinf,). The agreement between the
analytical and the numerical solutions fer is so
good that they can hardly be distinguished in the
figure.

20
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15 T T T T K )\_l_K )\—1
— 1 2
M Nl 22 (26)
ode (1,0) K1~ K2
14
Ao varies fromi j; to A3, /\/1—S? whend,, /., varies from
0 tooe. This is illustrated in Fig. 3 in which spatial distribu-
e BT , tions of the phasep; at the origin of the fluxonx=0, are
~ 9,V 1,0) . .
R ) o — 0,0 1,0.) shown for different values af;,. The curves were obtained
12+ g 0,0, 1,05) - by numerically simulation of Eq(12). Parameters of the
77777 0,1, 1) ] stack areJ;,=0, 0.1, 0.5, 1, 2, 10 from the top to the
1L - e 12) | bottom curve, respectively. The current density is normalized
' Y o0 1, 10) to the critical current density in JJI.,=1, and\g;=Ag
i g T ¢U(7»_]l/(1'sz)l/2)(1c:Lw)— :)\53:0.1}\J1, d1=d2=d3=t1=t2=o.01)\31, 8%05
1.0 : ' : ' : ' : ' ' Table | summarizes the characteristic parameters of a
0.0 0.2 0.4 0.6 0.8 1.0

double stack for different values df, andJ,;=1 and for
the coupling paramete®=0.5 corresponding to the maxi-
mum coupling in the case of a thin layered stagdkg\g;.

different values of]., obtained by numerical simulations. Param- The Ierlgths are~nor_mallzed K.Ql’ the vel_ocmes a.re nor_mal_
eters of the stack ard.,=0,0.1,0.5,1,2,16; from the top to the ized toCoy, andco, is the Swihart velocity of a single junc-
bottom curve, respectively: and;=1, Ag=Ag=Aez=0.1n,;,  UON 2. We note that ford.,/J.;<1, ¢, becomes purely

d;=d,=ds=t,=t,=0.01\ ;, S~0.5. The top and bottom curves iMaginary which means that tte, component cannot propa-
represent also the solution for a single ¢4, with \,=\,, and 9ate and in the dynamic state the single fluxon solution is

Ny=\y /J1I—S2. given by Eq.(183. In general, this is a consequence of the

fact that mode(1,0) for J.,/J.1<1 is unstable since it is
Equation (25) provide a fairly good approximation fap, more favorable to have a fluxon in a weaker junction and the
since it satisfies asymptotically E¢L2) for x<—1, x~0  mode(0,1) will be realized instead.

X/A 1

FIG. 3. Spatial distributions op, at the origin of the fluxon for

and x>1 and ¢, satisfies asymptotically Eq12) for x< For the case oN not identical SJJ's there ah¢ different
—1 andx>1 and has a correct valug,=0, atx=0. characteristic lengths, ERO) and velocities, Eq21) where
Figures 2a) and 2b) show calculated spatial distributions the parameters;, j=1,2,..N should be obtained from Eq.

of sin(¢) and the magnetic inductioB, respectively, in the
static (u=0) case with a single fluxon in junction 1. Param-
eters of the stack arel.,;=1, J.,=0.1, Agqg=Agr,=\g3 C. Free energy

=01y, dy=dp=d3=1;=1,=0.04,, andS~0.5. Solid The free energy of the stack is the sum of the kinetic

and dashed curves in Fig(a represent the solution for energy of supercurrents, the magnetic energy, and the Jo-

sin(py) and sinfy), respectively, obtained by numerical sephson coupling energy.

simulation of Eq(12) Dashed-dotted and dotted curves in The free_energy density of electrodés given by

