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Defects in two- and three-dimensional soft lattices:
Application to vortices in layered superconductors

Ernst Helmut Brandt
Max Planck Institut fu¨r Metallforschung, D-70506 Stuttgart, Germany

~Received 30 May 1997!

It is shown that within continuum theory and linear elasticity the interaction of point defects in two- and
three-dimensional lattices with isotropic long-range interaction is ideally screened; i.e., the elastic relaxation of
the background lattice exactly compensates the long-range interaction between the defects. A small residual
short-range interaction results from the discreteness of the lattice and from the nonlinear elastic displacements.
The self-energy of a point defect is also strongly reduced by the lattice relaxation. These general results are
applied to the lattices of Abrikosov vortex lines and of point vortices~‘‘pancakes’’! in layered superconduct-
ors. In the anisotropic lattice of pancakes this screening is not complete. In particular, screening changes the
sign of the interlayer interaction, and while without screening the perpendicular magnetic field of a pancake
decreases exponentially with increasing distance, the screened field decreases only algebraically due to the
long-range elastic displacements of the pancake lattice around a vacancy or interstitial.
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I. INTRODUCTION

The vortex lattice in type-II superconductors is charact
ized by a repulsive interaction between the Abrikosov vor
lines of rangel, the magnetic penetration depth, which
typically much larger than the lattice spacinga.1 One conse-
quence of this long-range interaction is that the shear mo
lus c66 of the vortex lattice is much smaller than the uniax
compression modulus c11 or the bulk modulus
c112c66>(32p/A3)(l/a)2c66. Another consequence of th
long-range interaction is that structural defects in such a
lattice have very small energy as compared to the bind
energy of a vortex in the lattice. This means, e.g., that
energy of a point defect~an interstitial or vacancy! is
strongly reduced by the relaxation of the surrounding lattic2

This property applies both to two-dimensional~2D! lattices
like lattices of vortex lines or of the short vortices in th
films, and to three-dimensional~3D! lattices like atomic lat-
tices with long-range forces or the lattice of ‘‘panca
vortices’’3 in layered superconductors, which interact by
very long-range logarithmic potential.3–9

In the present paper it is shown that within continuu
approximation and linear elasticity, the compensation of
two energies of the unrelaxed point defect and of the lat
relaxation is nearly complete. This compensation conce
both the self-energy of each point defect and the interac
energy between two~or more! point defects. The relaxation
of the surrounding lattice reduces the defect energy the m
the longer the range of the lattice interaction is. This find
applies to isotropic 2D and 3D lattices, and with some
strictions also to anisotropic lattices. For example, in the
lattice of pancake vortices in layered superconductors,
energy of a pancake-antipancake pair~interstitial and va-
cancy! positioned in the same layer and of distancer is
proportional to ln(r/j) beforethe pancake lattice is allowe
to relax ~or in the absence of this background lattice!. But
after lattice relaxation this factor is reduced to about ln(a/j),
560163-1829/97/56~14!/9071~11!/$10.00
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where j is the in-plane coherence length or radius of t
vortex core anda!r the in-plane lattice distance.10 The re-
sulting screened interaction does only weakly depend on
defect spacingr but depends mainly on the lattice spacinga;
it is thus of order of the disregarded energy terms wh
account for the discrete lattice structure and for the nonlin
elastic displacements of the nearest neighbors. The st
reduction of the interaction and self-energies of point defe
in lattices with long-range interaction is thus not chang
qualitatively if one goes beyond the continuum approxim
tion ~which holds best for smooth long-range interaction p
tentials! and if one includes the nonlinearity of the elas
lattice deformation. In general these corrections to the de
energy have to be calculated numerically for given latt
symmetry and defect position.

The long-range interaction of the lattice means that wit
continuum theory the elasticity of the medium is nonloc
This elastic nonlocality is fully accounted for in our theor
Remarkably, within linear elastic continuum theory, t
spatially decreasing displacement fieldu„r … around a point
defect turns out to be universal, i.e., independent of
specific shape of the isotropic interaction potential
its range goes over several lattice spacings. Namely, one
u56r /~2pr 2n2! for isotropic 2D lattices andu56r /
~4pr 3n3) for isotropic 3D lattices, wheren2'a22

and n3'a23 are the 2D and 3D densities and the plus a
minus signs apply to the interstitial and vacancy, resp
tively. These displacement fields mean that during the re
ation of an infinite lattice around a vacancy or interstiti
exactlyoneatomic volume 1/n2 or 1/n3 passes through an
circle ~2D! or sphere~3D! centered at this point defect. Th
number of lattice points in a circle or sphere of arbitra
radius remains thus unchanged if a lattice point is remo
or added. Indeed, these two displacement fields mean a
shear strain, which leaves the density constant.

Similar displacement fieldsu}1/r and u}1/r 2 follow
from linear elasticity theory for the radially symmetric stra
9071 © 1997 The American Physical Society
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9072 56ERNST HELMUT BRANDT
around any pointlike perturbation in a 2D or 3D mediu
The remarkable new findings of the present theory are
the continuum approximation yields also theamplitudeof
this strain, if the strain is caused by a vacancy or interstit
and that the specific form of the interaction potential dro
out from the result. The displacement field within this a
proximation is, therefore, atopological propertyof the point
defect, as is also the displacement field around a disloca

While the strong reduction of defect energies by the
tice relaxation applies to 2D and 3D lattices of any obje
with long-range interaction, a further related effect is
stricted to lattices of magnetic vortices. In vortex lattices
superconductors the magnetic fieldB~r ! within the London
theory~see below! is the linear superposition of isolated vo
tex fields. If one takes out one vortex line, then the relaxat
of the remaining vortices generates an additional magn
field which in linear elastic continuum approximation exac
equals the field of the removed vortex. The depression
B(r ) near the vacancy is thus ‘‘filled’’ or ‘‘repaired’’ by the
lattice relaxation. The same repairing or screening occ
near interstitial vortex lines and near point defects in the
lattice of pancake vortices,10 but in the latter case the scree
ing is not perfect. After relaxation of the background vort
lattice, the resultingB(r ) is thus almost constant, like in th
absence of the point defect. Only the small, spatially perio
variation of B(r ), caused by the discreteness of the vor
lattice, is slightly perturbed near the vacancy.2 But in the
anisotropic 3D pancake lattice the perturbation fieldB1(r ),
in addition to this local perturbation, has a weak long-ran
tail decreasing as 1/r 3.

The outline of this paper is as follows. General expr
sions for the total, interaction, and self-energies of 3D a
2D lattices, and in particular of the 3D pancake-vortex l
tice, are given in Sec. II. The continuum approximation
elasticity theory is defined in Sec. III. Within continuum a
proximation, in Sec. IV we derive the universal displacem
field around a vacancy or interstitial and show that the m
netic field of a removed or added vortex line is idea
screened and that the self energy of a point defect is redu
to terms of order of the nearest neighbor interaction. In S
V the interaction between point defects is found to be
duced even further; in isotropic lattices this interaction
completely screened within continuum approximation. Th
general results are applied and extended to the highly an
tropic 3D lattice of pancake vortices in layered high-Tc su-
perconductors in Sec. VI, where the screening of the m
netic field and of the interaction of pancake vacancies
interstitials is not complete. The results are summarized
Sec. VII.

