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Theory of Josephson effects in anisotropic superconductors
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Satoshi Kashiwaya
Electrotechnical Laboratory, Tsukuba, Ibaraki 305, Japan

~Received 2 January 1997!

An analytical formula for the dc Josephson current in anisotropic singlet superconductor/insulator/
anisotropic singlet superconductor junctions is presented. The formula is applicable for junctions with arbitrary
insulating-potential height and thickness and with any symmetries includingd-wave superconductors. In con-
trast to the formulas for conventionals-wave superconductors, the formula includes two additional effects. One
is the intrinsic phase of the pair potential originating from the pairing symmetry in anisotropic superconduct-
ors. The other is the formation of localized states around the insulator. Using this formula, the Josephson
current is calculated in s-wave superconductor/insulator/dx22y2-wave superconductor (s/I /d) and
dx22y2-wave superconductor/insulator/dx22y2-wave superconductor (d/I /d) junction configurations. In the case
of the (d/I /d) junction, the anomalous temperature dependence of the maximum Josephson current is calcu-
lated. This behavior is completely different from that expected fors-wave superconductors. The validity of a
phenomenological theory by Sigrist and Rice@J. Phys. Soc. Jpn.61, 4283 ~1992!# is also discussed.
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I. INTRODUCTION

In order to reveal the origin of superconductivity in hig
Tc superconductors, the symmetries of the pair potent
have been investigated under various situations for sev
years now. A growing amount of evidence has accumula
recently, based on various theories and experimental dat1–7

which point to thedx22y2-wave symmetry of the pair poten
tials. In particular, the observation of anomalous magn
field dependences inp junctions8–11 clearly verified that the
pair potential in high-Tc superconductors encounters a pha
change betweena- and b-axis directions.11–13 Moreover,
several other measurements, using superconduc
quantum-interference devices~SQUID’s!, Josephson junc
tions, or tricrystal rings14–20 showed results which are con
sistent withdx22y2-wave symmetry of the pair potentials
These experimental results are considered to be the m
rigid evidence ford-wave symmetry because they utilize th
phase sensitive nature of the Josephson junctions. On
other hand, the properties of the Josephson junctions
d-wave superconductors have not been sufficiently revea
The above experimental results are analyzed in terms
phenomenological theory which is a simple extension of
theory for conventionals-wave superconductors. To full
understand the experimental data, a new theory for the
sephson junctions ind-wave superconductors constructed
a microscopic basis is needed.

A trial along this direction was done by one of us~Y.T.!.
The dc Josephson current between ans-wave super-
conductor/insulator/dx22y2-wave superconductor (s/I /d)
junction witha(x), b(y), andc(z) axis orientation is calcu-
lated by taking into account Andreev reflection21 and the
normal reflection at the interface.22 This theory explains the
anomalous magnetic field dependence of the maximum
sephson currentI c(T) of the corner junction and corne
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SQUID ~Refs. 12 and 13! naturally. In addition to this
theory, several theories of Josephson junctions contain
d-wave superconductors have been presented which take
account the anisotropy of the pair potential.23–30Although all
of them have succeeded in revealing some aspects of
Josephson effect, one more essential effect, the existenc
zero-energy states~ZES’s! around the insulator, has not bee
introduced yet.

The formation of ZES’s at the surface ofdxy-wave super-
conductors was pointed out by Hu.31 On the other hand, the
existence of zero-bias conductance peaks~ZBCP’s! at the
surface of high-Tc superconductors has been confirmed
several tunneling spectroscopy measurements.32–40 It has
been revealed based on a tunneling theory41–43 that the ex-
perimental ZBCP’s are closely related to the ZES’s at
surface ofd-wave superconductors. These ZES’s are indu
for the reason that the pair potential in high-Tc superconduct-
ors incurs a change in sign in some region of the Fe
surface.44–46 The theory which explains the various expe
mental line shapes of tunneling conductance47–51 is com-
pletely distinct from that for ans-wave superconductor in th
sense that the tunneling spectroscopy is essentially sens
to the phase of the pair potentials.42,43The fundamental con-
cept for the formation of ZES’s is simple.52 At the surface of
anisotropic superconductors, a conducting quasiparticle is
flected and changes its direction. At the same time, the
fective pair potential felt by the quasiparticle changes. T
ZES’s are formed53–62 when the effective pair potential in
curs a change in sign through the reflection. In Ref. 52,
physical origin of the ZES’s in several nonuniform superco
ductors are discussed in a unified way based on the quan
condition of the bound states of the quasiparticles. Sim
effects can also be expected in Josephson junctions inclu
d-wave superconductors41 as the boundary effect around th
insulator. In such situations, under the influence of the e
892 © 1997 The American Physical Society
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56 893THEORY OF JOSEPHSON EFFECTS IN ANISOTROPIC . . .
tence of ZES’s, the properties of the Josephson curren
s/I /d and d/I /d junctions are expected to becom
anomalous63–65 as can be inferred from the properties
s/I /s junctions.66–72

In this paper, we present an analytical formula for the
Josephson current which fully takes into account the bo
states around the insulator as well as the anisotropy of
pair potential. Although the self-consistency of the pair p
tential is neglected, the formula can be applicable to arbitr
barrier height and for spin-singlet superconductors with a
symmetry including d-wave and (s1 id)-wave ~time-
reversed symmetry-breaking case! superconductors.73–77The
obtained formula has a general form, and several exis
theories can be derived from the formula as limiti
cases.66,69,78,79Using the formula, the Josephson current
d/I /d ands/I /d junctions is analyzed in detail. The organ
zation of this paper is as follows. In Sec. II, a model for t
Josephson current is given and the formula to calculate
explicitly derived. The physical meaning of the formula
discussed in detail. In Sec. III, we clarify basic properties
s/I /d junctions. The Josephson current in the corner SQU
configurations is also discussed. In Sec. IV, we address
basic properties ofd/I /d junctions. We calculate the grai
angle dependence of the Josephson current. The validit
the theory by Sigrist and Rice11 ~referred to as SR theory! is
discussed. In Sec. V the formula is extended to a thr
dimensional model. The Josephson current along thec axis
is calculated. In Sec. VI, we summarize our results.

II. MODEL AND FORMULATION

The Josephson current formula used in this study is es
tially the extension of the previous formula fors-wave
superconductors78–79 that includes the anisotropy of the pa
potential. The formula is subsequently derived along with
original one. We start from the Bogoliubov–de Genn
~BdG! equations

Eun~x1!5h0un~x1!1E dx2D~s,r !vn~x2!,

Evn~x1!52h0vn~x1!1E dx2D* ~s,r !un~x2!, ~1!

with s5(x12x2), r5(x11x2)/2, and h052\2¹2
x1
/2m

1U(x)2m, wherem, U(x), andE are the chemical poten
tial, the Hartree potential, and the energy of a quasipart
measured from the Fermi energyEF (EF5m), respectively.
The functionsun(x1) andvn(x1) are the eigenfunction of the
BdG equations. The electron field operatorsCs(x1 ,t) ~s
5↑ or ↓! satisfy the equation

i\
]

]t
C↑~x1 ,t !5h0C↑~x1 ,t !1E dx2D~s,r !C↓

†~x2 ,t !,

~2!

i\
]

]t
C↓

†~x1 ,t !52h0C↓
†~x1 ,t !1E dx2D* ~s,r !C↑~x2 ,t !.

~3!
in
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The field operators are expanded using the eigenfunction
BdG equations as

C↑~x1 ,t !5(
n

@an,↑un~x1!exp~2 iEnt/\!

2an,↓
† vn* ~x1!exp~ iEnt/\!#, ~4!

C↓
†~x1 ,t !5(

n
@an,↑vn~x1!exp~2 iEnt/\!

1an,↓
† un* ~x1!exp~ iEnt/\!#, ~5!

where the summation is taken over all the eigenstates w
positive energiesEn andan,s (an,s

† ) is the annihilation~cre-
ation! operator for a quasiparticle. According to the meth
of Blonder, Tinkham, and Klapwijk,80 we can define the
electric charge densityPe (e.0), the electric currentJe ,
and the source termS as

Pe52e@C↑
†~x,t !C↑~x,t !1C↓

†~x,t !C↓~x,t !#, ~6!

Je52
e\

m
Im@C↑

†~x,t !“C↑~x,t !1C↓
†~x,t !“C↓~x,t !#,

~7!

S52
2e

\
ImH E dx9dx8D~x,x9!@C↑

†~x9,t !C↓
†~x8,t !

1C↑
†~x8,t !C↓

†~x9,t !#J . ~8!

These three quantities satisfy the conservation law given

]Pe

]t
1“•Je5S. ~9!

For the simplest model calculation, we consider a tw
dimensional anisotropic singlet-superconductor/insula
anisotropic singlet-superconductor junction with perfec
flat interfaces in the clean limit. The system is assumed to
in the equilibrium state. In this model, the interface is p
pendicular to thex axis and is located atx50 andx5di ,
wheredi is the magnitude of the thickness of the insulati
region. The Fermi wave numberkF and the effective mass
m are assumed to be equal both in the left- and the right-s
superconductors. The pair potential and Hartree potential
assumed to be

D~k,r !5H D̄L~g!exp~ iwL!,
0,

D̄R~g!exp~ iwR!,

x,0,
0,x,di ,
x.di ,

U~x!5H 0,U0 ,
0,

x,0,
0,x,di ,
x.di ,

~10!

where D(k,r ) is the Fourier transform ofD(s,r ), with
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exp(ig)[kx /uku1 iky /uku using a wave vectork.44–46 In the
weak-coupling limit,k is fixed on the Fermi surface (uku
5kF). The quantitieswL andwR are the macroscopic phase
of the left and right superconductors, respectively. Since
 e

translational invariance for they direction is satisfied,Je and
S depend only onx. The Josephson currentI (w), wherew
5wL2wR , between the left and right superconductors
given as
omen-
into

vious
as the

tentials

r

I ~w!5Jex1kBT(
vn

2e

\ E
0

x

ImH E E D~x1 ,x8!@G12~x9,x8,ivn!1G12~x8,x9,ivn!#dx8dx9J dx1 , ~11!