Fig. 2(a) represent the approximate analytical solution for

sin(e;) and singp,), respectively, obtained from E®5). For

¢, the agreement between the approximate analytical solu-

tion and the numerical simulations is so good that they can

hardly be distinguished in the figure. di
An important consequence of E5) is that the phase XCOU’()\_Si

distribution in both junctions is not described by a single

length. This can clearly be seen in FigaR At large dis- The free-energy density stored in the Josephson junction

tances from the fluxon origin the decay length is given by thds

largest ofi ; , and atx=0 we can identify the effective pen- 5

etration depth Ay equalizing the spatial derivative, = :% &

¢1(x=0), to that of a single soliton, Eq16) W8 " 2mc

1 Asi
Fs=g- f [B2+\Z, rof? B]dz=8—;[(5i2+ BY 1)

(27)

d:
~2B;B;_; cosecré—') .
)\si

Jeil1—cod ¢))]. (28

TABLE |. Characteristic parameters of a double stack for different values.,ofndJ;;=1 and for the
coupling paramete$=0.5.

Jeo A2 K1 K3 Ay A Ao Co2 Cy C,

0 o -2 0 1 ey 1 %o 0.894 i0
0.1 3.162 —1.854 0.054 0.987 3.700 1.008 10 0.887 10.348
0.5 1414 —1.366 0.366 0.919 1.776 1.024 2 0.856 i1.653

1 1 -1 1 0.817 1.414 1.035 1 0.817 1.414
2 0.707 —0.732 2.732 0.6501 1.256 1.049 0.5 0.771 1.106
10 0.316 —0.539 18.54 0.3120 1.170 1.086 0.1 0.720 1.014

0 0 —-0.5 0 0 1.155 1.155 0 0.707 1
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B B B B B B have considered a single fluxon mode, while in Ref. 22 esti-
........ analytic AJd= o mations were made for a special in-phddel) mode and
out-of-phase (%; 1) mode. The additional fluxon energy for

| the SJJ has two main contributior(g) Josephson energy of
i junction 2 and,(ii) the change of the effective Josephson

numerical

S penetration depth with respect to that of the uncoupled junc-
= ' tion. As can be seen from Table I, the latter contribution
X 105k A dominates fod.,—0 andJ.,— when the Josephson pen-

etration depth is equal tog and the Josephson energy of the
second JJ is negligible. Since the fluxon energy is localized
in the fluxon core the second contribution is defined\gy

| : | | | 0 Eq. (26) so thatE/Eyg~\y/\;; and the maximum fluxon
vl vl vl sl ol e eneray is equal TE.JVI=S2 This is in agreement with
104 10% 102 107 10° 10! 10? Fig. gy a 0 9

J02/Jc1
D. The lower critical field
FIG. 4. The free energy of a single fluxon in junction 1, as a . .
function of J.,/J., for several layer thicknesses and coupling pa- Knowing the fluxon free energy, E¢29) we can derive
rameters fromS=0 (As/d=0) to S=0.5 (\s/d=). Solid lines  the lower critical field,H.;, of the stack, i.e., the magnetic
represent the result of the numerical simulation and dotted lineéield at which the fluxon state becomes thermodynamically
were obtained using the approximate analytic solution. The energgtable. The thermodynamic equilibrium for a givéh is

is normalized to the fluxon energy in a single JJ. achieved in the minimum of the Gibbs free energy,

Taking a sum over the whole stack, expresdihgia ¢’ G=F— ﬁ 32
from Eq.(1a), and using the first integral, E(LO), we obtain B A7’ (32
a particularly simple expression for the free-energy density } ] .
of the stack For bulk superconductors or JJ's with thick electrodes this

equation provides a simple relationship between the fluxon
N

®. [ dc free energy and the lower critical field:
=2 =5 o AT Y, Il +E
T omc 1672 ¢ @'+ 2, Jall-cogej)] H B
=1 Hco—47TE/(D0. (33)
~ Po However, this equation cannot directly be applied to SJ3J'’s.
C27cC C+ 2 J[1-2codg)]|+Ey, (29 The reason is that in order to achieve a coupling between the

) ) o junctions, the superconducting layers should be made thin
and (13). Under this condition, a particular JJ in the stack

