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An analytical formula for the dc Josephson current in anisotropic singlet superconductor/insulator/
anisotropic singlet superconductor junctions is presented. The formula is applicable for junctions with arbitrary
insulating-potential height and thickness and with any symmetries inclutlimgve superconductors. In con-
trast to the formulas for conventionsdwave superconductors, the formula includes two additional effects. One
is the intrinsic phase of the pair potential originating from the pairing symmetry in anisotropic superconduct-
ors. The other is the formation of localized states around the insulator. Using this formula, the Josephson
current is calculated ins-wave superconductor/insulatdg_,.-wave superconductor s{l/d) and
d,2_,2-wave superconductor/insulatdgt_ .-wave superconductod(l/d) junction configurations. In the case
of the (d/1/d) junction, the anomalous temperature dependence of the maximum Josephson current is calcu-
lated. This behavior is completely different from that expectedsfarave superconductors. The validity of a
phenomenological theory by Sigrist and Rif& Phys. Soc. Jpn61, 4283 (1992] is also discussed.
[S0163-182697)06625-3

[. INTRODUCTION SQUID (Refs. 12 and 1B naturally. In addition to this
theory, several theories of Josephson junctions containing
In order to reveal the origin of superconductivity in high- d-wave superconductors have been presented which take into
T. superconductors, the symmetries of the pair potentialsccount the anisotropy of the pair potenti*® Although all
have been investigated under various situations for severaff them have succeeded in revealing some aspects of the
years now. A growing amount of evidence has accumulatedosephson effect, one more essential effect, the existence of
recently, based on various theories and experimental‘data, zero-energy statggZES’s) around the insulator, has not been
which point to thed,2_2-wave symmetry of the pair poten- introduced yet.
tials. In particular, the observation of anomalous magnetic The formation of ZES's at the surface @f,-wave super-
field dependences im junction§=*! clearly verified that the conductors was pointed out by HtiOn the other hand, the
pair potential in highF. superconductors encounters a phaseexistence of zero-bias conductance pe&kBCP’s) at the
change betweem- and b-axis directions!~*3> Moreover, surface of hight . superconductors has been confirmed by
several other measurements, using superconductingeveral tunneling spectroscopy measurem&ntS. It has
quantum-interference devicdSQUID’s), Josephson junc- been revealed based on a tunneling th&off that the ex-
tions, or tricrystal ring¥~2° showed results which are con- perimental ZBCP'’s are closely related to the ZES's at the
sistent withd,2_,2-wave symmetry of the pair potentials. surface ofd-wave superconductors. These ZES's are induced
These experimental results are considered to be the mofdr the reason that the pair potential in highsuperconduct-
rigid evidence ford-wave symmetry because they utilize the ors incurs a change in sign in some region of the Fermi
phase sensitive nature of the Josephson junctions. On treairface~4® The theory which explains the various experi-
other hand, the properties of the Josephson junctions imental line shapes of tunneling conductdfice is com-
d-wave superconductors have not been sufficiently revealegbletely distinct from that for as-wave superconductor in the
The above experimental results are analyzed in terms of sense that the tunneling spectroscopy is essentially sensitive
phenomenological theory which is a simple extension of theto the phase of the pair potentidfs** The fundamental con-
theory for conventionak-wave superconductors. To fully cept for the formation of ZES's is simpP8 At the surface of
understand the experimental data, a new theory for the Janisotropic superconductors, a conducting quasiparticle is re-
sephson junctions id-wave superconductors constructed onflected and changes its direction. At the same time, the ef-
a microscopic basis is needed. fective pair potential felt by the quasiparticle changes. The
A trial along this direction was done by one of Q& T.). ZES’s are formet®2when the effective pair potential in-
The dc Josephson current between aiwave super- curs a change in sign through the reflection. In Ref. 52, the
conductor/insulatod,2_2-wave superconductor s(l/d) physical origin of the ZES's in several nonuniform supercon-
junction witha(x), b(y), andc(z) axis orientation is calcu- ductors are discussed in a unified way based on the quantum
lated by taking into account Andreev reflecttbrand the condition of the bound states of the quasiparticles. Similar
normal reflection at the interfad®.This theory explains the effects can also be expected in Josephson junctions including
anomalous magnetic field dependence of the maximum Ja#-wave superconductdtsas the boundary effect around the
sephson current(T) of the corner junction and corner insulator. In such situations, under the influence of the exis-
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tence of ZES’s, the properties of the Josephson current ifihe field operators are expanded using the eigenfunctions of
s/l/d and d/I/d junctions are expected to become BdG equations as
anomalou®®=®® as can be inferred from the properties of

s/I/s junctions®®-"2

In this paper, we present an analytical formula for the dc ‘lfT(xl,t)=2 [an1Un(Xp)exp(—iEqt/f)
Josephson current which fully takes into account the bound n
states around the insulator as well as the anisotropy of the —aﬁ,lvﬁ(xl)exp(iEnt/ﬁ)], )

pair potential. Although the self-consistency of the pair po-
tential is neglected, the formula can be applicable to arbitrary
barrier height and for spin-singlet superconductors with any

T _ .
symmetry including d-wave and §+id)-wave (time- q’l(xlyt)—g [anvn(X)exp(—iEt/f)
reversed symmetry-breaking caseiperconductors~"' The

obtained formula has a general form, and several existing +a$,luﬁ(xl)exp(iEnt/ﬁ)], (5)

theories can be derived from the formula as limiting L _ .
cased®69789sing the formula, the Josephson current inwhere the summation is taken over all the eigenstates with

d/1/d ands/I/d junctions is analyzed in detail. The organi- POSitive energie&, anda,, , (0‘;,0) is the annihilatior(cre-
zation of this paper is as follows. In Sec. II, a model for the@tion operator for a quasmarncle._Agcordmg to the method
Josephson current is given and the formula to calculate it i8f Blonder, Tinkham, and KlapwijR} we can define the
explicitly derived. The physical meaning of the formula is €1€Ctric charge densitf. (e>0), the electric currend,,
discussed in detail. In Sec. Ill, we clarify basic properties of2nd the source ter8 as

s/1/d junctions. The Josephson current in the corner SQUID

configurations is also discussed. In Sec. IV, we address the P.= —e[\I@(x,t)\IfT(x,t)+\If1r(x,t)\lfl(x,t)], (6)
basic properties ofl/1/d junctions. We calculate the grain

angle dependence of the Jggephson current. The validity of o

the theory by Sigrist and Rice(referred to as SR theorys - T t

discussed. In Sec. V the formula is extended to a three- Je m MOV D)+ DV ()],
dimensional model. The Josephson current alongctheis (7)
is calculated. In Sec. VI, we summarize our results.

2e
Il. MODEL AND FORMULATION S=-4 lm[ f dx"dx’ A(x, X[ WX, ) W] (x',1)

The Josephson current formula used in this study is essen-
tially the extension of the previous formula fawave +\If¥(x’ ,t)\PI(x”,t)]}. (8)
superconductof&="°that includes the anisotropy of the pair
potential. The formula is subsequently derived along with therhese three quantities satisfy the conservation law given as
original one. We start from the Bogoliubov—de Gennes
(BdG) equations

e

ot

+V-J.=S. 9)
Eun(xl)—houn(x1)+f dXzA(ST)un(X2), For the simplest model calculation, we consider a two-
dimensional anisotropic singlet-superconductor/insulator/
anisotropic singlet-superconductor junction with perfectly
Ev,(Xy) = — hOUn(Xl)"_j dx,A*(sr)un(x,), (1) flatinterfaces in the clean limit. The system is assumed to be
in the equilibrium state. In this model, the interface is per-
with s= (Xl_XZ)i r:(X1+X2)/2, and h0: _ﬁ2v2x /2m pendiCUla.r to thex aX.iS and is |OcaFed at=0 and)?:di, .
1 whered; is the magnitude of the thickness of the insulating
region. The Fermi wave numbég and the effective mass
n are assumed to be equal both in the left- and the right-side
superconductors. The pair potential and Hartree potential are
assumed to be

+U(X) — u, whereu, U(x), andE are the chemical poten-

measured from the Fermi ener@§y (Ex=u), respectively.
The functionsu,(x;) andv,(x;) are the eigenfunction of the
BdG equations. The electron field operato¥s.(x;,t) (o

=1 or ]) satisfy the equation — ,
A (y)expliey), x<0,

d A(k,r)=4 0, 0<x<d;,
if 5 Wi (X, 1) =hoW (X, )+ f dXZA(S,I’)\I’I(xz,t), Ar(y)exp(i ¢), x>d,
2
@ 0, x<0,
J U(X): Uo, O<X<di , (10)
i 2 W0 =—hoW 0,0+ f dXA* (S 1)W(Xp,1). 0, x>d: |

(3) where A(k,r) is the Fourier transform ofA(s;r), with
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exp(y)=k/|k|+ik,/|k| using a wave vectok.**~*®In the  translational invariance for the direction is satisfiedJ, and
weak-coupling I|m|t k is fixed on the Fermi surface| K|  Sdepend only orx. The Josephson currehte), where ¢
=kg). The guantitiesp, andpg are the macroscopic phases = ¢, — ¢r, between the left and right superconductors is
of the left and right superconductors, respectively. Since thgiven as

2e (x
@=3c kT 5 [ [ [ 800G ) st oo,
Wy 0
B
G(X,X’,iwn)=f G(x,x', 7, 7" )exdiwy(7—7")]dT, (12
0