G~x,x8,ivn!5E
0

b

G~x,x8,t,t8!exp@ ivn~t2t8!#dt, ~12!

G~x,x8,t,t8!52S ^Tt$C↑~x,t!C↑
†~x8,t8!%&

^Tt$C↓
†~x,t!C↑

†~x8,t8!%&
^Tt$C↑~x,t!C↓~x8,t8!%&
^Tt$C↓

†~x,t!C↓~x8,t8!%& D . ~13!

HereG(x,x8,ivn) is a two-component Matsubara Green’s function. Since the translational invariance is satisfied, the m
tum parallel to the interface,ky5kF sing, is conserved. Taking this fact into account, the Green’s function is transformed
a functionky . From the conservation of the Josephson current forEFx@uD̄L(g)u,uD̄R(g)u with EFx5\2kF

2 cos2 g/2m, I (w) is
reduced as

I ~w!5
e\kBT

2im
lim
x8→x

S ]

]x8
2

]

]xD (
vn ,ky

Tr$G~x,x8,ky ,ivn!%ux50 . ~14!

In the following, the Green’s function is actually calculated in the junction configuration by extending the pre
method.81 In this method, we assume four types of quasiparticle injection processes from both sides of the junction
elementary processes shown in Fig. 1 in Ref. 41. It is important to note that the quasiparticles ‘‘feel’’ different pair po
depending on the directions of their motions in anisotropic superconductors. For a given energyE.„max@uD̄R(g1)u,
uD̄R(g2)u,uD̄L(g1)u,uD̄L(g2)u] …, with g15g andg25p2g, the wave functionsCl(x) ( l51,...,4) corresponding to the fou
processes are expressed as

Cl~x!5exp~ ikFy sing!C l~x,g! ~ l51,...,4!, ~15!

C1~x,g!5H ca,L~x,g!1a1cā ,L~x,g!1b1cb,L~x,g!

c1,I~x,g!,
g1ca,R~x,g!1h1cb̄ ,R~x,g!,

~x,0!,
~0,x,di !,

~x.di !,
~16!

C2~x,g!5H cb̄ ,L~x,g!1a2cb,L~x,g!1b2cā ,L~x,g!,
c2,I~x,g!,
g2cb̄ ,R~x,g!1h2ca,R~x,g!,

~x,0!,
~0,x,di !,

~x.di !,
~17!

C3~x,g!5H g3cb,L~x,g!1h3cā ,L~x,g!,
c3,I~x,g!,
cb,R~x,g!1a3cb̄ ,R~x,g!1b3ca,R~x,g!,

~x,0!,
~0,x,di !,

~x.di !,
~18!

C4~x,g!5H g4cā ,L~x,g!1h4cb,L~x,g!,
c4,I~x,g!,
cā ,R~x,g!1a4ca,R~x,g!1b4cb̄ ,R~x,g!,

~x,0!,
~0,x,di !,

~x.di !,
~19!

where j expresses the indicesL andR, and wave functionsca, j (x,g), cā , j (x,g), cb, j (x,g), cb̄ , j (x,g), andc l ,I(x,g) are
given as
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ca, j~x,g!5S ujexp~ if j /2!

v jexp~2 if j /2! D
3expF i S kF cosg1

mV j ,1

\2kF cosg D xG , ~20!

cā , j~x,g!5S v jexp~ if j /2!

ujexp~2 if j /2! D
3expF i S kF cosg2

mV j ,1

\2kF cosg D xG , ~21!

cb, j~x,g!5S ũ jexp~ i f̃ j /2!

ṽ jexp~2 i f̃ j /2!
D

3expF2 i S kF cosg1
mV j ,2

\2kF cosg D xG ,
~22!

cb̄ , j~x,g!5S ṽ jexp~ i f̃ j /2!

ũ jexp~2 i f̃ j /2!
D

3expF2 i S kF cosg2
mV j ,2

\2kF cosg D xG ,
~23!

and

c l ,I~x,g!5S clexp~2lx!1dlexp~lx!

elexp~2lx!1 f lexp~lx! D ~ l51,...,4!,

~24!

with

uj5A1

2 S 11
V j ,1

E D , v j5A1

2 S 12
V j ,1

E D ,
ũ j5A1

2 S 11
V j ,2

E D , ṽ j5A1

2 S 12
V j ,2

E D , ~25!

V j ,15AE22uD̄j~g1!u2, V j ,25AE22uD̄j~g2!u2,

l5A2mU0

\2 2kF
2 cos2 g, ~26!

and
exp~ if j !5
D̄j~g1!

uD̄j~g1!u
exp~ iw j !,

exp~ i f̃ j !5
D̄j~g2!

uD̄j~g2!u
exp~ iw j !. ~27!

Here we have assumed the relationU0 , EFx@uV j ,6u. The
wave functions satisfy the boundary conditions

Cl~x!5S ul~x!

vl~x! D , Cl~x!ux502
5Cl~x!ux501

,

dCl~x!

dx U
x502

5
dCl~x!

dx U
x501

, ~28!

Cl~x!ux5di ,2
5Cl~x!ux5di ,1

,

dCl~x!

dx U
x5di ,2

5
dCl~x!

dx U
x5di ,1

. ~29!

From the conjugate processes of the above four wave fu
tions, we obtain another set of wave functionsĈl(x) ( l
51,...,4) which satisfy

E dx1Ĉl
t~x1!HQ ~x1 ,x2!5EĈl

t~x2!, Ĉl~x2!5S û~x2!
v̂~x2!

D ,
~30!

Eû~x2!5h0û~x2!1E dx1D* ~s,r !v̂~x1!,

Ev̂~x2!52h0v̂~x2!1E dx1D~s,r !û~x1!. ~31!

For an energy E.„max@uD̄R(g1)u,uD̄R(g2)u,uD̄L(g1)u,
uD̄L(g2)u] …, Ĉl(x) corresponds to the four elementary pr
cesses shown in Fig. 2 of Ref. 41. They also satisfy
boundary conditions given by Eqs.~28! and ~29!. As in the
case ofĈl(x), Ĉl(x) can also be written as

Ĉl~x!5exp~2 ikFy sin g!Ĉl~x,g!. ~32!

The explicit forms of these functions are not written here
brevity. Using the eight wave functions, Green’s function
then expressed as
G~x,x8,ky ,E!

5H a1C3~x,g!Ĉ1
t ~x8,g!1a2C3~x,g!Ĉ2

t ~x8,g!1a3C4~x,g!Ĉ1
t ~x8,g!1a4C4~x,g!Ĉ2

t ~x8,g!, x,x8,

b1C1~x,g!Ĉ3
t ~x8,g!1b2C2~x,g!Ĉ3

t ~x8,g!1b3C1~x,g!Ĉ4
t ~x8,g!1b4C2~x,g!Ĉ4

t ~x8,g!, x.x8,
~33!

G~x,x8,ky ,E!5S m

i\2kFx
D H 1

VL,1
exp@ ikL,1~x2x8!#A1

1

VL,2
exp@2 i k̃L,2~x2x8!#B1

ã1
VL,2

exp@2 i ~ k̃L,1x2 k̃L,2x8!#C

1
a1

VL,1
exp@ i ~kL,2x2kL,1x8!#DJ , x.x8, ~34!



y,

or

896 56YUKIO TANAKA AND SATOSHI KASHIWAYA
G~x,x8,ky ,E!5S m

i\2kFx
D H 1

VL,2
exp@2 i k̃L,2~x2x8!#Ã1

1

VL,1
exp@ ikL,1~x2x8!#B̃1

ã1
VL,2

exp@2 i ~ k̃L,1x2 k̃L,2x8!#C

1
a1

VL,1
exp@ i ~kL,2x2kL,1x8!#DJ , x8.x. ~35!

In the above, we have neglected the term which includes the atomic scale oscillations. The 232 matricesA, B, Ã, B̃, C, and
D are given as

A5S uL2,uLvLexp~2 ifL!

uLvLexp~ ifL!

vL
2 D , B5S ṽ L

2,

ũLṽLexp~2 i f̃L!

ũLṽLexp~ i f̃L!

ũ L
2 D , ~36!

Ã5S ũ L
2,

ũLṽLexp~2 i f̃L!

ũLṽLexp~ i f̃L!

ṽ L
2 D , B̃5S vL2,uLvLexp~2 ifL!

uLvLexp~ ifL!

uL
2 D , ~37!

C5S ũLṽLṽ L
2exp~2 i f̃L!

ũ L
2exp~ i f̃L!

ũLṽL
D , D5S uLvLuL

2exp~2 ifL!

vL
2exp~ ifL!

uLvL
D , ~38!

with

kL
65S kFcosg6

mVL,1

\2kFcosg
D , k̃L

65S kFcosg6
mVL,2

\2kFcosg
D . ~39!

In the above,a1 and ã1 are expressed as

a152
GAGB~12sN!1sNGCGD

GAGE~12sN!1sNGCGF

, ã152
G̃AG̃B~12sN!1sNG̃CG̃D

G̃AG̃E~12sN!1sNG̃CG̃F

, ~40!

with

GA512GR,1GR,2g3g4 , GB5GL,12GL,2g1g2 , GC512GL,2GR,2g2g4exp~2 iw!, ~41!

GD5GL,12GR,1g1g3exp~ iw!, GE512GL,1GL,2g1g2 , GF512GL,1GR,1g1g3exp~ iw!, ~42!

and

G̃A5GA , G̃B5GL,22GL,1g1g2 , G̃C5GF , G̃D5GL,22GR,2g2g4exp~2 iw!, ~43!