EH:i [HZ Nst cotk(ﬂ + Nens1 Coti—( On+1 contains only a fraction of the flux quantum. Thus, for deter-
87 As1 NsN+1 mination ofH_; we should estimate the total flux carried by
a fluxon.
—H’S‘A‘lHS]. (30) First we consider a single junction. In this case the total
flux of a single fluxon is equal to
HereH¥ is a string(HS;,0, ... OHSy.1); thusEy con- A*
tains only terms~H?2. The total energyE is obtained by =9, A (39

integration of Eq(29) along the stack lengtfx axis). Figure

4 shows the total energy of a single fluxon in junction 1,where

mode(1,0), as a function o8, /J.; for H=0 and for several

layer thicknesses and coupling parameters fr@ws0 Af=Ai—S—-S,1 (35

(As/d=0) to S=0.5 (\s/d==). Solid lines represent the . . . ) )

result of numerical simulation of Eq12) and dotted lines IS the effective magnetic length of the junction. For the lim-

were obtained using the approximate analytic solution, Eqiting cases of thick layersd; /As>1, Af=A;, and as ex-

(25) Once again a good agreement between the approximaf@cted the ﬂuxon carries the Whole ﬂux quantum. For th|n

analytical solution and the numerical simulation is seen. Théayers,d;/\s;<1, A{ =t;+d;/2+d; /2 and the fluxon car-

energy is normalized to the fluxon energy in a single junctiorries only a tiny fraction ofP,. The lower critical field of a

single JJ is given by
DoJcA
Eo=8—_—— (31) ’ _4mE

cl P !’

(36)
Thus, from Fig. 4 it is seen that the fluxon energy in the stack

is always higher than that of a single junction in qualitativewhich regarding Egs(34) and (35 can be considerably
agreement with Ref. 22 but in disagreement with Ref. 23Jarger thanH .y, Eq. (33). This is due to the fact that the
However, we cannot directly compare our results since weanagnetic field can freely penetrate the JJ with thin electrodes
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without induction of Josephson screening currents. In turn, 12 — T T T T T T T 1
this is due to the reduction of the effective magnetic length - =1.J .=2

Jo =1 J / H=0
A*, see Eq(35). 1ol , = i

To estimate the total flux for the case of a stack we should ~  { 77~ mode (0,n) p %
consider the spatial distribution d in the stack. For a mode (n.0) -
double stack we can write using Ed.a) .-

Do | Are1+S0; SiAr+ 5,5, o 6F .
Bi=on | A1A,(1- D)) A1A2(1—SZ)}_B”+A1H’ wo| ;
(379 o s _
Do | Spp1 A1y SA1t5S, [ g e
B om | Ah1-59) [AlAzu—sZ)}‘BfﬁAzH' 2 Nt T
‘ ' (37b) A H=1.1H,,
Here, the first terms are the magnetic induction of the fluxon, 0 N s e U
B¢, and the second terms represent uniform magnetic-field O 1 2 3 4 5 6 7 8 9 10
penetration into the JJ with thin electrodes. Number of fluxons
S'ﬁ'bSt'tUtmg E_q.(37) Into E_qs. (27), (28), and (32)_ we FIG. 5. Gibbs free energy versus the number of fluxonsHor
obtain the equation for the Gibbs free-energy density =0, andH slightly larger tharH, for two particular fluxon modes,
H (n,0) and (On) corresponding to fluxons in JJ1 and JJ2, respec-
G(B)=G;— yp= [BflA’{ + szA’é], (39 tively. Parameters of the stack alg;=1, J.o=2, Ag1=Asp=Ag3

=0.1\;;, t;=t,=d;=d,=d3=0.0I\;;, L,=50\;;, andS~0.5.

where

Figure 5 showds(B) versus the number of fluxons for
H=0, andH slightly largerH.; for two particular fluxon
modes, (,0) and (On). Solid lines represent moden,Q)
2 and showG(B) as a function of fluxons in JJ1 with no flux-
+BhA-l, (39) ons in JJ2. Dashed lines represent moden)(@nd show
G(B) as a function of fluxons in JJ2 with no fluxons in JJ1.
The number of fluxons in the JJ's is measured by the total
phase shift along the junction length divided by. Param-
eters of the stack arel;;=1, Joo=2, Ag=Ago=A\g3
:0.1}\31, t1:t2:d1:d2:d3:0.01}\31, LXZSO)\J]_, and
S~0.5. In Fig. 6, a contour plot of Gibbs free energy versus

1
Gy=2 Jall—coge)]+ P [Bf1A1—2B¢1B12S,

is the Josephson energy. In E§8) we skipped terms
~H? which are not important for minimizinG(B).