G(x,x',7,7")=—

(TAV,(x,DVI(x',7)}) <TT{WT<X,T>\PL(x',r'>}>) 13

(TAV(x,nWI(x',7)}) (TAVI(x, 1) (X', 7))}

HereG(x,Xx,iw,) is a two-component Matsubara Green'’s function. Since the translational invariance is satisfied, the momen-
tum parallel to the interfacd, = kg sin v, is conserved. Taking this fact into account, the Green’s function is transformed into

a functionk, . From the conservation of the Josephson currenEfge>|A, (y)|,|Ar(y)| with Er,=%2k2 cog yi2m, I(¢) is

reduced as

efikgT
2im

I(¢)= v
X" —x @n Ky

J
lim (0,) &X) E TH{G(x,X" Ky ,iwn)}Hy—o- (14

In the following, the Green’s function is actually calculated in the junction configuration by extending the previous
method®® In this method, we assume four types of quasiparticle injection processes from both sides of the junction as the
elementary processes shown in Fig. 1 in Ref. 41. It is important to note that the quasiparticles “feel” different pair potentials

depending on the directions of their motions in anisotropic superconductors. For a given &welgyax|Ag(y.)|,

[AR(Y ) LIAL(y ) 1L1AL(y-)]), with y. =y andy_= 7w— vy, the wave function®¥,(x) (I=1,...,4) corresponding to the four
processes are expressed as

W (x)=exp(ikgy siny)¥,(x,y) (1=1,...,9, (15

1 (X, ), (0<x<dy), (16)

¢a,L(X!7)+allﬁa_,L(X!7)+bl¢ﬁ,L(X!7) (X<0)|
1(X,)
91%4,R(X,Y) +hidig r(X,7), (x>d;),

b L(X, 7)4‘321#/3 L(X, y) +batha (X, 7). (x<0),
P2y (X, 7), (0<x<dj), (17
Qs r(X,Y) +hothy R(X,7), (x>d),
93t (X, y) +hstbg i (X, y), (x<0),

3(X ’y) l/l3|(X 7) (O<X<di)l (18)
U (X, Y) T agts r(X,¥) +bsth, r(X,7), (x>d;),
Gatha L (X, ¥) thahg (X, 7), (x<0),

Wa(X,y)=1 ¥a1(X,7), (0<x<dy), (19
Uar(XY) Fasth, g%, Y) st r(X,y),  (X>d)),

wherej expresses the indicds andR, and wave functiong, (X, ), ¥4;(X,7), ¥si(X,v), ¥g;(X,v), and g (x,y) are
given as
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uiexpi¢;/2)
‘”wi(x’”:(v}exp(—ijfpj/z))
(e o007 i ey
Xexpgi| ke 0087+m x|, (20
viexp(i¢il2)
V(% y)= u;exq—i]¢j/2))
. me;
xXex I(k,: COS’y—m x|, (21
~ D‘,—exp(igjiz) )
Veil*y)= vjexp(—i¢;/2)
(e conv g
Xexpg —i| ke 0037+m X1,
(22
B ~ ’Jjexp(igjiz) )
Vei% V) =\ 4 exp(—i,12)
) me; _
xXexpg —i| kg cos;z—ﬁszTsy X|,
(23
and
ciexp(— AX) +d,exp(AX)
P y)= e exp(— AX) + fexp(Ax) 1=1...4,
(29
with

NG
expli ;) = (7)) expiej),
~ Ay
expli¢;) = IAEEZ; explig;). (27)

Here we have assumed the relatidg, Eg,>|Q; .|. The
wave functions satisfy the boundary conditions

0=V W00k =W00lco,,

dW,(x) dw(x)
dx x:o,: dx ‘0 ' (28)
W (X)]x=a, - =W1(X)]x=q, ,
dW,(x) _d¥(x)
dx | _, __ dx | _, (29

I+

From the conjugate processes of the above four wave func-
tions, we obtain another set of wave functiods(x) (I
=1,...,4) which satisfy

U
v

(Xz))
(X2) )"

f dxa Wi ) H(Xg %) =EWH(Xp),  Wi(Xp)=
(30)

EU(X,) =hgU(Xp) + j dx,A*(s,1)o(Xq),

El}(XZ):_hol’;(Xz)'i‘f XmA(S,r)fJ(Xl). (31)

For an energy E>(maxAg(y- )| [ Ar(y-)LIAL(:)],
|A,_(y )1, ¥(x) corresponds to the four elementary pro-
cesses shown in Fig. 2 of Ref. 41. They also satisfy the
boundary conditions given by Eq&8) and (29). As in the
case of¥(x), ¥|(x) can also be written as

Q]’+:\/E2_|AJ‘(')/+)|2, 017: VE2_|A]'(7*)|21 ~ . . ~
5 W (x) =exp(—ikgy sin y)¥ (X, 7). (32
m
A= \/ . 90— k2 cog Y, (26) The explicit forms of these functions are not written here for
brevity. Using the eight wave functions, Green’s function is
and then expressed as
G(x,x",ky,E)
[al‘lfs(x 7)‘I’t(x ¥)+axWa(X, 7)‘1' (X', 7+ agW4(x, WX, Y) + ag Wy (x, ) TH(X',y),  x<x', 33
BV (X, VWX, )+ BaW o (X, ) WE(X, 7) + BaW 1 (X, Y) Wy(X', y) + BaWo(x, N TY(X',7),  x>X',
G " ky,E)= ! k A ! K, B a ¥ X C
(X kg B)=| || g @KL (X)) JAT 5 — exl ik - (xx')] +QL_ exi] —i (ky, +x—k,-x")]

exdi(k, -x—k_x")]Dy,
QL+

x>x',

(34)
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G(x,x",ky,E)= exp[ |(k,_'+x—T<'|_,,x’)]C

Wnll—)[ﬂi exp[—lk,_,(x x)]A+Qi exdik, +(x— x)]B+

a;
exi(k, -x—k_ +x’ )]D] X' >X. (35
QL +

In the above, we have neglected the term which includes the atomic scale oscillations< Zha&ricesA, B, K, §, C, and
D are given as

:(UE, ULULexmd’L)) B=<’JE’ _ ’GLULeXF(iEL)) (36)
U exp(—ig) i ! Uoexp—ig) UL ’
~2 ~~ -~ 2 ;
~ [Uy, u v expl ~ , u v expl
AZ(,..,L,._. ~ .-..LZUL F( d)L)), B:(UL B 5 L F( ¢L)), (37)
uvexp—i¢y) v Uvexp—ig) ug
o, T2exp(i dy) iy viexp(igy)
=\|l=2 It ~ ) D ) (38)
viexp(—ig) UL ufexp(—id) uv,
with
k2= kecosyt bt | e 39
L= FCOS)’—ﬁszCOSy: L FCOSY—ﬁszCOSy (39)
In the abovea, anda, are expressed as
Fal'g(1=on)+onlclp Tals(1— o)+ onlclp
= - y T T == ==, (40
FAFE(l_O'N)+(TNFCrF FAFE(l_O'N)+(TNFCrF
with
Fa=1-Tr+Ir-vava, Te=TL =T _v1v2, Tc=1-T_ Tr_v2v4€Xp—ig), (41
Ip=T +—Triviyvsexplio), Te=1-1 T —y1v2, Te=1-T ;g v1vzeXplie), (42
and
Ta=Ta, Te=T(_—Ti 77 Tc=Te, To=T_—Tr_v7.exp0—ig), (43
~ |AL(y2)| |Ar(y2)]
Te=Tg, Te=T¢, FL,:—EJF—QL:, FR,t_E_’_—()R’I- (44)
The quantitiesy; (i=1,...,4) are expressed as
AL(9+) |AL(0 | |AR(6,)] AR(¢9)
—— YeTE— ., V3T — —_— (45
|AL(9+)| AL(6-) Ar(6,) |AR 0-)|

After an analytical continuation fromE to iw,, where w,=2wkgT(n+1/2) denotes the Matsubara frequency,
Tr{G(x,x',ky,iw,)} is obtained. By assuminBg,>|A;(6.)| (j=L,R), the Josephson currehte) is obtained &

a1(0,iwn,<p) N

51(0 nu@D)
0 -
Qn,L,Jr ’ L( +)

Qn -

>

— /2

Rul (@)=

WRNkBT wl2
{ AL(6-)

cos¥ d 0] (46)

whereQ, | +=sgn(y) \/A,_(ai)ern. The quantityRy denotes the normal resistance a?;@ is expressed as

Ry! fﬂz < do 4Z; 4
NT R TNCOF GO ONT 72260 (Nd;) + 4Z2cosR(N )’ @7
K COY
A=(1—k?co20)Y2\,, Zj=—m—o, 48)
( )" o " 1— k2cod6 (

where we have introduced two parametegs= \2mU, /%2 and k=kg /N . Hereoy denotes the tunneling conductance for
the injected quasiparticle when the junction is in the normal state. In the abg\&j w,,¢) anda,(6,iw,,¢) are given as
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['2(0,10,)'5(8,1 0n) (1—on) + onl'g(0iiwn, @) 5(8,i0n, )

