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Onset of flux penetration into a type-ll superconductor disk
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The virgin magnetization of a type-Il superconductor disk in a transverse field is discussed. The edge effects
in a superconductor of rectangular cross section are considered, taking into account anisotropy and pinning.
The penetration field of the geometrical barrier is calculated. It is shown that flux pinning at the edge corners
influences the penetration field. The temperature dependence of the penetration field of platelikedigie
crystals is discussefiS0163-182607)09734-9

[. INTRODUCTION flat sample of finite thickness. Recently Brandf has pro-
posed a computational method for the case of strong pinning
The magnetization studies of films and single crystals ofwhen the flux density and the critical sheet current inside a
high-temperature superconductaidTSC's) have focused superconductor are larger then the lower critical field. Unfor-
attention to the problem of magnetic behavior of a thin flattunately, the extension of this method to the case of weak or
superconductor in a field applied perpendicular to its planezero pinning is not done yet so we cannot use it to analyze
Significant progress has been achieved in development of thenset of flux penetration through the geometrical barrier.
critical state model for such samples. Within this model, In order to compute the penetration field one should treat
virgin and remanent magnetization, flux creep, ac losses, angtige effects appearing in the superconductor of rectangular
flux dynamics in a varying field can be calculated in the casross section and calculate the field enhancement at the
of strong pinning. sample edge. In the Meissner state the field enhancement is

Currently, there is a considerable interest to platelike supoportional to edge curvature which is of the order of recip-
perconductors with a weak or zero pinning. It has been found, o thickness for a thin flat samplé?15in GBM Zeldov

the}t the sample; ex.h|b|t strongly hystere_-tlc.behaﬁllﬁ]npn- et al.” assumed that in increasing field the vortices initially

ﬁgggrfmxr?r?g?:ts';ﬁ'&g ?gr?té%ol?r,g?:giodrlrsetcr:ltt:;jtlgg do(;mrgg?- cut through the sharp rims of a sample without complete

netization factor, the applied field corresponding to onset o enetration and thus effectively round off the curvature of
' he edge to the value of the order ofd2Benkraouda and

flux penetration noticeably exceeds the lower critical field . . .
b y Clem'? presented a model in which sample’s edge is rounded

Hca. This field is commonly named the penetration fielgl. . _ .
The temperature dependenceryf frequently has no satura- and has a curvature radiu82. The penetration field of a

tion at low temperatures. long strip is szHcllﬁ within such approximations,

The above mentioned features reflect an influence of #herea is the width-to-thickness ratio of a sample named
potential barrier arising at the sample edge and preventingspect ratio. That is a good estimate for a pinning-free iso-
flux penetration. Conventional theory of the Bean-Livingstontropic superconductor with large aspect ratio. As a rule
barrief has been recently extended to describe magneti- type-Il superconductors are characterized by pinnin@god
zation and flux creep in HTSC's. But this type of barrier is anisotropy. Therefore in the next section we treat the case of
inherent to a flat superconductor when the applied field istnisotropic superconductor with pinning.
parallel to the surface. In a transverse field the geometrical Let us consider a superconductor of rectangular cross sec-
barrief"1112 originally attributed to the rectangular cross tion and thicknessl in a uniform magnetic fieldd, applied
section(in the direction along the applied figldf a sample perpendicular to the sample plane. In the Meissner state the
is formed. Hysteretic magnetization and flux distributionlocal field at the edge corners of the sample is strongly en-
have been described by the geometrical barrier nidé@éf  hanced in comparison with applied fighl,. The local field
(GBM) which gives an adequate approximation for magne+eaches the critical value in a very weak applied field. The
tization in a field aboved . In the present paper we discuss corners enter to the mixed stdfeig. 1(a)] but the main part
the magnetic behavior below or in the vicinity bif; . of the sample remains in the Meissner statéd ffincreases,

