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Static and dynamic properties of stacked Josephson junctions: Analytic solution
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Static and dynamic properties of stacked Josephson junctions are studied theoretically. An approximate
analytic solution for a stack with arbitrary junction parameters was obtained. The analytic solution is in good
agreement with numerical simulations. Characteristic penetration depths, Swihart velocities, the lower critical
field, the first integral, and the free energy for a stack of nonidentical junctions were derived and studied for
different parameters of the stack. We show that attractive interaction of fluxons in adjacent junctions exists in
the dynamic state of the stack, leading to appearance of the ‘‘in-phase’’ state with fluxons on top of each other.
In a given external magnetic field the Gibbs free energy has a number of local minima corresponding to
particular fluxon distributions~modes! in the stack each representing a quasiequilibrium state. For a stack ofN
junctions each mode would result inN distinct flux-flow branches in the current-voltage characteristic. Taking
into account that different modes with equal total number of fluxons are not identical we conclude that the total
possible number of flux-flow branches can be much larger than the number of junctions in the stack.
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I. INTRODUCTION

Stacked Josephson junctions~SJJ’s! have attracted much
attention in the last years because they are promising ob
for application in cryoelectronics and they exhibit a lot
interesting physical phenomena. A particular interest in S
was stimulated by the discovery of the intrinsic Joseph
effect in high-Tc superconductors~HTSC’s! and organic
superconductors.1,2 The intrinsic Josephson effect in thos
compounds is attributed to Josephson coupling betw
atomic scale superconducting layers; e.g., in Bi2Sr2CaCu2O8
the Josephson coupling is believed to exist between
copper-oxide double planes through the barrier formed
the Bi-O and Sr-O layers. Indeed, the intrinsic Joseph
effect in HTSC’s exhibit many similarities with the behavi
of Josephson coupled low-Tc superconducting~LTSC’s!
structures.

For Josephson coupled LTSC’s layered structures tra
verse transport and magnetic properties are well stud
for stacked Nb/AlOx /Nb superconductor-insulator
superconductor~SIS! tunnel junctions3–5 and for Nb/Cu
proximity coupled superconductor–normal-meta
superconductor~SNS! multilayers.6–8 In Nb/Cu multilayers
~like in the case of HTSC’s intrinsic SJJ’s! the layer thick-
ness is much less than the London penetration depth whi
Nb/AlOx /Nb SJJ’s the superconducting layer thickness
typically of the order of the London penetration depth. Ind
pendent of the nature of the coupling between layers,
behavior of both Nb/AlOx /Nb SJJ’s and Nb/Cu multilayer
are characterized by a pronounced phase locking phen
enon due to mutual coupling of SJJ’s. For example, in Nb
multilayers phase locking of ten SJJ’s was achieved by
plying a small external RF power.7

Among the experimental evidence for the Josephson-t
560163-1829/97/56~14!/9106~10!/$10.00
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coupling between atomic layers in HTSC’s we mention~i!
observation of multiple ‘‘quasiparticle’’ branches in th
c-axis current-voltage (I -V) characteristics.1,2 Here, each
branch is assumed to be caused by switching of an additi
SJJ from the zero voltage state to the quasiparticle bra
with its characteristic superconducting gap voltage. Such
havior is typical for SIS Josephson junctions connected
series9 and was observed for Nb/AlOx /Nb SJJ’s.3,4 The total
number of quasiparticle branches in theI -V curve in this
case is equal to the number of junctions in the stack.~ii !
Observation of Fraunhofer oscillations of thec-axis critical
current1,10,11with the periodicity in magnetic field defined b
the space periodicity of superconducting layers. Clear Fra
hofer oscillations of this type have been observed in Nb/
multilayers.8 ~iii ! Observation of flux-flow-typeI -V curves
in magnetic field parallel to theab plane.12 Very rich flux-
flow phenomena with phase locking and multipleI -V curve
branches have been observed for LTSC’s Nb/AlOx /Nb SJJ’s
~Ref. 4! and Nb/Cu multilayers.8 For Nb/Cu multilayers the
number of observed flux-flow branches in theI -V character-
istic exceeds the number of junctions in the multilayer.8 ~iv!
observation of Josephson plasma wave resonances
HTSC’s.13

Theoretically, properties of layered superconductors w
Josephson coupling between layers were studied in a num
of papers, see, e.g., Refs. 14–21. Among the recent deve
ments in this direction we mention realization of collecti
plasma exitations20 and charging effects21 in HTSC’s SJJ’s.

In the current paper we study theoretically the static a
dynamic properties of SJJ’s using the formalism of Sak
Bodin, and Pedersen.18 A simple approximate analytic solu
tion for a stack with arbitrary parameters was obtained. T
analytic solution is in good agreement with numerical sim
lations. Characteristic penetration depths and Swihart vel
9106 © 1997 The American Physical Society
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56 9107STATIC AND DYNAMIC PROPERTIES OF STACKED . . .
ties, the lower critical field, the first integral, and the fr
energy were derived and studied for different parameter
the stack.

From our analysis we show the existence ofattractive
fluxon interactionin the adjacent junctions in the dynam
state of the SJJ so that the ‘‘in-phase’’ state18 with fluxons on
top of each other become possible at high enough flu
velocity. We show that in a given external magnetic fie
there is a number of quasiequilibrium fluxon states~modes!
corresponding to a particular fluxon distribution in SJJ’s. F
a stack ofN junctions each mode would result inN distinct
flux-flow branches in theI -V characteristic. Taking into ac
count that different modes with equal total number of fluxo
are not identical we conclude that the total possible num
of flux-flow branches can be much larger than the numbe
junctions in the stack.

