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Onset of flux penetration into a type-II superconductor disk
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The virgin magnetization of a type-II superconductor disk in a transverse field is discussed. The edge effects
in a superconductor of rectangular cross section are considered, taking into account anisotropy and pinning.
The penetration field of the geometrical barrier is calculated. It is shown that flux pinning at the edge corners
influences the penetration field. The temperature dependence of the penetration field of platelike high-Tc single
crystals is discussed.@S0163-1829~97!09734-8#
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I. INTRODUCTION

The magnetization studies of films and single crystals
high-temperature superconductors~HTSC’s! have focused
attention to the problem of magnetic behavior of a thin fl
superconductor in a field applied perpendicular to its pla
Significant progress has been achieved in development o
critical state model for such samples.1–3 Within this model,
virgin and remanent magnetization, flux creep, ac losses,
flux dynamics in a varying field can be calculated in the c
of strong pinning.

Currently, there is a considerable interest to platelike
perconductors with a weak or zero pinning. It has been fo
that the samples exhibit strongly hysteretic behavior,4,5 non-
uniform magnetization and domelike distribution of ma
netic flux in the sample center.6,7 Being corrected on demag
netization factor, the applied field corresponding to onse
flux penetration noticeably exceeds the lower critical fie
Hc1. This field is commonly named the penetration fieldHp .
The temperature dependence ofHp frequently has no satura
tion at low temperatures.

The above mentioned features reflect an influence o
potential barrier arising at the sample edge and preven
flux penetration. Conventional theory of the Bean-Livingst
barrier8 has been recently extended9,10 to describe magneti
zation and flux creep in HTSC’s. But this type of barrier
inherent to a flat superconductor when the applied field
parallel to the surface. In a transverse field the geometr
barrier6,7,11,12 originally attributed to the rectangular cros
section~in the direction along the applied field! of a sample
is formed. Hysteretic magnetization and flux distributi
have been described by the geometrical barrier model7,12,13

~GBM! which gives an adequate approximation for mag
tization in a field aboveHp . In the present paper we discu
the magnetic behavior below or in the vicinity ofHp .

In both the critical state model and GBM a thin fl
sample is approximated by a superconducting sheet. T
dimensional distribution of normal and tangential comp
nents of field on the sheet which are proportional to fl
density and sheet current, respectively, is analyzed wi
these models. It is quite difficult to calculate thre
dimensional distribution of the field and the current for t
560163-1829/97/56~14!/9064~7!/$10.00
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flat sample of finite thicknessd. Recently Brandt14 has pro-
posed a computational method for the case of strong pinn
when the flux density and the critical sheet current insid
superconductor are larger then the lower critical field. Unf
tunately, the extension of this method to the case of wea
zero pinning is not done yet so we cannot use it to anal
onset of flux penetration through the geometrical barrier.

In order to compute the penetration field one should tr
edge effects appearing in the superconductor of rectang
cross section and calculate the field enhancement at
sample edge. In the Meissner state the field enhanceme
proportional to edge curvature which is of the order of rec
rocal thickness for a thin flat sample.7,12,15 In GBM Zeldov
et al..7 assumed that in increasing field the vortices initia
cut through the sharp rims of a sample without compl
penetration and thus effectively round off the curvature
the edge to the value of the order of 2/d. Benkraouda and
Clem12 presented a model in which sample’s edge is roun
and has a curvature radiusd/2. The penetration field of a
long strip is Hp.Hc1 /Aa within such approximations
wherea is the width-to-thickness ratio of a sample nam
aspect ratio. That is a good estimate for a pinning-free i
tropic superconductor with large aspect ratio. As a r
type-II superconductors are characterized by pinning or~and!
anisotropy. Therefore in the next section we treat the cas
anisotropic superconductor with pinning.