In both the critical state model and GBM a thin flat the top and the bottom mixed state regions grow until they
sample is approximated by a superconducting sheet. Twasome into the contact at the equatot-ht=H,. Before that
dimensional distribution of normal and tangential compo-the vortices in the opposite corners are separated by the
nents of field on the sheet which are proportional to fluxMeissner phase at the equator and penetration of magnetic
density and sheet current, respectively, is analyzed withiflux into the center of a sample is impossible. When the field
these models. It is quite difficult to calculate three-reachesH,, flexed vortices at the equator tend to become
dimensional distribution of the field and the current for thestraight due to self-line tension and migrate towards the
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cylinder frame with origin in the center of the sample. A
uniform fieldH, is applied normally to the sample. We con-
sider the most interesting case of an uniaxial anisotropy with
the axis normal to sample plane. This case represents
HTSC'’s when anisotropy in Cu-O planes can be neglected.
In a weak field the mixed state arises in the corners. In the
absence of pinning macroscopic current in the corners is
equal to zero. In the presence of pinning the critical state is
formed and the critical current with densidy flows in the
corners. The opposite regions of the mixXed critical) state

are separated by the Meissner-phase region and the field at
the interphase surface is equaHg;. A current shielding the
Meissner part of the sample flows at the interphase surface.
) ) This current is equal to a stepwise discontinuity of the tan-
FIG. 1. Field patterns at the edge of a sample with rectangulaéemim field at the surface, i.eH.;.

cross section. Blank regions correspond to the mixed state, black e 16 interested in a radial distribution of the sheet cur-
ones to the superconducting state. Grey color in the bottom pICtUI’? ntl(r)=Jd, whereJ is the current density averaged over
marks the cross section of a spheroid. The sample and the sphero%& ' y 9

T

have equal diameters and curvatures at equator. For detailed expl e sample thickness. Apa_rt from the edge at a.dls_tance more
nation see the text. an SR the sheet current is equal to a discontinuity of tan-

gential field on the sample top and bottom surfaces. Here

sample center under influence of shielding current as it iR IS the radial size of the mixed-state region at the sample
described in GBM. face[Fig. 1(b)] called below the edge width. The sheet cur-

In order to evaluatéd, one should calculate a field dis- rentl g flowing in the imR<r<R-— 4R is equal to a sum of

tribution when the comners are occupied by the mixed statdD® critical and the Meissner currents. To obtajn one
as it is shown in Fig. 1. It can be done by the solution of theShould calculate 1t7h168 angular dependence of béth and
Laplace equation for the Meissner part of the sample with thec- AS 1S known, "™ in an uniaxial-anisotropy supercon-

standard boundary conditions: at infinity the field is equal toductor the dependence of the lower critical field on the angle
an applied one, the field is tangential at the surface of thé between field and isotropic plane may be described by the
Meissner part, and at the boundary between the Meissner afisotropy functiore ; :

the mixed phases the field is equaHg,;. The problem is the

same for a type-l superconductor with the replacement of HclﬁzHclsf}(l_
H.. by H.. Therefore one can use the results of numerical

calculation of the Laplace equation performed for a cylinder

of type-l superconductdt to treat magnetic behavior of a £9=11—(1—y)cos¥,

type-Il superconductor. It was shown th@tin a weak field  \yhereH,, and « are related to isotropic plane, anisotropy
the top and the bottom intermediate-state regions are sePBarametery=m/M with m and M being the effective
rated by the Meissner-state region in the equatd);the  masses in the plane and along the axis, respectively. The
central cross section of the interphase surface representssgme function describes angular dependence of the critical
convex, not straight, line as one can expect for a type-I SUgyrrentJ, ;= J.e 5 when vortex lines have inclination angle
perconductor; and(iii) when the top and the bottom . with respect to isotropic plarié.J. is also related to the
intermediate-state regions meet each other at the equator, 3fyne. For the sake of simplicity we assume that the angular
local field reaches there the critical field,. Using these  gependence of the critical current density averaged over the
conclusions we describe below a simple model which enyjckness of the critical-state region may be accounted for in
ables one to calculatél, in a thin flat sample of type-ll  the same way with the anglé between the isotropic plane
superconductor without solving the Laplace equation. and a line tangent to the longitudinal-through-diameter cross

