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Defects in two- and three-dimensional soft lattices:
Application to vortices in layered superconductors
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It is shown that within continuum theory and linear elasticity the interaction of point defects in two- and
three-dimensional lattices with isotropic long-range interaction is ideally screened; i.e., the elastic relaxation of
the background lattice exactly compensates the long-range interaction between the defects. A small residual
short-range interaction results from the discreteness of the lattice and from the nonlinear elastic displacements.
The self-energy of a point defect is also strongly reduced by the lattice relaxation. These general results are
applied to the lattices of Abrikosov vortex lines and of point vortitgsmncakes”) in layered superconduct-
ors. In the anisotropic lattice of pancakes this screening is not complete. In particular, screening changes the
sign of the interlayer interaction, and while without screening the perpendicular magnetic field of a pancake
decreases exponentially with increasing distance, the screened field decreases only algebraically due to the
long-range elastic displacements of the pancake lattice around a vacancy or interstitial.
[S0163-18297)05138-3

[. INTRODUCTION where ¢ is the in-plane coherence length or radius of the
vortex core anda<p the in-plane lattice distanc8.The re-

The vortex lattice in type-Il superconductors is charactersulting screened interaction does only weakly depend on the
ized by a repulsive interaction between the Abrikosov vortexdefect spacing but depends mainly on the lattice spacaig
lines of range\, the magnetic penetration depth, which isit is thus of order of the disregarded energy terms which
typically much larger than the lattice spaciad One conse- account for the discrete lattice structure and for the nonlinear
guence of this long-range interaction is that the shear modtelastic displacements of the nearest neighbors. The strong
lus cgg Of the vortex lattice is much smaller than the uniaxial reduction of the interaction and self-energies of point defects
compression modulus ¢c;; or the bulk modulus in lattices with long-range interaction is thus not changed
11— Cee= (327/+/3) (M a)?cgs. Another consequence of the qualitatively if one goes beyond the continuum approxima-
long-range interaction is that structural defects in such a sofion (which holds best for smooth long-range interaction po-
lattice have very small energy as compared to the bindingentialg and if one includes the nonlinearity of the elastic
energy of a vortex in the lattice. This means, e.g., that thdattice deformation. In general these corrections to the defect
energy of a point defectan interstitial or vacandyis  energy have to be calculated numerically for given lattice
strongly reduced by the relaxation of the surrounding laftice. symmetry and defect position.

This property applies both to two-dimensior{aD) lattices The long-range interaction of the lattice means that within
like lattices of vortex lines or of the short vortices in thin continuum theory the elasticity of the medium is nonlocal.
films, and to three-dimensioné&D) lattices like atomic lat- This elastic nonlocality is fully accounted for in our theory.
tices with long-range forces or the lattice of “pancake Remarkably, within linear elastic continuum theory, the
vortices™ in layered superconductors, which interact by aspatially decreasing displacement fiel¢r) around a point
very long-range logarithmic potentii? defect turns out to be universal, i.e., independent of the

In the present paper it is shown that within continuumspecific shape of the isotropic interaction potential if
approximation and linear elasticity, the compensation of théts range goes over several lattice spacings. Namely, one has
two energies of the unrelaxed point defect and of the latticei==r/(27r?n,) for isotropic 2D lattices andu=z=r/
relaxation is nearly complete. This compensation concerngmr®n;) for isotropic 3D lattices, wheren,~a 2
both the self-energy of each point defect and the interactioandng~a2 are the 2D and 3D densities and the plus and
energy between twéor more point defects. The relaxation minus signs apply to the interstitial and vacancy, respec-
of the surrounding lattice reduces the defect energy the morively. These displacement fields mean that during the relax-
the longer the range of the lattice interaction is. This findingation of an infinite lattice around a vacancy or interstitial,
applies to isotropic 2D and 3D lattices, and with some re-exactlyone atomic volume I, or 1/h; passes through any
strictions also to anisotropic lattices. For example, in the 3Cxircle (2D) or sphere(3D) centered at this point defect. The
lattice of pancake vortices in layered superconductors, thaumber of lattice points in a circle or sphere of arbitrary
energy of a pancake-antipancake p@iterstitial and va- radius remains thus unchanged if a lattice point is removed
cancy positioned in the same layer and of distancds  or added. Indeed, these two displacement fields mean a pure
proportional to Inf/&) beforethe pancake lattice is allowed shear strain, which leaves the density constant.
to relax (or in the absence of this background latjicBut Similar displacement fieldsi<1/r and ux1/r? follow
after lattice relaxation this factor is reduced to aboutligf,  from linear elasticity theory for the radially symmetric strain
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around any pointlike perturbation in a 2D or 3D medium. quantum\ the magnetic penetration depththe Ginzburg-
The remarkable new findings of the present theory are thatandau(GL) coherence length, and=X\/¢ the GL param-
the continuum approximation yields also thenplitudeof  eter. For the London theory to apply we have to assume
this strain, if the strain is caused by a vacancy or interstitial, . 1 and b=B/B ,<0.2. In London approximation, the
and that the specific form of the interaction potential drOpSmagnetic field o; an isolated vortex line along is

out from the result. The displacement field within this ap-5 (p) = (Do/2mND)Ko(p/\), p2=x2+y?, and the interac-
proximation is, therefore, topological propertyof the point ,I,if;np bet\(;veen ,?WF(; 'pglrallel \'/ortex lines s

defect, as is also the displacement field around a dislocatio B ) 2 -
While the strong reduction of defect energies by the lat-Y2(P) =B(p)Po/ o= (Po/2mA"1o) Ko(p/N). The modified

tice relaxation applies to 2D and 3D lattices of any objects3€SSel functionKq(x) has the limitsKq(x)~In(1/x) for
with long-range interaction, a further related effect is re-x<1 andKq(x)~(m/2x)""?%e™* for x>1. The superposition
stricted to lattices of magnetic vortices. In vortex lattices ofof isolated vortex fields in an ideal lattice yields
superconductors the magnetic fidddr) within the London  B(r)=B+ 6B(r) where the periodic modulation typically is
theo_ry(see belowis the linear superpqsition of isolated VOI- much smaller than the averagﬁ_, with  variance
tex fields. If one takes_out one vortex line, the_n_ the relaxatlo_n(r:«55)2>1/z$0_06091,0/)\2%0.765361””&11 In the same
qf the remaining vortices generates an add_ltlon_al magnetif, 4, ction range the compression modulus of the vortex lat-
field which in linear elastic continuum approximation exactly i —

equals the field of the removed vortex. The depression ofic® 1S  €u~B%uo and the shear modulus
B(r) near the vacancy is thus “filled” or “repaired” by the Cee~B®o/(16mN\?ug)~C11/(8bk?)<Cyy With b=B/Bg,.
lattice relaxation. The same repairing or screening occurShe finite radius of the vortex core,~2¢ removes the
near interstitial vortex lines and near point defects in the 30ogarithmic singularities oB,(p) andV,(p) by replacing in
lattice of pancake vorticed,but in the latter case the screen- Ko(p/\) the distance by (p?+2£%)Y? as shown by Cleni?