G̃E5GE , G̃F5GC , GL,65
uD̄L~g6!u
E1VL,6

, GR,65
uD̄R~g6!u
E1VR,6

. ~44!

The quantitiesg i ( i51,...,4) are expressed as

g15
D̄L~u1!

uD̄L~u1!u
, g25

uD̄L~u2!u

D̄L~u2!
, g35

uD̄R~u1!u

D̄R~u1!
, g45

D̄R~u2!

uD̄R~u2!u
. ~45!

After an analytical continuation fromE to ivn , where vn52pkBT(n11/2) denotes the Matsubara frequenc
Tr$G(x,x8,ky ,ivn)% is obtained. By assumingEFx@uD̄j (u6)u ( j5L,R), the Josephson currentI (w) is obtained as64

RNI ~w!5
pR̄NkBT

e H(
vn

E
2p/2

p/2 Fa1~u,ivn ,w!

Vn,L,1
UD̄L~u1!U2 ã1~u,ivn ,w!

Vn,L,2
UD̄L~u2!UGcosu duJ , ~46!

whereVn,L,65sgn(vn)AD̄L
2(u6)1vn

2. The quantityRN denotes the normal resistance andR̄N is expressed as

R̄N
215E

2p/2

p/2

sNcosu du, sN5
4Zu

2

~12Zu
2!2sinh2~ldi !14Zu

2cosh2~ldi !
, ~47!

l5~12k2cos2u!1/2l0 , Zu5
k cosu

A12k2cos2u
, ~48!

where we have introduced two parametersl05A2mU0 /\
2 andk5kF /l0 . HeresN denotes the tunneling conductance f

the injected quasiparticle when the junction is in the normal state. In the above,a1(u,ivn ,w) and ã1(u,ivn ,w) are given as
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a1~u,ivn ,w!5 i
G2~u,ivn!G5~u,ivn!~12sN!1sNG6~u,ivn ,w!G3~u,ivn ,w!

G1~u,ivn!G2~u,ivn!~12sN!1sNG3~u,ivn ,w!G4~u,ivn ,w!
, ~49!

ã1~u,ivn ,w!5 i
G2~u,ivn!G7~u,ivn!~12sN!1sNG8~u,ivn ,w!G4~u,ivn ,w!

G1~u,ivn!G2~u,ivn!~12sN!1sNG3~u,ivn ,w!G4~u,ivn ,w!
, ~50!

with

G1~u,ivn!511hL,1hL,2 , G2~u,ivn!511hR,1hR,2 , hL~R!,65
D̄L~R!~u6!

vn1Vn,L~R!,6
, ~51!

G3~u,ivn ,w!511hL,2hR,2exp~2 iw!, G4~u,ivn ,w!511hL,1hR,1exp~ iw!, ~52!

G5~u,ivn!5Gn,L,12Gn,L,2exp@ i ~a12a2!#, G6~u,ivn ,w!5Gn,L,12Gn,R,1exp@ i ~w1a12b1!#, ~53!

G7~u,ivn!5Gn,L,22Gn,L,1exp@ i ~a12a2!#, G8~u,ivn ,w!5Gn,L,22Gn,R,2exp@ i ~2w2a21b2!#, ~54!

Gn,L,65
sgn~vn!uD̄L~g6!u

vn1Vn,L,6
, Gn,R,65

sgn~vn!uD̄R~g6!u
vn1Vn,R,6

, Vn,R,65sgn~vn!AD̄R
2~u6!1vn

2, ~55!

exp~ ia1!5g1 , exp~2 ia2!5g2 , exp~2 ib1!5g3 , exp~ ib2!5g4 . ~56!

After straightforward calculations, we finally obtain the formula for the Josephson current as

RNI ~w!5
pR̄NkBT

e H(
vn

E
2p/2

p/2

F̄~u,ivn ,w!sNcosu duJ , ~57!

F̄~u,ivn ,w!54Gn,L,1Gn,R,1

3
@~12sN!uG1~u,ivn!G2~u,ivn!usin~w1a12b12Cb!1sNuG3~u,ivn ,w!u2 sin~w1a12b1!#

u~12sN!G1~u,ivn!G2~u,ivn!1sNG3~u,ivn ,w!G4~u,ivn ,w!u2
, ~58!

exp~ iCb!5
G1~u,ivn!G2~u,ivn!

uG1~u,ivn!G2~u,ivn!u
. ~59!

WhensN→0, this formula is simplified and the resultantRNI (w) becomes

RNI ~w!5
pR̄NkBT

e H(
vn

E
2p/2

p/2 4 sin~w1a12b12Cb!Gn,L,1Gn,R,1

uG1~u,ivn!G2~u,ivn!u
sNcosu duJ

5
pR̄NkBT

e H(
vn

E
2p/2

p/2

ImF 4 exp~ iw!hL,1hR,1

G1~u,ivn!G2~u,ivn!
sNcosu duG J . ~60!

Also, G12(0,0,ky ,ivn) andG21(di ,di ,ky ,ivn) are given as

G12~0,0,ky ,ivn!52S m

kFx\
2D 2hL,1exp~ iwL!

11hL,1hL,2
, ~61!

G21~di ,di ,ky ,ivn!52S m

kFx\
2D 2hR,1exp~2 iwR!

11hR,1hR,2
. ~62!

Since theu component of the local density of states of quasiparticles in the normal states,rN(u), is given asrN(u)
5(m/pkFx\

2), Eq. ~60! can be rewritten as

RNI ~w!5
pR̄NkBT

e H(
vn

E
2p/2

p/2

Im@G12~0,0,ky ,ivn!G21~di ,di ,ky ,ivn!#t~u!cosu duJ . ~63!

In the above,t(u) @ t(u)5sN(u)/(rN
2 (u)p2)# denotes the matrix element of the tunneling Hamiltonian. The quan

G12(0,0,ky ,ivn) @G21(di ,di ,ky ,ivn)# expresses the anomalous Green’s function@conjugate of the anomalous Green’s fun
tion# at the interface of the left@right# side of the superconductor and can be regarded as thevn andky component of the pair
amplitude at the interface of the left@right# superconductor. The pair amplitude at the interface does not represent those o
superconductor in general.
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When the time-reversal symmetry is not broken,D̄L(R)(u6) is chosen as real quantities. Consequently, Eq.~57! can be
simplified as64

RNI ~w!5
pR̄NkBT

e H(
vn

E
2p/2

p/2

F~u,ivn ,w!sinw sNcosu duJ , ~64!

F~u,ivn ,w!5
4hL,1hR,1@~12sN!G1~u,ivn!G2~u,ivn!1sNuG3~u,ivn ,w!u2#
u~12sN!G1~u,ivn!G2~u,ivn!1sNG3~u,ivn ,w!G4~u,ivn ,w!u2

. ~65!
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In the following, we will survey the intrinsic properties o
the formulation@Eqs. ~57! and ~64!#. First, Eq.~57! can be
applied to Josephson junctions whose electrodes have pa
symmetries which break time-reversal symmetry: i.
D̄L(R)(u6) becomes complex. In general,I (w) can be de-
composed into the series of sin(nw) and cos(nw),

I ~w!5 (
n>1

@ I nsin~nw!1Jncos~nw!#. ~66!

When the time-reversal symmetry is not broken,Jn (n>1)
vanishes. Second, the formula includes the Josephson cu
component carried by the multiple reflection process at
interface. In the above equation, the current components
index n correspond to the amplitudes of thenth reflection
processes of quasiparticles. Third, the formula naturally
cludes the bound-state condition in the denominator
F̄(u,ivn ,w) or F(u,ivn ,w), which we will refer to as
Fd(u,ivn ,w). If we replace ivn with E, the condition
Fd(u,E,w)50 can be regarded as a linear combination
two types of bound-state conditions. For a high-conducta
junction (sN→1), the condition Fd(u,E,w)
ik
t-
r

i

ing
.,

ent
e
th

-
f

f
e

'G3(u,E,w)G4(u,E,w)50 gives the energy levels o
bound states formed between the diagonal pair potentials
to the Andreev-reflection process. For a low-conducta
junction (sN→0), the condition Fd(u,E,w)
'G1(u,E)G2(u,E)50 gives the energy levels of boun
states formed around the surfaces of isolated semi-infi
superconductors. Fourth, in Eq.~64!, for a fixedw, the direc-
tion of the current becomes either positive or negative
pending on the angle. The sign ofF(u,ivn ,w) is determined
by the sign of the numerator, i.e., the sign
D̄R(u1)D̄L(u1). The total Josephson current is regarded
the integration of allu components. This is one of the im
portant properties of the Josephson junction in anisotro
superconductors: the sign change of the pair potential
the Fermi surface.

Finally, Eqs.~57! and ~64! are consistent with the previ
ous formulas for the Josephson current as limiting cas
When the left and the right superconductors ares-wave su-
perconductors with the same magnitude of the pair poten
we can chooseD̄L(u6)5D̄R(u6)5D0(T) and Vn,L,6

5Vn,R,65V05AD0
2(T)1vn

2. The resultingF(u,ivn ,w) is
expressed as
F~u,ivn ,w!5
4D0

2~T!

4~12sN!V0
21sNu~vn1V0!1~V02vn!exp~2 iw!u2

. ~67!

Performing the summation of the Matsubara frequency analytically,RNI (w) is expressed as78,79

RNI ~w!5
pR̄N

e E
2p/2

p/2 D0~T!

2A12sNsin
2~w/2!

tanhS D0~T!A12sNsin
2~w/2!