From Eqgs.(38) and(39) it is seen that5(B) is a bilinear
form of B¢, , which can be minimized in different ways for
different relations betweeB;,; and B¢,, Eq. (37). In other
words, G(B) has a particular minimum for each particular
fluxon mode (4,n,).

The lower critical field corresponds to the state with a 5
fluxon in the weakest junctiofJ) and no fluxons in the
second JJ. Thus to obtald.; we should minimizeG(B)
with respect to the number of fluxons in JJ1 for the fluxon
mode (,0). After integration of Eq(38) along thex axis we
finally obtain

Jcl=1’ ']c2=2
H=1.1H

47E(1,0 3
A= gE (40)
where
2
A’IAZWLA;SZ)
*
*7= O<A1A2(1_5)2 ’ “1

andE(1,0) is the free energy of a single fluxon in JJ1 ob-
tained in the previous section. Note thht in Eq. (41) is

equal to the flux carried by a fluxon. For junctions with iden-
tical superconducting electrodebg\ g, 0

Number of fluxons in Junction 2

0 1 2 3 4 5 6 7 8 9 10

_AmE(L,0 A} Number of fluxons in Junction 1
c1= d, d(t+d)’ (42) FIG. 6. Gray scale plot of Gibbs free energy versus the number
of fluxons in junctions 1 and 2 fad=1.1H.,. Parameters of the
which in this limit has the same structure as that for a singletack are the same as in Fig. 5. Darker regions correspond to
junction, Eq.(36), but with larger total fluxon energy as smaller Gibbs energy. The existence of various quasiequilibrium
shown in Fig. 4. states can be seen.
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the number of fluxons in junctions 1 and 2 is shown in gray 8 T . ™ .
scale forH~1.1H, . Parameters of the stack are the same as Mode (1,0) |
in Fig. 5. Darker regions correspond to smaller Gibbs en- 6F Joe " 7
ergy, the absolute minimum of Gibbs free energy is achieved
aroundn; =7 andn,~0. 4F 137 -
Figure 5 shows that at zero magnetic field the minimum — | 0
of G(B) corresponds to the Meissner state with=n,=0. o2 -”:081 01
ForH>H_,; the absolute minimum is achieved for a particu- E’ Z:O'S 0
lar fluxon mode (,,n,), e.g., for the case of Figs. 5, 6 the OF —=« O
absolute minimum is achieved for th&, 0) mode. This 1
mode corresponds to thermodynamically equilibrium state. 2F .
However, from Figs. 5, 6 it is seen that besides the absolute Lo
minimum there are a number of other fluxon modes for 4+ —V, .

which the local minimum of the Gibbs free energy is L 6
achieved. All those modes are stable and represent the pos- 0 8

sible quasiequilibrium states in the stack. X/,
FIG. 7. Instantaneous spatial profiles of the voltaygs in

junctions 1(solid lineg and 2(dashed linesgenerated by the mo-

tion of a single fluxon in JJ1, mod@.,0 for four different fluxon
The dynamic behavior of SJJ's is characterized first of alvelocities, u=0.5<¢;, u=0.81~t;, C;<u=1<¢;, u=1.37

by the existence of several limiting Swihart velocities. In the~¢. The profiles were obtained for a double stack with identical

case of a double stack there are two characteristic Swihakgnctions — with A =A;=N3=0.1\y;, t;=t,=d;=d,=d;