Let us consider a superconductor of rectangular cross
tion and thicknessd in a uniform magnetic fieldHa applied
perpendicular to the sample plane. In the Meissner state
local field at the edge corners of the sample is strongly
hanced in comparison with applied fieldHa . The local field
reaches the critical value in a very weak applied field. T
corners enter to the mixed state@Fig. 1~a!# but the main part
of the sample remains in the Meissner state. IfHa increases,
the top and the bottom mixed state regions grow until th
come into the contact at the equator atHa5Hp . Before that
the vortices in the opposite corners are separated by
Meissner phase at the equator and penetration of magn
flux into the center of a sample is impossible. When the fi
reachesHp , flexed vortices at the equator tend to becom
straight due to self-line tension and migrate towards
9064 © 1997 The American Physical Society



t

-
at
th
th
l t
th
a

t o
ca
e

a

ep

nt
su

r,

en

u
e
in

e
ys
f
in
p
s

n

A
-
ith

ents
ted.
the

is
is

ld at

ace.
n-

ur-
er
ore
n-
ere
ple
r-

-
gle
the

y

The
tical
e

ular
the

r in
e
oss

ng

ur-
s

-
ted
d by

ul
la
tu
er
xp

56 9065ONSET OF FLUX PENETRATION INTO A TYPE-II . . .
sample center under influence of shielding current as i
described in GBM.

In order to evaluateHp one should calculate a field dis
tribution when the corners are occupied by the mixed st
as it is shown in Fig. 1. It can be done by the solution of
Laplace equation for the Meissner part of the sample with
standard boundary conditions: at infinity the field is equa
an applied one, the field is tangential at the surface of
Meissner part, and at the boundary between the Meissner
the mixed phases the field is equal toHc1. The problem is the
same for a type-I superconductor with the replacemen
Hc1 by Hc . Therefore one can use the results of numeri
calculation of the Laplace equation performed for a cylind
of type-I superconductor16 to treat magnetic behavior of
type-II superconductor. It was shown that~i! in a weak field
the top and the bottom intermediate-state regions are s
rated by the Meissner-state region in the equator;~ii ! the
central cross section of the interphase surface represe
convex, not straight, line as one can expect for a type-I
perconductor; and~iii ! when the top and the bottom
intermediate-state regions meet each other at the equato
local field reaches there the critical fieldHc . Using these
conclusions we describe below a simple model which
ables one to calculateHp in a thin flat sample of type-II
superconductor without solving the Laplace equation.

This paper is organized as follows. The model for calc
lation of the penetration field is considered in Sec. II. W
calculateHp dependence on aspect ratio, anisotropy and p
ning. In Sec. III a comparison of the calculated and the m
sured penetration field is presented for HTSC’s single cr
tals. We discuss there the temperature dependence o
penetration field taking into account pinning of vortices
the corners. We discuss also the limitations on the sam
characteristics imposed by our model. Section IV contain
brief summary of our results.

II. PENETRATION FIELD OF THE GEOMETRICAL
BARRIER

Let us consider a disk of anisotropic type-II superco
ductor witha@1 andd@l (l is the penetration depth! in a

FIG. 1. Field patterns at the edge of a sample with rectang
cross section. Blank regions correspond to the mixed state, b
ones to the superconducting state. Grey color in the bottom pic
marks the cross section of a spheroid. The sample and the sph
have equal diameters and curvatures at equator. For detailed e
nation see the text.
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cylinder frame with origin in the center of the sample.
uniform fieldHa is applied normally to the sample. We con
sider the most interesting case of an uniaxial anisotropy w
the axis normal to sample plane. This case repres
HTSC’s when anisotropy in Cu-O planes can be neglec
In a weak field the mixed state arises in the corners. In
absence of pinning macroscopic current in the corners
equal to zero. In the presence of pinning the critical state
formed and the critical current with densityJc flows in the
corners. The opposite regions of the mixed~or critical! state
are separated by the Meissner-phase region and the fie
the interphase surface is equal toHc1. A current shielding the
Meissner part of the sample flows at the interphase surf
This current is equal to a stepwise discontinuity of the ta
gential field at the surface, i.e.,Hc1.