II. GENERAL RELATIONS

We consider a stack ofN Josephson junctions~JJ’s! with
the tunnel barrier parallel to thex-y plane and thez-axis
directed perpendicular to the barrier. An external magn
field, H, is applied parallel to the junction plane in they-axis
direction.Lx andLy are the junction lengths along thex and
y axes, respectively. A sketch of the stack is shown in Fig
We will assume thatLy is smaller than the Josephson pe
etration depth,lJ . We number the junctions in the stac
incremental in thez-axis direction so that the bottom junc
tion has the numberi 51 and the top junction corresponds
i 5N. Superconducting layers composing the JJ’s are a
numbered in thez-axis direction so that the bottom layer h
the numberi 51 and the top layer has the numberi 5N
11. Thus the JJ numberi is composed by the layers numb
i and i 11, see Fig. 1. The superconducting layers are ch
acterized by the London penetration depthlsi and the thick-
nessdi and junctions are characterized by the tunnel bar
thicknesst i and the critical current densityJci . Hereafter,
the subscripti on the quantity represent its number.

Integration of the vector potential over the contour cov
ing the tunnel barrier provides a relationship between
gauge-invariant phase differencew i and the local magnetic
inductanceBi inside the junction:18

FIG. 1. Schematic drawing of the stacked Josephson juncti
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F0

2p

]

]x
w5A1•By , ~1a!

F0

2p

]

]y
w52A1•Bx , ~1b!

whereF0 is the flux quantum and

w5U w1

w2

A
w i

A
wN21

wN

U , B5U H
B1

B2

A
Bi

A
BN21

BN

H

U ,

A15U2S1 A

0 A 0

A 2SN11

U , ~2!

A5U L1 2S2 0 ••• 0

2S2 L2 2S3 0 •••

0 � � � 0 •••

••• 0 2Si L i 2Si 11 0 •••

••• 0 � � � 0

••• 0 2SN21 LN21 2SN

0 ••• 0 2SN LN

U ,

~3!

and

L i5t i1lsi coth~di /lsi!1lsi11 coth~di 11 /lsi11!, ~4!

Si5lsi cosech~di /lsi!. ~5!

The inner part of the matrixA1 , Eq. ~2!, is identical to the
matrix A, Eq. ~3!.

Differentiating Eqs.~1a! and ~1b! with respect to thex
and y coordinate we obtain the coupled ‘‘sine-Gordon
equation describing the behavior of stacked JJ’s:18

F0c

8p2 S ]2

]x2 1
]2

]y2Dw5A•Jz , ~6!

where

Jz5U Jz1

Jz2

A
Jzi

A
JzN21

JzN

U ,

Jzi5Jci sin~w i !1
F0Ci

2pc

]2w i

]t2 1
F0

2pcRi

]w i

]t
. ~7!

s.
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9108 56V. M. KRASNOV AND D. WINKLER
HereJzi is the Josephson current in junctioni , Ci andRi are
the junction capacitance and the quasiparticle resistance
spectively, per unit area of the junction.

Equation~6! can be simplified for the case of smallLy .
We restrict ourselves to consider the ‘‘overlap’’ geometry
the stack. LetJyi be the bias current uniformly injected in th
layer i along they axis, see Fig. 1. Using the Biot-Savart la
we can write for thex component of the magnetic inductio

Bxi5
2p

c F(
1

i

I y j2 (
i 11

N11

I y jG , ~8!

whereI y j5*Jy jdzj . Having substituted Eq.~8! into Eq.~1b!
and differentiating with respect toy we obtain

F0c

4p2

]2

]y2 w i5
1

2Ly
F ~L i2Si2Si 11!S (

i 12

N11

DI y j2(
1

i 21

DI y jD
1~L i2Si1Si 11!DI yi112~L i1Si

2Si 11!DI yiG . ~9!

In deriving this equation we have substituted the derivat
of I yi by the finite difference]I yi /]y'DI yi /Ly , where
DI yi5I yi(Ly)2I yi(0). Equation ~9! makes it possible to
take into account different biasing configurations, e.g., b
ing via middle electrodes. In the usual case when the stac
biased via the top and the bottom layers the set of Eqs.~9! is
reduced to that of Ref. 18.

Subtraction of Eq.~9! from Eq. ~6! yields the final one-
dimensional coupled sine-Gordon equation for the phase
tribution in the stack. Equation~6! should be supplemente
by the boundary conditions atx50, andx5Lx which are
given by Eq.~1a! with Byi[H.

As we will show below the solution of the coupled sin
Gordon equations for SJJ’s allows different quasiequilibri
states~which we will refer to as ‘‘modes’’! characterized by
the different number of fluxons in the junctions. For the sta
of N junctions we will use a string (n1 ,...ni ,...nN) as a
short notation of those modes, whereni is a number of flux-
ons in the junctioni . For example, mode~1,0! represent the
state with a single fluxon in junction 1 for a double SJJ.

A. The first integral

In the static case Eq.~6! has a first integral which can b
written in a compact form

F0c

16p2 w8* A21w81( Jci cos~w i !5C, ~10!

where C is a constant. Here the symbol ‘‘prime’’ on th
quantity denotes its spatial derivative and the symbol* de-
notes the transponation so thatw8* is a string ofw i8 . For
double SJJ’s the first integral is equal to
re-

r

e

s-
is

is-

k

lJ1
2 Jc1

~12S2!
F ~w18!2

2
1

L1

L2

~w28!2

2
1

S2

L2
w18w28G

1Jc1cos~w1!1 Jc2 cos~w2!5C, ~11!

which for identical junctions reduces to that of Ref. 22.