ing is not perfect. After relaxation of the background vortexThe finite vortex core reduces the field variamc&®*In the

lattice, the resultin@(r) is thus almost constant,_like in t_he_following the bar on the average inducti@will be omitted
absence of the point defect. Only the small, spatially penodmfor convenience

variation of B(r), caused by the discreteness of the vortex At larger reduced inductions>0.2, the increasing over-

lattice, is slightly perturbed near the vacaricBut in the ) .
anisotropic 3D pancake lattice the perturbation fiBldr), lap of the vortex Cges reduces the field variancand the.
661 3
shear modulug as has been shown recently guantita

in addition to this local perturbation, has a weak long-range’ € . X
P ¢ g'[|vely by numerical solution of the GL equatiofis.For

tail decreasing as d7. b=0.2 th ¢ th . I
The outline of this paper is as follows. General expres- -2 the energy of the vortex system Iis no longer com-
sions for the total, interaction, and self-energies of 3D an osed of pair |nte_ract|ons_. But an effective pair interaction
2D lattices, and in particular of the 3D pancake-vortex lat-"2(P) may be derivetf which reproduces the correct nonlo-
cal elastic energy of the vortex lattfdeto a good approxi-

tice, are given in Sec. Il. The continuum approximation of > == h 7 = . _ his effecti
elasticity theory is defined in Sec. Ill. Within continuum ap- Mation in the entire induction range<b-=1. This effective
proximation, in Sec. IV we derive the universal displacemenﬂ”f?it";r(‘zhagbt)hﬁz range’=\/(1~-b)™" and saturates at

field around a vacancy or interstitial and show that the mag¥ ) ) )
The small shear modulus, small induction variance, and

netic field of a removed or added vortex line is ideally

screened and that the self energy of a point defect is reducetin@!l energy of defects as discussed in Sec. |, are all due to

to terms of order of the nearest neighbor interaction. In SedN€ long-range interaction>a. In thin films with thickness

V the interaction between point defects is found to be red<<\ the interaction range between vortices becomes even
. . . .. . . — 218 H

duced even further; in isotropic lattices this interaction is!ar9€r him=2A/d",”" reducing the shear modulig even

completely screened within continuum approximation. Thesénore:"~ In the limit of very thin superconducting films the

general results are applied and extended to the highly anisdltéraction between the short vortices with a pointlike core

tropic 3D lattice of pancake vortices in layered hisu- becomes logarithmic, acting mainly via the stray field out-

perconductors in Sec. VI, where the screening of the magside the film. The same logarithmic interaction acts beween
netic field and of the interaction of pancake vacancies of'® pancake vortices in layered superconductors when the

interstitials is not complete. The results are summarized if©Sephson coupling between the superconducting layers may
Sec. VII. be disregarded. The 3D magnetic interactityfr) between

such pancake vortices is highly anisotropic, being repulsive
for pancakes in the same layer but attractive and much
Il. 2D AND 3D VORTEX LATTICES weaker for pancakes in different layérghis type of inter-
action arranges the pancakes to parallel stacks, which behave
The triangular lattice of Abrikosov vortices in type-Il su- like the highly flexible(low tension vortex lines described
perconductors with spacinga=(2®,/y3B)"? exhibits by the anisotropic London theoly.
strongly overlapping vortex fields if the average induction In general, the energy of a 2D or 3D arrangemeniNof

B_=<B(r)> or vortex densitynzzB_lfbo is not too small, lines or points with pair interaction takes the form

namely, in the induction rang®;;<B<0.2B, correspond-
ing to vortex spacings2>a>6¢&. HereB ,~ ®Ink/(4m\?) L
andB,=®,/(27&£%)~(2k%/Ink)B,, are the lower and up- _

2= Po/(2mE) ~(2k°/INK)By p F_EE > V(r,-T,), 1)

per critical fields,®,=h/2e=2x10"1° Tm? is the flux f=1 =1
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where for 2D systems the pair potential\is=V,(r,) with
r,=p=(x,y,0) (lines along z) and for 3D systems
V=V;3(r3) with r3=(x,y,z). The 2D potentiaV, contains a
factorL, the specimen length alorag The sum(1) comprises
both the interaction energiederms u+# v) and the self-
energiegterms = v), which may thus be written as

1
UseIfZEV(O)- (2
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Note that formulag5)—(10) were derived from the 3D
potential (3) with Eq. (4) inserted, using the boundaries
R !<qg=¢"1 and|k,|< n/s. For the following calculations
of energies and displacement fields of lattice defects we will
need only Eq.(1) with a general potentia¥/(r), which in
some of our results even drop out.

In particular, for a lattice of magnetically interacting pancake

vortices one has fos<€\,

B
Vs(r):fﬁvs(k)e' " (3
_ d2s? K22
Va(k)= — ] €)

Mo 1+ k2)\2 '

wherek= (ky,ky,k;), q=(ky k,,0), k=1|k|, g=]q[, sis the
layer spacing, antl =\ ,;, is the penetration depth for super-
currents flowing in the layerén the ab or xy plane. The
integral (4) is taken overq=<1/¢ (cutoff due to the finite
vortex corg and over— m/s<k,< /s due to the periodicity

Ill. ELASTIC CONTINUUM APPROXIMATION

The continuum approximation of the elasticity theory of a
lattice disregards the specific structure of the lattice. For-
mally this means, e.g., that a sum over reciprocal lattice vec-
tors K is replaced by its main ternK=0, X f(k+K)
~f(k), wherek is the vector of a periodic strain field. This
approximation is good if the functioh(k) decreases rapidly
within the first Brillouin zongBZ), e.g., when the energy of
compressional waves in a lattice with long-range interaction
is calculated. In calculations of the energies of shear and tilt
waves, the continuum approximatidby taking the limit of
smallk) is more intricate, requiring the integration of a func-

alongz. In the self- and interaction energies of the pancakestion f(k+k’) overk’.

a logarithmic cutoff at the specimen radi&sis required,

In this section the elastic moduli of three- and two-

which is conveniently introduced by choosing the integrationdimensional lattices are derived from the interaction poten-

boundaries R<q=<1/¢ in Eq. (4). The self-energy of a pan-
cake thus becomes

P2 R
In—>0.