2kBT
DsNcosu sinw du. ~68!
be-
r
po-
is
nt is
ro-

r
ly
ol-
ula
For sN;0, I (w) is proportional to sin(w) and the results of
Ambegaokar-Baratoff~AB! theory82 is reproduced, while,
for sN51, Eq.~68! reproduces the previous results by Kul
and Ome’lyanchuk.66 When the left and right superconduc
ors are d-wave superconductors, four pair potentials a
chosen as D̄L(u6)5Dd(T)cos@2(u7a)# and D̄R(u6)
5Dd(T)cos@2(u7b)#. If we only take into account theu
50 component ofF(u,ivn ,w) in theu integral of Eq.~64!,
we reproduce the Sigrist-Rice results11 whereRNI (w) is pro-
portional to cos(2a)cos(2b). WhensN is set equal to unity,
we can obtain the previous results by Yip26 in pin-hole ge-
ometry. In the following sections, the Josephson junction
the various cases will be investigated in detail.
e

n

III. JOSEPHSON EFFECT IN s/I /d JUNCTIONS

In this section, the properties of the Josephson effect
tween s-wave superconductor andd-wave superconducto
junctions are discussed. Since the symmetry of the pair
tential in the left and right superconductors is different, it
not evident whether the amplitude of the Josephson curre
nonzero or not. To reveal it, we have developed a mic
scopic theory of the Josephson effect in ans-wave
superconductor/insulator/dx22y2-wave superconducto
junction.22 However, the previous theory is applicable on
when the interface is parallel to the crystal axes. In the f
lowing, more general cases are discussed using the form
presented in the previous section.
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We consider the case when theab plane of the
dx22y2-wave superconductor is in the plane as shown in F
1~a!. The quantityb expresses the angle between the norm
to the interface and the crystal axis~a axis! of the
dx22y2-wave superconductor. For a quasiparticle inject
with angleu to the interface normal, the three effective pa
potentials participate in this process. The most essential p
is that the transmitted electronlike quasiparticle and hole
quasiparticle do not always ‘‘feel’’ the same pair potentia
In such a situation,D̄L(u6) and D̄R(u6) are given as
Ds(T) andDd(T) cos@2(u7b)#, respectively. The quantitie
hL,1 andhL,2 in Eq. ~51! are substituted by

FIG. 1. Schematic illustration of reflection and transmission
quasiparticles at the interface:~a! s-wave superconductor
insulator/dx22y2-wave superconductor (s/I /d) junction. ~b!
dx22y2-wave superconductor/insulator/dx22y2-wave superconducto
(d/I /d) junction.
.
l

n

int
e
.

hL,15hL,25
Ds~T!

vn1Vn,s
,

Vn,s5sgn~vn!Avn
21Ds

2~T!. ~69!

To understand the current-phase relationI (w) clearly, the
condition for the formation of ZES’s forsN→0 and the
signs ofF(u,ivn ,w) are summarized in Table I for 0<b
<p/4. Although the particular choice ofTs and Td is not
essential, we select the critical temperatures of thes-wave
superconductor andd-wave superconductor asTs58.8 K
;0.7 meV/kB and Td590 K;7.8 meV/kB , respectively.
The correspondingDs(0) andDd(0) are 1.2 and 18 meV
Both Ds(T) andDd(T) are assumed to obey the BCS rel
tion. In Figs. 2 and 3,I (w) is plotted for variousb. Since the
time-reversal symmetry holds,Jn50 for (n>1) and I (w)
52I (2w) are satisfied. In the case ofl0di50, i.e., sN
51 ~Fig. 2! the bound states are formed between the dia
nal potentials due to the multiple Andreev reflection. Sin
the magnitudes ofI n (n.1) in Eq. ~66! are not negligible,
I (w) deviates from the ordinary sinusoidal dependences.
condition for the formation of ZES’s is expressed as the v
ishment of Fd(u,ivn50,w)50. Since hL,651, hR,15
61, andhR,2561 are satisfied,Fd(u,0,w) vanishes forw
50 and w56p. The existence of ZES’s induces the e
hancement of the Josephson current at low temperature

f

FIG. 2. Josephson currentI (w) plotted as a function ofw for
l0di50 andk50.5 with ~a! b50, ~b! b5p/8, and~c! b5p/4.
Curvea, T/Ts50.05; b, T/Ts50.3; andc, T/Ts50.6.
TABLE I. 0<b<p/4. Condition for the formation of the bound states and the sign ofF(u,ivn ,w) in the s/I /d junction.

Zero-energy states
(sN→0) left side

Zero-energy states
(sN→0) right side

Sign ofF(u,ivn ,w)
(0,w,p)

Sign ofF(u,ivn ,w)
(2p,w,0)

p/41b,u,p/2 No No 2 1

p/42b,u,p/41b No Yes 1 2

2p/41b,u,p/42b No No 1 2

2p/42b,u,2p/41b No Yes 2 1

2p/2,u,2p/42b No No 2 1



e

a
t

t o
,

w-

s.

f

of

lly

for

s of

al

ove
t

r
in
S’s

900 56YUKIO TANAKA AND SATOSHI KASHIWAYA
seen in curvesa in Fig. 2. Even whensn deviates from 1,
i.e., l0di becomes nonzero,Fd(u,0,w) vanishes forw50,
6p for 6p/42b,u,6p/41b. For nonzerob, ZES’s
are formed at the interface and the resultingI (w) is also
enhanced aroundw50 andw56p @curve a in Figs. 3~b!
and 3~c!#. Whenb is p/4 @Figs. 2~c! and 3~c!#, I 1 vanishes
and the contribution ofI 2 becomes dominant. This is th
reason for the period of oscillation of curves in Figs. 2~c! and
3~c! not being 2p but p.

Figure 4 shows the temperature dependence of the m
mum Josephson currentRNIC(T) for several cases. Withou
the barrier potential (sN51), the magnitude ofI C(T) for
b50 ~curvea! is larger than the other cases, independen
temperature@Fig. 4~a!#. However, assN decreases from 1
i.e., asl0di increases, the magnitude ofI C(T) for b5p/4

FIG. 3. Josephson currentI (w) plotted as a function ofw for
l0di51 andk50.5 with ~a! b50, ~b! b5p/8, and~c! b5p/4.
Curvea, T/Ts50.05; b, T/Ts50.3; andc, T/Ts50.6.

FIG. 4. Maximum Josephson currentI C(T) plotted as a function
of temperature fork50.5: ~a! l0di50, ~b! l0di50.5, and~c!
l0di51. Curvea, b50; b, b5p/8; andc, b5p/4.
xi-

f

~curve c! is enhanced at low temperatures. For a lo
conductance junction (sN→0), if b deviates from zero,
D̄R(u1)D̄R(u2) becomes negative for6p/42b,u,
6p/41b, andFd(u,ivn ,w) is reduced at low temperature
The extreme case is whenb5p/4, whereD̄R(u1)D̄R(u2)
,0 is satisfied for anyu. This is due to the formation o
ZES’s at the interface. The reduction ofFd(u,ivn ,w) at low
temperatures is much more drastic with the decrease
sN , i.e., with the increase ofl0di . The resultingI C(T) is
enhanced at low temperatures. Consequently, curvesc in
Figs. 4~b! and 4~c! have upper curvatures and are crucia
different from those of the AB theory.82 On the other hand,
for b50 andsN→0, the temperature dependence ofI C(T)
is similar to those obtained by AB theory.82

The effect of time-reversal symmetry breaking onI (w) is
now discussed. In this case, the effective pair potentials
quasiparticlesD̄R(u6) are given as

D̄R~u1!5Dd~T!cos@2~u2b!#1 iDsd ,

D̄R~u2!5Dd~T!cos@2~u1b!#1 iDsd . ~70!

The most serious effect is thatI (w) can no longer be ex-
pressed as a series of sin(nw) any more andJn in Eq. ~66!
becomes nonzero. Figure 5 shows the calculated result
I (w) for an s-wave superconductor/insulator/(dx22y21 is)-
wave superconductor@s/I /(d1 is)# junction whenl0di53
and k50.5. For b50, I (w) is expressed as a sinusoid
curve. However,I (w)52I (2w) is no longer satisfied due
to the mixing of thes-wave component. Forb5p/4, I (w) is
enhanced due to the formation of ZES’s as discussed ab
@see curvea in Fig. 5~b!#. In this case, the most dominan
component in the current isI 2 . By the mixing of s-wave
components~curvesb and c!, the sign change of the pai
potential felt by quasiparticles does not occur any more
the reflection process at the interface. Consequently, ZE

FIG. 5. Josephson currentI (w) plotted as a function ofw for
l0di53 and k50.5 with ~a! b50 and ~b! b5p/4 at T/Ts
50.05. Curve a, Dsd50; b, Dsd50.3Dd(0); and c, Dsd5
20.3Dd(0).
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56 901THEORY OF JOSEPHSON EFFECTS IN ANISOTROPIC . . .
disappear andI 2 is drastically reduced. On the other han
due to the existence of thes-wave component,J1 contributes
most dominantly toI (w) @see curvesb andc in Fig. 5~b!#.

We now consider the phase differencew0 which gives the
free energy minimum. The free energy of the juncti
F(w) satisfies the relation

I ~w!5
2e

\

]

]w
F~w!. ~71!

The dimensionless free energyf (w) is defined as

f ~w!5
2e2RN

\ADs~0!ADd
2~0!1Dsd

2
@F~w!2F~w0!#. ~72!

In Fig. 6, typical line shapes off (w) are plotted. Whenb
50, w0 is located at zero~curvea!. This junction is a typical
example of the so-called 0 junction. As the contribution
I m (m.1) to I (w) becomes dominant,f (w) has a double
minimum like curveb. Whenb5p/4, the contribution of
the I 1 component vanishes andw0 is located atw056p/2.
When thes-wave component mixes,f (w) is not a symmetric
function around the origin~see curvesc andd!.