B. Approximate analytic solution

In general the solution of Eq.~6! is quite complicated.
However, it is possible to construct an approximate solut
providing a fairly good approximation in the whole spac
time region. We will show the procedure for obtaining th
approximate solution for the example of double stacked J
The extension for the case of an arbitrary number of stac
JJ’s is straightforward.

For low viscosity the system of equations for double SJ
is

lJ1
2 ]2w1

]x2 2
1

vp1
2

]2w1

]t2 1
C2S2

C1L1vp1
2

]2w2

]t2

5sin~w1!2
Jc2S2

Jc1L1
sin~w2!,

lJ1
2 ]2w2

]x2 2
C2L2

C1L1

1

vp1
2

]2w2

]t2 1
S2

L1vp1
2

]2w1

]t2

5
Jc2L2

Jc1L1
sin~w2!2

S2

L1
sin~w1!. ~12!

Here lJ1 and vp1 are the Josephson penetration depth a
the plasma frequency, respectively, of the single junction
lJ1

2 5F0c/8p2Jc1L1 , vp1
2 5(F0/2pc)(C1 /Jc1).

The coupling strength can be described by a dimens
less coupling parameter

S25
S2

2

L1L2
. ~13!

First we consider a special single fluxon solution in t
form

sin~w1!5k sin~w2!, ~14!

which allows the 2p total phase shift in one JJ and zero to
phase shift in the other JJ. Herek is a constant paramete
which should be determined from Eq.~12!. For definition we
assume that the fluxon is situated in junction 1. In this c
w2 is small for the arbitrary coupling parameterS and the
left-hand side of Eq.~12! can be linearized with respect t
w2 ,

w19'kw29 .

After this, Eqs.~12! are reduced to an ordinary sine-Gordo
equation

Fjj9 5sin„F~j!…, ~15!

which has a well-known fluxon solution in the form of
traveling soliton

F54 arctan„exp~j!…, j5
x2ut

lJg
. ~16!
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56 9109STATIC AND DYNAMIC PROPERTIES OF STACKED . . .
Here u is the velocity of the soliton andg is the Lorentz
factor,g2512(u/ c̃)2, c̃5lJvp is the Swihart velocity.

Substituting Eq.~14! into Eq. ~12! we obtain that the pa
rameterk in Eq. ~14! is a solution of the quadratic equatio

S2

L1
k21kF12

Jc2L2

Jc1L1
1

u2

c̃ 01
2

L2

L1
S Jc2

Jc1
2

C2

C1
D ~12S2!G

2
Jc2S2

Jc1L1
50, ~17!

which always has two roots,k1 andk2 . Herec̃015lJ1vp1 is
the Swihart velocity of the single junction 1. Thus Eq.~12!
has two special single fluxon solutions

w15F1~l1!, w251/k1 arcsin„sin~F1!…, ~18a!

w15F2~l2!, w251/k2 arcsin„sin~F2!…, ~18b!

whereF1,2 are given by Eq.~16! with

lJ
2g25l1,2

2 S 12
u2

c̃ 1,2
2 D , ~19!

where the characteristic penetration depths are

l1,2
2 5

lJ1
2

11k2,1S2 /L1
, ~20!

and Swihart velocities are

c̃ 1,2
2 5

c̃ 01
2

11k2,1~C2Jc1S2!/~C1Jc2L1!
. ~21!

For the case of identical junctions

k1,2571, l1,25lJ /A16S and c̃1,25 c̃01/A16S,

which coincides with the previous result.18
The special solution Eq.~18! can only be realized in the
dynamic case of high fluxon velocityc̃1,u, c̃2 when one of
the solutionsF1 ,F2 becomes degenerate as will be discuss
later.

In order to find the solution for lower velocities we con
sider the linearized Eq.~12! with sin(w1)'w1 and sin(w2)
'w2. It can be shown that the general solution of the line
ized equation is given by a linear combination ofF1 andF2

w15aF11bF2 , ~22a!

w25cF11dF2 , ~22b!

where

a5k1c,

b5k2d. ~23!

Coefficientsa,b,c,d should be chosen for a particular fluxo
configuration in the stack from the condition of having
particular total phase shift atx56` ~we suppose that the
JJ’s are long enough to avoid the problems related with
fluxon interaction with the edges of the JJ!. Namely for a
single fluxon in junction 1 and no fluxons in junction 2 th
total phase shiftw1(1`)2w1(2`)52p and w2(1`)
2w2(2`)50, which gives two additional conditions for th
coefficients of Eq.~22!,

a1b51,

c1d50. ~24!

From Eqs.~23! and ~24! we finally obtain a unique solution

w15
k1F12k2F2

k12k2
,

~25!

w25
F12F2

k12k2
.

e
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e
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FIG. 2. Spatial distributions of~a! sin(w), and
~b! magnetic inductionB, in the static case with a
single fluxon in junction 1. Parameters of th
stack are Jc151, Jc250.1, ls15ls25ls3

50.1lJ1 , d15d25d35t15t250.01lJ1 S'0.5.
~a! Solid and dashed curves represent solutio
for sin(w1) and sin(w2) obtained by numerical
simulations. Dashed-dotted and dotted curv
represent the approximate analytical solution f
sin(w1) and sin(w2). The agreement between th
analytical and the numerical solutions forw1 is so
good that they can hardly be distinguished in t
figure.
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9110 56V. M. KRASNOV AND D. WINKLER
Equation ~25! provide a fairly good approximation forw1
since it satisfies asymptotically Eq.~12! for x!21, x;0
and x@1 and w2 satisfies asymptotically Eq.~12! for x!
21 andx@1 and has a correct value,w250, atx50.