Usei= PRI )

The interaction of two pancakes in the same layer is

P2 R

V3(X,y,0)= m' — =0,

> (6)
wherep’ = (x?+y?+ £2)¥2 was introduced to obtain the cor-
rect limit V(0)=2U (5). As mentioned above, Clent’s
improved GL calculation replace® by 2£2 in p’, which is
also confirmed by new computatiohs:* Two pancakes in
different planesz=0 and z=z, at horizontal distance
r,=p=(x>+y?)?>\ interact by the attractive potential

2.2
dgs

|Zy|
V3(X,y,Zn): — mGXFﬁ( S

0. (7)

R
In—<
P

The energyF,, of a pancake-antipancake pair in the same
layer and with separatiop= ¢ does not depend on the speci-

men radiusk,
d2s
9 |nB>o.

FNZZUself_V3(r2’O):m &

)

Summing the 3D potential3) over all z,=ms (m inte-
gen from m=1 to m=L/s>1, one obtains the 2D interac-
tion V, between straight parallel vortex lines of lendtk s,

©)

L[
AmNZpg O\ N )

Valp) = f T aee-
2(p)= e 2(q)e'e= p—

tial V(r) in Eq. (1). The calculation follows the lines of the
derivation of the elastic energy of the vortex lattice in iso-
tropic superconductors in Refl7h), which was extended to
anisotropic superconductors in Refs. 20, see also the
review*.

To derive the linear elastic enerdy,, Of a distorted
lattice one defines the discrete field of displacements
u,=r,—R,, whereR, are the ideal lattice positions. First |
consider the general 3D lattice with three displacement com-
ponentsu, = (U,x,U,y,U,;). These results may be applied
to the lattice of pancake vortices in layered superconductors
and to lattices of curved or straight vortex lines by putting all
z componentsu,,=0. This is so since the pancakes can
move only within the superconducting layerglanes
z=z,=ms, m intege) and since the deformation of a line
lattice is described by a two-component displacement field
u,=(u,y,u,y). The Fourier transform of the discrete dis-
placement fieldu, (and of the force fieldf,, see below
defined on a 3D lattice with density; is introduced as

k.
u,= jszmu(k)e'mu,

~ 1 )

- —ikR
u(k) ng% u,e KR, (11)
The integral(11) is over the first Brillouin zoné€BZ) of the
lattice; as a consequenagk) = (U,, Uy, U,) is periodic ink
space. Using Eqggl), (3), (11), and the relation

> eikRu=8w3n3§K: S(k—K), (12)
y73
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where the sums are over the real and reciprocal lattices, th§P=(qx,qy)=(kx,ky,0) and L is the vortex length. This
expansion of the energy (1) up to quadratic terms in the gives for the 2D lattice of stiff vortex lines
displacementsi,, yields the linear elastic energy c11(q) = (B? uo) (1+g2A2) ~L. The bulk modulus for the lat-
1 K tice(k())f Ele>2<i/ble)(vorti>2< g;ef, in ri]s?(tro([);c Ifuri(e)rconductors,
_ ~ ~ C11(K)= (B o) (1 +kN°) = with k=(k,,k,,k,), cannot
Fe'aSt_2JBZW®“B(k)u“(k)UB( k) (13 be derived in this way since for this systerr){ the total energy
cannot be written as a sum of isotroggcalar pair interac-
tions. The correct interaction between the vortex segments
_ dr,, dr, of arbitrarily curved vortex lines in isotropic su-
D, 5(k)= n%Z [(K+K)(K+k)zV3(K+k) perconductors isvectorial containing a scalar product,
K dr,dr,V(|r,—r,|). This vectorial interaction originates
KK V4(K)] (14) from the coherence of each vortex line, which formally cor-
a™prs : responds to a strong Josephson coupling between the vortex
In general, the indicea,ﬂ denote the(1y,z components, but segments on the same line. For anisotropic London super-
for vortex lattices only thex,y components enter. The defi- conductors the interaction of the line segmentseissorial
nition of &, 4(k) here differs by a factor of the density (or ~ and anisotropic,dr drV,s(r ,—r,).*** For nons-wave

with the elastic matrix

n,) from the definition in Ref. 17. superconductors the vortex interaction is expected to be
The lattice elastic matrix14) is periodic ink space, i.e., more complicated.
one hasb ,4(k+K)=®,,4(k) for any vectorK of the recip- The tilt modulusc,, follows from Egs.(14) and (15) as

rocal lattice. The elastic moduli are obtained by comparing:44(k)=(l>xx(kx,ky,kz)/kf. For the pancake lattice this
this lattice result with the elastic matrix of a continuum. Foryields
the uniaxial continuum of vortex points or vortex lines one

has Bd,

k2
z

) 5 C44(k)=8 N I
D ,5(K)=(C11— Cee)KaKpt Sup(Ceed”+Cadky), (15 A Kzlo

nl 1+ 2), (18)

NT2+q5

wherea, 8 now genotex,y, Sap=1 fOr a=p, 8,5=0 for  \yhere qy~qg, is a cutoff radius of the order of the BZ
a# B, q*=k+ky, andcyy, Ces, andcyy are the moduli for  yagiys g, = (47B/do) Y2~ m/a. Note that in this decou-
uniaxial compression and for shear and tilt. pling limit c,, depends only ok, and is the linear superpo-

_ The®4(k), Egs.(14) and(15), should coincide whek  sition of all vortex contributions, i.e., it is proportional B

is in the central region of the BZ. To compare E(fs}) and apart from the weak logarithmic dependence Brwhen
(15) one thu.s has to perform_the limit of small wave vectors47TB/q)0> 1/\2. This pancake result far,,(k), like that for
k'in the lattice resul(14). This step, called continuum ap- ¢ () (17), coincides with the anisotropic London result in
proximation, yields the elastic moduli of the lattice. The bulk o [imit NeS N ap .-

moduluscy, = C1;— Ceg IS relatively easily obtained by omit- The shear modulus of the triangular pancake and vortex
ting all termsK =0 in Eq. (15). This yields €11—Cee)Kaks  |attices is not dispersivasgg=Bdo/(16mN\2u0) for q<da;
=n§V3(k)kakB, and thus cy;—cgg=n3V3(k). The bulk as mentioned in Sec. I. For triangular lattices with arbitrary
modulus thus in general depends on the wave vdctifithe  rotationally symmetric interactioW,(r) one has
compressional strain, which means that the elastic response

is nonlocal. If the potentiaV/5(r) is of short range, its Fou- n, )

rier transformV;(k) only weakly depends ok, and the Cee=1—62 [RLV3(RL)+3R,V3(R,)] (19
elasticity is approximately local. The continuum approxima- a

tion (16) of the general expressidi4) is, however, best if with V' =dV/dr andV”=d?V/dr2. This lattice sum may be