We are interested in a radial distribution of the sheet c
rent I (r )5Jd, whereJ is the current density averaged ov
the sample thickness. Apart from the edge at a distance m
thandR the sheet current is equal to a discontinuity of ta
gential field on the sample top and bottom surfaces. H
dR is the radial size of the mixed-state region at the sam
face @Fig. 1~b!# called below the edge width. The sheet cu
rent I E flowing in the rimR,r ,R2dR is equal to a sum of
the critical and the Meissner currents. To obtainI E one
should calculate the angular dependence of bothHc1 and
Jc . As is known,17,18 in an uniaxial-anisotropy supercon
ductor the dependence of the lower critical field on the an
q between field and isotropic plane may be described by
anisotropy function«q :

Hc1q5Hc1«qS 12
ln«q

lnk D , ~1!

«q5A12~12g!cos2q,

whereHc1 and k are related to isotropic plane, anisotrop
parameterg5m/M with m and M being the effective
masses in the plane and along the axis, respectively.
same function describes angular dependence of the cri
currentJcq5Jc«q when vortex lines have inclination angl
q with respect to isotropic plane.18 Jc is also related to the
plane. For the sake of simplicity we assume that the ang
dependence of the critical current density averaged over
thickness of the critical-state region may be accounted fo
the same way with the angleq between the isotropic plan
and a line tangent to the longitudinal-through-diameter cr
section of interphase surface@Fig. 1~b!#. This approximation
slightly lowers the critical current because at fixedr the
slope of the flexed vortices and, consequently,q increase
from the interphase boundary to the sample’s surface@Fig.
1~a!#, but considerably simplifies calculations. Consideri
the angular dependencies, one can write

I E~r !52Hc1«qS 12
ln«q

lnk D1Jc~d22z!«q , ~2!

where (z,r ) are the coordinates of the upper interphase s
face @Fig. 1~b!#. As seen from Eq.~2!, I E decreases toward
the center because of a decrease of both (d22z) andq.

Variablesr , z, and tanq5dz/dr are connected by equa
tion for a cross section of the interphase surface. As no
before, the cross-section shape may in general be obtaine
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9066 56A. V. KUZNETSOV, D. V. EREMENKO, AND V. N. TROFIMOV
solving of the Laplace equation but for anisotropic superc
ductor with pinning the corresponding calculations are v
complicated. To avoid them, a reasonable assumption sh
be done about the shape. The calculatedHp may then be
compared with the measured one, showing whether the
sen shape was suitable or not.

It is known that the interphase surface is convex and t
gent to the sample surface atr 5R2dR due to the boundary
condition for the Meissner part of a sample. In the fieldHp
the interphase surface gets some finite curvature at the e
tor. The simplest interphase surface satisfying these dem
has an elliptic cross section with semiaxesdR andd/2 @Fig.
1~b!#. The equation for the cross section is

S R2r

dR D 2

1S 2z

d D 2

51. ~3!

Note, that following from Eq.~3! the equatorial curvature
radius r of the interphase surface is equal tohd/2 where
h5d/2dR is a dimensionless parameter calculated below

The applied field and the field produced by the edge c
rent I E should be compensated in the Meissner reg
r ,R2dR by the field produced by the shielding curren
The latter is equal to a discontinuity of tangential compon
of local field at the surface of the Meissner region. A set
equations can be written for the normal and the tangen
components of the field in the Meissner region that allow o
to connectHa , I E , and I . This problem is identical to the
problem of virgin magnetization in the critical state mod
for a thin flat superconductor whenI E is replaced by the
critical currentI c . Using the known solution obtained in th
model,1,3 the following expression can be written:

Ha5
1

2ER2dR

R I Edr

Ar 22~R2dR!2
. ~4!