Figures 2~a! and 2~b! show calculated spatial distribution
of sin(w) and the magnetic inductionB, respectively, in the
static (u50) case with a single fluxon in junction 1. Param
eters of the stack areJc151, Jc250.1, ls15ls25ls3
50.1lJ1 , d15d25d35t15t250.01lJ1 , andS'0.5. Solid
and dashed curves in Fig. 2~a! represent the solution fo
sin(w1) and sin(w2), respectively, obtained by numeric
simulation of Eq.~12!. Dashed-dotted and dotted curves
Fig. 2~a! represent the approximate analytical solution
sin(w1) and sin(w2), respectively, obtained from Eq.~25!. For
w1 the agreement between the approximate analytical s
tion and the numerical simulations is so good that they
hardly be distinguished in the figure.

An important consequence of Eq.~25! is that the phase
distribution in both junctions is not described by a sing
length. This can clearly be seen in Fig. 2~a!. At large dis-
tances from the fluxon origin the decay length is given by
largest ofl1,2 and atx50 we can identify the effective pen
etration depth l0 equalizing the spatial derivative
w18(x50), to that of a single soliton, Eq.~16!

FIG. 3. Spatial distributions ofw1 at the origin of the fluxon for
different values ofJc2 obtained by numerical simulations. Param
eters of the stack areJc250,0.1,0.5,1,2,10,̀ from the top to the
bottom curve, respectively; andJc151, ls15ls25ls350.1lJ1 ,
d15d25d35t15t250.01lJ1, S'0.5. The top and bottom curve
represent also the solution for a single JJ,w0 , with lJ5lJ1 and
lJ5lJ1 /A12S2.
r

u-
n

e

l0
215

k1l1
212k2l2

21

k12k2
. ~26!

l0 varies fromlJ1 to lJ1 /A12S2 whenJc2 /Jc1 varies from
0 to `. This is illustrated in Fig. 3 in which spatial distribu-
tions of the phasew1 at the origin of the fluxon,x50, are
shown for different values ofJc2 . The curves were obtained
by numerically simulation of Eq.~12!. Parameters of the
stack areJc250, 0.1, 0.5, 1, 2, 10,̀ from the top to the
bottom curve, respectively. The current density is normaliz
to the critical current density in JJ1,Jc151, andls15ls2
5ls350.1lJ1 , d15d25d35t15t250.01lJ1 , S'0.5.

Table I summarizes the characteristic parameters o
double stack for different values ofJc2 and Jc151 and for
the coupling parameterS50.5 corresponding to the maxi-
mum coupling in the case of a thin layered stack,di!lsi .
The lengths are normalized tolJ1 , the velocities are normal-
ized to c̃01, andc̃02 is the Swihart velocity of a single junc-
tion 2. We note that forJc2 /Jc1,1, c̃2 becomes purely
imaginary which means that theF2 component cannot propa-
gate and in the dynamic state the single fluxon solution
given by Eq.~18a!. In general, this is a consequence of th
fact that mode~1,0! for Jc2 /Jc1,1 is unstable since it is
more favorable to have a fluxon in a weaker junction and t
mode~0,1! will be realized instead.

For the case ofN not identical SJJ’s there areN different
characteristic lengths, Eq.~20! and velocities, Eq.~21! where
the parametersk j , j 51,2,...N should be obtained from Eq.
~6!.

C. Free energy

The free energy of the stack is the sum of the kinet
energy of supercurrents, the magnetic energy, and the
sephson coupling energy.

The free-energy density of electrodei is given by

FSi5
1

8p E @B21lsi
2 rot2 B#dz5

lsi

8p F ~Bi
21Bi 21

2 !

3cothS di

lsi
D22BiBi 21 cosechS di

lsi
D G . ~27!

The free-energy density stored in the Josephson junctioi
is

FJi5
Bi

2t i

8p
1

F0

2pc
Jci@12cos~w i !#. ~28!
6
4

TABLE I. Characteristic parameters of a double stack for different values ofJc2 andJc151 and for the
coupling parameterS50.5.

Jc2 lJ2 k1 k2 l1 l2 l0 c̃02 c̃1 c̃2

0 ` 22 0 1 ` 1 ` 0.894 i0
0.1 3.162 21.854 0.054 0.987 3.700 1.008 10 0.887 i0.348
0.5 1.414 21.366 0.366 0.919 1.776 1.024 2 0.856 i1.653
1 1 21 1 0.817 1.414 1.035 1 0.817 1.414
2 0.707 20.732 2.732 0.6501 1.256 1.049 0.5 0.771 1.10

10 0.316 20.539 18.54 0.3120 1.170 1.086 0.1 0.720 1.01
` 0 20.5 ` 0 1.155 1.155 0 0.707 1
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56 9111STATIC AND DYNAMIC PROPERTIES OF STACKED . . .
Taking a sum over the whole stack, expressingB via w8
from Eq.~1a!, and using the first integral, Eq.~10!, we obtain
a particularly simple expression for the free-energy den
of the stack

F5
F0

2pc F F0c

16p2 w8* A21w81(
i 51

N

Jci@12cos~w i !#G1EH

5
F0

2pc FC1( Jci@122 cos~w i !#G1EH , ~29!

whereC is the constant in the first integral, Eq.~10! and

EH5
1

8p H H2Fls1 cothS d1

ls1
D1lsN11 cothS dN11

lsN11
D G

2HS* A21HSJ . ~30!