V(r) is of long range and thu¥(k) strongly decreases in- converted into a reciprocal lattice sum. However, for the vor-

side the f|rr]st BfZ. In_thls caseNthe shear modulus is small,,, interactiorV,(q) > (1+g2\2) "L, this sum diverges loga-

Ce6~<C11, thereforec,=Cy;— Cee™Cyy and rithmically. One either has to introduce a convergence factor,
e.g., Vo(q)—V,(g)e ¢ and take the limité—0, or one

C11(k)~Cp(k) ~n3V5(k). (18 may use the general expressibn
In particular, for the 3D lattice of pancake vortices one finds
from Eqgs.(4) and(16) the compressional modulus n% d?q
e 06621_6( 2 Q- f i f(q)) ,
c1y(k)= g TFRANZ (17) ~ B
f(a)=0?V3(q)+3qVy(q), (20)

This pancake result coincides with tleg; (k) of the aniso-

tropic London theor§15 in the limit of infinite anisotropy, ie., with 2D reciprocal lattice vector®. The integral in Eq(zo)

for penetration depths.>\,,=N\. exactly vanishes wheW,(q)q?>—0 for g—, as can be
For the 2D lattices of straight vortex lines or of the pan-seen by partial integration. For the London potential one has

cake vortices in a film or layer of 2D density=B/®,, one  v/,(q)g°— const forq— o, and this integral gives the domi-

writes Eq. (16) in the form cy4(q)~n3V,(q)/L where nating contribution taces.’
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IV. SINGLE VACANCY OR INTERSTITIAL L7 :
T(q) = iqVa(q)n, g

If one lattice point is removed from a lattice, the lattice B q2V,(q)n? g%,
relaxes towards this vacancy. In this section the lattice dis-

placementsu, , the defect energy, andor magnetic vorti-  Fourier transforming this back using E€L1), one obtains
ces the magnetic field of the vacancy, are calculated withinthe lattice displacements caused by a vacancy in isotropic 3D
linear elastic continuum theory. The corresponding resultaind 2D lattices,

for an added lattice poir(interstitia) are obtained from the

(25

vacancy expressions by changing the signs of the displace- R "R

ment field and of the energy terms. Additional energy terms uiD: 3"“ , iD: 2" _ (26)
which depend on the specific lattice structure and on the 4mR) N3 2R, N,

position of the point defect within the lattice, require numeri- ) o

cal computations and are not given here. These radially symmetric displacements caused by a vacancy

in an infinite 3D or 2D lattice describe a pure shear strain
T3p="3/(47r3n3) and r,p=1/(7r?n,). The amplitude of the
displacements are such that exactige unit cell volume
1/ns, or area Irh,, moves through a sphere or circle of arbi-
From the energy suntl) the forcesf, exerted on the trary radius. Therefore, when one lattice point is removed,
lattice pointsr, by a vacancy positioned at=0 are the subsequent elastic relaxation of the lattice is such that the
f,=VV(r,). Within linear elasticity theory, the forces at the number of lattice points remains constant in any finite vol-
displaced lattice positions,=R,—u,, are replaced by the ume or area surrounding this vacancy. In regions which do
forces at the undisplaced ideal lattice positRp The force  not contain this vacancy, the number of lattice points also
field and its Fourier transform in a 3D lattice are then, withremains constant, since the vacancy causes a pure shear
Egs.(11) and(12), strain which keeps the lattice density unchanged. This gen-
eral result is modified when the removed lattice point is re-
d3k_ KR built into the ideal lattice in the sense of a Frenkel defect, cf.
fu:VV3(R’u) = f WVQ,(k)l ke My (21) Sec. VI C.
A remarkable feature of the displacme(i4d)—(26) is that
_ d3k’_ 1 o the specific form of the interaction potentidi(r) has
f(k)= J’ Fvg(k’)ik’n—z el K'=bR, dropped out. One may say that the nonlocalifispersion
™ 3K of the elastic response is compensated by the nonlocal char-
_ _ acter of the force field. The range of the potentiét) enters
=D i(k+K)Vak+K)~ikVs(k). (22)  only in so far as the continuum approximation in E¢k5)
K and(22) requires tha¥/(r) is smooth and acts over at least a
The last step of keeping only the dominating telkm+0 in few Iatticg §pacings, so that its Fourier transform decreases
the sum(22) again means a continuum approximation, whichapidly within the first BZ. Furthermoré/(r) has to be such
. . . = that the lattice is stable, i.e., all elastic moduli have to be
is allowed if the Fourier transformed potentik(k) de- . ) ) ; e
creases rapidly within the first BZ. positive. This means in particular that;(k) =n<V(k) (1.6)
The forcesf,, (21) cause displacements, which follow has to be positive for ak, else spontaneous nucleation of

from elastic equilibrium. From the linear elastic enefgg)  cOmpressional waves would occur.

and the definition(11) of T(k) one obtains

A. Displacement field around point defects in isotropic 3D and
2D lattices

B. Magnetic field of the displaced vortices

T oK)= ,5(K)ugK)/Ng, A further feature of the displacement figl26) is its “re-
pairing” or “screening” character. | show this for the par-
Ga(k)=¢>;[}(k)?ﬁ(k)-n3, (23 ticular case of parallel vortex lines. If the magnetic field

B(x,y) (along z) of the vortex arrangement is the linear
where (I);Bl(k) is the inverted matrix defined by superposition of isolated vortex fields, (r),
d);ltbﬁy: day- In an isotropic elastic medium the longitu-
dinal force fieldf|k (22) causes a longitudinal displacement
field ulfk given by u(k)="T(k)/[k?ci,(k)] wherecy,(k) is
the uniaxial compression modulus, which in general is dis-
persive. Inserting here ci;(k)=n3V4(k) (16) and e.g., withB(q)=®,/(1+g?\?), then the field perturbation
T(k)=ikV4(k) (22, we obtain the displacement field Bi(r) caused by the vortex displacements around a va-
caused by a vacancy in a 3D isotropic lattice within linearcancy in the vortex lattice may be written as
elastic continuum approximation,

B(r)=>, B,(r— B —fdzq'é ar - (27)
(r)_ m U(r ry)! U(r)_ m (Q)e ’

~ikVskng ik BN)I% Bu(r—RM—Uu)—g B,(r—R,)