Ve|OCitieS’51'2, see Eq(21). Thus, the behavior of the stack =_0.01)\Jl, S~0.5. The plots for d.ifferent velocities were shifted

should be different fou<¢,; andG,<u<t,. Here we re- With respect to each other for clarity.

strict ourselves to consider the single soliton state, mode ) ) .
(1,0). Note that this state is neither the in-phase nor the outY2(0). always has an opposite sign with respectMg0).

of-phase state discussed in the literattifé* because we Note thatV, has nonzero average value, while the average

always have a zero total phase shift in JJ2. value ofV, is equal to zero since there is no total phase shift
For u<@, a pure traveling soliton solution exists and is N JJ2.

given by Eq.(25). Whenu—<; a Lorentz contraction of the

soliton takes place sincg;,— 0, see Eq(19). A. Attractive fluxon interaction

For ¢,<u<¢,, 7 becomes purely imaginary. This |, Fig. 8, the instantaneous spatial profiles of the mag-
means that thé, component in Eq(25) transforms t0 @  petic inductionB, ,, Eq.(37), in junctions 1 and 2 are shown

Ill. FLUXON DYNAMICS

traveling plasma wave by the solid and dashed lines, respectively, for five different
F,=expliky(x—ut)), (43) fluxon velocities, which are the static case=0, and the
where 5

Mode (1,0)

2
u
k2=)\2<~——1).
1 1 C%

The only possible pure traveling soliton solution in this case
is given by a single component special solutiBp, Eq.
(18b). Such soliton will survive until=<c,. For higher ve-
locities, the F, component will also turn to a traveling
plasma wave.

In Fig. 7, the instantaneous spatial profiles of the voltages
Vi2

B, /H,

(OF
V1,2zﬁ P1,2,

(=]
oo Ry R At
-
»

in junctions 1 and 2 are shown by solid and dashed lines, XAy,

respectively, for four different fluxon velocities)=0.5 FIG. 8. Instantaneous spatial profiles of the magnetic induction

<C1, U=0.81~Cy, C1<U=1<C,, U=1.37=Cy, see Table g iy nctions 1(solid lines and 2(dashed lingsfor a single
I. The profiles were obtained from the analytic solution for ag . von in 331, modé1,0) and for different fluxon velocities)=0,

single fluxon in JJ1, modéL,0) in a double stack with iden- u=0.5<¢,, u=0.81~%,, G;<u=1<7%,, u=1.37~%,. The pro-
tical junctionshg =N =As3=0.I\jy, ty=t,=d;=d>=0d3 files were obtained for a double stack with identical JJs, similar to
=0.0I\;;, and S~0.5. The voltage is normalized tWy  that in Fig. 7. The plots for different velocities were shifted with
=®ywp/2mc. The plots for different velocities were shifted respect to each other for clarity. It is seen that at high velocities
with respect to each other for clarity. From Fig. 7 it is seenB,(0) changes the sign resulting in attractive fluxon interaction in
that the voltage in the second junction at the fluxon origin,adjacent JJ's.
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dynamic oneu=0.5<¢;, u=0.81=¢;, C;<u=1<0C,, u the (1,0) and(0,2) modes in a stack of two JJ's correspond-
=1.37~C,. The profiles were obtained from the analytic ing to a single fluxon in JJ1 and JJ2, respectively. It is clear
solution for a single fluxon in JJ1, modé,0) in a double that mode&(0,1) is given by a solution for modéL,0) with the
stack with the same parameters as in Fig. 7. The magnetigversed ratid).,/J; . For example, mod€d,1) in the stack
field is normalized tdHo=®o/(7A 1\ ;7). The plots for dif- ~ With Je;/Jc,=0.1 s identical to modéL,0) in the stack with

ferent velocities were shifted with respect to each other fodc2/Jc1=10. From Table | we see that modés0) and(0,1)
clarity. From Fig. 8 it is seen that at low velocities the mag-have different characteristic velocities. The only case when

netic induction in the second junctid, has the same sign modes(1,0) and(0,1) are identical is the case of double stack
asB,, see also Fig. (). With increasing velocity a dip in with identical JJ's. Already for a threefold stack with identi-