Finally, we comment on the magnetic field dependence
the corner SQUID. In the corner SQUID configuratio
which consists ofx-axis andy-axis junctions with the same
ratio, the Josephson current without magnetic field can
expressed as

I ~w!5I ~x!~w!1I ~y!~w!, ~73!

whereI (x)(w) @ I (y)(w)# denotes the Josephson current fro
the x-axis @y-axis# junction. According to Eq.~66!, I (x)(w)
and I (y)(w) can be decomposed into

I ~x!~w!5 (
n>1

@ I n
~x!sin~nw!1Jn

~x!~nw!#,

I ~y!~w!5 (
n>1

@ I n
~y!sin~nw!1Jn

~y!cos~nw!#. ~74!

FIG. 6. Normalized free energy of the junctionf (w) plotted as a
function of w for l0di53 andk50.5 atT/Ts50.05. Curvea, b
50; Dsd50; b, b5p/4, Dsd50; c, b50, Dsd50.3Dd(0); and
d, b50, Dsd520.3Dd(0).
,

f

f

e

Following the ordinary textbook,83 the magnetic field depen
dence ofI (w) is given as

I ~w!5 (
n>1

H I n~x!sin~nw!1Jn
~x!cos~nw!

1I n
~y!sinFnS w2

2pF

F0
D G1Jn

~y!cosFnS w2
2pF

F0
D G J ,
~75!

whereF andF0 denote the flux which penetrates into th
SQUID and the half-unit magnetic flux quanta, respective
In Fig. 7, the maximum total Josephson currentI C(T) is
plotted as a function ofF. Whenb is zero,I C(T) becomes
minimum atF5nF0 , wheren is an integer~see curvea in
Fig. 7!. This anomalous magnetic field dependence is con
tent with that predicted using a phenomenological theor11

and was actually observed in experiments.12,13 When b is
p/4, the period of the oscillation becomes 0.5F0 . In this
geometry,I C(T) is strongly enhanced at low temperatur
due to the formation of ZES’s. The experimental observat
of this behavior is strongly expected to confirm our resu
In the case when thes-wave component mixes,I C(T) is no
longer a symmetric function of the magnetic field around
origin.

IV. JOSEPHSON EFFECT IN A d/I /d JUNCTION

This section presents the properties of ad-wave
superconductor/insulator/d-wave superconductor (d/I /d) Jo-
sephson junction. In thed/I /d junction, for a quasiparticle
injection from the left superconductor at an angleu to the
interface normal, four different effective pair potentials pa
ticipate @Fig. 1~b!#. The four effective pair potentials ar

FIG. 7. Maximum Josephson currentI C(T) in the corner
SQUID plotted as a function of the magnetic field forl0di53, k
50.5 at T/Ts50.05. Curve a, Dsd50, b50; b, Dsd50, b
5p/4; c, Dsd50.3Dd(0), b50; andd, Dsd520.3Dd(0), b50.
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D̄L(u6)5Dd(T)cos@2(u7a)# and D̄R(u6)5Dd(T)cos@2(u
7b)#. The condition for the formation of the ZES’s fo
sN→0 and the sign ofF(u,ivn ,w) for various cases are
shown in Tables II–IV. The Josephson current is calcula
by substituting the effective pair potentials to Eq.~51!. Re-
cently, Sigrist and Rice presented a phenomenological the
~referred to as SR theory! of I C(T) in the grain boundary
junctions. It predicts that the maximum Josephson curren
proportional toucos(2a)cos(2b)u. To clarify the validity of
SR theory, we defineJC(a,b,T)[I C(T) and introduce a
functionB(a,b,T) as

B~a,b,T!5JC~a,b,T!/JC~0,0,T!. ~76!

In SR theory,B(a,b,T) is ucos(2a)cos(2b)u for every tem-
perature. We now discuss the properties of thed/I /d junc-
tion and examine the validity of AB and SR theories f
three types of geometry.

First, we assume that one of the crystal axes is paralle
the interface (a50). Figure 8~a! shows I (w) of a d/I /d
junction withb50 without the barrier potential (l0di50).
In this case,I n (n.1) in Eq. ~66! is not negligible; that is,
the contribution from the higher-order tunneling process
I (w) is significant. The resulting curves ofI (w) deviate from
sinusoidal shapes especially at low temperatures. With
increase ofl0di , the higher-order processes are suppres
and I (w) approaches the usual sinusoidal shape@Fig. 8~b!#.
In the two cases corresponding to Figs. 8~a! and 8~b!,
F(u,ivn ,w), with 0,w,p (2p,w,0), is positive
~negative!, independent ofu. However, asb deviates from
zero @Figs. 8~c! and 8~d!#, F(u,ivn ,w), with 0,w,p
(2p,w,0), becomes negative~positive! for the quasipar-
ticle injection of u with p/4,u,p/41b or 2p/4,u,
2p/41b. Extreme behavior is expected whenb5p/4,
whereI 1 ~the lowest-order term! vanishes due to theu inte-
gral andI (w) has a form close to sin(2w). The temperature
dependences of the maximum Josephson currentJC(0,b,T)

FIG. 8. Josephson currentI (w) in a d/I /d junction plotted as a
function of w for k50.5 anda50: ~a! b50, l0di50, ~b! b
50, l0di51, ~c! b5p/8, l0di51, and ~d! b5p/4, l0di51.
Curvea, T/Td50.05; b, T/Td50.3; andc, T/Td50.6.
d

ry
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to
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corresponding to the cases shown in Fig. 8 are plotted in
9. Whenb50 with l0di50 ~curvea in Fig. 9!, an almost
linear temperature dependence is obtained. In this case
can perform the summation ofvn analytically. Fora5b
50, whereD̄L(R)(u6)5D̄d(T,u)5Dd(T)cos(2u) is satisfied,
the resultingRNI (w) becomes

RNI ~w!5
pR̄N

e E
2p/2

p/2 D̄d~T,u!sNcosu sinw

2A12sNsin
2~w/2!

3tanhF D̄d~T,u!A12sNsin
2~w/2!

2kBT
Gdu. ~77!

For sN!1, RNJC(0,0,T) is expressed as

FIG. 9. Maximum Josephson currentJC(a,b,T) in a d/I /d
junction is plotted as a function of temperature fork50.5 anda
50: ~a! l0di50 and ~b! l0di51. Curvea, b50; b, b5p/8;
andc, b5p/4.

FIG. 10. B(0,b,T) plotted as a function ofb for ~a! l0di51
and ~b! l0di53 with k50.5. Curve a, T/Td50.05; b, T/Td
50.3; andc, Sigrist and Rice’s result~SR theory!.



56 903THEORY OF JOSEPHSON EFFECTS IN ANISOTROPIC . . .
TABLE II. 0<b<p/4. Condition for the formation of the bound states and the sign ofF(u,ivn ,w) with a50 in thed/I /d junction.

Zero-energy states
(sN→0) left side

Zero-energy states
(sN→0) right side

Sign ofF(u,ivn ,w)
(0,w,p)

Sign ofF(u,ivn ,w)
(2p,w,0)

p/41b,u,p/2 No No 1 2

p/4,u,p/41b No Yes 2 1

p/42b,u,p/4 No Yes 1 2

2p/41b,u,p/42b No No 1 2

2p/4,u,2p/41b No Yes 2 1

2p/42b,u,2p/4 No Yes 1 2

2p/2,u,2p/42b No No 1 2
ti
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y
,
be
RNJC~0,0,T!;
pR̄N

e E
2p/2

p/2 D̄d~T,u!sNcosu

2

3tanhS D̄d~T,u!

2kBT
D du. ~78!

The temperature dependence ofJC(0,0,T) is similar to the
results of AB theory.82 Actually, as l0di increases,
JC(0,0,T) approaches to that of AB theory@curvea in Fig.
9~b!#. Whenb is nonzero, the absolute value ofJC(0,b,T) is
reduced due to the coexistence of the positive and nega
values ofF(u,ivn ,w) as a function ofu ~curvesb andc in
Fig. 9!. Anomalous behavior is noted whenb5p/4 where
JC(0,b,T) is rapidly enhanced due to the formation of ZES
at low temperatures~curve c in Fig. 9!. In Fig. 10,
B(0,b,T) is plotted for various temperatures. Following S
theory,B(0,b,T)5ucos(2b)u is satisfied, independent of tem
peratures. Curvec expresses the magnitude ofucos(2b)u as a
reference. The deviation of the magnitude ofB(0,b,T) from
that of curvec is prominent aroundb5p/4 at low tempera-
tures @curvesa and b in Fig. 10~a!#. With the increase of
l0di , the deviation is drastically reduced~curvesa andb!.
Although the effect of the formation of ZES’s is complete
neglected in SR theory,B(0,b,T) is expressed by this theor
fairly well for largel0di , i.e., for smallsN . To discuss the
role of ZES’s, we will defineI z(w), which denotes the Jo
sephson current originating from the regionC where ZES’s
are formed for smallsN . The quantityI z(w) is given as

RNI z~w!5
pR̄N

e
kBT(

vn

H~ ivn!sin~w!,

H~ ivn!5E
C
F~u,ivn ,w!sNcosu du. ~79!

As seen from Table II, the regionC becomes2p/42b
ve

,u,2p/41b and p/42b,u,p/41b. For small sN ,
H( ivn) becomes

H~ ivn!5E
p/42b

p/41b

sNcosu
4hL,1~hR,11hR,2!

~11hL,1
2 !~11hR,1hR,2!

du.

~80!

In the above, we have applied the fact that ZES’s are
formed at the interface of the left superconductor sin
D̄L(u1)5D̄L(u2) is satisfied. At low temperatures,H( ivn)
is given as

H~ ivn!524E
p/42b

p/41b cos~2u!

ucos~2u!u
cosusNdu, ~81!

and no singular behavior with respect tovn is expected.
Consequently, the role of ZES’s is not so significant.