II. 2D AND 3D VORTEX LATTICES

The triangular lattice of Abrikosov vortices in type-II su
perconductors with spacinga5(2F0 /A3B̄)1/2 exhibits
strongly overlapping vortex fields if the average inducti
B̄5^B(r )& or vortex densityn25 B̄/F0 is not too small,
namely, in the induction rangeBc1, B̄,0.2Bc2 correspond-
ing to vortex spacings 2l.a.6j. HereBc1'F0lnk/(4pl2)
and Bc25F0 /(2pj2)'(2k2/lnk)Bc1 are the lower and up
per critical fields,F05h/2e52310215 T m2 is the flux
.
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quantum,l the magnetic penetration depth,j the Ginzburg-
Landau~GL! coherence length, andk5l/j the GL param-
eter. For the London theory to apply we have to assu

k@1 and b5 B̄/Bc2,0.2. In London approximation, the
magnetic field of an isolated vortex line alongz is
Bv(r)5(F0/2pl2)K0(r/l), r25x21y2, and the interac-
tion between two parallel vortex lines i
V2(r)5B(r)F0 /m05(F0

2/2pl2m0)K0(r/l). The modified
Bessel functionK0(x) has the limitsK0(x)' ln(1/x) for
x!1 andK0(x)'(p/2x)1/2e2x for x@1. The superposition
of isolated vortex fields in an ideal lattice yield

B(r )5 B̄1dB(r ) where the periodic modulation typically i

much smaller than the averageB̄, with variance
s5^(dB)2&1/2<0.0609F0 /l2'0.765Bc1 /lnk.11 In the same
induction range the compression modulus of the vortex

tice is c11' B̄2/m0 and the shear modulu

c66' B̄F0 /(16pl2m0)'c11/(8bk2)!c11 with b5 B̄/Bc2.
The finite radius of the vortex corer c'A2j removes the
logarithmic singularities ofBv(r) andV2(r) by replacing in
K0(r/l) the distancer by (r212j2)1/2 as shown by Clem.12

The finite vortex core reduces the field variances.13,14In the

following the bar on the average inductionB̄ will be omitted
for convenience.

At larger reduced inductionsb.0.2, the increasing over
lap of the vortex cores reduces the field variances and the
shear modulusc66,15 as has been shown recently quanti
tively by numerical solution of the GL equations.13 For
b.0.2 the energy of the vortex system is no longer co
posed of pair interactions. But an effective pair interacti
V2(r) may be derived16 which reproduces the correct nonlo
cal elastic energy of the vortex lattice17 to a good approxi-
mation in the entire induction range 0<b<1. This effective
interaction has the rangel85l/(12b)1/2 and saturates a
r<j85j/(222b)1/2.

The small shear modulus, small induction variance, a
small energy of defects as discussed in Sec. I, are all du
the long-range interactionl@a. In thin films with thickness
d!l the interaction range between vortices becomes e
larger,lfilm52l/d2,18 reducing the shear modulusc66 even
more.19 In the limit of very thin superconducting films th
interaction between the short vortices with a pointlike co
becomes logarithmic, acting mainly via the stray field o
side the film. The same logarithmic interaction acts bewe
the pancake vortices in layered superconductors when
Josephson coupling between the superconducting layers
be disregarded. The 3D magnetic interactionV3(r ) between
such pancake vortices is highly anisotropic, being repuls
for pancakes in the same layer but attractive and m
weaker for pancakes in different layers.3 This type of inter-
action arranges the pancakes to parallel stacks, which be
like the highly flexible~low tension! vortex lines described
by the anisotropic London theory.15

In general, the energy of a 2D or 3D arrangement ofN
lines or points with pair interaction takes the form

F5
1

2 (
m51

N

(
n51

N

V~rm2rn!, ~1!
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56 9073DEFECTS IN TWO- AND THREE-DIMENSIONAL SOFT . . .
where for 2D systems the pair potential isV5V2(r2) with
r25rW 5(x,y,0) ~lines along z) and for 3D systems
V5V3(r3) with r35(x,y,z). The 2D potentialV2 contains a
factorL, the specimen length alongz. The sum~1! comprises
both the interaction energies~terms mÞn) and the self-
energies~termsm5n), which may thus be written as

Uself5
1

2
V~0!. ~2!

In particular, for a lattice of magnetically interacting panca
vortices one has fors!l,

V3~r !5E d3k

8p3Ṽ3~k!eikr , ~3!

Ṽ3~k!5
F0

2s2

m0

k2/q2

11k2l2 , ~4!

wherek5(kx ,ky ,kz), q5(kx ,ky ,0), k5uku, q5uqu, s is the
layer spacing, andl5lab is the penetration depth for supe
currents flowing in the layers~in the ab or xy plane!. The
integral ~4! is taken overq<1/j ~cutoff due to the finite
vortex core! and over2p/s<kz<p/s due to the periodicity
alongz. In the self- and interaction energies of the pancak
a logarithmic cutoff at the specimen radiusR is required,
which is conveniently introduced by choosing the integrat
boundaries 1/R<q<1/j in Eq. ~4!. The self-energy of a pan
cake thus becomes

Uself5
F0

2s

4pl2m0
ln

R

j
.0. ~5!

The interaction of two pancakes in the same layer is

V3~x,y,0!5
F0

2s

2pl2m0
ln

R

r8
>0, ~6!

wherer85(x21y21j2)1/2 was introduced to obtain the co
rect limit V(0)52Uself ~5!. As mentioned above, Clem’s12

improved GL calculation replacesj2 by 2j2 in r8, which is
also confirmed by new computations.13,14 Two pancakes in
different planesz50 and z5zm at horizontal distance
r 25r5(x21y2)1/2@l interact by the attractive potential

V3~x,y,zn!52
F0

2s2

4pl3m0
expS 2

uzmu
l D ln

R

r
,0. ~7!

The energyF↑↓ of a pancake-antipancake pair in the sa
layer and with separationr>j does not depend on the spec
men radiusR,

F↑↓52Uself2V3~r 2 ,0!5
F0

2s

2pl2m0
ln

r

j
>0. ~8!

Summing the 3D potential~3! over all zm5ms (m inte-
ger! from m51 to m5L/s@1, one obtains the 2D interac
tion V2 between straight parallel vortex lines of lengthL@s,

V2~r!5E d2q

8p3Ṽ2~q!eiqr25
F0

2L

4pl2m0
K0S r8

l D , ~9!
s,

n

e

Ṽ2~q!5
L

s2Ṽ3~q,0!5
F0

2L

m0

1

11q2l2 . ~10!