T K&V(kn2  Kk2ng

(24

:fﬂ’é(k)eiqrﬁ e 'MRu(eTl—1). (28
Similarly one finds for 2D lattices 4rr? 3
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Expanding the factoe*iq“u—lw—iquﬂ up to the linear where Eqgs(3) and(12) were used. The last integral in Eq.
terms and using definitiofiL1) of u(k) in its 2D form, we  (31) is over all space and equaisUg. In order to elimi-
obtain nate the self-energy from the total energy of a vacancy, we
consider now a Frenkel vacancy, which means that during
d’q. -~ . creation of the vacancy we keep the total numief lattice
Bi(r)= —nzf 2.-28(Kiqu(@e?. (290 points and the total volumi/n constant This is achieved
by building the removed lattice point back into the ideal
Inserting hereu(q)=ig/(qg2n,) from Eq. (25) we find that lattice, which is .pos.sible at.the surface or if_z_a large numper
the perturbationB,(r) coincides with B,(r) (27). This of _suqh vacancies is c_on5|dereq. The addition of a lattice
means that the linear correction to the magnetic field causeReint increases the lattice density=n; or n=n, and re-
by the vortex displacements around a removed veeteactly duires —an  energy  Uggrt (91dn)(nUg) =UserrtUg
equals the field of the removed vortex lilteespective of the  TNdUg/dn. The total energy of the vacancy is thus within
particular form ofB,(r) orE(q). linear continuum theoryF,,c=—Ug—2Ug+UgrtUg

Within linear continuum approximation the vortex dis- +NUg I+ Feias, Yielding
placements are, therefore, such that they “repair” or Fuac=NdUg/dN—Ug+Fgjast (32)
“screen” the field change caused by the removed vortex.
This universal result is independent of the particular shape®ith Feiastand Ug given by Egs.(30) and (31) for 3D lat-
of both the interaction potentiad,(r) and of the vortex field ~tices. The corresponding expressions for 2D lattices are ob-
B,(r), and it is independent of the vortex dengity=B/®,.  Vious from the above derivation. The energy of a Frenkel
From its derivation it is clear that this screening also appliednterstitial (a lattice point removed from the surface and
to 3D systems if the considered field is the linear superposisqueezed into the lattigavithin this linear continuum ap-
tion of individual fields. The screening even applies whenProximation is given byFy= —F 4 (32).
these individual fields are not rotationally symmetric and not TO discuss the vacancy ener@82) we first note that the
monotonic, provided the displacements are given by Eqdinding energyJg (31) in soft lattices may be approximated

(24)—(26). by
Going beyond the continuum approximation one fitefs 4K
Ref. 2 that the small periodic variation &(r) is modified U %Ev 0)— l — V(K 33
s : . B 3(0) 3Va(k), (33
such that at the position of the vacancy there is now a mini- 2 2)pz 8

mum in B(r) rather than a maximum, but the amplitude of

the small variationsB(r)=B(r)—B stays approximately
constant near the vacancy.

since the sum ovelk #0 and the integral ovek outside the
first BZ approximately cancel. The integral in E3)
equalsF 1,5 (30); these two terms thus cancel .. (32).

Since V3(0) does not depend om, two more terms

+(n4/2)V3(0) cancel inF,,.. The only remaining term is
Inserting the displacement fiel@4) into Fg, (13) and  thus
changing the signsince the work done by the forces is

C. Energy of a point defect

—2F .1as), ONE obtains the elastic energy of the lattice defor- o g ( d% Valk a4
mation around a vacancy. Using the property vad~ " 5 o0 ) 8 ad 3(K). (34
katbaBkB:k“cn(k) for the isotropic elastic medium and The derivatives/an ( ) be tak it .
2T - e derivatived/dn (n=n3,n,) can be taken explicitly not-
C11=N3Vs(k) (16) one finds ing thatV/(k) depends only ok=|k| and that the radius of
d3k_ the first BZ (i.e., the radius of a sphere or circle of same
Felast= — EfBzmvs(k). (30)  volume or area as the first BZs k3,=6m2n; in isotropic

3D lattices anck3,=q3,=4n, in 2D. The results for 3D

This expression looks identical to the negative self energnd 2D isotropic lattices look the same,

— U (2), (3) of a lattice point, except that the integ(&0) n
is restricted to the first BZ while the integral Uh.; extends Fuac~ —V(ksz>~V(a)- (35)
over the entirek space. 2
To Felast (30) One has to add the energyUser—2Ug  This residual term, comparable to the nearest neighbor inter-
required to remove one lattice point. Hadg is the binding  action, is of the same order as other terms that were disre-

energy of each lattice point, garded in this continuum approximation, which assumes just
1 that V(kg,) <V(0). Therefore, our result is that within con-
UB:_E Va(R,) tinuum approximation the energy of a vacan@nd of an
2,70 ® interstitia) vanishesor is of the order of thddisregarded

43K nearest neighbor interaction.
_- —gvg(k)(E eikRM_J_) This finding might have been e_xpe_cted by handwaving
2)ez8m arguments, but from the above derivation one notesttiet
N 10 d% vanishing energy of a point defect results from the compen-
__3\'{ _ = Vi sation of several large term®©mitting or approximating one
= V3(K V3(k), 31 ) ; e
2 ; 3(K) ZJ 8’ 3(k) S of these terms, e.g., the elastic energy, may yield artificial

o
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final results of both signs. The correct energy of point defects _ ik _
should, therefore, be calculated either by evaluating Egs. u(k)zz—(l—e*'krp), (39
(30)—(32) numerically or by direct computation from E@{.), kns
minimizing the energy with respect to all lattice positions
as was done for the 2D vortex lattice in Refs. 2,22. -1 / R, R,—r,

The larger the range of the potentl(r) is, the smaller u,= 4wn3\§_ R,—r.|? . (40
are the defect energies, and the larger will be the numerical u wotp

effort. This effort can be reduced andége accuracy improvegthe corresponding expressions for 2D lattices are obvious
by using an Ewald summation methGtdComputations are ¢m Egs.(25) and (26). The elastic displacements, (40)

also required to account for the nonlinear elastic relaxation.; ;sed by the two defects superimpose linearly, as it should
and when the detailed position dependence of the defect ey, yithin linear elasticity theory. Therefore, the screening of

ergy is of interest. But both the nonlinearity and this positiony,o magnetic field in Sec. IV B applies also when several
dependence become weaker when the range of the latti¢Rstacts are present.

interaction is Iarggr.klo(nt;z clan Sr:‘OW that for a I?gﬁrithznic'ZD The elastic energy of the defect pair is obtained by insert-
interaction potentiaV,(r)«Inr the expansion of the elastic . ~ . L

energy of a lattice point surrounded by a stiff lattice of six- K:g y(k) kf39) |lnto ,_ik'r:e'asi(l?’)i’kff' 1h2e dg rlvi(tlon of quf?).

fold rotational symmetry and displaced bystarts withu®, Btl_ngt at (I_'e P)(1—e™r)=2—2coskr, we find for
and for fourfold symmetry withu*. This means the potential 3D isotropic lattices

well is very flat and has vanishing curvature in its minimum. a3k

Therefore, the position-dependent energy term of an intersti- F elas™= _f ——V3(k)(1—cosr o) (42)
tial is not so large, as long as the interstitial does not come Bz87

too close to a neighboring lattice point.