Second, we assume the antisymmetric geometrya
5b). The sign ofF(u,ivn ,w) and the condition of the for-
mation of ZES’s forsN→0 corresponding to this geometr
is shown in Table III. WhensN is set equal to unity, i.e.
l0di50, the summation of the Matsubara frequency can
calculated analytically. The resultingRNI (w) is expressed as

RNI ~w!5
2pR̄N

e E
2p/2

p/2

Dd~0!cos@2~u2a!#sinS w

2 D
3tanhH Dd~0!cos@2~u2a!#cos~w/2!

2kBT
J cosu du.

~82!

WhenT!uDd(0)u is satisfied, theu integration also can be
performed analytically. RNJC(a,a,T) becomes
TABLE III. 0<a<p/4. Condition for the formation of the bound states and the sign ofF(u,ivn ,w) with a5b in thed/I /d junction.

Zero-energy states
(sN→0) left side

Zero-energy states
(sN→0) right side

Sign ofF(u,ivn ,w)
(0,w,p)

Sign ofF(u,ivn ,w)
(2p,w,0)

p/41a,u,p/2 No No 1 2

p/42a,u,p/41a Yes Yes 1 2

2p/41a,u,p/42a No No 1 2

2p/42a,u,2p/41a Yes Yes 1 2

2p/2,u,2p/42a No No 1 2
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RNJC~a,a,T!5
4pR̄NDd~0!

3e
@2& cosa2cos~2a!#.

~83!

The temperature dependence ofJC(a,a,T) is insensitive to
the change ina. For nonzerol0di , JC(a,a,T) depends ona
significantly. Especially for a low-conductance junctio
(sN→0), JC(a,a,T) is strongly enhanced at low temper
tures due to the formation of ZES’s. For 0,w,p (2p
,w,0), F(u,ivn ,w) becomes positive~negative!, inde-
pendent ofu. The magnitude ofI 1 in Eq. ~66! becomes
dominant for anyb. Consequently, with the increase
l0di , the w dependence ofI (w) becomes sinusoidal. Th
temperature dependence of the maximum Josephson cu
JC(a,a,T) is plotted in Fig. 11. Since the quantit
F(u,ivn ,w) is positive, independent ofu, the maximum Jo-
sephson currentRNJC(a,a,T) is a monotonically increasing
function with the decrease of temperatures. The enhancem
of JC(a,a,T) with the decrease of temperature is most s
nificant for a5b5p/4. To understand these features, it
instrumental to perform the summation ofvn analytically,
which can be only possible for the special casesa5b50
and a5b5p/4. For a5b5p/4, where D̄L(R)(u6)5
6D̄d(T,u)56Dd(T) sin(2u) is satisfied, the resulting
RNI (w) becomes

RNI ~w!5
pR̄N

e E
2p/2

p/2 D̄d~T,u!sNcosu sinw

2AsN cos~w/2!

3tanhF D̄d~T,u!cos~w/2!AsN

2kBT
Gdu ~84!

and, forAsNuD̄d(T,u)u!2kBT,

RNJC~p/4,p/4,T!5
pR̄N

4ekBT
E

2p/2

p/2

D̄d
2~T,u!sNdu. ~85!

FIG. 11. Maximum Josephson currentJC(a,b,T) with a5b
plotted as a function of temperature fork50.5: ~a! l0di51 and
~b! l0di53. Curvea, a50; b, a5p/8; andc, a5p/4.
ent

ent
-

Since the temperature is included in the denominator,
Josephson current is expected to increase as the temper
is lowered. This anomalous behavior originates from the
istence of ZES’s at the interfaces of both the left and rig
superconductors@curvesc in Figs. 11~a! and 11~b!#. At suf-
ficiently low temperatures, i.e.,kBT!AsNuD̄d(T,u)u,
RNJC(p/4,p/4,T) is given as

RNJC~p/4,p/4,T!;
pR̄N

e E
2p/2

p/2

uD̄d~T,u!uAsN cosu du.

~86!

Since the order of the magnitude ofR̄N is proportional to the
inverse ofsN , RNJC(p/4,p/4,T) at zero temperature is pro
portional to the inverse ofAsN. Hence we can expect a larg
magnitude ofRNJC(p/4,p/4,T) for a low-conductance junc
tion with a5b5p/4. Figure 12 shows the calculated resu
of B(a,a,T) as a function ofa for various temperatures
Curvesa–c show thatB(a,a,T) takes the maximum value
ata5p/4 in the low-temperature region. As the temperatu
is lowered and asl0di is increased, the magnitude o
B(p/4,p/4,T) is enhanced. This anomalousa dependence
cannot be explained in the framework of SR theory~curve
d!. Since ZES’s are formed at the interfaces of both left a
right superconductors, thevn dependence ofH( ivn) is dras-
tically changed as compared to Eq.~81!. For sufficiently low
temperature with smallsN , i.e., AsNuD̄d(T,u)u!vn ,
H( ivn) becomes

H~ ivn!58E
p/42a

p/41a sNcosuuD̄L~u1!u2uD̄L~u2!u2

vn
2@ uD̄L~u1!u1uD̄L~u2!u#2

du}vn
22,

~87!

with D̄L(u6)5D̄R(u6), and the resultingRNIC(T) is propor-
tional to the inverse ofT. This anomalousvn dependence of
H( ivn) is the origin of the deviation from that of SR theor

Third, we assume a mirror-type junction (a52b). Table
IV shows thatF(u,ivn ,w) becomes negative~positive! for

FIG. 12. B(a,a,T) plotted as a function ofa for ~a! l0di51
and ~b! l0di53 with k50.5. Curve a, T/Td50.05; b, T/Td
50.3; c, T/Td50.6; andd, Sigrist and Rice’s result~SR theory!.
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TABLE IV. 0<a<p/4. Condition for the formation of the bound states and the sign ofF(u,ivn ,w) with a52b in thed/I /d junction.

Zero-energy states
(sN→0) left side

Zero-energy states
(sN→0) right side

Sign ofF(u,ivn ,w)
(0,w,p)

Sign ofF(u,ivn ,w)
(2p,w,0)

p/41a,u,p/2 No No 1 2

p/42a,u,p/41a Yes Yes 2 1

2p/41a,u,p/42a No No 1 2

2p/42a,u,2p/41a Yes Yes 2 1

2p/2,u,2p/42a No No 1 2
fo
a
,

e

e

e

s

nt

um
6p/42a,p,6p/41a with 0,w,p (2p,w,0).
These conditions happen to coincide with those of the
mation of ZES’s both at the left and right interfaces. Typic
I (w) and RṄJC(a,2a,T) are shown in Figs. 13 and 14
respectively. Whenl0di50, the magnitude ofI (w) in-
creases with the decrease in temperatures@Fig. 13~a! and
curvesa in Fig. 14#. But whenl0di becomes nonzero, th
magnitudes ofI (w) andJC(a,2a,T) show nonmonotonous
behavior with temperature@Fig. 13~b! and curvesb, andc in
Fig. 14~a!#. As a increases,I (w) changes sign with decreas
in T for fixed w @Figs. 13~c! and 13~d!#. The magnitude of
JC(a,2a,T) has an anomalous temperature dependenc
shown in curvesb and c in Figs. 14~b! and 14~c!. In this
case, H( ivn) for a small magnitude of vn and
AsNuD̄d(T,u)u!vn is expressed as

H~ ivn!528E
p/42a

p/41a sNcosuuD̄L~u1!u2uD̄L~u2!u2

vn
2@ uD̄L~u1!u1uD̄L~u2!u#2

du

}vn
22, ~88!

with D̄L(u6)5D̄R(u7). This anomalousvn dependence is
similar to the case ofa5b and induces the nonmonotonou
temperature dependences ofJC(a,2a,T). To understand
this effect clearly, three parametersGp(w), Gn(w), and

FIG. 13. Josephson currentI (w) in d/I /d junction plotted as a
function ofw for k50.5 anda52b: ~a! a50.05p, l0di50, ~b!
a50.05p, l0di52, ~c! a50.1p, l0di52, and ~d! a50.12p,
l0di52. Curvea, T/Td50.05; b, T/Td50.3; andc, T/Td50.6.
r-
l

as

wM are defined. Since the sign ofRNI (w) has aw depen-
dence,RNI (w) is decomposed into a negative compone
Gn(w) and a positive componentGp(w). When 0,w,p,
they are expressed as

Gn~w!5
R̄NpkBT

e H(
vn

E
2p/42a

2p/41a

F~u,ivn ,w!sNcosu du

1E
p/42a

p/41a

F~u,ivn ,w!sNcosu duJ sinw, ~89!

and Gp(w)5RNI (w)2Gn(w). On the other hand, when
2p,w,0, they are given by

Gp~w!5
R̄NpkBT

e H(
vn

E
2p/42a

2p/41a

F~u,ivn ,w!sNcosu du

1E
p/42a

p/41a

F~u,ivn ,w!sNcosu duJ sinw, ~90!

andGn(w)5RNI (w)2Gp(w). The quantitywM (2p,wM
,p) is defined as the phase difference giving the maxim
amplitude ofI (w). In Fig. 15, uGn(wM)u andGp(wM) are

FIG. 14. Maximum Josephson currentJC(a,b,T) in d/I /d junc-
tion with a52b plotted as a function of temperature withk
50.5: ~a! a50.05p, ~b! a50.1p, and ~c! a50.12p. Curvea,
l0di50; b, l0di51; andc, l0di53.
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plotted using the same parameters as curveb in Fig. 14~a!. In
the inset of Fig. 15, the temperature dependence ofwM is
also plotted. At the low-temperature region,Gp(wM) is al-
most constant whileuGn(wM)u is enhanced reflecting the for
mation of ZES’s. This unbalanced dependence is the or
of the suppression ofRNJC(a,2a,T) at low temperature. In
some cases, with the increase ina, the jump ofwM occurs as
shown in Fig. 16, which is plotted using the same parame
as curveb in Fig. 14~b! ~see the inset of Fig. 16!. Near the
temperature of the jump,T;Tj , the shape ofI (w) changes
as shown in Fig. 17. The nonmonotonous temperature de

FIG. 15. Positive and negative components ofJC(a,2a,T) ob-
tained from curveb of Fig. 14~a! as a function of temperature
Curve a, Gp(wM); b, uGn(wM)u; and c, RNJC(a,2a,T). In the
insetwM is plotted as a function of temperature.