Note that formulas~5!–~10! were derived from the 3D
potential ~3! with Eq. ~4! inserted, using the boundarie
R21<q<j21 and ukzu<p/s. For the following calculations
of energies and displacement fields of lattice defects we
need only Eq.~1! with a general potentialV(r ), which in
some of our results even drop out.

III. ELASTIC CONTINUUM APPROXIMATION

The continuum approximation of the elasticity theory o
lattice disregards the specific structure of the lattice. F
mally this means, e.g., that a sum over reciprocal lattice v
tors K is replaced by its main termK50, (K f (k1K )
' f (k), wherek is the vector of a periodic strain field. Thi
approximation is good if the functionf (k) decreases rapidly
within the first Brillouin zone~BZ!, e.g., when the energy o
compressional waves in a lattice with long-range interact
is calculated. In calculations of the energies of shear and
waves, the continuum approximation~by taking the limit of
smallk) is more intricate, requiring the integration of a fun
tion f (k1k8) over k8.

In this section the elastic moduli of three- and tw
dimensional lattices are derived from the interaction pot
tial V(r ) in Eq. ~1!. The calculation follows the lines of the
derivation of the elastic energy of the vortex lattice in is
tropic superconductors in Ref.~17b!, which was extended to
anisotropic superconductors in Refs. 20, see also
review15.

To derive the linear elastic energyFelast of a distorted
lattice one defines the discrete field of displaceme
um5rm2Rm, whereRm are the ideal lattice positions. First
consider the general 3D lattice with three displacement co
ponentsum5(umx ,umy ,umz). These results may be applie
to the lattice of pancake vortices in layered superconduc
and to lattices of curved or straight vortex lines by putting
z componentsumz50. This is so since the pancakes c
move only within the superconducting layers~planes
z5zm5ms, m integer! and since the deformation of a lin
lattice is described by a two-component displacement fi
um5(umx ,umy). The Fourier transform of the discrete di
placement fieldum ~and of the force fieldfm, see below!
defined on a 3D lattice with densityn3 is introduced as

um5E
BZ

d3k

8p3 ũ~k!eikRm,

ũ~k!5
1

n3
(
m

ume2 ikRm. ~11!

The integral~11! is over the first Brillouin zone~BZ! of the
lattice; as a consequence,ũ(k)5( ũx , ũy , ũz) is periodic ink
space. Using Eqs.~1!, ~3!, ~11!, and the relation

(
m

eikRm58p3n3(
K

d~k2K !, ~12!
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9074 56ERNST HELMUT BRANDT
where the sums are over the real and reciprocal lattices
expansion of the energyF ~1! up to quadratic terms in the
displacementsum yields the linear elastic energy

Felast5
1

2EBZ

d3k

8p3Fab~k!ũa~k!ũb~2k! ~13!

with the elastic matrix

Fab~k!5n3
2(

K
@~K1k!a~K1k!bṼ3~K1k!

2KaKbṼ3~K !#. ~14!

In general, the indicesa,b denote thex,y,z components, but
for vortex lattices only thex,y components enter. The defi
nition of Fab(k) here differs by a factor of the densityn3 ~or
n2) from the definition in Ref. 17.

The lattice elastic matrix~14! is periodic ink space, i.e.,
one hasFab(k1K )5Fab(k) for any vectorK of the recip-
rocal lattice. The elastic moduli are obtained by compar
this lattice result with the elastic matrix of a continuum. F
the uniaxial continuum of vortex points or vortex lines o
has

Fab~k!5~c112c66!kakb1dab~c66q
21c44kz

2!, ~15!

wherea,b now denotex,y, dab51 for a5b, dab50 for
aÞb, q25kx

21ky
2 , andc11, c66, andc44 are the moduli for

uniaxial compression and for shear and tilt.
The Fab(k), Eqs.~14! and~15!, should coincide whenk

is in the central region of the BZ. To compare Eqs.~14! and
~15! one thus has to perform the limit of small wave vecto
k in the lattice result~14!. This step, called continuum ap
proximation, yields the elastic moduli of the lattice. The bu
moduluscb5c112c66 is relatively easily obtained by omit
ting all termsK50 in Eq. ~15!. This yields (c112c66)kakb

5n3
2Ṽ3(k)kakb , and thus c112c665n3

2Ṽ3(k). The bulk
modulus thus in general depends on the wave vectork of the
compressional strain, which means that the elastic resp
is nonlocal. If the potentialV3(r ) is of short range, its Fou
rier transform Ṽ3(k) only weakly depends onk, and the
elasticity is approximately local. The continuum approxim
tion ~16! of the general expression~14! is, however, best if
V(r ) is of long range and thusṼ(k) strongly decreases in
side the first BZ. In this case the shear modulus is sm
c66!c11, thereforecb5c112c66'c11 and

c11~k!'cb~k!'n3
2Ṽ3~k!. ~16!

In particular, for the 3D lattice of pancake vortices one fin
from Eqs.~4! and ~16! the compressional modulus

c11~k!5
B2

m0

k2/q2

11k2l2 . ~17!

This pancake result coincides with thec11(k) of the aniso-
tropic London theory15 in the limit of infinite anisotropy, i.e.,
for penetration depthslc@lab5l.

For the 2D lattices of straight vortex lines or of the pa
cake vortices in a film or layer of 2D densityn25B/F0, one
writes Eq. ~16! in the form c11(q)'n2

2Ṽ2(q)/L where
he

g
r

se

-

ll,

s

-

q5(qx ,qy)5(kx ,ky ,0) and L is the vortex length. This
gives for the 2D lattice of stiff vortex lines
c11(q)5(B2/m0)(11q2l2)21. The bulk modulus for the lat-
tice of flexible vortex lines in isotropic superconductor
c11(k)5(B2/m0)(11k2l2)21 with k5(kx ,ky ,kz), cannot
be derived in this way since for this system the total ene
cannot be written as a sum of isotropicscalar pair interac-
tions. The correct interaction between the vortex segme
drm , dr n of arbitrarily curved vortex lines in isotropic su
perconductors isvectorial containing a scalar product
drmdr nV(urm2r nu). This vectorial interaction originate
from the coherence of each vortex line, which formally co
responds to a strong Josephson coupling between the vo
segments on the same line. For anisotropic London su
conductors the interaction of the line segments istensorial
and anisotropic,drm

adr n
bVab(rm2r n).15,21 For non-s-wave

superconductors the vortex interaction is expected to
more complicated.

The tilt modulusc44 follows from Eqs.~14! and ~15! as
c44(k)5Fxx(kx ,ky ,kz)/kz

2 . For the pancake lattice thi
yields

c44~k!5
BF0

8pl4kz
2m0

lnS 11
kz

2

l221q0
2D , ~18!

where q0'qBZ is a cutoff radius of the order of the BZ
radius qBZ5(4pB/F0)1/2'p/a. Note that in this decou-
pling limit c44 depends only onkz and is the linear superpo
sition of all vortex contributions, i.e., it is proportional toB
apart from the weak logarithmic dependence onB when
4pB/F0.1/l2. This pancake result forc44(k), like that for
c11(k) ~17!, coincides with the anisotropic London result
the limit lc@lab .