AT )= T (G T T w0 (1 o) o5 Biwn, @) 4 Biwn, @)’ “9
- .  Ta(0,iwp)T7(8,iwn) (1= on) +onlg(8,iwn, @) 4(6,iw,, )
a(0,iw,, )= . - - . , (50
I'1(0,10)5(0,iwn) (L—oy) + onla(0iwn, @) T4(0,i 0y, @)
with
Ty(6iw,)=1+ Ty(6,iw,)=1+ __Aur(fe) (51)
10wy L, +7L,—» 200, lwnp MR,+TR,—» TIL(R),= wn+Qn,L(R),i’
Pa(0iwn,@)=1+n _nr-exp(—ie), I's(0ioq,e)=1+n 7r+eXplie), (52
Fs(0,iwn)=Th | +— T —exdi(a,—a_)], Te(bion,e)=T, +—T'riexdi(e+a,—B1)], (53
F7(0iwg)=Dn - —Th+exfdi(as—a-)], Tg(0iog, @)=y ——Thr-exdi(—e—a_+p_)], (54)
sgriwn)|AL(y2)] sgrwn)|Ar(7-)] =
FoL+= ont Qny . Fhr== ont Qnpe QO r+=SgNw,) VAR(0-) + oy, (59
expliar )=y, exp—ia_)=yz, exp—ifi)=vys, exif-)=ra. (56)
After straightforward calculations, we finally obtain the formula for the Josephson current as
7RkgT w2 —
Rl (@)= —— [2 (8o, @)oncos db, (57)
F(auiwnu@):4rn,L,+Fn,R,+
[(l—UN)|F1(0,iwn)F2(0,ia)n)|Sin(go+a+—,8+—\1’b)+0'N|F3(0,iwn,(p)|2 sinfe+a;,—B4)] (58)
|(1—UN)Fl(H,iwn)Fz(é’,iwn)+0'NF3(9,iwn,(,D)F4(0,iwn,qo)|2 '
. I'1(0,iwy)T2(8,iwp)
exp(ivy)= - - . 59
R A PRI TP 59
When oy— 0, this formula is simplified and the resultaRyl (¢) becomes
7TRNkBT ™2 4sinetar =B —Vp)ln L +Tar+
Ryl = - — — cosy do
N ((P) {E — 2 |F1(01|wn)rz(01|wn)| IN
71'RNkBT /2 4eXF(i<P)77L + TR+ }
- ——— cos6 dé|;. 60
[E o2 M TG on T Briwg) (©0
Also, G1(0,0ky ,iw,) andG,4(d;,d; ,ky ,iw,) are given as
. m |\ 2 expiey)
G1x(0,0k, ,iw,)=— : , 61
1 y:1on) kexh ) 1+m0 o - (61
. m | 279 +eXp(— |<PR)
G21(di ldi ,ky,l wn)_ - ( kFXhZ 1+ MR+ TR, (62)

Since thed component of the local density of states of quasiparticles in the normal staté8), is given aspy(6)
=(m/ kg% ?), Eq.(60) can be rewritten as

7TRN kBT

2
Ryl (@)= [2 Im[Glz(O,O,ky,iwn)G21(di ,di Ky, iwg)]t(6)cosd db. (63
In the above,t(6) [t(6)=on(6)/(p3(0)7?)] denotes the matrix element of the tunneling Hamiltonian. The quantity
G1A0,0ky i wp) [Goy(d;,di Ky ,iw,)] expresses the anomalous Green's funcfimnjugate of the anomalous Green’s func-
tion] at the interface of the lefright] side of the superconductor and can be regarded as tf@mdk, component of the pair
amplitude at the interface of the I¢fight] superconductor. The pair amplitude at the interface does not represent those of bulk
superconductor in general.



898 YUKIO TANAKA AND SATOSHI KASHIWAYA 56

When tthtime-reversaI symmetry is not broké_m(R)(ei) is chosen as real quantities. Consequently, (&B@) can be
simplified a

’7TR_NkBT /2 . .
Rl (@)= —o— > i /ZF(0,|wn,go)S|n<pcrNcoa9 det, (64)
AR [(1=o)T 1(6,i w)To( 8,1 0g) + oy T3(6,i @, 0)]?]

(1= on)T1(8i0n)To(iwn) + onT5(8,iwn, @) Ta(b,iwn, @)

F(8,iw,,0) (65)

In the following, we will survey the intrinsic properties of ~I'3(6,E,)I'4(60,E,¢)=0 gives the energy levels of
the formulation[Egs. (57) and (64)]. First, Eq.(57) can be bound states formed between the diagonal pair potentials due
applied to Josephson junctions whose electrodes have pairiig the Andreev-reflection process. For a low-conductance
symmetries which break time-reversal symmetry: i.e.junction (on—0), the condition  Fy(6,E,¢)

A (r)(#+) becomes complex. In generdl¢) can be de- ~I'1(0,E)T'5(0,E)=0 gives the energy levels of bound
compos_ed into the series of s and cos(ie) states formed around the surfaces of isolated semi-infinite

superconductors. Fourth, in E@4), for a fixed ¢, the direc-
tion of the current becomes either positive or negative de-

(@)= 2, [Isin(ng)+J.cogne)]. (66)  pending on the angle. The signl{6,i w,,¢) is determined

n=1 by the sign of the numerator, i.e., the sign of

When the time-reversal symmetry is not brokép,(n=1) Ar(0:+)A (0,). The total Josephson current is regarded as
vanishes. Second, the formula includes the Josephson currghe integration of allo components. This is one of the im-
component carried by the multiple reflection process at thortant properties of the Josephson junction in anisotropic
interface. In the above equation, the current components witeuperconductors: the sign change of the pair potential on
index n correspond to the amplitudes of tim¢h reflection  the Fermi surface.
processes of quasiparticles. Third, the formula naturally in- Finally, Egs.(57) and (64) are consistent with the previ-
cludes the bound-state condition in the denominator opus formulas for the Josephson current as limiting cases.
F_(a,iwn,go) or F(6,iwy,@), which we will refer to as When the left and the right superconductors sseave su-
Fq(6,iw,,@). If we replaceiw, with E, the condition Perconductors with the same magnitude of the pair potential,

Fq(6,E,¢)=0 can be regarded as a linear combination ofwe can chooseA (0.)=Ag(0+)=A¢(T) and Q, -
two types of bound-state conditions. For a high-conductance=(), g - =Q,= \/AOZ(T)-I-wE. The resulting=(6,iw,,¢) is

junction (on—1), the condition  F4(6,E,¢) expressed as
|
F(6,i ) 445(T) (67)
Jon, @)= - .
n® 4(1— o) Q5+ onl (0aF Qo)+ (Qo— wn)exp(—i )|
Performing the summation of the Matsubara frequency analytidaj{y(¢) is expressed &%"°
7Ry F,z Ao(T) r(Aonwl—aNsiﬁZ(cp/z) |
Ryl (@)= tan oNCOS Sing d6. 68
M= ) a2 1—oysir(el2) 2kgT § ¢ (©9

For on~0, I (¢) is proportional to sing) and the results of . JOSEPHSON EFFECT IN s/l/d JUNCTIONS
Ambegaokar-BaratoffAB) theory? is reproduced, while,

for o= 1; Eq.(68) reeproduces the previous results by Kulik tween s-wave superconductor and-wave superconductor
and Ome'lyanchuk” When the left and r'ghF supercqnduct- junctions are discussed. Since the symmetry of the pair po-
ors ared-wave superconductors, four pair potentials ar€engia| in the left and right superconductors is different, it is
chosen as A (60.)=Ay(T)cog2(6+a)] and Ar(6.)  not evident whether the amplitude of the Josephson current is
=A4(T)cog2(6=B)]. If we only take into account th&®  nonzero or not. To reveal it, we have developed a micro-
=0 component of(6,iw,,¢) in the 6 integral of Eq.(64),  scopic theory of the Josephson effect in a@awave

we reproduce the Sigrist-Rice restitsihereRyl (¢) is pro- superconductor/insulatak/> _2-wave superconductor
portional to cos(&)cos(28). Whenay, is set equal to unity, junction?? However, the previous theory is applicable only
we can obtain the previous results by ¥ipn pin-hole ge- when the interface is parallel to the crystal axes. In the fol-
ometry. In the following sections, the Josephson junction inowing, more general cases are discussed using the formula
the various cases will be investigated in detail. presented in the previous section.

In this section, the properties of the Josephson effect be-
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FIG. 2. Josephson currehf) plotted as a function ofy for

Nodi=0 andx=0.5 with (&) =0, (b) B=/8, and(c) B= /4.

a-axis

Insulator

lectron-liks — . — . —

dlection liko \ e Curvea, T/T4=0.05; b, T/T4=0.3; andc, T/Ts=0.6.
6 quasiparticle

ho!c-lik.cI hote-like _ _ AS(T)
quesiparticle / quasiparticle M,+="M.,-= o +Q.
e[ccl.ron—l_ike ] n n,s
quasiparticle : oD R o

BAT) expligy) cos(2(8 - ) Q. .= sgn ;) w2+ AZ(T) (69)
n,s n n S "

To understand the current-phase relati¢n) clearly, the

FIG. 1. Schematic illustration of reflection and transmission Ofcondition for the formation of ZES's forry—0 and the

guasiparticles at the interface(a) s-wave superconductor/ . . . .
insulatordl,2_,>-wave superconductor s{l/d) junction. (b) signs of F(6,iwy,¢) are summarized in Table | for6j

d,2_y2-wave superconductor/insulatdg_.-wave superconductor <ml4. _AlthOUQh the partlcgl_ar choice dfs and Ty is not
(d/1/d) junction. essential, we select the critical temperatures of gveave

superconductor andl-wave superconductor af;=8.8 K
~0.7 meVkg and T3=90 K~7.8 meVkg, respectively.
The correspondingh¢(0) andA4(0) are 1.2 and 18 meV.
Both A((T) andA4(T) are assumed to obey the BCS rela-
We consider the case when theb plane of the tion. In Figs. 2 and 3l(¢) is plotted for variouss. Since the
dy2_2-wave superconductor is in the plane as shown in Figtime-reversal symmetry holds,,=0 for (n=1) and|(¢)
1(a). The quantityB expresses the angle between the normalk= — | (— ¢) are satisfied. In the case af,d,=0, i.e., oy
to the interface and the crystal axi@ axis of the =1 (Fig. 2) the bound states are formed between the diago-
d,2_,2-wave superconductor. For a quasiparticle injectionnal potentials due to the multiple Andreev reflection. Since
with angle @ to the interface normal, the three effective pair the magnitudes of,, (n>1) in Eq. (66) are not negligible,
potentials participate in this process. The most essential poin{ ¢) deviates from the ordinary sinusoidal dependences. The
is that the transmitted electronlike quasiparticle and holelikeondition for the formation of ZES'’s is expressed as the van-
quasiparticle do not always “feel” the same pair potentials.ishment of F4(6,iw,=0,9)=0. Since Mm~=1 nr.=
In such a situation,A| (6.) and Ag(6.) are given as =1, andyng_==*1 are satisfiedF4(6,0,¢) vanishes forp
A(T) andA4(T) cog2(6+B)], respectively. The quantities =0 and ¢=*7. The existence of ZES’s induces the en-
7L+ and n _ in Eq. (51) are substituted by hancement of the Josephson current at low temperatures as

TABLE |. 0<pB=<m/4. Condition for the formation of the bound states and the sigh(&fiw,,¢) in the s/I/d junction.