Evidently, the sheet current distribution is close to t
Meissner one whendR!R. In the critical state model one
can show that the correction for this distribution is of t
order of dR/R. The Meissner current distribution coincid
for a disk and an oblate spheroid with a large aspect rati19

This distribution1,15,19 I 52(4Ha /p)r /AR22r 2 is indepen-
dent on sample thickness and diverges whenr→R whereas
the real current at the edge is limited. To understand
reason for this discrepancy a deep analogy between a su
conductor in magnetic field and a conductor in electric fi
may be used. In particular, distribution is the same for b
shielding current and surface charge density because the
calculated from the same Laplace equation.20 As is well
known from electrostatics, the latter is proportional to t
local surface curvature. The same should be valid for
shielding current density. Therefore one can conclude
the local edge currents and the local edge fields coincide
a thin disk and a spheroid with equal diameters and e
curvature radii.

In field Hp the equatorial field reachesHc1 and the equa-
torial curvature radius of the Meissner part of the sample
r5hd/2. The same field is reached at equator of the sph
oid with the same equatorial curvature radi
r5b2/R5hd/2 whereb is minor semiaxis. The major-to
minor semiaxis ratio of such a spheroid isc5R/b5Aa/h.
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The field at the equator of a spheroid is equal to applied fi
multiplied by enhancement factorN51/(12e) where e is
the demagnetizing factor. For an oblate spheroid one
write21

N5
~c221!3/2

c2arctanAc2212Ac221
. ~5!

As a result, the expression for the penetration field can
written

Hp5
Hc1

N~Aa/h!
. ~6!

Comparing the right-hand sides of Eqs.~4! and~6!, using
Eqs. ~2! and ~3!, introducing dimensionless variabl
(R2r )/dR5y and parameterh05Jcd/2Hc1, one can finally
write

1

N~Aa/h!
5E

0

1
«F12

ln«

lnk
1h0~12A12y2!G

Ay~2ah221y!
dy, ~7!

«5A12~12g!~y221!/@11y2~h221!#.

Calculatingh from Eq. ~7! one easily obtains bothHp and
dR which can be measured experimentally.

Consider first the zero-pinning behavior. For isotropic s
perconductorI E5const, the integral can be calculated an
lytically and Eq.~7! is reduced to

1

N~Aa/h!
5 lnS ah1A2ah21

ah21 D . ~8!

In the limit a→` the value ofh52A2/p is close to unity.
Such a value agrees well with the estimate made when
GBM was developed.22 Figure 2 showsHp(a) and dR(a)
calculated for isotropic and anisotropic (g50.04,k580) su-
perconductor. The penetration field of isotropic superc
ductor decreases similar as 1/Aa. In the limit a→` the edge
width tends to some constant value which increases w
anisotropy growth. In Fig. 3 the dependencies ofHp and
dR on anisotropy are depicted. As seen,Hp decreases and
dR increases with anisotropy growth. The dependence of
parameters onk is logarithmically weak.

The next step is to account pinning influence. The cal
lated Hp(h0) and dR(h0) for isotropic and anisotropic
(g50.04, k580) superconductor are depicted in Fig.
which clearly demonstrates that pinning suppresses the e
width and enlarges the penetration field. Pinning influen
increases under growth of both anisotropy and aspect ra

The model developed in this section allows one to cal
late the edge width and the penetration field for any se
parameters. As an example we have numerically calcula
Hp(a,h0) for g50.04 and 65<k<80, which are close to
those values for YBa2Cu3O72d , and fitted the obtained de
pendence to the functionHp5Hc1x/ay, wherex50.858@1
10.643ln(11h0/6.666)#, y50.495@120.0117(h020.5)#.
In the ranges 10<a<200 and 0<h0<10 the fit accuracy is
better than 3.5%. In the next section we compare the ca
lated and the measured penetration field for YBa2Cu3O72d
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56 9067ONSET OF FLUX PENETRATION INTO A TYPE-II . . .
single crystals to test a validity of the assumption ma
about the shape of the cross section of the interphase sur