B,(0) at the fluxon origin appears which is developed withCal JJ's mode¢1,0,0 and(0,1,0 have different Swihart ve-

) . 2 . . locities and mode$1,0,0 and(0,0,1) are identical.
increasing fluxon velocity and at high velocities changes the In general for a stack withN nonidentical JJ's with, in

sign with respect tCB.l(Q)' W_e emphaS|ze tha}t unhkg the total, M fluxons, the total possible number of different fluxon
single JJ the magnetic inductid) in the stack is not given modes is equal to

by the spatial derivative of the phagg as it some times can |

be seen in literatur&, but rather is defined in a more com- = (N+M-1)!

plicated way, see Eq$37,1). (N=2)!M! "’
The origin of the sign change dB,(0) can be most each havingN different characteristic Swihart velocities.

clearly seen for the ca3g <u<c,. In this case the soliton Thys the total number of possibleV branches is
solution corresponds to the single-component special solu- N (46)
n=mN,

tion F,, Eq. (18b). At the fluxon origin,¢; and ¢5 have
different signs, while the weight coefficient far, is larger ~ which can be much larger thax.
than that forep;, A;>S,, see Eq(37b).

Now if we suppose that there is a fluxon in JJ2, it would
tend to be attracted to the region wil3<<0. Then the so-
calledin-phasestate with fluxons one on the top of the other ~ As we have shown above, the obtained analytical fluxon
in the adjacent JJ’'s may become favorable in the dynamigolution in Eq.(25) provide not only qualitative but also a
state with high enough fluxon velocity. A possible indication fairly good quantitative approximation fas; since it satis-
of such unusual phase-locked state has been observed fies asymptotically Eq(12) for x<—1,x~0 andx>1. Pre-

cently by low-temperature scanning electron microscopyiously, a linearized version of the coupled sine-Gordon
(LTSEM).?® equation have been considef@however, the solution was

obtained only for traveling waves, EG3), which certainly
is very different from the propagating soliton solution ob-
tained here. We admit that the traveling-wave approach can
From the analysis made above, we can make conclusionsrovide the correct values for the characteristic penetration
about the overall-V curve of a double stack in an experi- depths, Eq(20), and Swihart velocities, Eq21), of the SJJ.
mental situation. For a given fluxon mode we can distinguisfHowever, in previous analysfs*®22-%4it was not realized
three branches in theV curve.(i) u<c;. This is the lower that the fluxon solution in SJJ's cannot be described by a
flux-flow branch for which the soliton solution is given by single penetration depth. This can be clearly seen from Fig.
Eq. (25). (i) c;<u<T<,. This is the upper flux-flow branch. 2(a) which illustrates that the decay lengths of currents in
Here, the only possible soliton solution is given by the spejunctions 1 and 2 are different. This is a general property of
cial solution in Eq.(18h). Simultaneously we would expect a a system of coupled equations with different characteristic
strong plasma wave generation in both JJ's of the form ofengths. For the case of JJ's in the stack, the solution for a
Eqg. (43) so that the general propagating wave is given by theparticular single fluxon modé,...0,1,0,...Dis described in a
superposition of a solitofr,, Eq. (18b and plasma waves unique way byN different characteristic lengths, similar to
from a degenerateB, component, Eq(43). (iii) u>T¢,. At Eqg. (25). Note that forN>2, even for SJJ's with identical
this branch only plasma waves exist with two different dis-parameters, different fluxon modes are in general described
persion laws by different sets oN characteristic lengths and velocities.
s o~ o 72 From Figs. 5 and 6 it is seen that there are a lot of local
w] = C1AKI TN 5). (44 minimums of the Gibbs free energy corresponding to differ-
ent fluxon modes, each representing a quasiequilibrium state
As we mentioned in Sec. Il B, for the-fold stack there of the SJJ. Under these circumstances we expect a pro-
are N characteristic Swihart velocities providing distinct  nounced hysteretic behavior and a prehistory dependence in
flux-flow branches in thé-V curve for a particular fluxon SJJ's associated with transitions between quasiequilibrium
mode. However, the possible number of branches intkle  fluxon modes. As was discussed in Ref. 8, this might be the
curve is not limited by the number of JJ's in the stack. As itreason for having complicated and not well-defined Fraun-
is shown in Sec. Il D, there are various quasiequilibriumhofer patterns in “long” SJJ's with.,>\ ;. This is in quali-
fluxon modes in a given external magnetic field. In addition tative agreement with Fraunhofer patterns observed for
a given number of fluxons can be arranged in the stack itlNb/AIO, /Nb,® Nb/Cu multilayer§ and HTSC's:10:11
different manners, each corresponding to a particular fluxon As we mentioned in Sec. Il C, there is a certain discrep-
mode. Different fluxon modes will in general have different ancy in the literature about the estimation of the fluxon free
characteristic Swihart velocities. For example, let us consideenergy and the lower critical fiefd:?® From the numerical