To get the interaction part of Eq41) one has to subtract
from it twice the elastic energy30) of one point defect,

V. INTERACTION OF POINT DEFECTS equal to the limitr ,— of Eq. (41), yielding

In this section it will be shown that the interaction be- 3
tween point defects also vanishes within linear continuum Felast:f ﬂv (K) coskr (42)
theory. The self energy of these defects is of the order of the int gz 8 3 p-
nearest neighbor interactio(a), which is small compared
to the binding energWg (31), and their interaction energy is This expression is almost identical toF 3, (36), except that
much smaller than the unscreened interaction. When the irin Eq. (42) the integral is over the first BZ. These two terms
teraction between lattice points is of long range, the interactherefore almost cancel each other. The total interaction en-
tion of lattice defects is ideally screened by the relaxation ofergy of the defect pair is thus
the lattice. | show this screening for the example of a
vacancy-interstitial pair, but the results apply also to pairs of
two vacancies or two interstitials, and obviously to any num-
ber of such point defects.

The energy of a vacancy-interstitial pair is composed ofrhjs integral is very small sinc¥(k)<V(0) for k outside
the two self energies and the |nteract|on0end1'=gl}ytpetween the first BZ when the lattice interactiovi(r) is smooth and
these two point defects. In its tufy=F i+ Fiy'™is com-  of ong range. For,=a the Fiy, (43) is thus much smaller

posed of the unscreened interaction and the energy of th@an the nearest neighbor interactigfa), which equals the
elastic relaxation. For a vacany et 0 and an interstitial at ggme integral42) but taken over alk space. For ,>a the

r=ry (pair distance ) one has with Eqgsil) and(3) for a  jntegral(43) becomes even smaller since the integrand oscil-

d3k
Fin=Fit Fin o= J- FV3(k)CO§<F p. (43
k>kgz O

3D lattice lates rapidly.
- Our result is thus that the interaction of isotropic point
0 _ _ __ v defectsvanisheswithin the linear continuum approximation.
Fim=~Vs(rp) j8w§V3(k)COSkrp’ (36) For lattices with short-range interaction this result might

) ) have been expected since the strain around a point defect is a
where the integral is over all space. The forces exerted on thﬁure shear strain, which does not interact with an isotropic
undisplaced lattice points by the defect pair are defect?*?® Our finding is, however, more general, stating

that in 3D and 2D isotropic lattices with long-range interac-
fu=VV3(R,) = VV3(R,=ry) tion V(r) the unscreenedirectinteraction=V(r,) between
d3k_ ' ' two point defects is exactly compensated by the linear elastic
= f —V3(k)ike'Ru(1—e k), (37)  indirect interaction between the defects.
87 This result means that inonlocallattices there is in fact
. L ~ . an elastic interaction between point defects, of same range
Comparlngi this with Eq.(21), one sees thaVy(k) is re- and size as the direct interaction, thus compensating the lat-
placed byV;(k)(1—e~'¥p). One can thus use Eq&22—  ter. This feature is particularly important for lattices with
(25) to obtain for 3D isotropic lattices very long-range interaction, e.g., the lattices of vortex lines
_ _ _ and pancake vortice§, which will be considered in more
f(k)~ikV3(k)(1—e k), (38)  detail in Sec. VI.
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As opposed to these soft lattices, in atomic lattices withwith n;=B/(Ps). Inserting herec,4(k) (16) we obtain

nearest neighbor interaction, where the usual local elasticity
. . . . . —ikr 2 -1

theory is a good approximation, a small short-range interac- ~ iqg(l—e p)( kicaa(ky)
i i i i u(k)= 1+ . (50
tion of point defects may come from theonlinear elastic 2, \ 2¢,4(K)
deformation of the lattice near the defect, and a long-range qNs 4"Cu
elastic interactiore<1/r® may arise from the anisotropy of Usingcy; (17) andc,y, (18) we see that
specific point defects and of the anisotropic elasticity of the

material. The interation between point defects in various ) k§c44(kz) In(1+ ki/qéz) 1+ k?\? 51
metals is calculated, e.g., in Ref. 26. g(kK)= = 2y 2
g a’cu(k)  2a3\° KA
VI. APPLICATION TO LAYERED SUPERCONDUCTORS is a small correctiong<<1, Whenqéz=4ﬂ'B/CI)0>)\72, cor-
responding ta<m\ or B>B_; /Ink, and wherk®\? is not

A. Forces and displacements
too small.

We now apply the results derived in Secs. IV and V for  To visualize the difference to isotropic lattices we con-
isotropic 3D and 2D lattices to the anisotropic lattice of pan-sider the displacements, caused by a vacanciantipan-
cake vortices in layered highs superconductors. The two cake positioned ar =0, given by the first term in Eq50)
differences to the isotropic 3D lattice are that the forbes (the unity. The corresponding result for a vacancyratr,,
and displacements,, in layered superconductors have no is then obtained by replacing, by R,—r,, and for an
component and that the elastic matrix has the uniaxial forminterstitial (additional pancakeby changing the sign. At not
(15). For example, the forces exerted on the pancakes by a@o large|z,|<\ in the back transforni11) for u, mainly
antipancake-pancake vortex pair, corresponding to garge|k,|>\ "1 contribute to the integral. One may thus re-
vacancy-interstitial ~ pair, positioned atr=0 and place the factor  1/k?\? in g(k) (51) by unity. The inte-
r=rp=(Xp,02p,) (i.e., with in-plane distance, and inter-  grals overk, andq in the back transforni11) then separate
layer distancez,=ms, m intege) are obtained by putting and one obtains the displacemenfat=R ,,+2 7
T,=0 in Eq.(39), e

—Ry2 Sfms cosgk,z,)