HereHS* is a string~HS1,0, . . . 0,HSN11); thusEH con-
tains only terms;H2. The total energyE is obtained by
integration of Eq.~29! along the stack length~x axis!. Figure
4 shows the total energy of a single fluxon in junction
mode~1,0!, as a function ofJc2 /Jc1 for H50 and for several
layer thicknesses and coupling parameters fromS50
(ls /d50) to S50.5 (ls /d5`). Solid lines represent the
result of numerical simulation of Eq.~12! and dotted lines
were obtained using the approximate analytic solution,
~25!. Once again a good agreement between the approxim
analytical solution and the numerical simulation is seen. T
energy is normalized to the fluxon energy in a single junct

E058
F0JclJ

2pc
. ~31!

Thus, from Fig. 4 it is seen that the fluxon energy in the st
is always higher than that of a single junction in qualitati
agreement with Ref. 22 but in disagreement with Ref.
However, we cannot directly compare our results since

FIG. 4. The free energy of a single fluxon in junction 1, as
function of Jc2 /Jc1 for several layer thicknesses and coupling p
rameters fromS50 (ls /d50) to S50.5 (ls /d5`). Solid lines
represent the result of the numerical simulation and dotted l
were obtained using the approximate analytic solution. The ene
is normalized to the fluxon energy in a single JJ.
y

,

.
te
e
n

k

.
e

have considered a single fluxon mode, while in Ref. 22 e
mations were made for a special in-phase~1,1! mode and
out-of-phase (1,21) mode. The additional fluxon energy fo
the SJJ has two main contributions:~i! Josephson energy o
junction 2 and,~ii ! the change of the effective Josephs
penetration depth with respect to that of the uncoupled ju
tion. As can be seen from Table I, the latter contributi
dominates forJc2→0 andJc2→` when the Josephson pen
etration depth is equal tol0 and the Josephson energy of th
second JJ is negligible. Since the fluxon energy is locali
in the fluxon core the second contribution is defined byl0 ,
Eq. ~26! so that E/E0;l0 /lJ1 and the maximum fluxon
energy is equal toE0 /A12S2. This is in agreement with
Fig. 4.

D. The lower critical field

Knowing the fluxon free energy, Eq.~29! we can derive
the lower critical field,Hc1 , of the stack, i.e., the magneti
field at which the fluxon state becomes thermodynamica
stable. The thermodynamic equilibrium for a givenH is
achieved in the minimum of the Gibbs free energy,

G5F2
BH

4p
. ~32!

For bulk superconductors or JJ’s with thick electrodes t
equation provides a simple relationship between the flu
free energy and the lower critical field:

Hc054pE/F0 . ~33!

However, this equation cannot directly be applied to SJ
The reason is that in order to achieve a coupling between
junctions, the superconducting layers should be made
compared to the London penetration depth, see Eqs.~4!, ~5!,
and ~13!. Under this condition, a particular JJ in the sta
contains only a fraction of the flux quantum. Thus, for det
mination ofHc1 we should estimate the total flux carried b
a fluxon.

First we consider a single junction. In this case the to
flux of a single fluxon is equal to

F5F0

L1*

L1
, ~34!

where

L i* 5L i2Si2Si 11 ~35!

is the effective magnetic length of the junction. For the lim
iting cases of thick layers,di /lsi@1, L i* >L i , and as ex-
pected the fluxon carries the whole flux quantum. For t
layers,di /lsi!1, L i* >t i1di /21di 11/2 and the fluxon car-
ries only a tiny fraction ofF0 . The lower critical field of a
single JJ is given by

Hc15
4pE

F
, ~36!

which regarding Eqs.~34! and ~35! can be considerably
larger thanHc0 , Eq. ~33!. This is due to the fact that the
magnetic field can freely penetrate the JJ with thin electro
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without induction of Josephson screening currents. In tu
this is due to the reduction of the effective magnetic len
L* , see Eq.~35!.

To estimate the total flux for the case of a stack we sho
consider the spatial distribution ofB in the stack. For a
double stack we can write using Eq.~1a!

B15
F0

2p F L2w181S2w28

L1L2~12S2!
G1HF S1L21S2S3

L1L2~12S2!G5Bf 11A1H,

~37a!

B25
F0

2p F S2w181L1w28

L1L2~12S2!
G1HF S3L11S1S2

L1L2~12S2!G5Bf 21A2H.

~37b!

Here, the first terms are the magnetic induction of the flux
Bf , and the second terms represent uniform magnetic-fi
penetration into the JJ with thin electrodes.

Substituting Eq.~37! into Eqs. ~27!, ~28!, and ~32! we
obtain the equation for the Gibbs free-energy density

G~B!5GJ2
H

4p
@Bf 1L1* 1Bf 2L2* #, ~38!

where

GJ5( Jci@12cos~w i !#1
1

8p
@Bf 1

2 L122Bf 1Bf 2S2

1Bf 2
2 L2#, ~39!

is the Josephson energy. In Eq.~38! we skipped terms
;H2 which are not important for minimizingG(B).