FIG. 16. Positive and negative components ofJC(a,2a,T) ob-
tained from curveb of Fig. 14~b! as a function of temperature
Curve a, Gp(wM); b, uGn(wM)u; and c, RNJC(a,2a,T). In the
insetwM is plotted as a function of temperature.
in

rs

n-

dence and the enhancement ofRNJC(a,2a,T) below Tj
originate from the jump ofwM from positive to negative and
from the enhancement ofGp(wM) with negativewM . With a
further increase ofa, wM stays negative, independent of tem
perature. In this case,RNJC(a,2a,T) becomes a monotoni
cally increasing function with the decrease of temperatu
sinceGp(wM).uGn(wM)u is satisfied for all temperature
~Fig. 18!. The comparison of our results with that of S
theory for a fixed temperature is plotted in Fig. 19. There
a double minimum inB(a,2a,T). The width of the peak at
a5p/4 increases as the temperature is decreased. The h
of the peak enhances with the increase of the magnitud
l0di . These features are remarkably different from tho
expected from SR theory~curved!.

Finally, the applicability of AB and SR theories is sum
marized. Both theories assume junctions with low cond

FIG. 17. Josephson currentI (w) is plotted nearTj , where jump
of the wM occurs: Curvea, T50.125Td ; b, T50.175Td . The
same parameters are used as in Fig. 16.

FIG. 18. Positive and negative components ofJC(a,2a,T) ob-
tained for a52b50.15p, l0di51, and k50.5: Curve a,
Gp(wM); b, uGn(wM)u; andc, RNJC(a,2a,T). In the insetwM is
plotted as a function of temperature.
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tance and ignore the existence of the ZES’s. We can ap
AB theory only when there is no ZES for everyu at the
interface; i.e.,a5b50 is satisfied. In SR theory, only th
current component which flows perpendicular to the int
face is considered. In the case when one of the interface
the superconductor has no ZES for everyu, i.e., a50 (b
50) is satisfied, theb~a! dependence of the maximum J
sephson current is expressed by SR theory fairly well. Ho
ever, when both superconductors have ZES’s, e.g., foa
5b or a52b, a large deviation exists from SR theory.

V. JOSEPHSON EFFECT ALONG THE c AXIS

In the previous two sections, we discussed the Joseph
effect in two-dimensional models. This section presents
Josephson current along thec axis which takes into accoun
the three-dimensional effect. For the simplest model calc
tion, we consider ans-wave superconductor/insulator/nearl
two-dimensionaldx22y2-wave superconductor (s/I /d8) junc-
tion @Fig. 20~a!# and a nearly-two-dimensionaldx22y2-
wave superconductor/insulator/nearly-two-dimensio
dx22y2-wave superconductor (d8/I /d8) junction @Fig. 20~b!#.
For the actual high-Tc superconductors like Y-Ba-Cu-O
since the tetragonal symmetry is weakly broken,
s-wave component is mixed with thedx22y2-wave compo-
nents. To see the effect of this mixing, the properties of
s-wave superconductor/insulator/s1dx22y2-wave supercon-
ductor@s/I /(s1d8)# junction are also discussed. We assu
a spherical Fermi surface in thes-wave superconductor and
nearly two-dimensional Fermi surface in thed-wave super-
conductor, which is defined by restricting thez component of
the Fermi surface to the region given by2d,sin21(kFz/kF)
,d. The effective Fermi surface which is available for tu
neling in the s/I /d8 junction is determined by the Ferm
surface in thed-wave superconductor@see Fig. 20~c!#. The
interface is assumed to be perpendicular to thez axis and is
located atz50 andz5di , wheredi is the thickness of the

FIG. 19.B(a,2a,T) plotted as a function ofa with k50.5 for
~a! l0di51 and ~b! l0di53. Curve a, T/Td50.05; b, T/Td
50.3; c, T/Td50.6; andd, Sigrist and Rice’s result~SR theory!.
ly
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insulator. The Fermi wave numbers forx,y,z directions
(kFx ,kFy ,kFz) and the effective massm are assumed to be
equal in both the lower- and upper-side superconductors.
assume that the pair potential and the Hartree potential

D~k,r !5H D̄lo~gu ,gf!exp~ iw lo!, z,0,
0, 0,z,di ,

D̄up~gu ,gf!exp~ iwup!, z.di ,

U~z!5H 0, z,0,
U0 , 0,z,di ,
0, z.di ,

~91!

wheregu is the injection angle of the quasiparticle andgf is
the azimuthal angle in thexy (ab) plane,D~k,r ! is the Fou-
rier transform of D~s,r !, k is the wave number, with
exp(igf)singu[kx /uku1 iky /uku and cosgu[kz/uku using a
wave vectork. Applying these configurations to Eq.~14!,
I (w) is obtained as

FIG. 20. Schematic illustration of the reflection and the tra
mission of quasiparticles at the interface of ac-axis-oriented Jo-
sephson junction: ~a! s-wave superconductor/insulator/nearl
two-dimensionaldx22y2-wave superconductor (s/I /d8) junction.~b!
Nearly-two-dimensional dx22y2-wave superconductor/insulato
nearly-two-dimensionaldx22y2-wave superconductor (d8/I /d8)
junction. ~c! The effective Fermi surface.
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I ~w!5
e\kBT

2im
lim
z8→z

S ]

]z8
2

]

]zD
3 (

vn ,kx ,ky
$G~z,z8,kx ,ky ,ivn!%uz50 . ~92!

Here the Green’s function is expressed as a function okx
andky , because the translational invariance for these dir
tions is satisfied. In general, there are four kinds of effect
pair potentials for a quasiparticle with fixedgu and gf .

FIG. 21. Maximum Josephson currentI C(T) is plotted as a
function of temperature withk50.5 for curve a, l0di51, d
50.1; b, l0di50.5, d50.1; andc, l0di51, d50.2 ~a! s/I /d8
junction (Dsd50) and ~b! s/I /(s1d8) junction with Dsd

50.05Dd(0).
e

ls

n

c-
e

They areD̄lo(gu,1 ,gf), D̄lo(gu,2 ,gf), D̄up(gu,1 ,gf), and
D̄up(gu,2 ,gf). We assumeD̄lo(gu,1 ,gf)5D̄lo(gu,2 ,gf)
andD̄up(gu,1 ,gf)5D̄up(gu,2 ,gf) for simplicity. By insert-
ing these pair potentials into Eq.~14! and following the de-
scribed method in Sec. II, the Josephson currentI (w) is ob-
tained:

RNI ~w!5
R̄NkBT

2e H(
vn

E
p/22d

p/2

sinu cosu

3duE
0

2p

df
uD̄lo~u,f!u

Vn, lo
@a1~u,f,ivn ,w!

2ã1~u,f,ivn ,w!#J , ~93!

with

Vn, lo5sgn~vn!AD̄lo
2 ~u,f!1vn

2, w5w lo2wup. ~94!

The quantityRN denotes the normal resistance, andR̄N is
expressed as

R̄N
215E

p/22d

p/2

sNsinu cosu du, ~95!

where the quantitysN is defined in Eq.~47!. The quantities
a1(u,f,ivn ,w) and ã1(u,f,ivn ,w) are the coefficients of
Andreev reflection as discussed in Sec. II. In the followin
we will restrict our discussion to the case where the tim
reversal symmetry is conserved. In such a situation,Jn (n
>1) in Eq. ~66! vanishes andI (w)52I (2w) is satisfied.

The resultingRNI (w) is expressed as
RNI ~w!5
R̄NkBT

2e H(
vn

E
p/22d

p/2

sNcosusinu duE
0

2p

F~u,f,ivn ,w!sinw dfJ , ~96!

F~u,f,ivn ,w!5
2D̄lo~u,f!D̄up~u,f!

~22sN!Vn, loVn,up1sN@vn
21D̄lo~u,f!D̄up~u,f!cosw#

5
2D̄lo~u,f!D̄up~u,f!