Zero-energy states Zero-energy states Sign of F(8,iw, ,¢) Sign of F(8,iw,,¢)
(on—0) left side (on—0) right side (0< <) (—7<¢<0)
74+ B<O<m/2 No No - +
74— B<O<ml4+ B No Yes + -
—7ld+ B<O0<ml4— B No No + -
—7l4— B<O<—mwl4+ No Yes - +

—72<6<—ml4— B No No - +
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FIG. 3. Josephson currehfe) plotted as a function of for

\odi=1 and«=0.5 with (8) =0, (b) B=/8, and(c) B=m/4. FIG. 5. Josephson currehfe) plotted as a function of» for
Curvea, T/TS=0.05; b, T/TS=O.3; andc, T/Ts=0.6. )\Odi:3 and x=0.5 with (a) ,320 and (b) B:,n_/4 at T/TS

=0.05. Curvea, A4=0; b, A;q=0.344(0); and c, Agy=
seen in curvest in Fig. 2. Even whenr, deviates from 1, _0.31,(0).

i.e., Aod; becomes nonzerds4(6,0,¢) vanishes fore=0,
*x for =m/4— <<= ml4+B. For nonzeroB, ZES's  (curve c) is enhanced at low temperatures. For a low-
are formed at the interface and the resulti{e) is also  conductance junctionof—0), if 8 deviates from zero,
enhanced aroungg=0 and ¢= =7 [curve a in Figs. 3b) Ar(6.)Ar(6_) becomes negative for+ m/4—B<6<
and 3c)]. Wheng is /4 [Figs. 2c) and 3c)], I, vanishes  + /44 g andF4(6,iw,,¢) is reduced at low temperatures.
and the contribution ot, becomes dominant. This is the Tha extreme case is wheB= /4, whereA_R(0+)AR(0,)
reason for 'Fhe period of oscillation of curves in Fig&)and 4 is satisfied for anyy. This is due to the formation of
3(0) ot being 2r but . ZES’s at the interface. The reduction®f(6,i w,,¢) at low
Figure 4 shows the temperature dependence of the maxfémperatures is much more drastic with the decrease of
mum Josephson curreRyl o(T) for several cases. Without oy, i.e., with the increase ofd;. The resultingl o(T) is
the barrier potential ¢y=1), the magnitude of(T) for nhanced at low temperaturesf Consequently, cucvés
B=0 (curvea)_ is larger than the other cases, independent Ogigs. 4b) and 4c) have upper curvatures and z;re crucially
temperaturgFig. 4@)]. However, assy decreases from 1, jgferent from those of the AB theof?. On the other hand,
i.e., askod; increases, the magnitude bf(T) for g==/4 ¢, B=0 andoy— 0, the temperature dependencel gfT)
is similar to those obtained by AB theof$.
The effect of time-reversal symmetry breakinglgp) is
now discussed. In this case, the effective pair potentials for
quasiparticles\g(6-.) are given as

@

AR(6,)=Ag(T)cog2(0— B)]+ilAgq,

it o) Ar(6)=Ay(T)co$2(6+ B)]+iAy. (70

a B The most serious effect is th&fe) can no longer be ex-
pressed as a series of sipj any more andl, in Eq. (66)
becomes nonzero. Figure 5 shows the calculated results of
I(¢) for an s-wave superconductor/insulatatie 2+ is)-
wave superconductdrs/1/(d+is)] junction whenyd;=3
] and «=0.5. For 8=0, I(¢) is expressed as a sinusoidal
b ] curve. However) (¢)=—1(—¢) is no longer satisfied due
i c to the mixing of thes-wave component. Fg8= /4, | (¢) is
o 1 enhanced due to the formation of ZES's as discussed above
T/T, [see curvea in Fig. 5b)]. In this case, the most dominant
component in the current ik,. By the mixing of s-wave
FIG. 4. Maximum Josephson currdg{(T) plotted as a function componentgcurvesb and c), the sign change of the pair
of temperature fork=0.5: (a) N\odi=0, (b) Aod;=0.5, and(c)  potential felt by quasiparticles does not occur any more in
Aodi=1. Curvea, =0; b, g==/8; andc, = n/4. the reflection process at the interface. Consequently, ZES's

-
T
—_
(2]
~
|
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d-wave superconductor

y
s-wave superconductor
X

4 l,i\\b
o/ I \ - ]
2r R -
FIG. 6. Normalized free energy of the junctibfy) plotted as a N ey \"‘.‘",\ PV SN
function of ¢ for Aod;=3 and«x=0.5 atT/T,=0.05. Curvea, 8 AN \‘x/ v \\\‘:,’ N
=0; Agg=0; b, B=m/4, Ay=0; ¢, B=0, Agq=0.3A4(0); and ALY
d, B=0, A= —0.304(0). 0/ v o y \/ \/ !

o/
disappear andl, is drastically reduced. On the other hand, /%

due to the_existence of treewave componen'g]l cpntributes FIG. 7. Maximum Josephson current(T) in the corner
most dom'nantly_ td(¢) [see CU”@‘*’ andc 'n_ F'g', 5b)]. SQUID plotted as a function of the magnetic field fogd;= 3, «

We now consider the phase differenggwhich givesthe _55 4 T/T,=0.05. Curvea, A=0, B=0; b, A,=0, B
free energy minimum. The free energy of the junction— /4. ¢, A_=0.3A,(0), B=0; andd, A.,=—0.3A4(0), B=0.
F(¢) satisfies the relation

Following the ordinary textbook: the magnetic field depen-

2e 9 o
(@)= = e F(o). (72 dence ofl (¢) is given as
(0]
The dimensionless free enerfifp) is defined as I((P):nzl [ng)sir(n¢)+J§1X)COin¢)
2e?Ry
27d 27D
fe)= [F(e)=F(¢o)]. (72 +I(y)sir{n<¢— ) H(y)co{n(qj_ )H

7\ AL0)JAZ(0) + AZ, " P " D

In Fig. 6, typical line shapes df(¢) are plotted. Wherg (79
=0, ¢ is located at zergcurvea). This junction is a typical whered and ®, denote the flux which penetrates into the
example of the so-called 0 junction. As the contribution ofSQUID and the half-unit magnetic flux quanta, respectively.
Im (Mm>1) to I(¢) becomes dominant,(¢) has a double |n Fig. 7, the maximum total Josephson currép(T) is
minimum like curveb. When 8= w/4, the contribution of plotted as a function ofb. When g is zero,l (T) becomes
the 1, component vanishes ang}, is located atpy=* /2. minimum at®=n®,, wheren is an intege(see curvea in
When thes-wave component mixe$(¢) is not a symmetric  Fig. 7). This anomalous magnetic field dependence is consis-
function around the origirisee curves andd). tent with that predicted using a phenomenological thEory
Finally, we comment on the magnetic field dependence ofnd was actually observed in experimeffts® When g is
the corner SQUID. In the corner SQUID configuration, 7/4, the period of the oscillation becomes @& In this
which consists ok-axis andy-axis junctions with the same geometry,|o(T) is strongly enhanced at low temperatures
ratio, the Josephson current without magnetic field can beue to the formation of ZES's. The experimental observation
expressed as of this behavior is strongly expected to confirm our results.
In the case when the-wave component mixes$c(T) is no
(@) =1%(e) +1Y(¢), (73 longer a symmetric function of the magnetic field around the
wherel () [1¥(¢)] denotes the Josephson current from©"9!N-
the x-axis [y-axis| junction. According to Eq(66), | ()
andl (y)((P) can be decomposed into IV. JOSEPHSON EFFECT IN A d/I/d JUNCTION

This section presents the properties of dawave
1¥(p)=>, [1¥sin(ng)+I¥(ne)], superconductor/insulatawave superconductod(l/d) Jo-
n=1 sephson junction. In thd/l/d junction, for a quasiparticle
injection from the left superconductor at an angléo the
|V (0)= 1Vsinno)+IYcog no) . 74 interface normal, four different effective pair potentials par-
() n;l[ n Sine)+Jy7cosne) | (74 ticipate [Fig. 1(b)]. The four effective pair potentials are
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a=10 a=0
2 T
— (@)1
= e ]
< 4 a
o = 1 .
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O =2 *‘\m’ c
i of R—
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" ]
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C ™
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T/ Ty