From Eqs.~38! and~39! it is seen thatG(B) is a bilinear
form of Bf 1,2 which can be minimized in different ways fo
different relations betweenBf 1 and Bf 2 , Eq. ~37!. In other
words, G(B) has a particular minimum for each particul
fluxon mode (n1 ,n2).

The lower critical field corresponds to the state with
fluxon in the weakest junction~JJ1! and no fluxons in the
second JJ. Thus to obtainHc1 we should minimizeG(B)
with respect to the number of fluxons in JJ1 for the flux
mode (n,0). After integration of Eq.~38! along thex axis we
finally obtain

Hc15
4pE~1,0!

F*
, ~40!

where

F* 5F0 S L1* L21L2* S2

L1L2~12S!2 D , ~41!

and E(1,0) is the free energy of a single fluxon in JJ1 o
tained in the previous section. Note thatF* in Eq. ~41! is
equal to the flux carried by a fluxon. For junctions with ide
tical superconducting electrodes,d!ls ,

Hc1>
4pE~1,0!

F0

ls
2

d~ t1d!
, ~42!

which in this limit has the same structure as that for a sin
junction, Eq. ~36!, but with larger total fluxon energy a
shown in Fig. 4.
,
h

ld

,
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Figure 5 showsG(B) versus the number of fluxons fo
H50, andH slightly larger Hc1 for two particular fluxon
modes, (n,0) and (0,n). Solid lines represent mode (n,0)
and showG(B) as a function of fluxons in JJ1 with no flux
ons in JJ2. Dashed lines represent mode (0,n) and show
G(B) as a function of fluxons in JJ2 with no fluxons in JJ
The number of fluxons in the JJ’s is measured by the to
phase shift along the junction length divided by 2p. Param-
eters of the stack areJc151, Jc252, ls15ls25ls3
50.1lJ1 , t15t25d15d25d350.01lJ1 , Lx550lJ1 , and
S'0.5. In Fig. 6, a contour plot of Gibbs free energy vers

FIG. 5. Gibbs free energy versus the number of fluxons forH
50, andH slightly larger thanHc1 for two particular fluxon modes,
(n,0) and (0,n) corresponding to fluxons in JJ1 and JJ2, resp
tively. Parameters of the stack areJc151, Jc252, ls15ls25ls3

50.1lJ1 , t15t25d15d25d350.01lJ1 , Lx550lJ1 , andS'0.5.

FIG. 6. Gray scale plot of Gibbs free energy versus the num
of fluxons in junctions 1 and 2 forH51.1Hc1 . Parameters of the
stack are the same as in Fig. 5. Darker regions correspon
smaller Gibbs energy. The existence of various quasiequilibr
states can be seen.
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the number of fluxons in junctions 1 and 2 is shown in gr
scale forH'1.1Hc1 . Parameters of the stack are the same
in Fig. 5. Darker regions correspond to smaller Gibbs
ergy, the absolute minimum of Gibbs free energy is achie
aroundn157 andn2;0.

Figure 5 shows that at zero magnetic field the minim
of G(B) corresponds to the Meissner state withn15n250.
For H.Hc1 the absolute minimum is achieved for a partic
lar fluxon mode (n1 ,n2), e.g., for the case of Figs. 5, 6 th
absolute minimum is achieved for the~7, 0! mode. This
mode corresponds to thermodynamically equilibrium sta
However, from Figs. 5, 6 it is seen that besides the abso
minimum there are a number of other fluxon modes
which the local minimum of the Gibbs free energy
achieved. All those modes are stable and represent the
sible quasiequilibrium states in the stack.

III. FLUXON DYNAMICS

The dynamic behavior of SJJ’s is characterized first of
by the existence of several limiting Swihart velocities. In t
case of a double stack there are two characteristic Swi
velocitiesc̃1,2, see Eq.~21!. Thus, the behavior of the stac
should be different foru, c̃1 and c̃1,u, c̃2 . Here we re-
strict ourselves to consider the single soliton state, m
~1,0!. Note that this state is neither the in-phase nor the o
of-phase state discussed in the literature18,4,24 because we
always have a zero total phase shift in JJ2.

For u, c̃1 a pure traveling soliton solution exists and
given by Eq.~25!. Whenu→ c̃1 a Lorentz contraction of the
soliton takes place sinceg1→0, see Eq.~19!.

For c̃1,u, c̃2 , g1 becomes purely imaginary. Thi
means that theF1 component in Eq.~25! transforms to a
traveling plasma wave

F15exp„ik1~x2ut!…, ~43!

where

k1
225l1

2S u2

c̃ 1
221D .

The only possible pure traveling soliton solution in this ca
is given by a single component special solutionF2 , Eq.
~18b!. Such soliton will survive untilu< c̃2 . For higher ve-
locities, the F2 component will also turn to a travelin
plasma wave.

In Fig. 7, the instantaneous spatial profiles of the volta
V1,2

V1,25
F0

2pc
ẇ1,2,

in junctions 1 and 2 are shown by solid and dashed lin
respectively, for four different fluxon velocities,u50.5
, c̃1 , u50.81' c̃1 , c̃1,u51, c̃2 , u51.37' c̃2 , see Table
I. The profiles were obtained from the analytic solution fo
single fluxon in JJ1, mode~1,0! in a double stack with iden
tical junctionsls15ls25ls350.1lJ1 , t15t25d15d25d3
50.01lJ1 , and S'0.5. The voltage is normalized toV0
5F0vp1/2pc. The plots for different velocities were shifte
with respect to each other for clarity. From Fig. 7 it is se
that the voltage in the second junction at the fluxon orig
y
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,

V2(0), always has an opposite sign with respect toV1(0).
Note thatV1 has nonzero average value, while the avera
value ofV2 is equal to zero since there is no total phase s
in JJ2.