(45

IV. DISCUSSION

B. Fluxon modes andl -V curve
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simulations and the analysis based on the approximate aneespect to stability of different modes in the dynamic state
lytic solution we claim that the fluxon energy in the stack isshould be performed.

always larger than that of a single JJ, see Fig. 4. More seri-

ous disagreement exists in estimation$igf . In the limit of V. CONCLUSIONS

thin layersd<\, H.; of Ref. 22 is aboutX¢/d)?>1 times
smaller than our result given by EGt2). Such discrepancy
is caused by disregarding the, term, Eq.(30), in the
Hamiltonian of Ref. 22 and consequently disregarding th
free magnetic-field penetration in thin layered SJJ's. With
increasing number of layers the total flux of the fluxon in-
creases and approachdg. For the infinite stack with thin
layers the lower critical field was derived in Refs. 14—16 for
identical JJ's and in Ref. 17 for nonidentical JBg; in this

In conclusion static and dynamic properties of nonidenti-
cal stacked Josephson junctions were studied theoretically.
éA\n approximate analytic solution for a stack with arbitrary
parameters was obtained. Characteristic penetration depths,
Swihart velocities, the lower critical field, the first integral,
and the free energy for a stack of nonidentical junctions were
derived and studied for different parameters of the stack. We
show that attractive interaction of fluxons in adjacent junc-
case is in the range predicted by E83) tions exists in thg dynamic state of the stack Iegding to ap-

. wepearance of the in-phase state in SJJ’s. In a given external

From the analysis of the dynamic behavior of SJJ's g X
show that the attractive interaction of fluxons in adjacentmagnetlc field the Gibbs free energy has a number of local

junctions appears at high enough fluxon velocity. This will Minima correspondmg to partlc_:ular_ _flu_xon modes in the
lead to the possibility of having an in-phase fluxon modestack, each representing a quasiequilibrium state. For a stack

with fluxons on top of each other. Recently, a possible indi-Of N junctions, each mode would result b distinct flux-

cation of such state has been observed by LTSEM. flow branches in thd-V curve. Taking into account that

We nofe hoveer it 15 ot necessan to Have T, Modes Wb edus o) umber o lcons e o
different in-phase and out-of-phase fluxon modes to observéj P

two distinct flux-flow branches in the'V curve of a double '-0" branches can be much larger than the number of junc-

SJJ. As we showN flux-flow branches exist for each par- tions in the stack.

ticular fluxon mode which is simply a consequence of exis-
tence ofN different Swihart velocities. An important conse-

guence of this is a possibility of having>N flux-flow We are indebted to A. Yurgens and N. Mros for stimulat-

branches in thd-V curve of the SJJ, see E@6). Such ing discussions. The work was supported by the Swedish
behavior was observed for Nb/Cu multilayers in parallelSuperconductivity Consortium and in part by the Russian
magnetic fielf Of course not all of then I-V curve Foundation for Basic Research under Grant No. 96-02-
branches should be observable in experiment. Analysis witi9319.
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