III. DISCUSSION

All expressions for the penetration field contain also
lower critical field. Let us briefly discuss the lower critic
field of HTSC’s. Experimental data on low-temperature b
havior of bothHc1 andl are quite different. From one hand
two-fluid or BCS-likel(T) dependence have been observ
for all HTSC’s.23 From the other hand, precise measureme
have exposed a linear increase of the penetration dep
low temperatures which is regarded as a manifestation of
d-wave pairing in HTSC’s.24 It also has been observed th
defects and impurities can change dependence ofl(T) from
a linear into a quadratic one.24,25 In addition to that men-
tioned above, in layered HTSC’sl is affected by dynamics
of pancake vortices which strongly depends
temperature.26,27 Summing up, one can conclude thatl(T)
behavior depends on the type of HTSC’s and perfection
its crystalline structure. This conclusion is confirmed
measurements of the lower critical field. Saturation
Hc1(T),10,28 as well as linear decrease withT, have been
observed.27,29

It should be noted that in the present work we do n
consider the pancake vortices attributed to the layered su

FIG. 2. Hp anddR vs aspect ratio for the pinning-free isotrop
~dash! and anisotropic~solid! (g50.04, k580) superconductors
Open and closed symbols are the experimental data
YBa2Cu3O72d single crystals atT,10 K (s: Ref. 28,h: Ref. 10!
and T585 K ~Ref. 4!, respectively. For detailed explanation, s
the text.
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conductors. Angular dependence of the lower critical field
these superconductors30 differs from expression~1! used in
our calculations. Therefore the layered Bi or Tl-bas
HTSC’s characterized by a weak pinning are unlikely use
to test the model. Pinning is strong enough to affect
temperature dependence of the penetration field of o
HTSC’s.

A. Temperature dependence of the penetration field

In the pinning-free caseh and dR are independent o
temperature. ThereforeHp and the lower critical field have
the same temperature dependence. When pinning is pre
the temperature dependence of the lower critical field can
derived from that of the penetration field and the critic
current, which may be measured directly.31 To do this, one
should combine Eqs.~6! and ~7! in the unknownh and
Hc1 at any temperature, using measuredJc(T) andHp(T) as
parameters.

Let us consider influence of pinning on the penetrat
field of HTSC’s single crystals. The value ofh0 in Eq. ~7!
depends on bothHc1 and Jc . For simplicity, neglecting
slight temperature dependence of ln(k), we use expression
Hc1(T)5Hc1(0)(12t4) from the two-fluid model where
t5T/Tc andTc is the critical temperature.Jc(T) of HTSC’s
single crystals can be well described by the following e
pirical dependence:32

Jc~T!5Jc~0!@exp~2T/T0!2exp~2Tc /T0!#, ~9!

or

FIG. 3. Hp and dR vs anisotropy for a pinning-free supercon
ductor. Curves were calculated whenk580.
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9068 56A. V. KUZNETSOV, D. V. EREMENKO, AND V. N. TROFIMOV
where the characteristic temperatureT0 varies in the range
from 10 K to 30 K depending on type of superconductor

The curvesHp(t) and dR(t) calculated for the sample
with a550, g50.04, k580, andTc /T055 are plotted in
Fig. 5. As seen, pinning results in the absence of lo
temperature saturation ofHp and the increase ofdR with
temperature.

We usedHc1(T) dependence which saturates at low te
perature. Critical current decreases withT at this range. If
Hc1 also decreases, the ratioh0(T) is larger than in the pre
vious case. As seen from Fig. 5 the largerh0 the stronger
pinning influence.

For typical HTSC’s single crystals withd.50–100mm,
Jc(0).53109 A m 22, and m0Hc1(0)520–40 mT, the
value of h0(0).4 –16 is rather large. It grows with th
thickness of a sample but is independent of the transv
size. We conclude that pinning strongly affectsHp(T) of
such crystals at low temperatures.