This paper is organized as follows. The model for calcu-gection of interphase surfafgig. 1(b)]. This approximation
lation of the penetration field is considered in Sec. II. Weslightly lowers the critical current because at fixecthe
calculateH, dependence on aspect ratio, anisotropy and PINgjope of the flexed vortices and, consequentlyjncrease
ning. In Sec. Il a comparison of the calculated and the meagom the interphase boundary to the sample’s surfégs.

sured penetration field is presented for HTSC's single crysy(g)), but considerably simplifies calculations. Considering
tals. We discuss there the temperature dependence of thge angular dependencies, one can write

penetration field taking into account pinning of vortices in

the corners. We discuss also the limitations on the sample

characteristics imposed by our model. Section IV contains a |E(r):2Hc18ﬁ( 1-
brief summary of our results.

|n8,9>, ®

Ink

nb‘ﬁ

Inx +J(d—22)e, 2

where @,r) are the coordinates of the upper interphase sur-
face[Fig. 1(b)]. As seen from Eq(2), | decreases towards
the center because of a decrease of bdth Zz) and 9.
Variablesr, z, and tad=dz/dr are connected by equa-
Let us consider a disk of anisotropic type-ll supercon-tion for a cross section of the interphase surface. As noted
ductor witha>1 andd>\ (A is the penetration deptlin a  before, the cross-section shape may in general be obtained by

II. PENETRATION FIELD OF THE GEOMETRICAL
BARRIER
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solving of the Laplace equation but for anisotropic superconThe field at the equator of a spheroid is equal to applied field
ductor with pinning the corresponding calculations are verymultiplied by enhancement factd=1/(1—e€) wheree is
complicated. To avoid them, a reasonable assumption shouttle demagnetizing factor. For an oblate spheroid one can
be done about the shape. The calculated may then be write?!

compared with the measured one, showing whether the cho-

i /
sen shape was suitable or not. N (c?—1)%2 5
It is known that the interphase surface is convex and tan- clarctan/c2i—1—+c2—1'

gent to the sample surfacerat R— 6R due to the boundary ) ) !
condition for the Meissner part of a sample. In the fielg As a result, the expression for the penetration field can be

the interphase surface gets some finite curvature at the equiritten
tor. The simplest interphase surface satisfying these demands

has an elliptic cross section with semiax@? andd/2 [Fig. H :L_ (6)
1(b)]. The equation for the cross section is P N(val7)
R-r\? [(2z)? Comparing the right-hand sides of E¢4) and(6), using
SR d/) - 1. 3) Egs. (2) and (3), introducing dimensionless variable

. . (R—r)/5R=y and parameteny=J.d/2H;, one can finally
Note, that following from Eq.3) the equatorial curvature \yrite

radius p of the interphase surface is equal 4@/2 where

n=d/26R is a dimensionless parameter calculated below. Ine 5
The applied field and the field produced by the edge cur- 1 181 ﬂJrhO(l_ 1=y

rent Iz should be compensated in the Meissner region =J

r<R—6R by the field produced by the shielding current. N(Jain) Jo Vy(2an—2+y)

The latter is equal to a discontinuity of tangential component B > >

of local field at the surface of the Meissner region. A set of e=V1-(1- (- D/[1+y*(n*~D)].

equations can be written for the normal and the tangentiataiculating» from Eq. (7) one easily obtains bothl

components of the field in the Meissner region that allow onesR which can be measured experimentally.