S L e 52
27k, 7o Trg(k,) %2

T)~iqVs(k)(1—e ). (44) Uy
Here q=(dy,a,) = (Ky,ky,0) andV(k) is the 3D pancake
interaction, Eq.(4). The elastic matriX15) of the pancake
lattice has the inverse

whereR,,, are the 2D ideal lattice vectora,=B/®,, and
g(kz)%In(1+kz/qu)/(q§Z)\2). For the displacements in the
same layer as the vacancy, & 0), the general formulé?2)

_ 2 2 reproduces the 2D universal res(26) with an approximate
(Co~ Ca)KaKpt Sap(C110” + Cask?) (45) coFr)rection factor 1 g(k,= w/s)~1—(azlwz)\z)lr??a/shl.
(C110%+ C4ak2) (Coe0l? + C44k?) The displacements in other layerg,¢0) are much
smaller. If the small correctiog(k,)<<1 is disregarded, the
integral overk, yields singrz, /s)/(7z, /s)= oy Sincez,=ms

D_5(k)=

with the uniaxial compression modules;(k) (16) and the

tilt moduls c,4(k) (18); the shear modulusgg will drop out ) : : / .
e —1  with m integer. This means the displacements in the layers
from the point-defect results. The produci® and qd m+ 0 vanish This approximation is the better the higher the

lrgt(t]iléged below are thus for the highly anisotropic IOancakemductionB is, since the perturbatiog(k,) contains a factor

2
0D os(K) =l ek + k)], (46) _ 1 _\E@ By
Y N 87\? Blnk

<1. (53

-1 — 2 2 -1
uPap) =apla crlk) Fhecadlo] @) Accounting for this perturbation we get f{m,|<\ the pan-
For comparison we note that for a dense flux-line lattice incake displacements caused by a vacancy sitting at the origin,
isotropic  superconductors one  hascq(k)=~cs4(k) with 8,0=1 (m=0) and ;=0 (Mm+0),
~(B?/ ug) (1+k?\?), thus

y =Rz (5 Y ) (54)
= 50— = )
0u® oK) =pkCps(K), D A(k)= kzq—ﬁ(k) " 2mRZn, 20T
c
1 (48) Here the constanta,, (m intege) are
Formulas(46)—(48) are required to calculate the elastic re- s (s k§
sponse of vortex lattices to forces exerted by structural de- ap=— f In| 1+ —- | cogk,ms)dk,
fects or by pins. mJo Osz
The displacements caused by an additional antipancake- 1
pancake pair are obtained from E@®3), (44), and(47), =f In(1+ Bu?)cogmmu)du
0
~ iqVs(k)(1—e Mp)n
ok = VA N3 P

, 49 N 1
g2c11(K) + k2Caq(ky) 49 ~ mO(ln'B_Z)_W (55)
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with 8= (=/s)?/q3,~a?/s*>>1. Thus, d3k _ A
Bvac(r)=Bl—Bp~—J@Bp(k)g(k)e'k’
-R, [ a )
- n2 | s 2 Omo ~
U R\ 7'”93)5mo Yo | 50 _ Des Ak zoakde [ K
m B R R A e N A
OgzM Ugz

with e=2.718. Note that the displacements in the layer0
and in the other layers hawpposite signThe displacements (62
in the mth layer decrease thus only slowly, approximately a

_ , SFor the far field atjz|>a one hask?<q3, and thus may
1|m|=s/|z| when |z|]<X\, but the prefactory is typically

expand the logarithm in E¢62) and replacé? by — 9%/ 9z>.

small. Thez component 0B, (62) may now be obtained using the
formula
B. Magnetic field
The magnetic field caused by a pancake vortek,at0 d*k ikr: } 63)
in layered superconductors wigh<\ is>®1° 27 K2’
d3k _ y The in-plane component then follows from Bi#0. This
Bp(r)= f 3.,3Bp(K)€ " yields B, (9% 92%) (2t — pzl p?r) and finally
- ok /o B.u(r) ,Pos 321 —1%z
=~ Z—qK;/q vadl )=y o ——F5—
By(k)=dgs———-. 5 87 re
. ®,s 3zpp+ (222 p?)z
Explicitly one has, withp=(x,y) andr=(x,y,z),3 =22 (64)

877 r5
shy[e . z

L7
e _e ™. (59  With y=\"2qg7 from Eq. (53).
|| r/P)

Looking at thez component of the screened magnetic
field (64) of a vacancy, we notice that this decreases a$ 1/
whereas the unscreened pancéikevacancy field, Eq.(58),
decreases exponentially. Due to the large factgs\?>1
andg3,r?>1 in the denominator of Eq64) (far field means
r>a) the amplitude of this long-range screened vacancy
a3k field is small. The word screening here refers to the magnetic
By(r)= _ngf _Sﬁp(k)iq{](k)eikr_ (59 field reduction caused by the relaxation of the pancake vor-
8m tices close to the vacancy. But since the displacement field
?6) is of longer range than thecomponent of the magnetic
ield (58) of the unscreened vacandhe screened magnetic
field at large distances exceeds the unscreened field

Two compensations have occurred in E@2) and (64).

o = First, the two factors + k?\? in the pancake field57) and
B (r):Jﬂ Bp(k) oikr 60 in the compression modulus;;(k) (17) [which enters the
! 8m 1+g(k) = small correctiorg(k) (51) and thus Eq(62)] have compen-
_ o ) sated. As a consequence, the far fiBlg{r) decreases not
Expanding this with respect to the small perturbatgik)  exponentially but algebraically. Such a compensation does

The magnetic field of a 3D pancake lattice is the linear su
perposition of the field8,(r—r,). The perturbatiorB,(r)
caused by pancake displacemenjs=r,—R,, is derived in
analogy to Eq(29),

Inserting here the displacement field caused by a vacancy
antipancake positioned at the origin,u(k)=iq/
{g®n5[1+g(k)]}, cf. Eq.(50), one obtains

(51) one obtains not occur in the displacement field, E&2).
K Second, the magnetic field of the displaced pancakes,
B.(N=B.0O— | —B (Ka(k)e'k 1 which determines the long-range algebraic tailBf{r),
(1) =By0) J’ 8 pk)g(k)e G Eq. (64), does not depend on the layer spacim@part from

. ) . the trivial prefactors®, originating from the unscreened
This means that the relaxation of the 3D pancake 'att'c%ancake field, Eq(58). This is so since the facta in the

around a pancake vacancy restores the field_ of _the removqﬂsplacement fieldl,s/|z,| (56) is compensated by a fac-
pancake almost exactly. But while the screening in Sec_. IV Bor 1k originating from the density of the layers. Therefore,
was shown to be perfect for a vacancy in the 2D lattice O%in the limit s—0 the pancake displacemeri&s) caused at a
stiff vortex lines, and generally in isotropic 2D or 3D lat- constant distanchﬂlaﬁo by removing a pancakeanish but

tices, the compensation of the pancake-vacancy iéd#d(r) e aqditional magnetic field caused by these displacements
by the field of the lattice relaxatiob9) is not perfect, since stays finite.