A. Attractive fluxon interaction

In Fig. 8, the instantaneous spatial profiles of the m
netic inductionB1,2, Eq.~37!, in junctions 1 and 2 are show
by the solid and dashed lines, respectively, for five differ
fluxon velocities, which are the static caseu50, and the

FIG. 7. Instantaneous spatial profiles of the voltagesV1,2 in
junctions 1~solid lines! and 2~dashed lines! generated by the mo
tion of a single fluxon in JJ1, mode~1,0! for four different fluxon
velocities, u50.5, c̃1 , u50.81' c̃1 , c̃1,u51, c̃2 , u51.37
' c̃2 . The profiles were obtained for a double stack with identi
junctions with ls15ls25ls350.1lJ1 , t15t25d15d25d3

50.01lJ1 , S'0.5. The plots for different velocities were shifte
with respect to each other for clarity.

FIG. 8. Instantaneous spatial profiles of the magnetic induc
B1,2 in junctions 1~solid lines! and 2 ~dashed lines! for a single
fluxon in JJ1, mode~1,0! and for different fluxon velocities,u50,
u50.5, c̃1 , u50.81' c̃1 , c̃1,u51, c̃2 , u51.37' c̃2 . The pro-
files were obtained for a double stack with identical JJ’s, similar
that in Fig. 7. The plots for different velocities were shifted wi
respect to each other for clarity. It is seen that at high veloci
B2(0) changes the sign resulting in attractive fluxon interaction
adjacent JJ’s.
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9114 56V. M. KRASNOV AND D. WINKLER
dynamic onesu50.5, c̃1 , u50.81' c̃1 , c̃1,u51, c̃2 , u
51.37' c̃2 . The profiles were obtained from the analyt
solution for a single fluxon in JJ1, mode~1,0! in a double
stack with the same parameters as in Fig. 7. The magn
field is normalized toH05F0 /(pL1lJ1). The plots for dif-
ferent velocities were shifted with respect to each other
clarity. From Fig. 8 it is seen that at low velocities the ma
netic induction in the second junctionB2 has the same sign
as B1 , see also Fig. 2~b!. With increasing velocity a dip in
B2(0) at the fluxon origin appears which is developed w
increasing fluxon velocity and at high velocities changes
sign with respect toB1(0). We emphasize that unlike th
single JJ the magnetic inductionBi in the stack is not given
by the spatial derivative of the phasew i8 as it some times can
be seen in literature,24 but rather is defined in a more com
plicated way, see Eqs.~37,1!.

The origin of the sign change ofB2(0) can be most
clearly seen for the casec̃1,u, c̃2 . In this case the soliton
solution corresponds to the single-component special s
tion F2 , Eq. ~18b!. At the fluxon origin,w18 and w28 have
different signs, while the weight coefficient forw28 is larger
than that forw18 , L1.S2 , see Eq.~37b!.

Now if we suppose that there is a fluxon in JJ2, it wou
tend to be attracted to the region withB2,0. Then the so-
calledin-phasestate with fluxons one on the top of the oth
in the adjacent JJ’s may become favorable in the dyna
state with high enough fluxon velocity. A possible indicati
of such unusual phase-locked state has been observe
cently by low-temperature scanning electron microsco
~LTSEM!.25

B. Fluxon modes andI -V curve

From the analysis made above, we can make conclus
about the overallI -V curve of a double stack in an exper
mental situation. For a given fluxon mode we can distingu
three branches in theI -V curve.~i! u, c̃1 . This is the lower
flux-flow branch for which the soliton solution is given b
Eq. ~25!. ~ii ! c̃1,u, c̃2 . This is the upper flux-flow branch
Here, the only possible soliton solution is given by the s
cial solution in Eq.~18b!. Simultaneously we would expect
strong plasma wave generation in both JJ’s of the form
Eq. ~43! so that the general propagating wave is given by
superposition of a solitonF2 , Eq. ~18b! and plasma waves
from a degeneratedF1 component, Eq.~43!. ~iii ! u. c̃2 . At
this branch only plasma waves exist with two different d
persion laws

v1,2
2 5 c̃ 1,2

2 ~k1,2
2 1l1,2

22!. ~44!

As we mentioned in Sec. II B, for theN-fold stack there
are N characteristic Swihart velocities providingN distinct
flux-flow branches in theI -V curve for a particular fluxon
mode. However, the possible number of branches in theI -V
curve is not limited by the number of JJ’s in the stack. As
is shown in Sec. II D, there are various quasiequilibriu
fluxon modes in a given external magnetic field. In additio
a given number of fluxons can be arranged in the stac
different manners, each corresponding to a particular flu
mode. Different fluxon modes will in general have differe
characteristic Swihart velocities. For example, let us cons
tic
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the ~1,0! and ~0,1! modes in a stack of two JJ’s correspon
ing to a single fluxon in JJ1 and JJ2, respectively. It is cl
that mode~0,1! is given by a solution for mode~1,0! with the
inversed ratioJc2 /Jc1 . For example, mode~0,1! in the stack
with Jc2 /Jc150.1 is identical to mode~1,0! in the stack with
Jc2 /Jc1510. From Table I we see that modes~1,0! and~0,1!
have different characteristic velocities. The only case wh
modes~1,0! and~0,1! are identical is the case of double sta
with identical JJ’s. Already for a threefold stack with iden
cal JJ’s modes~1,0,0! and~0,1,0! have different Swihart ve-
locities and modes~1,0,0! and ~0,0,1! are identical.