FIG. 8. Josephson currehte) in ad/l/d junction plotted as a /G- 9. Maximum Josephson curredg(a,5,T) in a d/l/d
function of ¢ for k=0.5 anda=0: (@) B=0, Aod,=0, (b) B junction is plotted as a function of temperature for 0.5 and«

=0, )\Odi:]-v (c) B=ml8, }\odi:]-, and (d) B= /4, )\0di:1. =0: (@ )\Odi:O and (b) )\0di:1. Curvea, B=0; b, B=/8;
Curvea, T/Ty4=0.05; b, T/T4=0.3; andc, T/T4=0.6. andc, g=m/4.

corresponding to the cases shown in Fig. 8 are plotted in Fig.
9. WhenB=0 with Ayd;=0 (curvea in Fig. 9), an almost
linear temperature dependence is obtained. In this case, we
§an perform the summation ab, analytically. Fora=p

=0, whereA gy (0+)=A4(T,0) =Ay(T)cos(2) is satisfied,

lgl,we resultingRyl (¢) becomes

A (6:)=A4(T)cog2(6+a)] and Ag(6-)=A4(T)cog2(6
*p)]- The condition for the formation of the ZES’s for
ony—0 and the sign of-(6,iw,,¢) for various cases are
shown in Tables lI-1V. The Josephson current is calculate
by substituting the effective pair potentials to Ef1). Re-
cently, Sigrist and Rice presented a phenomenological theo
(referred to as SR theonyof | (T) in the grain boundary

junctions. It predicts that the maximum Josephson current is 7Ry (72 A4(T,0)onCcOH Sing
proportional to|cos(2v)cos(28)|. To clarify the validity of Rul(¢)= e fﬁm 21— onsir(ol2)
SR theory, we defindc(a,B,T)=Ic(T) and introduce a - NS
functionB(a,8,T) as Ag(T,0)V1— onsSire(e/2)
Xtan)‘{ T de. (77
B(a,B,T)=Jc(a,B,T)/Ic(0,0T). (76) B

In SR theory,B(a,B,T) is |cos(2x)cos(2)| for every tem-  For oy<1, RyJc(0,0,T) is expressed as
perature. We now discuss the properties of dti'd junc-

tion and examine the validity of AB and SR theories for
three types of geometry.

First, we assume that one of the crystal axes is parallel to
the interface ¢=0). Figure §a) showsl(¢p) of a d/l/d
junction with =0 without the barrier potential\,d;=0).

In this casel,, (n>1) in Eq.(66) is not negligible; that is,
the contribution from the higher-order tunneling process to
I (¢) is significant. The resulting curves kffy) deviate from
sinusoidal shapes especially at low temperatures. With the
increase of\yd;, the higher-order processes are suppressed
and () approaches the usual sinusoidal shHgig. 8b)].

In the two cases corresponding to Figga)8and 8b),
F(biw,,0), with 0<e<w (—7<¢p<0), is positive
(negative, independent ofd. However, asB deviates from
zero [Figs. 8c) and 8d)], F(#,iw,,¢), with 0<o<m
(—7<¢<0), becomes negativgositive for the quasipar-
ticle injection of 8 with 7/4<6<wl/4+ B or —wl4< <
—ml4+ B. Extreme behavior is expected wheh= /4,
wherel; (the lowest-order terjnvanishes due to thé inte-

gral andl (¢) has a form close to sing@. The temperature FIG. 10. B(0,8,T) plotted as a function of3 for (a) Aqdi=1
dependences of the maximum Josephson cutefQ,3,T) and (b) Aod;=3 with k=0.5. Curvea, T/T4=0.05; b, T/Ty4

=0.3; andc, Sigrist and Rice’s resultSR theory.

B(0,8,T)
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TABLE Il. 0=<pB=/4. Condition for the formation of the bound states and the sigh(®iw, ,¢) with =0 in thed/l/d junction.

Zero-energy states Zero-energy states Sign of F(0,iw, ,¢) Sign of F(0,iw, ,¢)
(on—0) left side (on—0) right side (0<o<m) (—7<¢<0)
w4+ B<O<m/2 No No + -
A< < wl/4+ B No Yes - +
74— B<O<ml4 No Yes + -
— w4+ B<0<ml4— B No No + -
—wl4< < —7l4A+ B No Yes - +
—7ld— B< < —7l4 No Yes + —
—ml2<6<-—7wl4—- B No No + -
WR_N /2 A_d(T, 6) o COSH <O0<-—7l4+ B and 7/4— B<O<mw/4+ B. For small oy,
RnJc(0,0T)~ —— —_— H(iw,) becomes
e J-an 2
A4(T,0) . e+ A (nrot mm)
xtanH ——_" | d¢. 78 H(iwn) = oNCOS deé.
“*( 2keT ) ° (78 V7 )i Y @R (L s )
(80)

The temperature dependenceJef(0,0,T) is similar to the

2 .
results of AB theory” Actually, as Aod; increases, | the above, we have applied the fact that ZES's are not
Jc(0,0,T) approaches to that of AB theofgurvea in Fig.  formed at the interface of the left superconductor since

9(b)]. Wheng is nonzero, the absolute value &f(0,8,T) is A(B.)=A (0. ) is satisfied. At low temperaturest(i
reduced due to the coexistence of the positive and negati\/igLéiere)n asL( )l Istied. W peraturebl(iwp)

values ofF(6,iw,,¢) as a function off (curvesb andc in

Fig. 9. Anomalous behavior is noted whe#= 7/4 where

Jc(0,8,T) is rapidly enhanced due to the formation of ZES’s . w4+ cog26)

at low temperaturesicurve ¢ in Fig. 9. In Fig. 10, H(iw,)= —4f Tcog26)] cosfondd,  (81)
B(0,8,T) is plotted for various temperatures. Following SR map
theory,B(0,8,T) =|cos(29)| is satisfied, independent of tem-
peratures. Curve expresses the magnitude |obs(28)| as a
reference. The deviation of the magnitudeB¢D,3,T) from
that of curvec is prominent aroung= /4 at low tempera-
tures[curvesa and b in Fig. 10@)]. With the increase of
\od;, the deviation is drastically reducédurvesa andb).
Although the effect of the formation of ZES’s is completely
neglected in SR theorB(0,8,T) is expressed by this theory
fairly well for large A od;, i.e., for smallo . To discuss the
role of ZES'’s, we will defind ,(¢), which denotes the Jo-

and no singular behavior with respect &g, is expected.
Consequently, the role of ZES’s is not so significant.
Second, we assume the antisymmetric geometwy (
= ). The sign ofF(8,iw,,¢) and the condition of the for-
mation of ZES'’s foroy—0 corresponding to this geometry
is shown in Table Ill. Whenry is set equal to unity, i.e.,
Nod;=0, the summation of the Matsubara frequency can be
calculated analytically. The resultiyl (¢) is expressed as

sephson current originating from the regiGnwhere ZES'’s 217?,\1 2 @
are formed for smalbry . The quantityl ,(¢) is given as Ryl (@)= o f Ad(O)co$2(0—a)]sin( 5)
—7l2
R
Rulz(0)= " kTS H(iw)sine), « tant] SdtQ)c08 207 a)lcodelD)| ) g
“n 2kgT '
. . (82
H(Iwn)=J’ F(8,iw,,p)oncosd db. (79
C

WhenT<|A4(0)] is satisfied, thed integration also can be
As seen from Table Il, the regio® becomes— w/4—pf performed analytically. RyJc(«,a,T) becomes

TABLE Ill. 0 <a<m/4. Condition for the formation of the bound states and the sigh(&fiw,,¢) with «= B in thed/l/d junction.

Zero-energy states Zero-energy states Sign of F(8,iw,,¢) Sign of F(6,iw,,,¢)
(on—0) left side (on—0) right side (0< <) (—7m<¢<0)
74+ a< < m/2 No No + -
7ld— a< <74+ «a Yes Yes + —
— w4+ a< < mld—a No No + —
— 74— a< < —Tld+ «a Yes Yes + -
—m2< < —7wlA— « No No + -
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FIG. 11. Maximum Josephson curreb¢(a,3,T) with a=g FIG. 12. B(a,a,T) plotted as a function of for (a) Aod;=1
plotted as a function of temperature for=0.5: (a) Aod;=1 and ~ and (b) Aodi=3 with x=0.5. Curvea, T/T4=0.05; b, T/T4
(b) Aod;=3. Curvea, a=0; b, a==/8; andc, a= /4. =0.3; ¢, T/T4=0.6; andd, Sigrist and Rice’s resultSR theory.
= Since the temperature is included in the denominator, the
47RNA4(0) . X
RyJe(a,a,T)= ————— [2V2 cose—cog2a)]. Josephson current is expected to increase as the temperature
3 is lowered. This anomalous behavior originates from the ex-

(83 istence of ZES's at the interfaces of both the left and right
The temperature dependencelef{a, ,T) is insensitive to ~ Superconductorfecurvesc in Figs. 11a) and 11b)]. At suf-
the change inv. For nonzero\od;, Jc(a, e, T) depends om  ficiently low temperatures, i.e. kgT< Jon|Ag(T, 0)],
significantly. Especially for a low-conductance junction RyJc(7/4,7/4,T) is given as
(on—0), Jc(e,,T) is strongly enhanced at low tempera- ~ /2
tures due to the formation of ZES's. Fo@p<m (— TRy f” =
<9<0), F(6,iw,,p) becomes positivgnegative, inde- RnJe( /4, ml4,T)~ =2 _W/2|Ad(T’0)|\/U_NC039 do.
pendent ofd. The magnitude ofl; in Eq. (66) becomes (86)
dominant for anyB. Consequently, with the increase of
\od;, the ¢ dependence of(¢) becomes sinusoidal. The

temperature dependence of the maximum Josephson currdAY€rse Ofon, RyJc(/4,7/4,T) at zero temperature is pro-
Jo(a,@,T) is plotted in Fig. 11. Since the quantity portional to the inverse ofoy. Hence we can expect a large