the pancake lattice is anisotropic and the pancakes can move
only within the layers. The small residual field around the

vacancy or antipancake is given by the second term in Eq.
(61). Evaluating this one obtains for the screened magnetic The self-energy of an added or removed pancake is
field of a vacancy largely compensated by the relaxation of the surrounding

C. Interaction energy



9080 ERNST HELMUT BRANDT 56

dense pancake lattice as described in Sec. IV. The exact q)gs R 1
value depends on the displacements of the nearest neighbors Fin(zn#0)=— ymlnp— T (68)
0 P

and thus requires computation. The screened long-range in-
teraction between pancakes, however, can be calculated angith y~(a/7\)?<1, Eq. (52). Note that this screened
lytically. Due to theanisotropyof layered superconductors, antipancake-pancake interactioraisractivefor all layer in-

this screened interaction does not vanish in continuum apdicesm since all the logarithmic factors are positive. In con-
proximation, while the screened interactionisotropic ma-  trast, the unscreened pair interaction, Sec. ll, is attractive for
terials vanishes, Sec. V. m=0 but repulsive fom+0.

Consider a removed pancaka vacancy at the origin Obviously, the screened interaction between two pan-
r=0 and an added pancakan interstitial at some position cakes or between two antipancakes is also given by Egs.
ro=_(pp.Zm) With z,=ms The unscreened interaction (66)—(68) but has opposite sign. The ratio between the
Fi?“(rp) of this antipancake-pancake pair is given by B§) screened intraplane and interplane interaction adrostay-
with V,(k) from Eq. (4) inserted. The elastic energy of the €rs in all these cases is
pancake displacements caused by the defect pair is given by
Egs. (41) and (42), but now with V5(k) replaced by
V4(k)/[1+g(k)] with g(k) from Egq. (51). The factor
(1+g) ! occurs inF s EQ.(13), since theu(k) (50) con-  The ratio between the screened and unscreened interaction of
tribute two factors (¥ g) %, one of which is compensated pancakes or antipancakess Fii/Fin>”, follows from Egs.
by q.®.s05=0%C1y(k)[1+g(K)], cf. Eq. (46). The (6),(7), (67), and(68),
screened pair interaction is thus

Fin(Zmn=0) _ Am=0
FinlzZn#0)  amzo

=2|m|l a 69
=2|m| s (69)

a
S(p>¢,2,=0)=yIn—, 70
F‘fdski'/k sk+0|3k\7kCOSkrp NG "
=" | g3 a(k)coskr 5,873 a( )1+—g(k)' vl
(65) S(p>N\,z,#0)=— ymexme. (71)
m

Since we are interested in the interaction at large intraplane, 5 5 : . I
distances,, only small values ofj<qg; enter in Eq.(65), Since y=~a“/(mw\)“<1, the intraplane interaction is always

and the different integration areas in the two integrals ayer reduced by screening, while the lnte_rplane |.nteract|on
are irrelevant; thek, integration in Eq. (65 is over changes sign and a,>\ even exceeds in magnitude the

— mls<k,</s. Expanding with respect to the small per- exponentially decreasing unscreened interaction. o
turbationg(k)<1, we obtain thus Though the exact value of the screened self-energies is

not known, it appears natural to assume that inclusion of the

d3k self-energies of the antipancake-pancake pair changes the
Fint:—J8—gV3(k)g(k)CO§(rp factor InR/pp) in Eq. (67) to In(&/py), yielding the total
Tr screened energy of a pair in the same layer,
_ % J LN PP Pis  pp a
T o 2 4l a3 o5 o ) = =—y—In—In—
2ueda ) 8T P 952 Fpail Zn=0) 7277,%)\2'” £ Ings: (72)
d3s R in analogy to Eq.8). The reduction by screening is again
== me—p am (66) ol Foan’= yIn(a/eg<1.
with a, from Eq. (55). Note that the separation into two VIl. SUMMARY

factors depending only op, andzy, is exact in Eq.(66) In 2D and 3D lattices with isotropic long-range interac-

since the factors K2I(1+K*\?) in Vy(k) (4) and  tion between the lattice points or lines, the energy of point
(1+k?\?)/k* in g(k) exactly cancel. In contrast, with the gefects is strongly reduced by the relaxation of the surround-
displacement fieldi,, Eq.(52), one had to assurme[<\ to  ing Jattice. Within a consistent continuum approximation, the
obtain (1+k*\?)/k*\*~1 and arrive at the factorgy,, Eq.  screened self- and interaction energies of vacancies and in-
(55). Equation(66) therefore describes the pair interaction atterstitials even vanish, i.e., the direct interaction is compen-
arbitrarily large distances,>a. An inner cutoff in theq  sated by the indirect elastic interaction. Since this ideal
integration was chosen such that the interaction VaniSh%reening results from an exact Compensation of |arge energy
when the pair separation reaches the specimerfsifle|z,|  terms, all these terms shoutdt be approximated in order to

is not too large one may use fer;,, the approximation given avoid spurious results. The lattice relaxation around point
by the last line of Eq(55). The screened intraplane interac- defects within continuum approximation is such that, after

tion between an antipancake and a pancake is then, introduction of the defect, the number of lattice points in any
given area or volume stays constant, even if this area or

(I)Ss R a volume contains the point defect, cf. EQ6).
Fin(zm=0)=— melnp_plne_s’ (67) In anisotropic lattices, the screening of point defects is not

complete, even within continuum approximation. For the 3D
and the screened interplane interaction is lattice of point vorticegpancakekin layered superconduct-
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ors, the continuum approximation is excellent since the ininteraction of pancakes located in different layers. The
teraction of the pancake vortices is much longer ranged thascreening and modification of the pancake interaction by the
the typical spacing of pancakes. The elastic displacementstatic relaxation of the surrounding pancake lattice possibly
and magnetic field around a screened vacancy are given ghould be considered in future theories of pinning and ther-
Secs. VI A and B, and the screened interaction between pafnal depinning, and in the prediction of phase diagrams of
cakes or antipancakes in Sec. VI C. The screened magnetigyered superconductors in a magnetic field.

field and interaction of pancakes contain a small prefactor

y~(alm\)?><1, which means strong screening of the near

field. However, at large distances, the relaxation of the pan- ACKNOWLEDGMENTS
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