to connectH,, Ig, andl. This problem is identical to the  Consider first the zero-pinning behavior. For isotropic su-

problem of virgin magnetization in the critical state model perconductor ¢= const, the integral can be calculated ana-
for a thin flat superconductor whel is replaced by the |ytically and Eq.(7) is reduced to

critical currentl .. Using the known solution obtained in this

dy, (7)

p and

modell the following expression can be written: 1 an+2ap—1
=In 1 . (8)
H 4

2 2)r RyrP—(R-0R)2 In the limit a— o the value ofy=2/2/7 is close to unity.
Such a value agrees well with the estimate made when the
Evidently, the sheet current distribution is close to theGBM was developed Figure 2 showsH p(a) and 6R(a)
Meissner one whe@R<R. In the critical state model one calculated for isotropic and anisotropig< 0.04, «=80) su-
can show that the correction for this distribution is of the perconductor. The penetration field of isotropic supercon-
order of SR/R. The Meissner current distribution coincide ductor decreases similar as/&. In the limita— o the edge
for a disk and an oblate spheroid with a large aspect fatio. width tends to some constant value which increases with
This distributiort*>1°| = — (4H,/a)r/JR?—r? is indepen-  anisotropy growth. In Fig. 3 the dependenciesHyf and
dent on sample thickness and diverges whenR whereas &R on anisotropy are depicted. As seef), decreases and
the real current at the edge is limited. To understand théfR increases with anisotropy growth. The dependence of this
reason for this discrepancy a deep analogy between a supgrarameters or is logarithmically weak.
conductor in magnetic field and a conductor in electric field The next step is to account pinning influence. The calcu-
may be used. In particular, distribution is the same for botHated Hy(hy) and 6R(hg) for isotropic and anisotropic
shielding current and surface charge density because they arg=0.04, «=80) superconductor are depicted in Fig. 4
calculated from the same Laplace equafibrs is well  which clearly demonstrates that pinning suppresses the edge
known from electrostatics, the latter is proportional to thewidth and enlarges the penetration field. Pinning influence
local surface curvature. The same should be valid for théncreases under growth of both anisotropy and aspect ratio.
shielding current density. Therefore one can conclude that The model developed in this section allows one to calcu-
the local edge currents and the local edge fields coincide fdate the edge width and the penetration field for any set of
a thin disk and a spheroid with equal diameters and edgparameters. As an example we have numerically calculated
curvature radii. Hp(a,ho) for y=0.04 and 65 «<80, which are close to
In field H, the equatorial field reachés;,; and the equa- those values for YB&u;0;_ 5, and fitted the obtained de-
torial curvature radius of the Meissner part of the sample ipendence to the functiol,=H.,x/a’, wherex=0.85§ 1
p=nd/2. The same field is reached at equator of the spher+0.643In(t+hy/6.666)], y=0.4951-0.0117f,—0.5)].
oid with the same equatorial curvature radiusin the ranges 18a<200 and G<hy=<10 the fit accuracy is
p=Db?%/R=75d/2 whereb is minor semiaxis. The major-to- better than 3.5%. In the next section we compare the calcu-
minor semiaxis ratio of such a spheroidds- R/b=+/a/7. lated and the measured penetration field for YB&O,_ s
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FIG. 2. H, and 6R vs aspect ratio for the pinning-free isotropic
(dash and anisotropidsolid) (y=0.04, x=80) superconductors.
Open and closed symbols are the experimental data fo

YBa,Cu;0;_ s single crystals aT <10 K (O: Ref. 28,01: Ref. 10 . ) .
and T=85 K (Ref. 4), respectively. For detailed explanation, see conductors. Angular dependence of the lower critical field in

the text. these superconductdPdiffers from expressiorfl) used in
our calculations. Therefore the layered Bi or Tl-based

single crystals to test a validity of the assumption madeéiTSC’s characterized by a weak pinning are unlikely useful

about the shape of the cross section of the interphase surfad@. test the model. Pinning is strong enough to affect the
temperature dependence of the penetration field of other

HTSC's.

FIG. 3. H, and 6R vs anisotropy for a pinning-free supercon-
puctor. Curves were calculated wher- 80.