F(6,iw,,¢) is positive, independent &, the maximum Jo- magni.tude oRNJC(wl4,.77/4,T) for a low-conductance junc-
sephson currerRyJe(@, @, T) is a monotonically increasing 10N with a= g=m/4. Figure 12 shows the calculated results
function with the decrease of temperatures. The enhancemefit B(@,@,T) as a function ofa for various temperatures.
of Jc(a,a,T) with the decrease of temperature is most sig-Curvesa—c show thatB(«, «,T) takes the maximum value
nificant for = 8= /4. To understand these features, it is & @=7/4 in the low-temperature region. As the temperature
instrumental to perform the summation &f, analytically, 1S lowered and as\.d; is increased, the magnitude of
which can be only possible for the special casesg=0 B(W/4't77g4’-r) IIS _9”2?”C$hd- ]:rh's a”OTm?“SGF??EegEde”CG
— = —a_ ~ _ cannot be explained in the framework o e@yrve
inAi(ff. G)B: ff (TI)Zosrin?ZB)B isW/géti;Nﬁzzre 'ﬁ]léR)(rz;L)Jltin d). Since ZES's are formed at the interfaces of both left and
Ii Id ,b —d ’ 9 right superconductors, the,, dependence dfl (i w,,) is dras-
nl (¢) becomes tically changed as compared to Eg1). For sufficiently low

temperature with smalloy, i.e., Von|Ay(T,0)|<w,,

Since the order of the magnitude R, is proportional to the

7Ry (™2 Ag(T,0)onco Sing H(iw,) becomes
Rulte)=—~ | ., 2oy cog ¢/2) — _
i TN EERY . wamw oncosg|AL(0)AL(6)7
A lw,)= — — ,
an Ay(T, 8)cod ¢/2) oy 4 (@ " e [ |AL(0:)]+]AL(6-)]12 n
2kgT (87)
and, for \/a_NlA_d(T,9)|<2kBT, with A (6.)=Ag(6-), and the resultin®yl c(T) is propor-

tional to the inverse of . This anomalous,, dependence of
— H(i w,) is the origin of the deviation from that of SR theory.

TRy j’*’z Az Third irror-type junction € — g). Tabl
RyJe(7/4,714,T)= A2(T,0)ond6. (85 ird, we assume a mirror-type junction€ — B). Table
nIc(m/4,m/4.T) dekgT 12 d(T. 0o ®9 IV shows thatF(6,iw,,¢) becomes negativositive for

— T



56 THEORY OF JOSEPHSON EFFECTS IN ANISOTR@PI. . 905

TABLE IV. 0 <a=< /4. Condition for the formation of the bound states and the sigh(éfi v, ,¢) with = — B in thed/I/d junction.

Zero-energy states Zero-energy states Sign of F(0,iw, ,¢) Sign of F(8,iw,,¢)
(on—0) left side (on—0) right side (0<op<m) (—7m<¢<0)
w4+ a< 0<ml2 No No + -
mlh— a<O<m7lh+ Yes Yes - +
— 74+ a< 0<7ld— «a No No + -
— 74— a<0<-—7l4+ «a Yes Yes - +
—m2<0<—7l4— No No + -

T ald—a<ma<tmldta with 0<o<m (—7<e<O0). om are defined. Since the sign &l(¢) has ae depen-
These conditions happen to coincide with those of the fordence,Ryl(¢) is decomposed into a negative component
mation of ZES'’s both at the left and right interfaces. TypicalG,(¢) and a positive componer@,(¢). When 0<¢<r,
I(¢) and RyJdc(a@,— @, T) are shown in Figs. 13 and 14, they are expressed as

respectively. When\yd;=0, the magnitude ofi(¢) in-

creases with the decrease in temperatifég. 13a) and RkaBT — 4+ a .
curvesa in Fig. 14]. But when\yd; becomes nonzero, the Gnle)= {2 F(8,iw,,0)oncosh dO
magnitudes of (¢) andJ¢(a,— «,T) show nonmonotonous

behavior with temperaturd-ig. 13b) and curvesd, andc in
Fig. 14a)]. As «a increasesl (¢) changes sign with decrease
in T for fixed ¢ [Figs. 13c) and 13d)]. The magnitude of
Jc(@,—a,T) has an anomalous temperature dependence amd G(¢)=Ry!(¢) —Gn(¢). On the other hand, when
shown in curvesd andc in Figs. 14b) and 14c). In this — 7<¢<0, they are given by

case, H(iw,) for a small magnitude ofw, and

wy J—7lA—a

wlA+
—I—J F(0,iw,,p)oncOoH dﬁ] sing, (89
wlhd—

Von|Ay(T, 0)|<w, is expressed as Ry7kgT —wlata
onlAg(T, 0)| <, p Gple)=——— NTTB [z F(0,iw,,0)onco db
— — —mld—a
H(iwn) = J’”/‘H“ oNCOSI|AL(60)[%|AL(6-)]?
n — — — w4+«
7= a wﬁ[|AL(0+)|+|AL(0_)|]2 +f F(6,iwg,,p)oncosd d(‘)]singo, (90
74—«
-2
%, (88
" and Gy(¢) =Ryl (¢) ~ Gp(¢). The quantityey (—m<ey

with AL(G )= AR(G ). This anomalousw, dependence is <) is defined as the phase difference giving the maximum
similar to the case oft= 3 and induces the nonmonotonous amplitude ofl(¢). In Fig. 15,|G,(¢um)| and Gy(¢y) are
temperature dependences &f(«,—«,T). To understand

this effect clearly, three parameteG,(¢), Gn(¢), and o=

eRNJc(Oé, —Cz,T)/Ad(())

eRyI()/Aa(0)

o— :
p/m - T/7, !

FIG. 13. Josephson currehte) in d/1/d junction plotted as a FIG. 14. Maximum Josephson curreii( «,8,T) in d/1/d junc-
function of ¢ for k=0.5 anda=—8: (@) @=0.057, Aod;=0, (b) tion with «=— 8 plotted as a function of temperature with
a=0.057, \od;=2, (¢) @=0.1m, A\od;=2, and (d) «=0.127, =0.5: (@ a=0.05r, (b) «=0.17, and(c) «=0.127. Curvea,
Nod;=2. Curvea, T/T4=0.05; b, T/T4=0.3; andc, T/T4=0.6. Nodi=0; b, Aod;=1; andc, \qd;=3.
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a=-—0
S 1
g £
&~ or - =
3 =
I 4L a - 4 <
S - 1 =
c /T 1 z
< /T <
WV by
P, b X
0 det LT T

1
T/Ty FIG. 17. Josephson curreity) is plotted neail; , where jump
of the ¢\ occurs: Curvea, T=0.125Ty; b, T=0.175Ty. The

FIG. 15. Positive and negative componentsdgfa, — «,T) ob- same parameters are used as in Fig. 16.

tained from curveb of Fig. 14@) as a function of temperature: 4ance and the enhancement RéJc(a,—a,T) below T
Curvea, Gy(¢w); b, [Gn(ew)l: ande, Ryde(e,—a.T). Inthe  grinate from the jump ofpy, from positive to negative and
insetoy, is plotted as a function of temperature. from the enhancement &,(¢y) with negativepy, . With a
further increase of, ¢\, stays negative, independent of tem-
plotted using the same parameters as cbrireFig. 14a). In  perature. In this cas®yJc(a,— «,T) becomes a monotoni-
the inset of Fig. 15, the temperature dependence\pfis  cally increasing function with the decrease of temperatures
also plotted. At the low-temperature regidB,(¢w) is al-  since G,(ew)>|Gn(en)| is satisfied for all temperatures
most constant whiléG,,(¢w)| is enhanced reflecting the for- (Fig. 18. The comparison of our results with that of SR
mation of ZES'’s. This unbalanced dependence is the origitheory for a fixed temperature is plotted in Fig. 19. There is
of the suppression d®®yJc(a,— «,T) at low temperature. In  a double minimum iB(«, — ,T). The width of the peak at
some cases, with the increasedinthe jump ofey, occurs as = 7/4 increases as the temperature is decreased. The height
shown in Fig. 16, which is plotted using the same parametersf the peak enhances with the increase of the magnitude of
as curveb in Fig. 14b) (see the inset of Fig. 36Near the  \,d;. These features are remarkably different from those
temperature of the jumpi~T;, the shape of(¢) changes expected from SR theorfcurved).
as shown in Fig. 17. The nonmonotonous temperature depen- Finally, the applicability of AB and SR theories is sum-
marized. Both theories assume junctions with low conduc-

o = —ﬁ a = _/8
] 2
————r P
) < L 5
d $ | S E 1
3 o ] 4 N > N

P .‘ 1 S '