The shear modulus of the triangular pancake and vo
lattices is not dispersive,c665BF0 /(16pl2m0) for q!qBZ
as mentioned in Sec. I. For triangular lattices with arbitra
rotationally symmetric interactionV2(r ) one has

c665
n2

16(m @Rm
2 V29~Rm!13RmV28~Rm!# ~19!

with V85dV/dr andV95d2V/dr2. This lattice sum may be
converted into a reciprocal lattice sum. However, for the v
tex interactionṼ2(q)}(11q2l2)21, this sum diverges loga
rithmically. One either has to introduce a convergence fac
e.g., V2(q)→V2(q)e2jq and take the limitj→0, or one
may use the general expression17

c665
n2

2

16S (Q f ~Q!2E d2q

4p2n2
f ~q! D ,

f ~q!5q2Ṽ29~q!13qṼ28~q!, ~20!

with 2D reciprocal lattice vectorsQ. The integral in Eq.~20!
exactly vanishes whenV2(q)q2→0 for q→`, as can be
seen by partial integration. For the London potential one
V2(q)q2→const forq→`, and this integral gives the domi
nating contribution toc66.17
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IV. SINGLE VACANCY OR INTERSTITIAL

If one lattice point is removed from a lattice, the lattic
relaxes towards this vacancy. In this section the lattice
placementsun , the defect energy, and~for magnetic vorti-
ces! the magnetic field of the vacancy, are calculated wit
linear elastic continuum theory. The corresponding res
for an added lattice point~interstitial! are obtained from the
vacancy expressions by changing the signs of the displ
ment field and of the energy terms. Additional energy ter
which depend on the specific lattice structure and on
position of the point defect within the lattice, require nume
cal computations and are not given here.

A. Displacement field around point defects in isotropic 3D and
2D lattices

From the energy sum~1! the forcesfm exerted on the
lattice points rm by a vacancy positioned atr50 are
fm5¹V(rm). Within linear elasticity theory, the forces at th
displaced lattice positionsrm5Rm2um are replaced by the
forces at the undisplaced ideal lattice positionRm. The force
field and its Fourier transform in a 3D lattice are then, w
Eqs.~11! and ~12!,

fm5¹V3~Rm!5E d3k

8p3Ṽ3~k!ikeikRm, ~21!

f̃ ~k!5E d3k8

8p3 Ṽ3~k8!ik8
1

n3
(
m

ei „k82k…Rm

5(
K

i ~k1K …Ṽ3„k1K !' ikṼ3~k!. ~22!

The last step of keeping only the dominating termK50 in
the sum~22! again means a continuum approximation, whi
is allowed if the Fourier transformed potentialṼ3(k) de-
creases rapidly within the first BZ.

The forcesfm ~21! cause displacementsum which follow
from elastic equilibrium. From the linear elastic energy~13!

and the definition~11! of f̃ „k… one obtains

f̃ a~k!5Fab~k…ũb„k…/n3 ,

ũa~k!5Fab
21~k! f̃ b~k!•n3 , ~23!

where Fab
21(k) is the inverted matrix defined b

Fab
21Fbg5dag . In an isotropic elastic medium the longitu

dinal force field f̃ ik̃ ~22! causes a longitudinal displaceme
field ũik̃ given by ũ(k)5 f̃ (k)/@k2c11(k)# wherec11(k) is
the uniaxial compression modulus, which in general is d
persive. Inserting here c11(k)5n3

2V3(k) ~16! and

f̃ (k)5 ikṼ3(k) ~22!, we obtain the displacement fiel
caused by a vacancy in a 3D isotropic lattice within line
elastic continuum approximation,

ũ~k!5
ikṼ3~k!n3

k2Ṽ3~k!n3
2

5
ik

k2n3

. ~24!

Similarly one finds for 2D lattices
s-

n
ts

e-
s
e

-

-

r

ũ~q!5
iqṼ2~q!n2

q2Ṽ2~q!n2
2

5
iq

q2n2

. ~25!

Fourier transforming this back using Eq.~11!, one obtains
the lattice displacements caused by a vacancy in isotropic
and 2D lattices,

um
3D5

2Rm

4pRm
3 n3

, um
2D5

2Rm

2pRm
2 n2

. ~26!

These radially symmetric displacements caused by a vaca
in an infinite 3D or 2D lattice describe a pure shear str
t3D53/(4pr 3n3) andt2D51/(pr 2n2). The amplitude of the
displacements are such that exactlyone unit cell volume
1/n3, or area 1/n2, moves through a sphere or circle of arb
trary radius. Therefore, when one lattice point is remov
the subsequent elastic relaxation of the lattice is such tha
number of lattice points remains constant in any finite v
ume or area surrounding this vacancy. In regions which
not contain this vacancy, the number of lattice points a
remains constant, since the vacancy causes a pure s
strain which keeps the lattice density unchanged. This g
eral result is modified when the removed lattice point is
built into the ideal lattice in the sense of a Frenkel defect,
Sec. VI C.

A remarkable feature of the displacments~24!–~26! is that
the specific form of the interaction potentialV(r ) has
dropped out. One may say that the nonlocality~dispersion!
of the elastic response is compensated by the nonlocal c
acter of the force field. The range of the potentialV(r ) enters
only in so far as the continuum approximation in Eqs.~16!
and~22! requires thatV(r ) is smooth and acts over at least
few lattice spacings, so that its Fourier transform decrea
rapidly within the first BZ. Furthermore,V(r ) has to be such
that the lattice is stable, i.e., all elastic moduli have to
positive. This means in particular thatc11(k)5n2Ṽ(k) ~16!
has to be positive for allk, else spontaneous nucleation
compressional waves would occur.

B. Magnetic field of the displaced vortices

A further feature of the displacement field~26! is its ‘‘re-
pairing’’ or ‘‘screening’’ character. I show this for the par
ticular case of parallel vortex lines. If the magnetic fie
B(x,y) ~along z) of the vortex arrangement is the linea
superposition of isolated vortex fieldsBv(r ),

B~r !5(
m

Bv~r2rm!, Bv~r !5E d2q

4p2B̃~q!eiqr, ~27!

e.g., with B̃(q)5F0 /(11q2l2), then the field perturbation
B1(r ) caused by the vortex displacementsum around a va-
cancy in the vortex lattice may be written as

B1~r !5(
m

Bv~r2Rm2um!2(
m

Bv~r2Rm!

5E d2q

4p2B̃~k!eiqr(
m

e2 iqRm~e2 iqum21!. ~28!



s

s-
o
ex
p

lie
os
e
no
q

in
of

is
or
rty
d

rg

.

we
ing

al
ber
tice

in

ob-
kel
d

d

f
e

ter-
sre-
just
-

ing

en-

ial

9076 56ERNST HELMUT BRANDT
Expanding the factore2 iqum21'2 iqum up to the linear
terms and using definition~11! of ũ(k) in its 2D form, we
obtain

B1~r !52n2E d2q

4p2B̃~k!iqũ„q…eiqr. ~29!