@~22sN!Vn, loVn,up1sNvn
2#

3 (
m50

` F2
sND̄lo~u,f!D̄up~u,f!cosw

~22sN!Vn, loVn,up1sNvn
2Gm, ~97!
to

e
d
the
with Vn,up5sgn(vn)AD̄up
2 (u,f)1vn

2.
First, the Josephson current in thes/I /d8 junction is dis-

cussed. The pair potential felt by the quasiparticles for fix
u andf is shown in Fig. 20~a!. The effective pair potentials
are given as D̄lo(u,f)5Ds(T) and D̄up(u,f)
5Dd(T)sin

2u cos(2f). By substituting these pair potentia
into Eq. ~97!, we obtain I (w). Due to thef integral, the
terms proportional to cos2m w vanish, and thenI 1 in Eq. ~66!
also vanishes. For small transparent junctions,I (w) becomes
almost proportional to sin~2w!. In the case of the@s/I /(s
1d8)# junction, the pair potential in the upper superco
ductor, D̄up(u,f), is given asDd(T)sin

2u cos(2f)1Dsd.
d

-

I (w) is calculated by substituting these pair potentials in
those in Eq.~97!. Hereafter, we assume that bothDs(T) and
Dd(T) obey the BCS relation as in Secs. III and IV. Th
ratios ofDs(0)/Dd(0) andTs /Td are chosen to be 1/15 an
1/11. Figure 21~a! shows the temperature dependence of
maximum Josephson current of thes/I /d junction for vari-
ous l0di and d. WhenT;Ts , RNIC(T) is proportional to
(Ts2T). This feature is quite different from that of AB
theory. With the increase ofl0di and with the decrease ofd,
I C(T) is drastically suppressed. In the case of the@s/I /(s
1d8)# junction, nearT;Ts , RNIC(T) is proportional to
ATs2T as shown in Fig. 21~b! sinceRNI (w) is proportional
to sin~w!. The maximum Josephson currentI C(T) is insensi-
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tive to the change ofl0di and tod as compared to that o
Fig. 21~a!. To check the effect of dimensionality, thed de-
pendence ofRNI (w) is discussed. Figure 22 shows the c
culated results of thed dependence ofI C(T). In the case of
the s/I /d8 junction,RNIC(T) decreases monotonically wit
the decrease ofd and finally vanishes atd50 @Fig. 22~a!#.
This feature is independent ofl0di andk, while in the case
of the s/I /(s1d8) junctionRNIC(T) stays nonzero atd50
@Fig. 22~b!#. In fact, we can analytically calculateRNIC(T)
at the two-dimensional limit, i.e.,d→0, where

RNI ~w!5RNIC~T!sinw ~98!

is satisfied. Using the fact that thesN cosu is expressed as

lim
d→0

sNcosuuu5p/22d;d3, ~99!

RNIC(T) of the s/I /d8 junction is transformed into

RNIC~T!5
kBT

2e
(
n
E
0

2p

df

3
D̄lo~p/2,f!D̄up~p/2,f!

Avn
21D̄lo

2 ~p/2,f!Avn
21D̄up

2 ~p/2,f!
.

~100!

Due to thef integral,RNIC(T) completely vanishes, inde
pendent ofl0di andk. On the other hand, in the case of th
d8/I /(s1d8) junction,RNIC(T) is given as

RNIC~T!5
kBT

2e (
n
E
0

2p

df

3
Ds~T!Dsd

Avn
21Ds

2~T!Avn
21@Dd~T!cos2f1Dsd#

2
.

~101!

It takes a nonzero value even at the two-dimensional lim

FIG. 22. Maximum Josephson currentI C(T) is plotted as a
function of d at T/Ts50.025 with k50.5 for curvea, l0di51;
b, l0di50.5. ~a! s/I /d8 junction (Dsd50) and ~b! s/I /(s1d8)
junction withDsd50.05Dd(0).
-

Next, the properties of thed8/I /d8 junction84,85 are dis-
cussed. In this case, bothD̄up(u,f) and D̄lo(u,f) are given
by Dd(T)cos(2f)sin

2 u. Taking the summation of the Mat
subara frequency in Eq.~97! analytically, RNI (w) is ex-
pressed as

RNI ~w!5
pR̄N

e E
p/22d

p/2

du

3E
0

2p

G~T,u,f,w!sNcosusinu sinw df,

~102!

with

G~T,u,f,w!

5
Dd~T!sin2u cos~2f!

2A12sNsin
2~w/2!

3tanhFDd~T!sin2u cos~2f!A12sNsin
2~w/2!

2kBT
G .

~103!

The maximum Josephson currentRNIC(T) is always a
monotonically increasing function with the decrease of te
peratures as shown in Fig. 23. This feature shows a rem
able difference from that of thed/I /d junction discussed in
the preceding section. In the two-dimensional lim
(d→0), RNI (w) is simplified as

RNI ~w!5H E
0

2p Dd~T!cos~2f!

4e

3tanhFDd~T!cos~2f!

2kBT
GdfJ sinw. ~104!

In this limit, RNI (w) is independent ofl0 and k. Further-
more, at zero temperature,RNIC(T)e/Dd(0) becomes ex-
actly 1. The corresponding quantity in thes/I /s junction ob-
tained by AB theory isp/2. The difference directly reflects
the distribution of the pair potential amplitude in momentu
space.

FIG. 23. Maximum Josephson currentI C(T) for d8/I /d8 junc-
tion is plotted as a function of temperatures fork50.5: Curve
a, l0di51, d50.1; b, l0di51, d50.2; andc, two-dimensional
limit, i.e., d50.



in
nt
le
n

s

i
m
io
in
ie

te
o
J
.
p

on
m
g

n

r-
e
ry
ex
te

ea

o
n
in

th

th

t

ul
he
he

is

o
s

son
ner
h-

ri-
ur-

o-
rrent
e
’s

on-
curs
ch
be

pair
n of
unt,
l

t in
al

elf-
tial.
rre-

o-
fea-
tem-
alous
ct of
and
ly
ery
r
r-

ur-
y is

K.
g
H.
-
for
One
-
ic
of
m-
of
lar

910 56YUKIO TANAKA AND SATOSHI KASHIWAYA
VI. SUMMARY AND DISCUSSION

An analytical formula for the dc Josephson current
spin-singlet anisotropic superconductors has been prese
We have taken into account the fact that quasipartic
‘‘feel’’ the different signs of the pair potentials depending o
the directions of their motions.42–46Our formula is general in
the sense that several existing formulas for the Joseph
current can be derived as limiting cases.11,26,66,69,78,79,82This
formula is valid, even when the time-reversal symmetry
broken: i.e., the pair potential of the superconductor beco
a complex number. Since the multiple Andreev reflect
and the normal reflection at the interface are completely
cluded, the formula can be applicable for arbitrary barr
height case.

Applying our formula, the Josephson current is calcula
for various junction geometries. The calculated results sh
several anomalous behaviors which are not expected for
sephson junctions of conventionals-wave superconductors
Especially, three important features are predicted for Jose
son junctions includingd-wave superconductors.

~1! For a fixed phase difference between two superc
ductors, the component of the Josephson current beco
either positive or negative depending on the injection an
of the quasiparticle.

~2! In some situations, the phase differencew0 , which
gives the free energy minima, is located at neither zero
p.

~3! When the crystal axis is tilted from the interface no
mal, zero-energy states~ZES’s!, i.e., midgap states, ar
formed near the interface depending on the angle of the c
tal axis and the injection angle of the quasiparticle. The
istence of ZES’s enhances the Josephson current at low
peratures.

These features will be confirmed if they are actually m
sured in experiments.

Many experimental trials have already been performed
Josephson junctions made of high-Tc superconductors. Su
et al.86 and Katzet al.87 observed the Josephson current
c-axis-oriented Pb/YBCO junctions. The observedRNIC(T)
is proportional toATs2T nearTs , whereTs is the transition
temperature of Pb. On the other hand, Dursoyet al.88 tried
similar experiments on Bi-Sr-Ca-Cu-O~BSCCO!/Pb, and
they did not observe the Josephson current. We believe
these results do not contradict each other.76 In the case of
YBCO, the presence of orthorhombic distortion induces
mixing of s-wave components in thed-wave pair potential.76

If we assumeDs(0)51.2 meV, Dd(0)518 meV, andDsd
50.09 meV, the obtainedRNIC(T) is about 0.2–0.3 mV a
zero temperature and proportional toATs2T nearTs . These
features are qualitatively consistent with experimental res
of YBCO/Pb. While in the case of BSCCO/Pb, since t
crystal structure of BSCCO is tetragonal, the mixing of t
s-wave components is not expected. The leading term
I (w) should be the sin(2w) component whose amplitude
far less than that of the sin(w) component ofI (w) in ordinary
junctions. Furthermore, since BSCCO is more like a tw
dimensional material as compared to YBCO, the Joseph
current was enormously reduced as was shown in Fig. 22~a!.
ed.
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For these reasons, it is very difficult to observe the Joseph
current in experiments using BSCCO/Pb. Recently, Klei
et al. tried to observe the sin(2w) dependence of the Josep
son current from microwave-induced steps.89 However, the
existence of this term was not confirmed in their expe
ments. This may be due to the two-dimensional Fermi s
face of YBCO and the low transparency of the junction.

The most fascinating experiment is to observe the nonm
notonous temperature dependence of the Josephson cu
which is predicted in this paper especially for mirror-typ
grain junctions. This feature is expected only when ZES
are formed at the interface of both left and right superc
ductors and the sign change of the Josephson current oc
as a function of injection angle. As far as we know, su
results have not been reported yet, and we believe it will
observed in the future.

Throughout this paper, the spatial dependence of the
potentials is assumed to be constant. Even if the depletio
the pair potentials around the interface is taken into acco
the ZES’s does not vanish at all53,54,56,57,90and the essentia
results will not be changed. After our work,63,64 Barash,
Burkhardt, and Rainer calculated the Josephson curren
the grain boundaryd/I /d junction based on a quasiclassic
method which is different from our formulation.91,92 Their
theory includes the effect of roughness and the s
consistency of the spatial dependence of the pair poten
Since the analytical formula of the Josephson current co
sponding to Eqs.~58! and ~64! is not explicitly presented in
their papers,91,92 a direct comparison between the two the
ries cannot be made at present. However, the qualitative
tures of the Josephson current, i.e., a nonmonotonous
perature dependence of the Josephson current and anom
phase dependence, are not changed at all when the effe
the roughness is small. The relation between their results
ours will be clarified in the near future. In this paper, on
the Josephson current with zero voltage is discussed. V
recently, Barash and Svidzinsky93 investigated the singula
behavior of the quasiparticle current94 and the Josephson cu
rent for nonzero voltage in ad/I /d junction in the limit of a
low-transparency coefficient. To clarify the Josephson c
rent and the quasiparticle current for arbitrary transparenc
also a challenging future problem.
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