- 3 r b
3 e E— — 1 7 NN\ ..
= 0 1 l -1
5 T/Ty 5 c 0 /1y
= \6 1 L
<3 ~
v =

a 5
Db

s T~

/ <2
/ c B N N N B e b S,
y T~slT i e S

\\\\ ST TS
0 1 0 1
T/Ty T[Ty
FIG. 16. Positive and negative componentsdgfa, — «,T) ob- FIG. 18. Positive and negative componentsgfa, — «,T) ob-

tained from curveb of Fig. 14b) as a function of temperature: tained for «=—8=0.157, Aod;=1, and «=0.5: Curve a,
Curvea, Gy(em); b, [Gn(em)]; ande, Rydc(a,—a,T). Inthe  Gp(ewm); b, |Gn(ewm)|; ande, RyJc(a,—a,T). In the insetey is
insetpy, is plotted as a function of temperature. plotted as a function of temperature.
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Q= _IB d,2.,2-wave superconductor

A4(D) sin(6) cos(29) /PP . 4401 sin(8) cos(24) e/ PP

| J . : hole-like )
(a) °Ie°lj'°:r;],‘k]e quasiparticle | €-axis
4+ 4 ( a) quasiparticle
4 Insufator

electron-tike electron-like
quasiparticle uasiparticle

hole-like

- quasiparticle y
4T e!PLo 441 &g

s-wave superconductor

Bla, —a,T)

d,2_y2-wave superconductor

B4(T) sin(6) cos(2¢) fpow . AAT) sin(6) cos(2¢) efpur

electron-like hole-like .
quasiparticle quasiparticle | €IS
(b) Insulator
electron-like electron-like
quasipartic! quasiparticle
hole-like

N

FIG. 19.B(a,— «,T) plotted as a function of with k=0.5 for Q”“‘P““C'
(@ Nodi=1 and (b) N\od;=3. Curvea, T/T4=0.05; b, T/T4 4 T
=0.3; ¢, T/Ty=0.6; andd, Sigrist and Rice’s resuliSR theory. d,2.y2-wave superconductor
tance and ignore the existence of the ZES’s. We can apply k,
AB theory only when there is no ZES for evesyat the (c) Effective Fermi surface

interface; i.e.,.a=B=0 is satisfied. In SR theory, only the
current component which flows perpendicular to the inter-
face is considered. In the case when one of the interfaces of
the superconductor has no ZES for evéyi.e., a=0 (B

=0) is satisfied, theg3(a) dependence of the maximum Jo- k,
sephson current is expressed by SR theory fairly well. How-
ever, when both superconductors have ZES's, e.g.,afor

=p or a=—p, alarge deviation exists from SR theory. FIG. 20. Schematic illustration of the reflection and the trans-
mission of quasiparticles at the interface ot-axis-oriented Jo-
V. JOSEPHSON EFFECT ALONG THE ¢ AXIS sephson junction: (@) s-wave superconductor/insulator/nearly-

two-dimensionadl,_ ,>-wave superconductos(l/d") junction. (b)

In the previous two sections, we discussed the Josephsatearly-two-dimensional d,._,.-wave superconductor/insulator/
effect in two-dimensional models. This section presents th@early-two-dimensionald,2_.-wave superconductor d(/1/d")
Josephson current along tbeaxis which takes into account junction. (c) The effective Fermi surface.
the three-dimensional effect. For the simplest model calcula-
tion, we consider as-wave superconductor/insulator/nearly- insulator. The Fermi wave numbers fory,z directions
two-dimensionall,2_ y>-wave superconductos(l/d’) junc- (kg ,Key,Kg,) and the effective mass are assumed to be
tion [Fig. 20@] and a nearly-two-dimensionatl,2_y2-  equal in both the lower- and upper-side superconductors. We

wave superconductor/insulator/nearly-two-dimensionalssume that the pair potential and the Hartree potential are
dy2_y2-wave superconductod(/1/d") junction[Fig. 2Q(b)]. o

For the actual highr, superconduptors like Y-Ba-Cu-O, Ao(ve,ve)eXNi@p), 2<0,

since the tetragonal symmetry is weakly broken, the Ak,ry=1{ 0, 0<z<d;,

s-wave component is mixed with the,_,2-wave compo- ' - .

nents. To see the effect of this mixing, the properties of an Au( Vo, vp)EXMi @), 2>d;,

s-wave superconductor/insulatstfd,2_2-wave supercon-

ductor[s/l/(s+d")] junction are also discussed. We assume 0, z<0,

a spherical Fermi surface in tilsewave superconductor and a U(z)=1 Uy, 0<z<d;, (91
nearly two-dimensional Fermi surface in tdewave super- 0, z>d,

conductor, which is defined by restricting theomponent of

the Fermi surface to the region given bys<sin Y(k,/ks)  wherey, is the injection angle of the quasiparticle apgis
< 4. The effective Fermi surface which is available for tun- the azimuthal angle in they (ab) plane,A(k,r) is the Fou-
neling in thes/I/d’ junction is determined by the Fermi rier transform of A(sr), k is the wave number, with
surface in thed-wave superconductdsee Fig. 2(c)]. The  exp(y,)sin y,=k./|k|+ik,/|k| and cosy,=k,/|k| using a
interface is assumed to be perpendicular toztaxis and is wave vectork. Applying these configurations to Eql4),
located atz=0 andz=d;, whered; is the thickness of the I(¢) is obtained as
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FIG. 21. Maximum Josephson currerg(T) is plotted as a
function of temperature withhe=0.5 for curve a, Apdi=1, &
=0.1; b, A\yd;=0.5, §=0.1; andc, A\yd;=1, §=0.2 (a) s/l/d’
junction (Agq=0) and (b) s/l/(s+d’) junction with Agy
=0.0344(0).

e)=—Zm Im| 57— 7

7' —z

ehkgT (a a)

x >

a)n,kx,ky

{G(z,2 ke ky iwn)} 0. (92

Here the Green’s function is expressed as a functiok,of we will restrict our discussion to the case where the time-
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T_hey a-reAIO( Yo,+ 17¢>)! A|0( Yo.— 171/5)! Aup( Yo+ !7(;5)! and
Auya,- 1 7g). We _assumel(yg +,vg) = Ao Ve, 1Y)
andAy(vg,+ »¥e) = Aup(ve,— +74) for simplicity. By insert-
ing these pair potentials into E¢L4) and following the de-
scribed method in Sec. Il, the Josephson curtéa) is ob-
tained:

RykaT l2
Ryl (@)= NzeB [2 /Hsine cosd
2 A_ 0,
ngJ' d¢ M[al(av(ﬁalwnl@)
0 Qn,Io

_51( 01¢1iwn!@)]Jv (93)

with

Qno=sgM wp) \/Aﬁ)( 01¢)+w§1 P=Plo~ Pup- (94

The quantityRy denotes the normal resistance, &Rq is
expressed as
J— 2
R§1=f onsing cosd do, (95)
72— 8
where the quantityry is defined in Eq(47). The quantities

a,(0,¢,iw,,¢) anda,(6,¢,iw,,¢) are the coefficients of
Andreev reflection as discussed in Sec. Il. In the following,

andk,, because the translational invariance for these direcreversal symmetry is conserved. In such a situatign(n
tions is satisfied. In general, there are four kinds of effective=1) in Eq. (66) vanishes and(¢)=—1(—¢) is satisfied.

pair potentials for a quasiparticle with fixeg, and vy, .

The resultingRy! (¢) is expressed as

F(0,.i0n,¢)=

RyksT = x
Ryl (@)= NzeB (2 f/lz o\ COSISING defz F(8,¢,iw,,¢)sing do!, (96)
oy Jml2—6 0
200(60, )0 0,4) _ 204(6,0)A6,9)
(2= o) 10Qn upt ON[ @3+ Aig( 8, 9) Ay 0, d)c0sp]  [(2— o) Qi 10Qn o+ @3]
- [_ crNA_m(e,<i>)A_Up(0,¢)coap2 " o7
m=0 (Z_UN)Qn,Ian,up+0'an

with Qo= SgNE@ VA6, b) + w}.

First, the Josephson current in th#/d’ junction is dis-

cussed. The pair potential felt by the quasiparticles for fixe
6 and ¢ is shown in Fig. 208). The effective pair potentials

are given as Ap(6,0)=A4T) and Ay(6,9)

= A4(T)sir?6 cos(2p). By substituting these pair potentials

into Eq. (97), we obtainl(¢). Due to the¢ integral, the
terms proportional to c88 ¢ vanish, and thei, in Eq. (66)

also vanishes. For small transparent junctio(g) becomes

almost proportional to si2¢). In the case of thgs/l/(s

I (@) is calculated by substituting these pair potentials into

those in Eq(97). Hereafter, we assume that batly(T) and

fa(T) obey the BCS relation as in Secs. Il and IV. The

ratios of A;(0)/A4(0) andT¢/T4 are chosen to be 1/15 and

1/11. Figure 21a) shows the temperature dependence of the

maximum Josephson current of ted/d junction for vari-
ous A gd; and 8. WhenT~Tg, Rylc(T) is proportional to
(Ts—T). This feature is quite different from that of AB
theory. With the increase ofyd; and with the decrease of
Ic(T) is drastically suppressed. In the case of fsé/(s
+d’)] junction, nearT~Tg, Rylc(T) is proportional to

+d’)] junction, the pair potential in the upper supercon-,/T_—T as shown in Fig. 2b) sinceRyl (¢) is proportional

ductor, Ay,(6,¢), is given asAy(T)sir’d cos(2p)+Agg.