Inserting hereũ„q…5 iq/(q2n2) from Eq. ~25! we find that
the perturbationB1(r ) coincides with Bv(r ) ~27!. This
means that the linear correction to the magnetic field cau
by the vortex displacements around a removed vortexexactly
equals the field of the removed vortex line, irrespective of the
particular form ofBv(r ) or B̃(q).

Within linear continuum approximation the vortex di
placements are, therefore, such that they ‘‘repair’’
‘‘screen’’ the field change caused by the removed vort
This universal result is independent of the particular sha
of both the interaction potentialV2(r ) and of the vortex field
Bv(r ), and it is independent of the vortex densityn25B/F0.
From its derivation it is clear that this screening also app
to 3D systems if the considered field is the linear superp
tion of individual fields. The screening even applies wh
these individual fields are not rotationally symmetric and
monotonic, provided the displacements are given by E
~24!–~26!.

Going beyond the continuum approximation one finds~cf.
Ref. 2! that the small periodic variation ofB(r ) is modified
such that at the position of the vacancy there is now a m
mum in B(r ) rather than a maximum, but the amplitude
the small variationdB(r )5B(r )2 B̄ stays approximately
constant near the vacancy.

C. Energy of a point defect

Inserting the displacement field~24! into Felast ~13! and
changing the sign~since the work done by the forces
22Felast), one obtains the elastic energy of the lattice def
mation around a vacancy. Using the prope
kaFabkb5k4c11(k) for the isotropic elastic medium an
c115n3

2Ṽ3(k) ~16! one finds

Felast52
1

2EBZ

d3k

8p3Ṽ3~k!. ~30!

This expression looks identical to the negative self ene
2Uself ~2!, ~3! of a lattice point, except that the integral~30!
is restricted to the first BZ while the integral inUself extends
over the entirek space.

To Felast ~30! one has to add the energy2Uself22UB
required to remove one lattice point. HereUB is the binding
energy of each lattice point,

UB5
1

2 (
mÞ0

V3~Rm!

5
1

2EBZ

d3k

8p3Ṽ3~k!S (
m

eikRm21D
5

n3

2 (
K

Ṽ3~K !2
1

2E d3k

8p3Ṽ3~k!, ~31!
ed

r
.

es

s
i-

n
t
s.

i-

-

y

where Eqs.~3! and ~12! were used. The last integral in Eq
~31! is over all space and equals2Uself. In order to elimi-
nate the self-energy from the total energy of a vacancy,
consider now a Frenkel vacancy, which means that dur
creation of the vacancy we keep the total numberN of lattice
points and the total volumeN/n constant.2 This is achieved
by building the removed lattice point back into the ide
lattice, which is possible at the surface or if a large num
of such vacancies is considered. The addition of a lat
point increases the lattice densityn5n3 or n5n2 and re-
quires an energy Uself1(]/]n)(nUB)5Uself1UB
1n]UB /]n. The total energy of the vacancy is thus with
linear continuum theory Fvac52Uself22UB1Uself1UB
1n]UB /]n1Felast, yielding

Fvac5n]UB /]n2UB1Felast ~32!

with Felast and UB given by Eqs.~30! and ~31! for 3D lat-
tices. The corresponding expressions for 2D lattices are
vious from the above derivation. The energy of a Fren
interstitial ~a lattice point removed from the surface an
squeezed into the lattice! within this linear continuum ap-
proximation is given byF int52Fvac ~32!.

To discuss the vacancy energy~32! we first note that the
binding energyUB ~31! in soft lattices may be approximate
by

UB'
n3

2
Ṽ3~0!2

1

2EBZ

d3k

8p3 V3~k!, ~33!

since the sum overKÞ0 and the integral overk outside the
first BZ approximately cancel. The integral in Eq.~33!
equalsFelast ~30!; these two terms thus cancel inFvac ~32!.
Since Ṽ3(0) does not depend onn, two more terms
6(n3/2)Ṽ3(0) cancel inFvac. The only remaining term is
thus

Fvac'2
n

2

]

]nEBZ

d3k

8p3 V3~k!. ~34!

The derivative]/]n (n5n3 ,n2) can be taken explicitly not-
ing thatV(k) depends only onk5uku and that the radius o
the first BZ ~i.e., the radius of a sphere or circle of sam
volume or area as the first BZ! is kBZ

3 56p2n3 in isotropic
3D lattices andkBZ

2 5qBZ
2 54pn2 in 2D. The results for 3D

and 2D isotropic lattices look the same,

Fvac'
n

2
Ṽ~kBZ!;V~a!. ~35!

This residual term, comparable to the nearest neighbor in
action, is of the same order as other terms that were di
garded in this continuum approximation, which assumes
that Ṽ(kBZ)!Ṽ(0). Therefore, our result is that within con
tinuum approximation the energy of a vacancy~and of an
interstitial! vanishesor is of the order of the~disregarded!
nearest neighbor interaction.

This finding might have been expected by handwav
arguments, but from the above derivation one notes thatthe
vanishing energy of a point defect results from the comp
sation of several large terms. Omitting or approximating one
of these terms, e.g., the elastic energy, may yield artific
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final results of both signs. The correct energy of point defe
should, therefore, be calculated either by evaluating E
~30!–~32! numerically or by direct computation from Eq.~1!,
minimizing the energy with respect to all lattice positionsrm,
as was done for the 2D vortex lattice in Refs. 2,22.

The larger the range of the potentialV(r ) is, the smaller
are the defect energies, and the larger will be the numer
effort. This effort can be reduced and the accuracy impro
by using an Ewald summation method.23 Computations are
also required to account for the nonlinear elastic relaxa
and when the detailed position dependence of the defec
ergy is of interest. But both the nonlinearity and this positi
dependence become weaker when the range of the la
interaction is larger. One can show that for a logarithmic
interaction potentialV2(r )} lnr the expansion of the elasti
energy of a lattice point surrounded by a stiff lattice of s
fold rotational symmetry and displaced byu starts withu6,
and for fourfold symmetry withu4. This means the potentia
well is very flat and has vanishing curvature in its minimu
Therefore, the position-dependent energy term of an inte
tial is not so large, as long as the interstitial does not co
too close to a neighboring lattice point.

V. INTERACTION OF POINT DEFECTS

In this section it will be shown that the interaction b
tween point defects also vanishes within linear continu
theory. The self energy of these defects is of the order of
nearest neighbor interactionV(a), which is small compared
to the binding energyUB ~31!, and their interaction energy i
much smaller than the unscreened interaction. When the
teraction between lattice points is of long range, the inter
tion of lattice defects is ideally screened by the relaxation
the lattice. I show this screening for the example of
vacancy-interstitial pair, but the results apply also to pairs
two vacancies or two interstitials, and obviously to any nu
ber of such point defects.