[ll. DISCUSSION

All expressions for the penetration field contain also the
lower critical field. Let us briefly discuss the lower critical o )
field of HTSC's. Experimental data on low-temperature be- I the pinning-free casey and 6R are independent of
havior of bothH; and\ are quite different. From one hand, temperature. Thereford, and the lower critical field have
two-fluid or BCS-likeX (T) dependence have been observedth® same temperature dependence. When pinning is present,
for all HTSC's?® From the other hand, precise measurement§l€ temperature dependence of the lower critical field can be
have exposed a linear increase of the penetration depth g@rived from that of the penetration field and the critical
low temperatures which is regarded as a manifestation of thérrent, which may be measured directyTo do this, one
d-wave pairing in HTSC'€” It also has been observed that Should combine Egs(6) and (7) in the unknowns and
defects and impurities can change dependencg(®f from  Hci at any temperature, using measude@l) andHy(T) as
a linear into a quadratic orfé® In addition to that men- Parameters. o .
tioned above, in layered HTSCls is affected by dynamics L€t us conS|d¢r influence of pinning on thg penetration
of pancake vortices which strongly depends onfield of HTSC's single crystals. The value bf in Eq. (7)
temperaturé®?’” Summing up, one can conclude thetT) dgpends on bottH_; and J.. For simplicity, neglect|r_1g
behavior depends on the type of HTSC's and perfection oflight temperature dependence ofdj(we use expression
its crystalline structure. This conclusion is confirmed byHci(T)=Hc1(0)(1-t%) from the two-fluid model where
measurements of the lower critical field. Saturation oft=T/Tc andT, is the critical temperaturel (T) of HTSC's
Hei(T),2%28 as well as linear decrease with have been single crystals can be well described by the following em-
observed’ 2 pirical dependencé

It should be noted that in the present work we do not
consider the pancake vortices attributed to the layered super- Jo(T)=J:(0)[exp(—T/Ty)—exp(—T./Ty)], (9)

A. Temperature dependence of the penetration field
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FIG. 4. H,, and 6R vs parameteh, for isotropic (dash and FIG. 5. Temperature dependencesHyf and SR. The calcula-
anisotropic(solid) (y=0.04, x=80) superconductor. tions were made foa=50, y=0.04, k=80, andT./T,=5.

where the characteristic temperaturg varies in the range d=10 um,?® were selected. The estimated valuehgfdoes
from 10 K to 30 K depending on type of superconductor. not exceed 0.3 for the thinner sample and has smaller value

The curvesH(t) and 6R(t) calculated for the sample for the thicker one because the measurements performed for
with a=50, y=0.04, k=80, andT./T,=5 are plotted in the latter in Ref. 28 were carried out at high frequency when
Fig. 5. As seen, pinning results in the absence of low-J_is strongly suppressed. We estimated that the correction to
temperature saturation ¢, and the increase ofR with  H, due to pinning does not exceed 6% for these samples, so
temperature. we compare the measured penetration field Wtifa) cal-

We usedH ,1(T) dependence which saturates at low tem-culated for the pinning-free case. The aspect raties97;*
perature. Critical current decreases withat this range. If 3=991° anda=22.62% were calculated in a way given in
H: also decreases, the ratig(T) is larger than in the pre- Ref. 35. The penetration field valuegoH,=0.52 mT at
vious case. As seen from Fig. 5 the lardey the stronger T=85K* uoH,=3.5 mT atT=5 K,'®anduoH,=7.73 mT

pinning influence. at T=10 K,?® were normalized to the corresponding values
For typical HTSC's single crystals with=50-100um,  of H,(t).%®
J(0)=5x10 Am~?, and puoH;(0)=20-40 mT, the As seen from Fig. 2, the values measured at low tempera-

value of hy(0)=4-16 is rather large. It grows with the ture (open symbolsdemonstrate a good agreement with the
thickness of a sample but is independent of the transversglculated values ofi,(a), whereas the value measured at
size. We conclude that pinning strongly affe¢tg(T) of  high temperaturdclosed symbol deviates from the calcu-
such crystals at low temperatures. lated one. We suppose that the deviation is caused by a small
thickness of the sample which makes our model invalid, as
o ) shown below.
B. Penetration field of YBa,Cu30,_ 5 single crystals