In general for a stack withN nonidentical JJ’s with, in
total,M fluxons, the total possible number of different fluxo
modes is equal to

m5
~N1M21!!

~N21!! M !
, ~45!

each havingN different characteristic Swihart velocities
Thus the total number of possibleI -V branches is

n5mN, ~46!

which can be much larger thanN.

IV. DISCUSSION

As we have shown above, the obtained analytical flux
solution in Eq.~25! provide not only qualitative but also
fairly good quantitative approximation forw1 since it satis-
fies asymptotically Eq.~12! for x!21, x;0 andx@1. Pre-
viously, a linearized version of the coupled sine-Gord
equation have been considered,19 however, the solution was
obtained only for traveling waves, Eq.~43!, which certainly
is very different from the propagating soliton solution o
tained here. We admit that the traveling-wave approach
provide the correct values for the characteristic penetra
depths, Eq.~20!, and Swihart velocities, Eq.~21!, of the SJJ.
However, in previous analysis18,19,22–24it was not realized
that the fluxon solution in SJJ’s cannot be described b
single penetration depth. This can be clearly seen from
2~a! which illustrates that the decay lengths of currents
junctions 1 and 2 are different. This is a general property
a system of coupled equations with different characteri
lengths. For the case ofN JJ’s in the stack, the solution for
particular single fluxon mode~0,...0,1,0,...0! is described in a
unique way byN different characteristic lengths, similar t
Eq. ~25!. Note that forN.2, even for SJJ’s with identica
parameters, different fluxon modes are in general descr
by different sets ofN characteristic lengths and velocities.

From Figs. 5 and 6 it is seen that there are a lot of lo
minimums of the Gibbs free energy corresponding to diff
ent fluxon modes, each representing a quasiequilibrium s
of the SJJ. Under these circumstances we expect a
nounced hysteretic behavior and a prehistory dependenc
SJJ’s associated with transitions between quasiequilibr
fluxon modes. As was discussed in Ref. 8, this might be
reason for having complicated and not well-defined Fra
hofer patterns in ‘‘long’’ SJJ’s withLx.lJ . This is in quali-
tative agreement with Fraunhofer patterns observed
Nb/AlOx /Nb,5 Nb/Cu multilayers8 and HTSC’s.1,10,11

As we mentioned in Sec. II C, there is a certain discre
ancy in the literature about the estimation of the fluxon fr
energy and the lower critical field.22,23 From the numerical
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simulations and the analysis based on the approximate
lytic solution we claim that the fluxon energy in the stack
always larger than that of a single JJ, see Fig. 4. More s
ous disagreement exists in estimations ofHc1 . In the limit of
thin layers,d!ls , Hc1 of Ref. 22 is about (ls /d)2@1 times
smaller than our result given by Eq.~42!. Such discrepancy
is caused by disregarding theEH term, Eq. ~30!, in the
Hamiltonian of Ref. 22 and consequently disregarding
free magnetic-field penetration in thin layered SJJ’s. W
increasing number of layers the total flux of the fluxon
creases and approachesF0 . For the infinite stack with thin
layers the lower critical field was derived in Refs. 14–16
identical JJ’s and in Ref. 17 for nonidentical JJ’sHc1 in this
case is in the range predicted by Eq.~33!.

From the analysis of the dynamic behavior of SJJ’s
show that the attractive interaction of fluxons in adjac
junctions appears at high enough fluxon velocity. This w
lead to the possibility of having an in-phase fluxon mo
with fluxons on top of each other. Recently, a possible in
cation of such state has been observed by LTSEM.25

We note however that it is not necessary to have t
different in-phase and out-of-phase fluxon modes to obse
two distinct flux-flow branches in theI -V curve of a double
SJJ. As we show,N flux-flow branches exist for each pa
ticular fluxon mode which is simply a consequence of ex
tence ofN different Swihart velocities. An important conse
quence of this is a possibility of havingn.N flux-flow
branches in theI -V curve of the SJJ, see Eq.~46!. Such
behavior was observed for Nb/Cu multilayers in para
magnetic field.8 Of course not all of then I-V curve
branches should be observable in experiment. Analysis w
ev
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respect to stability of different modes in the dynamic st
should be performed.

V. CONCLUSIONS

In conclusion static and dynamic properties of noniden
cal stacked Josephson junctions were studied theoretic
An approximate analytic solution for a stack with arbitra
parameters was obtained. Characteristic penetration de
Swihart velocities, the lower critical field, the first integra
and the free energy for a stack of nonidentical junctions w
derived and studied for different parameters of the stack.
show that attractive interaction of fluxons in adjacent jun
tions exists in the dynamic state of the stack leading to
pearance of the in-phase state in SJJ’s. In a given exte
magnetic field the Gibbs free energy has a number of lo
minima corresponding to particular fluxon modes in t
stack, each representing a quasiequilibrium state. For a s
of N junctions, each mode would result inN distinct flux-
flow branches in theI -V curve. Taking into account tha
different modes with equal total number of fluxons are n
identical we conclude that the total possible number of flu
flow branches can be much larger than the number of ju
tions in the stack.
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