B. Penetration field of YBa2Cu3O72d single crystals

We can now compare the calculatedHp(a) with the avail-
able data. We have chosen YBa2Cu3O72d which is currently
the most investigated HTSC’s withg.0.04, penetration
depth lab(0)5140 nm,23 and correlation length
jab(0)51.72 nm,33 which givem0Hc1(0)541.3 mT. To di-
minish the influence of pinning the experimental results
tained for very thin samples,d54 mm ~Refs. 4,10,34! and

FIG. 4. Hp and dR vs parameterh0 for isotropic ~dash! and
anisotropic~solid! (g50.04,k580) superconductor.
-

-

se

-

d510 mm,28 were selected. The estimated value ofh0 does
not exceed 0.3 for the thinner sample and has smaller v
for the thicker one because the measurements performe
the latter in Ref. 28 were carried out at high frequency wh
Jc is strongly suppressed. We estimated that the correctio
Hp due to pinning does not exceed 6% for these samples
we compare the measured penetration field withHp(a) cal-
culated for the pinning-free case. The aspect ratios,a597,4

a599,10 and a522.6,28 were calculated in a way given in
Ref. 35. The penetration field values,m0Hp50.52 mT at
T585 K,4 m0Hp53.5 mT atT55 K,10 andm0Hp57.73 mT
at T510 K,28 were normalized to the corresponding valu
of Hc1(t).36

As seen from Fig. 2, the values measured at low temp
ture ~open symbols! demonstrate a good agreement with t
calculated values ofHp(a), whereas the value measured
high temperature~closed symbol! deviates from the calcu
lated one. We suppose that the deviation is caused by a s
thickness of the sample which makes our model invalid,
shown below.

C. Limitations on sample parameters

Consider limitations on sample parameters followi
from the assumptions made above.

To describe the edge current the expression~2! was used.
We assumed that the current flowing at the interphase
face is equal to a sum of shielding currents at top and bot

FIG. 5. Temperature dependences ofHp and dR. The calcula-
tions were made fora550, g50.04,k580, andTc /T055.
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56 9069ONSET OF FLUX PENETRATION INTO A TYPE-II . . .
parts of the surface. If the distance between the oppo
parts is comparable with the decay length of the shield
current, this expression fails because shielding currents
overlapped. The minimal distance is of the order of the eq
torial curvature radiusr5dh/2. The decay length is les
than or of the order ofl/Ag, where l is the penetration
depth for the isotropic plane. We conclude that the presen
description of the edge effects is valid only for samp
which are thicker thandc.2l/(hAg). For a single crystal
of YBa2Cu3O72d with a.100 one hasdc.4 mm at low
temperature, anddc.10 mm at 85 K. The latter value ex
ceeds the thickness of the sample investigated in Ref
Therefore the calculatedHp is invalid in this case.

To obtain expression~6! the sample was approximated b
an oblate spheroid withb!R. Because the value ofAh is of
the order of unity, this condition, which can be rewritten
Aa@Ah, is stronger than the general requirementa@1 for a
thin flat sample.

Apparently, the developed model cannot be applied
thin films with d,l. The virgin flux penetration into films is
well described by the critical state model1–3 in which the
value of the penetration field is assumed to be negligi
small. When pinning is strong, this assumption is valid.
the case of weak pinning a transition to the mixed state
be impeded by the Bean-Livingston barrier arising from
finite energy of a vortex nucleation at the film edge.37 The
problem of a vortex located near the edge of a film has b
recently solved by Kogan.38 The obtained dependencies
the energy and the magnetic moment of the vortex o
distance from the edge allow one to estimate the penetra
field of a film.
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IV. SUMMARY

In this paper we have considered the onset of flux p
etration into a type-II superconductor with rectangular cro
section. The results obtained show that anisotropy and
ning have strong influence on the penetration field value
its temperature dependence. For disks with a large as
ratio we have calculated the penetration field and the wi
of the mixed-state region at the sample edge which can
measured experimentally. We would like to note that t
same quantities can be calculated for samples with arbit
aspect ratio using a method developed by Brandt,14 but this
method should be extended to both anisotropic and pinn
free cases.

In conclusion we point out the following main results o
tained in the present work.

~1! A simple model has been developed to calculate
penetration field of the geometrical barrier taking into a
count anisotropy and pinning.

~2! It has been found that the published experimental d
on the penetration field of platelike YBa2Cu3O72d single
crystals agree with the calculated values ofHp .

~3! It has been shown that pinning of vortices in the co
ners of a sample strongly affectsHp(T) of platelike HTSC’s
single crystals at low temperatures.
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