The energy of a vacancy-interstitial pair is composed
the two self energies and the interaction energyF int between
these two point defects. In its turnF int5F int

0 1F int
elast is com-

posed of the unscreened interaction and the energy of
elastic relaxation. For a vacany atr50 and an interstitial at
r5r p ~pair distancer p) one has with Eqs.~1! and ~3! for a
3D lattice

F int
0 52V3~r p!52E d3k

8p3Ṽ3~k!coskr p , ~36!

where the integral is over all space. The forces exerted on
undisplaced lattice points by the defect pair are

fm5¹V3~Rm!2¹V3~Rm2r p!

5E d3k

8p3Ṽ3~k!ikeikRm~12e2 ikr p!. ~37!

Comparing this with Eq.~21!, one sees thatṼ3(k) is re-
placed byṼ3(k)(12e2 ikr p). One can thus use Eqs.~22!–
~25! to obtain for 3D isotropic lattices

f̃ „k…' ikṼ3~k!~12e2 ikr p!, ~38!
ts
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n
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he

he

ũ„k…5
ik

k2n3

~12e2 ikr p!, ~39!

um5
21

4pn3
S Rm

Rm
3

2
Rm2r p

uRm2r pu3D . ~40!

The corresponding expressions for 2D lattices are obvi
from Eqs.~25! and ~26!. The elastic displacementsum ~40!
caused by the two defects superimpose linearly, as it sho
be within linear elasticity theory. Therefore, the screening
the magnetic field in Sec. IV B applies also when seve
defects are present.

The elastic energy of the defect pair is obtained by ins
ing ũ(k) ~39! into 2Felast~13!, cf. the derivation of Eq.~30!.
Noting that (12e2 ikr p)(12eikr p)5222coskr p we find for
3D isotropic lattices

Felast52E
BZ

d3k

8p3Ṽ3~k!~12coskr p!. ~41!

To get the interaction part of Eq.~41! one has to subtrac
from it twice the elastic energy~30! of one point defect,
equal to the limitr p→` of Eq. ~41!, yielding

F int
elast5E

BZ

d3k

8p3Ṽ3~k!coskr p . ~42!

This expression is almost identical to2F int
0 ~36!, except that

in Eq. ~42! the integral is over the first BZ. These two term
therefore almost cancel each other. The total interaction
ergy of the defect pair is thus

F int5F int
0 1F int

elast5E
k . kBZ

d3k

8p3Ṽ3~k!coskr p . ~43!

This integral is very small sinceṼ(k)!Ṽ(0) for k outside
the first BZ when the lattice interactionV(r ) is smooth and
of long range. Forr p5a the F int ~43! is thus much smaller
than the nearest neighbor interactionV(a), which equals the
same integral~42! but taken over allk space. Forr p@a the
integral~43! becomes even smaller since the integrand os
lates rapidly.

Our result is thus that the interaction of isotropic po
defectsvanisheswithin the linear continuum approximation
For lattices with short-range interaction this result mig
have been expected since the strain around a point defec
pure shear strain, which does not interact with an isotro
defect.24,25 Our finding is, however, more general, statin
that in 3D and 2D isotropic lattices with long-range intera
tion V(r ) the unscreeneddirect interaction6V(r p) between
two point defects is exactly compensated by the linear ela
indirect interaction between the defects.

This result means that innonlocal lattices there is in fact
an elastic interaction between point defects, of same ra
and size as the direct interaction, thus compensating the
ter. This feature is particularly important for lattices wi
very long-range interaction, e.g., the lattices of vortex lin
and pancake vortices,10 which will be considered in more
detail in Sec. VI.
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As opposed to these soft lattices, in atomic lattices w
nearest neighbor interaction, where the usual local elast
theory is a good approximation, a small short-range inter
tion of point defects may come from thenonlinear elastic
deformation of the lattice near the defect, and a long-ra
elastic interaction}1/r 3 may arise from the anisotropy o
specific point defects and of the anisotropic elasticity of
material. The interation between point defects in vario
metals is calculated, e.g., in Ref. 26.

VI. APPLICATION TO LAYERED SUPERCONDUCTORS

A. Forces and displacements

We now apply the results derived in Secs. IV and V f
isotropic 3D and 2D lattices to the anisotropic lattice of pa
cake vortices in layered high-Tc superconductors. The tw
differences to the isotropic 3D lattice are that the forcesfm
and displacementsum in layered superconductors have noz
component and that the elastic matrix has the uniaxial fo
~15!. For example, the forces exerted on the pancakes b
antipancake-pancake vortex pair, corresponding to
vacancy-interstitial pair, positioned at r50 and
r5r p5(xp ,0,zp) ~i.e., with in-plane distancexp and inter-
layer distancezp5ms, m integer! are obtained by putting
f̃ z50 in Eq. ~38!,

f̃ „k…' iqṼ3~k!~12e2 ikr p!. ~44!

Here q5(qx ,qy)5(kx ,ky ,0) andṼ3(k) is the 3D pancake
interaction, Eq.~4!. The elastic matrix~15! of the pancake
lattice has the inverse

Fab
21~k!5

~c662c11!kakb1dab~c11q
21c44kz

2!

~c11q
21c44kz

2!~c66q
21c44kz

2!
~45!

with the uniaxial compression modulusc11(k) ~16! and the
tilt moduls c44(k) ~18!; the shear modulusc66 will drop out
from the point-defect results. The productsqF and qF21

required below are thus for the highly anisotropic panca
lattice

qaFab~k!5qb@q2c11~k!1kz
2c44~k!#, ~46!

qaFab
21~k!5qb@q2c11~k!1kz

2c44~k!#21. ~47!

For comparison we note that for a dense flux-line lattice
isotropic superconductors one hasc11(k)'c44(k)
'(B2/m0)(11k2l2), thus

qaFab~k!5qbk2c11~k!, qaFab
21~k!5

qb

k2c11~k!
.

~48!

Formulas~46!–~48! are required to calculate the elastic r
sponse of vortex lattices to forces exerted by structural
fects or by pins.

The displacements caused by an additional antipanc
pancake pair are obtained from Eqs.~23!, ~44!, and~47!,

ũ~k!5
iqṼ3~k!~12e2 ikr p!n3

q2c11~k!1kz
2c44~kz!

, ~49!
h
ty
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with n35B/(F0s). Inserting herec11(k) ~16! we obtain

ũ~k!5
iq~12e2 ikr p!

q2n3
S 11

kz
2c44~kz!

q2c11~k!
D 21

. ~50!

Using c11 ~17! andc44 ~18! we see that

g~k![
kz

2c44~kz!

q2c11~k!
5

ln~11kz
2/qBZ

2 !

2qBZ
2 l2

11k2l2

k2l2 ~51!

is a small correction,g!1, whenqBZ
2 54pB/F0@l22, cor-

responding toa!pl or B@Bc1 /lnk, and whenk2l2 is not
too small.