We can now compare the calculatdg(a) with the avail-

able data. We have chosen Yf&x0O,_ 5 which is currently C. Limitations on sample parameters

the most investigated HTSC’s witly=0.04, penetration Consider limitations on sample parameters following
depth N\,p(0)=140 nm?* and correlation length from the assumptions made above.

£25(0)=1.72 nm*® which give uoH1(0)=41.3 mT. To di- To describe the edge current the expresg®)rwas used.

minish the influence of pinning the experimental results ob-\We assumed that the current flowing at the interphase sur-
tained for very thin samplesil=4 um (Refs. 4,10,3%and face is equal to a sum of shielding currents at top and bottom



56 9069

ONSET OF FLUX PENETRATION INTO A TYPE-II ...

parts of the surface. If the distance between the opposite IV. SUMMARY

parts is comparable with the decay length of the shielding

current, this expression fails because shielding currents are In this paper we have considered the onset of flux pen-

overlapped. The minimal distance is of the order of the equaetration into a type-Il superconductor with rectangular cross

torial curvature radiup=d#/2. The decay length is less section. The results obtained show that anisotropy and pin-
than or of the order oh/\y, where\ is the penetration hing have strong influence on the penetration field value and
depth for the isotropic plane. We conclude that the presentelds temperature dependence. For disks with a large aspect
description of the edge effects is valid only for samplesratio we .have calculatgd the penetration field and. the width

which are thicker thar,=2\/(7+/y). For a single crystal ©f the mixed-state region at the sample edge which can be
of YBa,Cu;0,_ 5 with a=100 one hagl,=4 um at low Measured experimentally. We would like to note that the

temperature, and.=10 um at 85 K. The latter value ex- S&Me quantities can be calculated for samples with arbitrary

ceeds the thickness of the sample investigated in Ref. £SPect ratio using a method developed by Bréﬁdh,lt this
Therefore the calculated, is invalid in this case. method should be extended to both anisotropic and pinning-

To obtain expressiof6) the sample was approximated by €€ cases. _ . .
an oblate spheroid with<R. Because the value of7 is of In C(_)nclu5|on we point out the following main results ob-
the order of unity, this condition, which can be rewritten asta'ned in the present work.

Jas /7, is stronger than the general requiremant1 for a (1) A simple model has been developed to calculate the
thin flat ,sample penetration field of the geometrical barrier taking into ac-

- count anisotropy and pinning.
Apparently, the developed model cannot be applied to (2) It has been found that the published experimental data

thin films with d<<A. The virgin flux penetration into films is . X : ;
well described by the critical state mo#él in which the " the penetration field of platelike YBaUO,_; single
ystals agree with the calculated valuesgf.

: s 1 o
value of the penetration field is assumed to be negllglblyC (3 It has been shown that pinning of vortices in the cor-

small. When pinning is strong, this assumption is valid. In ) ,
the case of weak pinning a transition to the mixed state cafl®"s of a sample strongly affedtiy,(T) of platelike HTSC's
single crystals at low temperatures.

be impeded by the Bean-Livingston barrier arising from the
finite energy of a vortex nucleation at the film edgerhe
problem of a vortex located near the edge of a film has been

recently solved by Kogaff The obtained dependencies of  The authors are indebted to Professor V. A. Kashurnikov,
the energy and the magnetic moment of the vortex on ®r. A. A. Sinchenko, Dr. A. A. lvanov, and K. V. Klementev
distance from the edge allow one to estimate the penetratiofor helpful discussions. We are grateful to Professor A. P.
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