to sin(¢). The maximum Josephson currég{T) is insensi-
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§ 1?060‘%;6609‘39%% .
a ey, 20
> T,
& T, N,
O b‘*\«i &
g Y
% *‘\“
0 ' 1
T/Ty
B 8 FIG. 23. Maximum Josephson currdrp{(T) for d'/I/d’ junc-
N 7 tion is plotted as a function of temperatures fer=0.5: Curve
0o 01 0.0 a, \od;=1, 6=0.1; b, \od;=1, 6=0.2; andc, two-dimensional
ofm limit, i.e., 5=0.
FIG. 22. Maximum Josephson curreh¢(T) is plotted as a Next, the properties of thd’/1/d" junctiorf*®° are dis-

function of § at T/TSZO.QZS With x=0.5 for curvea, \od;=1; cussed. In this case, bOﬁhp(H,¢) andA,(9,$) are given
b, Aodi=0.5. (8) s/I/d’ junction (Asq=0) and(b) s/I/(s+d') A (T)cos(2p)sir? 6. Taking the summation of the Mat-
junction with 4 sq=0.034(0). subara frequency in Eq97) analytically, Ryl (¢) is ex-

tive to the change ok ,d; and to$ as compared to that of pressed as
Fig. 21(a). To check the effect of dimensionality, thiede- Re iz
pendence oRyl(¢) is discussed. Figure 22 shows the cal- Ryl (¢)= TN [T do
culated results of thé dependence df-(T). In the case of € Jai-s
the s/I/d’ junction, Ryl c(T) decreases monotonically with .
the decrease of and finally vanishes af=0 [Fig. 22a)]. Xf G(T,8,¢,¢)oycosHsing sing deé,
This feature is independent af,d; and «, while in the case 0
of the s/l/(s+d’) junction Ryl (T) stays nonzero af=0 (102
[Fig. 22b)]. In fact, we can analytically calculatyl(T)
at the two-dimensional limit, i.e§— 0, where with

Rl (¢)=Rylc(T)sing 99 G(T.0.4.0)
is satisfied. Using the fact that the, cosf is expressed as _ Ay(T)sir26 cog2)

lim o COA| g o 5~ 6°, (99) 21— aysirt(¢l2)

5—0

Aq(T)sirt 0 cog2¢) V1 — o\Sirt(¢/2)
Ryl c(T) of thes/l/d’ junction is transformed into Xtan)'{ d ZIfT N .
B

kBT 2m (103)
Rulc(M=——2 f de
2e "n Jo The maximum Josephson curre®yl(T) is always a
— — monotonically increasing function with the decrease of tem-
% Ao(7/2,¢) Ay 12, ) peratures as shown in Fig. 23. This feature shows a remark-
2, A2 2 A2 ' able difference from that of thd/l/d junction discussed in
\/w“+A'°(Tr/2’¢) \/w”+A”P(Tr/2’¢) the preceding section. In the two-dimensional limit
(100 (6—0), Ryl(¢) is simplified as

Due to theg integral, Ryl (T) completely vanishes, inde- o
pendent ofA ,d; and k. On the other hand, in the case of the RNI((P):{ f M
d'/1/(s+d’) junction, Ryl o(T) is given as 4e
Ay(T)cog24¢) :
kgT 2w IR
RNIC(T)=% En: fo deb Xtanl‘{ kT doising. (104

AyT)Agy In this limit, Ryl (¢) is independent ol and . Further-
X ) more, at zero temperatur®ylc(T)e/A4(0) becomes ex-
Voir+ AY(T) Joi+[Ay(T)cos2p+ Aggl? actly 1. The corresponding quantity in teH/s junction ob-
(101) tained by AB theory isr/2. The difference directly reflects
the distribution of the pair potential amplitude in momentum

It takes a nonzero value even at the two-dimensional limit. space.
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VI. SUMMARY AND DISCUSSION For these reasons, it is very difficult to observe the Josephson
. ._current in experiments using BSCCO/Pb. Recently, Kleiner
An analytical formula for the dc Josephson current in : .
S ; ) et al. tried to observe the sin@ dependence of the Joseph-
spin-singlet anisotropic superconductors has been presented., . k

. === "s0n current from microwave-induced stépddowever, the
We have taken into account the fact that quasiparticles

“feel” the different sians of the pair potentials depending on existence of this term was not confirmed in their experi-
. . 1gns O _!?6 p dep 99N nents. This may be due to the two-dimensional Fermi sur-
the directions of their motion&*¢Our formula is general in

. face of YBCO and the low transparency of the junction.
the sense that several existing formulas for the Josephson I ) )
The most fascinating experiment is to observe the nonmo-

current can be derived as limiting cageg%66:69.78.79.85 hjg q q ¢ the 3 h

formula is valid, even when the time-reversal symmetry iSnot_ono_us temperature dependence of the Josephson current

broken: i.e the7 air potential of the superconductor becomevsvhICh is predicted in this paper especially for mirror-type
L pair po up . ~grain junctions. This feature is expected only when ZES'’s

a complex number. Since the multiple Andreev reflection

. . - are formed at the interface of both left and right supercon-
and the normal reflection at the interface are completely in- .

) ) . ductors and the sign change of the Josephson current occurs
cluded, the formula can be applicable for arbitrary barrier : 2
height case as a function of injection angle. As far as we know, such

Aoplving our formula. the Josephson current is calculatec{esu“s have not been reported yet, and we believe it will be
pp1yINg ' b observed in the future.

for various junction geometries. The calculated results show ; . .
X . Throughout this paper, the spatial dependence of the pair
several anomalous behaviors which are not expected for Jo-

sephson junctions of conventio ave superconductors. potentials is assumed to be constant. Even if the depletion of

Especially. three important features are oredicted for Jose ﬁhe pair potentials around the interface is taken into account,
pecially, thr p P PBhe ZES's does not vanish at BP*56579%nd the essential
son junctions includingl-wave superconductors.

(1) For a fixed phase difference between two su ercon[eSUItS will not be changed. After our wofk?™ Barash,
P P Burkhardt, and Rainer calculated the Josephson current in
ductors, the component of the Josephson current becom

either positive or negative depending on the injection an Ie(ﬁ%e grain boundaryl/|/d junction based on a quasiclassical
positive or heg P 9 I 9 %nethod which is different from our formulatioh®? Their
of the quasiparticle.

(2) In some situations, the phase differengg, which theory includes the effect of roughness and the self-

ives the free eneray minima. is located at neither zero noconsistency of the spatial dependence of the pair potential.
?T 9y ' Eince the analytical formula of the Josephson current corre-

sponding to Eqgs(58) and (64) is not explicitly presented in
mal, zero-energy state€ZES’s), i.e., midgap states, are their papers,-**a direct comparison between the two theo-

' ’ S ' ries cannot be made at present. However, the qualitative fea-
formed near the interface depending on the angle of the CYSires of the Josephson current, i.e., a NONMoNGtonous tem-
tal axis and the injection angle of the quasiparticle. The ex; erature dependence of the Josép;hgon current and anomalous
istence of ZES'’s enhances the Josephson current at low te hase dependence, are not changed at all when the effect of
peratures. the roughness is small. The relation between their results and

The.se features will be confirmed if they are actually Mea5urs will be clarified in the near future. In this paper, only
sured in experiments.

. . the Josephson current with zero voltage is discussed. Very
Many experimental trials have already been performed OrPecently Barash and SvidzinsKyinvestigated the singular
Josephson junctions made of high-superconductors. Sun havi ' fth . icl s h h :
et al®® and Katzet al®” observed the Josephson current in behavior of the quasiparticle curréhand the Josephson cur

; . ) . rent for nonzero voltage in d@/1/d junction in the limit of a
_c-aX|s-or|_ented PLYBCO Junctions. The (_)bser\l%,qi C(_T) low-transparency coefficient. To clarify the Josephson cur-
is proportional toyT;—T nearTs, whereTs is the ”28”5'_“0” rent and the quasiparticle current for arbitrary transparency is
temperature of Pb. On the other hand, Durgbyl°° tried also a challenging future problem.
similar experiments on Bi-Sr-Ca-Cu-(BSCCOQ/Pb, and
they did not observe the Josephson current. We believe that
these results do not contradict each otffein the case of
YBCO, the presence of orthorhombic distortion induces the
mixing of s-wave components in thé-wave pair potentiaf® We would like to express our sincerest gratitude to K.
If we assumeA(0)=1.2 meV, A4(0)=18 meV, andAgy  Kajimura, M. Koyanagi, and A. Bacala for a critical reading
=0.09 meV, the obtaineRyl(T) is about 0.2—0.3 mV at of our paper. We would also thank Yu. S. Barash, H.
zero temperature and proportional\{@,— T nearT. These Burkhardt, A. van Otterlo, K. Nagai, K. Kuboki, H. Kawa-
features are qualitatively consistent with experimental resultsnura, S. Yip, J. A. Sauls, K. Ueda, and S. Maekawa for
of YBCO/Pb. While in the case of BSCCO/Pb, since thevaluable discussions and encouragement of our works. One
crystal structure of BSCCO is tetragonal, the mixing of theof the authorgY.T.) is supported by a Grant-in-Aid for Sci-
s-wave components is not expected. The leading term oéntific Research in Priority Areas, “Anomalous metallic
I(¢) should be the sin@ component whose amplitude is state near the Mott transition.” The computational aspect of
far less than that of the sig] component of (¢) in ordinary  this work has been done using the facilities of the Supercom-
junctions. Furthermore, since BSCCO is more like a two-puter Center, Institute for Solid State Physics, University of
dimensional material as compared to YBCO, the Josephsohokyo, and the Computer Center, Institute for Molecular
current was enormously reduced as was shown in Fig22 Science, Okazaki National Research Institutes.

(3) When the crystal axis is tilted from the interface nor-
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