To visualize the difference to isotropic lattices we co
sider the displacementsum caused by a vacancy~antipan-
cake! positioned atr50, given by the first term in Eq.~50!
~the unity!. The corresponding result for a vacancy atr5r p
is then obtained by replacingRm by Rm2r p , and for an
interstitial ~additional pancake! by changing the sign. At no
too largeuzmu,l in the back transform~11! for um mainly
large ukzu@l21 contribute to the integral. One may thus r
place the factor 111/k2l2 in g(k) ~51! by unity. The inte-
grals overkz andq in the back transform~11! then separate
and one obtains the displacement atRm5Rm21zmẑ,

um5
2Rm2

2pRm2
2 n2

s

pE0

p/s

dkz

cos~kzzm!

11g~kz!
, ~52!

whereRm2 are the 2D ideal lattice vectors,n25B/F0, and
g(kz)' ln(11kz/qBZ)/(qBZ

2 l2). For the displacements in th
same layer as the vacancy (zm50), the general formula~52!
reproduces the 2D universal result~26! with an approximate
correction factor 12g(kz5p/s)'12(a2/p2l2)ln(a/s)'1.

The displacements in other layers (zmÞ0) are much
smaller. If the small correctiong(kz)!1 is disregarded, the
integral overkz yields sin(pzm /s)/(pzm /s)5dm0 sincezm5ms
with m integer. This means the displacements in the lay
mÞ0 vanish. This approximation is the better the higher th
inductionB is, since the perturbationg(kz) contains a factor

g5
1

qBZ
2 l2

5
A3a2

8pl2 '
Bc2

Blnk
!1. ~53!

Accounting for this perturbation we get foruzmu,l the pan-
cake displacements caused by a vacancy sitting at the or
with dm051 (m50) anddm050 (mÞ0),

um5
2Rm2

2pRm2
2 n2

S dm02
g

2
amD . ~54!

Here the constantsam (m integer! are

am5
s

pE0

p/s

lnS 11
kz

2

qBZ
2 D cos~kzms!dkz

5E
0

1

ln~11bu2!cos~mpu!du

'dm0~ lnb22!2
12dm0

umu
~55!
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with b5(p/s)2/qBZ
2 'a2/s2@1. Thus,

um'
2Rm2

2pRm2
2 n2

F S 12g ln
a

esD dm02g
12dm0

2umu G ~56!

with e52.718. Note that the displacements in the layerm50
and in the other layers haveopposite sign. The displacements
in themth layer decrease thus only slowly, approximately
1/umu5s/uzu when uzu,l, but the prefactorg is typically
small.

B. Magnetic field

The magnetic field caused by a pancake vortex atrm50
in layered superconductors withs!l is3,6,15

Bp~r !5E d3k

8p3 B̃p„k…eikr ,

B̃p~k!5F0s
ẑ2qkz /q2

11k2l2
. ~57!

Explicitly one has, withrW 5(x,y) and r5(x,y,z),3

Bp~r !5
sF0

4pl2Fe2r /l

r
ẑ1

z

rS e2uzu/l

uzu
2

e2r /l

r D r̂G . ~58!

The magnetic field of a 3D pancake lattice is the linear
perposition of the fieldsBp(r2rm). The perturbationB1(r )
caused by pancake displacementsum5rm2Rm is derived in
analogy to Eq.~29!,

B1~r !52n3E d3k

8p3 B̃p~k!iqũ~k!eikr . ~59!

Inserting here the displacement field caused by a vacanc
antipancake positioned at the origin,ũ(k)5 iq/
$q2n3@11g(k)#%, cf. Eq. ~50!, one obtains

B1~r !5E d3k

8p3

B̃p~k!

11g~k!
eikr . ~60!

Expanding this with respect to the small perturbationg(k)
~51! one obtains

B1~r !5Bp~ !2E d3k

8p3 B̃p~k!g~k!eikr . ~61!

This means that the relaxation of the 3D pancake lat
around a pancake vacancy restores the field of the remo
pancake almost exactly. But while the screening in Sec. IV
was shown to be perfect for a vacancy in the 2D lattice
stiff vortex lines, and generally in isotropic 2D or 3D la
tices, the compensation of the pancake-vacancy field2Bp(r )
by the field of the lattice relaxation~59! is not perfect, since
the pancake lattice is anisotropic and the pancakes can m
only within the layers. The small residual field around t
vacancy or antipancake is given by the second term in
~61!. Evaluating this one obtains for the screened magn
field of a vacancy
s

-

or

e
ed
B
f

ve
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ic

Bvac~r !5B12Bp'2E d3k

8p3 B̃p~k!g~k!eikr

52
F0s

qBZ
2 l4E d3k

8p3

ẑ2qkz /q2

2k2
lnS 11

kz
2

qBZ
2 D eikr .

~62!

For the far field atuzu@a one haskz
2!qBZ

2 and thus may
expand the logarithm in Eq.~62! and replacekz

2 by 2]2/]z2.
Thez component ofBvac ~62! may now be obtained using th
formula

E d3k

2p2

eikr

k2
5

1

r
. ~63!

The in-plane component then follows from divB50. This
yields Bvac}(]2/]z2) ( ẑ/r 2 r̂z/r2r ) and finally

Bvac~r !'g2
F0s

8p

3zr2r 2ẑ

r 5

5g2
F0s

8p

3zrr̂1~2z22r2!ẑ

r 5
~64!

with g5l22qBZ
22 from Eq. ~53!.

Looking at thez component of the screened magne
field ~64! of a vacancy, we notice that this decreases as 1r 3

whereas the unscreened pancake~or vacancy! field, Eq.~58!,
decreases exponentially. Due to the large factorsqBZ

2 l2@1
andqBZ

2 r 2@1 in the denominator of Eq.~64! ~far field means
r @a) the amplitude of this long-range screened vacan
field is small. The word screening here refers to the magn
field reduction caused by the relaxation of the pancake v
tices close to the vacancy. But since the displacement fi
~56! is of longer range than thez component of the magneti
field ~58! of the unscreened vacancy,the screened magneti
field at large distances exceeds the unscreened field.

Two compensations have occurred in Eqs.~62! and ~64!.
First, the two factors 11k2l2 in the pancake field~57! and
in the compression modulusc11(k) ~17! @which enters the
small correctiong(k) ~51! and thus Eq.~62!# have compen-
sated. As a consequence, the far fieldBvac(r ) decreases no
exponentially but algebraically. Such a compensation d
not occur in the displacement field, Eq.~52!.

Second, the magnetic field of the displaced pancak
which determines the long-range algebraic tail ofBvac(r ),
Eq. ~64!, does not depend on the layer spacings, apart from
the trivial prefactorsF0 originating from the unscreene
pancake field, Eq.~58!. This is so since the factors in the
displacement fieldum}s/uzmu ~56! is compensated by a fac
tor 1/s originating from the density of the layers. Therefor
in the limit s→0 the pancake displacements~53! caused at a
constant distanceuzmuÞ0 by removing a pancakevanish, but
the additional magnetic field caused by these displacem
stays finite.

C. Interaction energy

The self-energy of an added or removed pancake
largely compensated by the relaxation of the surround



xa
b

e
a
,
a

n

e
n

d

an

r

r-

o

e

a

h

c-

n-
for

an-
qs.

he

on of

s
ion
e

s is
the
the

in

c-
int
nd-
he

in-
en-
eal
ergy

int
ter
ny

or

not
3D
-

9080 56ERNST HELMUT BRANDT
dense pancake lattice as described in Sec. IV. The e
value depends on the displacements of the nearest neigh
and thus requires computation. The screened long-rang
teraction between pancakes, however, can be calculated
lytically. Due to theanisotropyof layered superconductors
this screened interaction does not vanish in continuum
proximation, while the screened interaction inisotropic ma-
terials vanishes, Sec. V.

Consider a removed pancake~a vacancy! at the origin
r50 and an added pancake~an interstitial! at some position
r p5(rp ,zm) with zm5ms. The unscreened interactio
F int

0 (r p) of this antipancake-pancake pair is given by Eq.~36!

with Ṽ3(k) from Eq. ~4! inserted. The elastic energy of th
pancake displacements caused by the defect pair is give
Eqs. ~41! and ~42!, but now with Ṽ3(k) replaced by
Ṽ3(k)/@11g(k)# with g(k) from Eq. ~51!. The factor
(11g)21 occurs inFelast, Eq. ~13!, since theũ„k… ~50! con-
tribute two factors (11g)21, one of which is compensate
by qaFabqb5q4c11(k)@11g(k)#, cf. Eq. ~46!. The
screened pair interaction is thus

F int52 È d3k

8p3Ṽ3~k!coskr p1E
BZ

d3k

8p3Ṽ3~k!
coskr p

11g~k!
.

~65!

Since we are interested in the interaction at large intrapl
distancesrp , only small values ofq!qBZ enter in Eq.~65!,
and the different integration areas in the two integrals oveq
are irrelevant; thekz integration in Eq. ~65! is over
2p/s<kz<p/s. Expanding with respect to the small pe
turbationg(k)!1, we obtain thus

F int52E d3k

8p3Ṽ3~k!g~k!coskr p

52
F0

2s2

2m0qBZ
2 l4E d3k

8p3

eikr p

q2
lnS 11

kz
2

qBZ
2 D

52
F0

2s

4pm0qBZ
2 l4

ln
R

rp
am ~66!

with am from Eq. ~55!. Note that the separation into tw
factors depending only onrp and zm is exact in Eq.~66!

since the factors k2/(11k2l2) in Ṽ3(k) ~4! and
(11k2l2)/k2 in g(k) exactly cancel. In contrast, with th
displacement fieldum, Eq. ~52!, one had to assumeuzu,l to
obtain (11k2l2)/k2l2'1 and arrive at the factorsam , Eq.
~55!. Equation~66! therefore describes the pair interaction
arbitrarily large distancesr p@a. An inner cutoff in theq
integration was chosen such that the interaction vanis
when the pair separation reaches the specimen sizeR. If uzmu
is not too large one may use foram the approximation given
by the last line of Eq.~55!. The screened intraplane intera
tion between an antipancake and a pancake is then,

F int~zm50!52g
F0

2s

2pm0l2 ln
R

rp
ln

a

es
, ~67!

and the screened interplane interaction is
ct
ors
in-
na-

p-

by

e

t

es

F int~zmÞ0!52g
F0

2s

4pm0l2 ln
R

rp

1

umu
~68!

with g'(a/pl)2!1, Eq. ~52!. Note that this screened
antipancake-pancake interaction isattractive for all layer in-
dicesm since all the logarithmic factors are positive. In co
trast, the unscreened pair interaction, Sec. II, is attractive
m50 but repulsive formÞ0.

Obviously, the screened interaction between two p
cakes or between two antipancakes is also given by E
~66!–~68! but has opposite sign. The ratio between t
screened intraplane and interplane interaction acrossumu lay-
ers in all these cases is

F int~zm50!

F int~zmÞ0!
5

am50

amÞ0
52umu ln

a

es
. ~69!

The ratio between the screened and unscreened interacti
pancakes or antipancakes,S5F int

scr/F int
unscr, follows from Eqs.

~6!, ~7!, ~67!, and~68!,

S~r@j,zm50!5g ln
a

es
, ~70!

S~r@l,zmÞ0!52g
l

uzmu
exp

uzmu
l

. ~71!

Sinceg'a2/(pl)2!1, the intraplane interaction is alway
reduced by screening, while the interplane interact
changes sign and atzm@l even exceeds in magnitude th
exponentially decreasing unscreened interaction.

Though the exact value of the screened self-energie
not known, it appears natural to assume that inclusion of
self-energies of the antipancake-pancake pair changes
factor ln(R/rp) in Eq. ~67! to ln(j/rp), yielding the total
screened energy of a pair in the same layer,

Fpair~zm50!5g
F0

2s

2pm0l2 ln
rp

j
ln

a

es
, ~72!

in analogy to Eq.~8!. The reduction by screening is aga
Fpair

scr /Fpair
unscr5g ln(a/es)!1.

VII. SUMMARY

In 2D and 3D lattices with isotropic long-range intera
tion between the lattice points or lines, the energy of po
defects is strongly reduced by the relaxation of the surrou
ing lattice. Within a consistent continuum approximation, t
screened self- and interaction energies of vacancies and
terstitials even vanish, i.e., the direct interaction is comp
sated by the indirect elastic interaction. Since this id
screening results from an exact compensation of large en
terms, all these terms shouldnot be approximated in order to
avoid spurious results. The lattice relaxation around po
defects within continuum approximation is such that, af
introduction of the defect, the number of lattice points in a
given area or volume stays constant, even if this area
volume contains the point defect, cf. Eq.~26!.

In anisotropic lattices, the screening of point defects is
complete, even within continuum approximation. For the
lattice of point vortices~pancakes! in layered superconduct
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ors, the continuum approximation is excellent since the
teraction of the pancake vortices is much longer ranged t
the typical spacing of pancakes. The elastic displacem
and magnetic field around a screened vacancy are give
Secs. VI A and B, and the screened interaction between
cakes or antipancakes in Sec. VI C. The screened mag
field and interaction of pancakes contain a small prefac
g'(a/pl)2!1, which means strong screening of the ne
field. However, at large distances, the relaxation of the p
cake latticeincreasesthe magnetic field and the interactio
energy: These have long-ranging tails which decrease m
slowly than the unscreened pancake field or interaction
which originate from the algebraically decreasing elastic d
placements. In addition, the screening changes the sign o
ca

.

-
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ts
in
n-
tic
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r
n-

re
d
-
he

interaction of pancakes located in different layers. T
screening and modification of the pancake interaction by
static relaxation of the surrounding pancake lattice poss
should be considered in future theories of pinning and th
mal depinning, and in the prediction of phase diagrams
layered superconductors in a magnetic field.
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